
TextGraphs-2: Graph-Based Algorithms for Natural Language Processing, pages 53–60,
Rochester, April 2007 c©2007 Association for Computational Linguistics

Learning to Transform Linguistic Graphs

Valentin Jijkoun and Maarten de Rijke
ISLA, University of Amsterdam

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
jijkoun,mdr@science.uva.nl

Abstract

We argue in favor of the the use of la-
beled directed graph to represent various
types of linguistic structures, and illustrate
how this allows one to view NLP tasks as
graph transformations. We present a gen-
eral method for learning such transforma-
tions from an annotated corpus and de-
scribe experiments with two applications
of the method: identification of non-local
depenencies (using Penn Treebank data)
and semantic role labeling (using Propo-
sition Bank data).

1 Introduction

Availability of linguistically annotated corpora such
as the Penn Treebank (Bies et al., 1995), Proposition
Bank (Palmer et al., 2005), and FrameNet (John-
son et al., 2003) has stimulated much research on
methods for automatic syntactic and semantic anal-
ysis of text. Rich annotations of corpora has al-
lowed for the development of techniques for recov-
ering deep linguistic structures: syntactic non-local
dependencies (Johnson, 2002; Hockenmaier, 2003;
Dienes, 2004; Jijkoun and de Rijke, 2004) and se-
mantic arguments (Gildea, 2001; Pradhan et al.,
2005; Toutanova et al., 2005; Giuglea and Moschitti,
2006). Most state-of-the-art methods for the latter
two tasks use a cascaded architecture: they employ
syntactic parsers and re-cast the corresponding tasks
as pattern matching (Johnson, 2002) or classifica-
tion (Pradhan et al., 2005) problems. Other meth-

ods (Jijkoun and de Rijke, 2004) use combinations
of pattern matching and classification.

The method presented in this paper belongs to
the latter category. Specifically, we propose (1) to
use a flexible and expressive graph-based represen-
tation of linguistic structures at different levels; and
(2) to view NLP tasks as graph transformation prob-
lems: namely, problems of transforming graphs of
one type into graphs of another type. An exam-
ple of such a transformation is adding a level of
the predicate argument structure or semantic argu-
ments to syntactically annotated sentences. Further-
more, we describe a general method to automati-
cally learn such transformations from annotated cor-
pora. Our method combines pattern matching on
graphs and machine learning (classification) and can
be viewed as an extension of the Transformation-
Based Learning paradigm (Brill, 1995). After de-
scribing the method for learning graph transforma-
tions we demonstrate its applicability on two tasks:
identification of non-local dependencies (using Penn
Treebank data) and semantic roles labeling (using
Proposition Bank data).

The paper is organized as follows. In Section 2
we give our motivations for using graphs to encode
linguistic data. In Section 3 we describe our method
for learning graph transformations and in Section 4
we report on experiments with applications of our
method. We conclude in Section 5.

2 Graphs for linguistic structures and
language processing tasks

Trees and graphs are natural and common ways of
encoding linguistic information, in particular, syn-

53



VP

to seek NP

seats

VP

planned

S

directors S

NP−SBJthis month

NP−TMP

*

NP−SBJ

Figure 1: Local and non-local syntantic relations.

VP

using NP

S

stoppedLorillard Inc

in

cigarette filters

NP in NP

1956

ARG0 head ARG1 ARGM
feature=TMP

pred

crocidolite

S

PP PP

NP VP

Figure 2: Syntactic structure and semantic roles.

tactic structures (phrase trees, dependency struc-
tures). In this paper we use node- and edge-labeled
directed graphs as our representational formalism.
Figures 1 and 2 give informal examples of such rep-
resentations.

Figure 1 shows a graph encoding of the Penn
Treebank annotation of the local (solid edges) and
non-local (dashed edges) syntantic structure of the
sentence directors this month planned to seek more
seats. In this example, the co-indexing-based im-
plicit annotation of the non-local dependency (sub-
ject control) in the Penn Treebank (Bies et al., 1995)
is made explicit in the graph-based encoding.

Figure 2 shows a graph encoding of linguistic
structures for the sentence Lorillard Inc stopped us-
ing crocodolite in sigarette filters in 1956. Here,
solid lines correspond to surface syntactic structure,
produced by Charniak’s parser (Charniak, 2000),
and dashed lines are an encoding of the Proposition
Bank annotation of the semantic roles with respect
to the verb stopped.

Graph-based representations allow for a uniform
view on the linguistic structures on different layers.
An advantage of such a uniform view is that ap-
parently different NLP tasks can be considered as

VP

to seek NP

seats

VP

planned

S

directors S

this month

NP

NP

Figure 3: Output of a syntactic parser.

manipulations with graphs, in other words, as graph
transformation problems.

Consider the task of recovering non-local depen-
dencies (such as control, WH-extraction, topicaliza-
tion) in the surface syntactic phrase trees produced
by the state-of-the-art parser of (Charniak, 2000).
Figure 3 shows a graph-based encoding of the output
of the parser, and the task in question would consist
in transforming the graph in Figure 3 into the graph
in Figure 1. We notice that this transformation can
be realised as a sequence of independent and rela-
tively simple graph transformations: adding nodes
and edges to the graph or changing their labels (e.g.,
from NP to NP-SBJ).

Similarly, for the example in Figure 2, adding a
semantic layer (dashed edges) to the syntactic struc-
ture can also be seen as transforming a graph.

In general, we can view NLP tasks as adding ad-
ditional linguistic information to text, based on the
information already present: e.g., syntactic pars-
ing taking part-of-speech tagged sentences as in-
put (Collins, 1999), or anaphora resolution tak-
ing sequences of syntactically analysed and named-
entity-tagged sentences. If both input and output lin-
guistic structures are encoded as graphs, such NLP
tasks become graph transformation problems.

In the next section we describe our general
method for learning graph transformations from an
annotated corpus.

3 Learning graph transformations

We start with a few basic definitions. Similar
to (Schürr, 1997), we define ıemphgraph as a rela-
tional structure, i.e., a set of objects and relations
between them; we represent such structures as sets
of first-order logic atomic predicates defining nodes,

54



directed edges and their attributes (labels). Con-
stants used in the predicates represent objects (nodes
and edges) of graphs, as well as attribute names and
values. Atomic predicates node(·), edge(·, ·, ·) and
attr(·, ·, ·) define nodes, edges and their attributes.
We refer to (Schürr, 1997; Jijkoun, 2006) for formal
definitions and only illustrate these concepts with an
example. The following set of predicates:

node(n1), node(n2), edge(e, n1, n2),
attr(n1, label, Src), attr(n2, label, Dst)

defines a graph with two nodes, n1 and n2, hav-
ing labels Src and Dst (encoded as attributes named
label), and an (unlabelled) edge e going from n1 to
n2.

A pattern is an arbitrary graph and an occurence
of a pattern P in graph G is a total injective homo-
morphism Ω from P to G, i.e., a mapping that asso-
ciates each object of P with one object G and pre-
serves the graph structure (relations between nodes,
edges, attribute names and values). We will also use
the term occurence to refer to the graph Ω(P ), a sub-
graph of G, the image of the mapping Ω on P .

A graph rewrite rule is a triple r =
〈lhsr, Cr, rhsr〉: the left-hand side, the constraint
and the right-hand side of r, respectively, where lhsr

and rhsr are graphs and Cr is a function that returns
0 or 1 given a graph G, pattern lhsr and its occurence
in G (i.e., Cr specifies a constraint on occurences of
a pattern in a graph).

To apply a rewrite rule r = 〈lhsr, Cr, rhsr〉 to
a graph G means finding all occurences of lhsr in
G for which Cr evaluates to 1, and replacing such
occurences of lhsr with occurences of rhsr. Effec-
tively, objects and relations present in lhsr but not in
rhsr will be removed from G, objects and relations
in rhsr but not in lhsr will be added to G, and com-
mon objects and relations will remain intact. Again,
we refer to (Jijkoun, 2006) for formal definitions.

As will be discussed below, our method for learn-
ing graph transformations is based on the ability to
compare pairs of graphs, identifying where the two
graphs are similar and where they differ. An align-
ment of two graphs is a partial one-to-one homomor-
phism between their nodes and edges, such that if
two edges of the two graphs are aligned, their re-
spective endpoints are aligned as well. A maximal

alignment of two graphs is an alignment that maxi-
mizes the sum of (1) the number of aligned objects
(nodes and edges), and (2) the number of match-
ing attribute values of all aligned objects. In other
words, a maximal alignment identifies as many sim-
ilarities between two graphs as possible. Given an
alignment of two graphs, it is possible to extract a
list of rewrite rules that can transform one graph into
another. For a maximal alignment such a list will
consist of rules with the smallest possible left- and
right-hand sides. See (Jijkoun, 2006) for details.

As stated above, we view NLP applications as
graph transformation modules. Our supervised
method for learning graph transformation requires
two corpora: input graphs In = {Ink} and corre-
sponding output graphs Out = {Outk}, such that
Outk is the desired output of the NLP module on
the input Ink.

The result of the method is an ordered list of graph
rewrite rules R = 〈r1, . . . rn〉, that can be applied in
sequence to input graphs to produce the output of the
NLP module.

Our method for learning graph transforma-
tions follows the structure of Transformation-Based
Learning (Brill, 1995) and proceeds iteratively, as
shown in Figure 4. At each iteration, we compare
and align pairs of input and output graphs, identify
possible rewrite rules and select rules with the most
frequent left-hand sides. For each selected rewrite
rule r, we extract all occurences of its left-hand
side and use them to train a two-class classifier im-
plementing the constraint Cr: the classifier, given
an encoding of an occurence of the left-hand side
predicts whether this particular occurence should
be replaced with the corresponding right-hand side.
When encoding an occurence as a feature vector, we
add as features all paths and all attributes of nodes
and edges in the one-edge neighborhood from the
nodes of the occurence. For the experiments de-
scribed in this paper we used the SVM Light classi-
fier (Joachims, 1999) with a standard linear kernel.
See (Jijkoun, 2006) for details.

4 Applications

Having presented a general method for learning
graph transformations, we now illustrate the method
at work and describe two applications to concrete

55



Compare

Apply

Extract rules

Aligned graphs

Compare

Apply

Extract rules

Aligned graphs

rules rulesrules

Ideal output graphsInput graphs

...

Iteration 1 Iteration 2 Iteration N

Compare

Apply

Extract rules

Aligned graphs

...

Figure 4: Structure of our method for learning graph transformations.

NLP problems: identification of non-local depen-
dencies (with the Penn Treebank data) and semantic
role labeling (with the Proposition Bank data).

4.1 Non-local dependencies

State-of-the-art statistical phrase structure parsers,
e.g., Charniak’s and Collins’ parsers trained on
the Penn Treebank, produce syntactic parse trees
with bare phrase labels, (NP, PP, S, see Figure 3),
i.e., providing surface grammatical analysis of sen-
tences, even though the training corpus, the Penn
Treebank, is richer and contains additional gram-
matical and semantic information: it distinguishes
various types of modifiers, complements, subjects,
objects and annotates non-local dependencies, i.e.,
relations between phrases not adjacent in the parse
tree (see Figure 1). The task of recovering this in-
formation in the parser’s output has received a good
deal of attention. (Campbell, 2004) presents a rule-
based algorithm for empty node identification in
syntactic trees, competitive with the machine learn-
ing methods we mention next. In (Johnson, 2002)
a simple pattern-matching algorithm was proposed
for inserting empty nodes into syntactic trees, with
patterns extracted from the Penn Treebank. (Dienes,
2004) used a preprocessor that identified surface lo-
cation of empty nodes and a syntactic parser incor-
porating non-local dependencies into its probabilis-

tic model. (Jijkoun and de Rijke, 2004) described
an extension of the pattern-matching method with a
classifier trained on the dependency graphs derived
from the Penn Treebank data.

In order to apply our graph transformation method
to the task of identifying non-local dependencies,
we need to encode the information provided in the
Penn Treebank annotations and in the output of a
syntactic parser using directed labeled graphs. We
used a straightforward encoding of syntactic trees,
with nodes representing terminals and non-terminals
and edges defining the parent-child relationship. For
each node, we used the attribute type to specify
whether it is a terminal or a non-terminal. Ter-
minals corresponding to Penn empty nodes were
marked with the attribute empty = 1. For each
terminal (i.e., each word), the values of attributes
pos, word and lemma provided the part-of-speech tag,
the actual form and the lemma of the word. For
non-terminals, the attribute label contained the la-
bel of the corresponding syntactic phrase. The co-
indexing of empty nodes and non-terminals used in
the Penn Treebank to annotate non-local dependen-
cies was encoded using explicit edges with a distinct
type attribute, connecting empty nodes with their an-
tecedents (e.g., the dashed edge in Figure 1). For
each non-terminal node, its head child was marked
by attaching attribute head with value 1 to the corre-

56



sponding parent-child edge, and the lexical head of
each non-terminal was explicitly indicated using ad-
ditional edges with the attribute type = lexhead. We
used a heuristic method of (Collins, 1999) for head
identification.

When Penn Treebank sentences and the output of
the parser are encoded as directed labeled graphs
as described above, the task of identifying non-
local dependencies can be formulated as transform-
ing phrase structure graphs produced by a parser into
graphs of the type used in Penn Treebank annota-
tions.

We parsed the strings of the Penn Treebank with
Charniak’s parser and then used the data from sec-
tions 02–21 of the Penn Treebank for training: en-
coding of the parser’s output was used as the cor-
pus of input graphs for our learning method, and
the encoding of the original Penn annotations was
used as the corpus of output graphs. Similarly, we
used the data of sections 00–01 for development and
section 23 for testing. Using the input and output
corpora, we ran the learning method as described
above, at each iteration considering 20 most frequent
left-hand sides of rewrite rules. At each iteration,
the learned rewrite rules were applied to the current
training and development corpora to create a cor-
pus of input graphs for the next iteration (see Fig-
ure 4) and to estimate the performance of the system
at the current iteration. The system was evaluated
on the development corpus with respect to non-local
dependencies using the “strict” evaluation measure
of (Johnson, 2002): the F1 score of precision and
recall of correctly identified empty nodes and an-
tecedents. If the absolute improvement of the F1

score for the evaluation measure was smaller than
0.1, the learning cycle was terminated, otherwise a
new iteration was started.

The learning cycle terminated after 12 iterations.
The resulting sequence of 12 × 20 = 240 graph
rewrite rules was applied to the test corpus of in-
put graphs: Charniak’s parser output on the strings
of section 23 of the Penn Treebank. The result
was evaluated against the original annotations of the
Penn Treebank.

The results of the evaluation of the system on
empty nodes and non-local dependencies and the
PARSEVAL F1 score on local syntactic phrase
structure against the test corpus at each iteration are

Stage P R F1 PARSEVAL F1

Initial 0.0 0.0 0.0 88.7
1 88.2 38.6 53.7 88.4
2 87.2 48.6 62.5 88.4
3 87.5 51.9 65.2 88.4
4 86.7 52.1 65.1 88.4
5 86.1 56.3 68.1 88.3
6 86.0 57.2 68.7 88.4
7 86.3 61.3 71.7 88.4
8 86.6 63.4 73.2 88.4
9 86.7 64.6 74.0 88.4

10 86.7 64.9 74.2 88.4
11 86.6 65.1 74.3 88.4
12 86.7 65.2 74.4 88.4

Table 1: Evaluation of our method for identification
of empty nodes and their antecedents (12 first itera-
tions).

shown in Table 1.
As one can expect, at each iteration the method

extracts graph rewrite rules that introduce empty
nodes and non-local relations into syntactic struc-
tures, increasing the recall. The performance of the
final system (P/R/F1 = 86.7/65.2/74.4) for the task
of identifying non-local dependencies is compara-
ble to the performance of the best model of (Di-
enes, 2004): P/R/F1=82.5/70.1/75.8. The PARSE-
VAL score for the present system (88.4) is, however,
higher than the 87.3 for the system of Dienes.

Another effect of the learned transformations is
changing node labels of non-terminals, specifically,
modifying labels to include Penn functional tags
(e.g., changing NP in the input graph in Figure 3 to
NP-SBJ in the output graph in Figure 1). In fact, 17%
of all learned rewrite rules involved only changing
labels of non-terminal nodes. Analysis of the results
showed that the system is capable of assigning Penn
function tags to constituents produced by Charniak’s
parser with F1 = 91.4 (we use here the evalua-
tion measure of (Blaheta, 2004): the F1 score of the
precision and recall for assigning function tags to
constituents with surface spans correctly identified
by Charniak’s parser). Comparison to the evalua-
tion results of the function tagging method presented
in (Blaheta, 2004) is shown in Table 2.

The present system outperforms the system of
Blaheta on semantic tags such as -TMP or -MNR
marking temporal and manner adjuncts, respec-
tively, but performs worse on syntactic tags such
as -SBJ or -PRD marking subjects and predicatives,

57



(Blaheta, 2004) Here
Type Count P / R / F1 P / R / F1

All tags 8480 - 93.3 / 89.6 / 91.4

Syntactic 4917 96.5 / 95.3 / 95.9 95.4 / 95.5 / 95.5
Semantic 3225 86.7 / 80.3 / 83.4 89.7 / 82.5 / 86.0

Table 2: Evaluation of adding Penn Treebank func-
tion tags.

respectively. Note that the present method was not
specifically designed to add functional tags to con-
stituent labels. The method is not even “aware” that
functional tags exists: it simply treats NP and NP-SBJ
as different labels and tries to correct labels compar-
ing input and output graphs in the training corpora.

In general, of the 240 graph rewrite rules ex-
tracted during the 12 iterations of the method, 25%
involved only one graph node in the left-hand side,
16% two nodes, 12% three nodes, etc. The two
most complicated extracted rewrite rules involved
left-hand sides with ten nodes.

We now switch to the second application of our
graph transformation method.

4.2 Semantic role labeling

Put very broadly, the task of semantic role labeling
consists in detecting and labeling simple predicates:
Who did what to whom, where, when, how, why, etc.
There is no single definition of a universal set of
semantic roles and moreover, different NLP appli-
cations may require different specificity of role la-
bels. In this section we apply the graph transforma-
tion method to the task of identification of semantic
roles as annotated in the Proposition Bank (Palmer
et al., 2005), PropBank for short. In PropBank, for
all verbs (except copular) of the syntactically anno-
tated sentences of the Wall Street Journal section of
the Penn Treebank, semantic arguments are marked
using references to the syntactic constituents of the
Penn Treebank. For the 49,208 syntactically anno-
tated sentences of the Penn Treebank, the PropBank
annotated 112,917 verb predicates (2.3 predicates
per sentence on average), with a total of 292,815 se-
mantic arguments (2.6 arguments per predicate on
average).

PropBank does not aim at cross-verb semantically
consistent labeling of arguments, but rather at anno-
tating the different ways arguments of a verb can

be realized syntactically in the corpus, which re-
sulted in the choice of theory-neutral numbered la-
bels (e.g., Arg0, Arg1, etc.) for semantic arguments.
Figure 2 shows an example of a PropBank annota-
tion (dashed edges).

In this section we address a specific NLP task:
identifying and labeling semantic arguments in the
output of a syntactic parser. For the example in
Figure 2 this task corresponds to adding “semantic”
nodes and edges to the syntactic tree.

As before, in order to apply our graph transfor-
mation method, we need to encode the available in-
formation using graphs. Our encoding of syntactic
phrase structure is the same as in Section 4.1 and the
encoding of the semantic annotations of PropBank
is straightforward. For each PropBank predicate, a
new node with attributes type = propbank and label =
pred is added. Another node with label = head and
nodes for all semantic arguments of the predicate
(with labels indicating PropBank argument names)
are added and connected to the predicate node. Ar-
gument nodes with label ARGM (adjunct) addition-
ally have a feature attribute with values TMP, LOC,
etc., as specified in PropBank. The head node and
all argument nodes are linked to their respective syn-
tactic constituents, as specified in the PropBank an-
notation. All introduced semantic edges are marked
with the attribute type = propbank.

As before, we used section 02–21 of the Prop-
Bank (which annotates the same text as the Penn
Treebank) to train our graph transformation system,
section 00-01 for development and section 23 for
testing. We ran three experiments, taking three dif-
ferent corpora of input graphs:

1. the original syntactic structures of the Penn
Treebank containing function tags, empty
nodes, non-local dependencies, etc.;

2. the output of Charniak’s parser (i.e., bare syn-
tactic trees) on the strings of sections 02–21;
and

3. the output of Charniak’s parser processed
with the graph transformation system described
in 4.1.

For all three experiments we used the gold stan-
dard syntactic and semantic annotations from the

58



Penn Treebank Charniak Charniak +
Iter. P R P R P R

1 90.0 70.7 79.5 58.6 79.9 59.1
2 90.7 76.5 81.2 63.9 81.0 64.2
3 90.7 78.1 81.3 65.6 81.1 65.8
4 90.6 78.9 81.4 66.5 81.2 66.7
5 90.5 80.4 81.4 67.0 81.2 68.3
6 90.4 81.2 81.4 68.3 81.1 68.8
7 90.3 81.9 81.3 68.9 81.0 69.3
8 90.3 82.2 81.3 69.3 81.0 69.8
9 90.3 82.5 81.3 69.6 81.0 70.1

10 90.3 82.8 81.4 69.8 81.0 70.3
11 90.3 83.0 81.3 69.9 81.0 70.4
12 90.3 83.2

Table 3: Evaluation of our method for semantic role
identification with Propbank: with Charniak parses
and with parses processed by the system of Sec-
tion 4.1.

Penn Treebank and PropBank as the corpora of out-
put graphs (for the experiment with bare Charniak
parses, we dropped function tags, empty nodes and
non-local dependencies from the syntactic annota-
tion of the output graphs: we did not want our sys-
tem to start recovering these annotations, but were
interested in the identification of PropBank informa-
tion alone).

For each of the experiments, we used the corpora
of input and output graphs as before, at each itera-
tion extracting 20 rewrite rules with most frequent
left-hand sides, applying the rules to the develop-
ment data to measure the current performance of the
system. We stopped the learning in case the perfor-
mance improvement was less than a threshold and,
otherwise, continued the learning loop. As our per-
formance measure we used the F1 score of precision
and recall of the correctly identified and labeled non-
empty constituents—semantic arguments.

In all experiments, the learning stopped after 11
or 12 iterations. The results of the evaluation of the
system at each iteration on the test section of Prop-
Bank are shown in Table 3.

As one may expect, the performance of our se-
mantic role labeler is substantially higher on the
gold Penn Treebank syntactic structures than on the
parser’s output. Surprisingly, however, adding extra
information to the parser’s output (i.e., processing it
with the system of Section 4.1) does not significantly
improve the performance of the resulting system.

In Table 4 we compare our system for semantic

System P R F1

(Pradhan et al., 2005) 80.9 76.8 78.8
Here 81.0 70.4 75.3

Table 4: Evaluation of our methods for semantic role
identification with Propbank (12 first iterations).

roles labeling with the output of Charniak’s parser to
the state-of-the-art system of (Pradhan et al., 2005).

While showing good precision, our system per-
forms worse than state-of-the-art with respect to re-
call. Taking into account the iterative nature of
the method and imperfect rule selection criteria (we
simply take the most frequent left-hand sides), we
believe that it is the rule selection and learning termi-
nation condition that account for the relatively low
recall values. Indeed, in all three experiments de-
scribed above the learning loop stops while the recall
is still on the rise, albeit very slowly. It seems that
a more careful rule selection mechanism and loop
termination criteria are needed to address the recall
problem.

5 Conclusions

In this paper we argued that encoding diverse and
complex linguistic structures as directed labeled
graphs allows one to view many NLP tasks as graph
transformation problems. We proposed a general
method for learning graph transformation from an-
notated corpora and described experiments with two
NLP applications.

For the task of identifying non-local dependen-
cies and for function tagging our general method
demonstrates performance similar to the state-of-
the-art systems, designed specifically for these tasks.
For the PropBank semantic role labeling the method
shows a relatively low recall, which can be explained
by our sub-optimal “rule of thumb” heuristics (such
as selecting 20 most frequent rewrite rules at each
iteration of the learning method). We see two ways
of avoiding such heuristics. First, one can define
and fine-tune the heuristics for each specific appli-
cation. Second, one can use more informed rewrite
rule selection methods, based on graph-based rela-
tional learning and frequent subgraph detection al-
gorithms (Cook and Holder, 2000; Yan and Han,
2002). Furthermore, more experiments are required

59



to see how the details of encoding linguistic in-
formation in graphs affect the performance of the
method.

Acknowledgements

This research was supported by the Netherlands
Organization for Scientific Research (NWO) un-
der project numbers 017.001.190, 220-80-001,
264-70-050, 354-20-005, 600.065.120, 612-13-
001, 612.000.106, 612.066.302, 612.069.006,
640.001.501, 640.002.501, and by the E.U. IST
programme of the 6th FP for RTD under project
MultiMATCH contract IST-033104.

References

Ann Bies, Mark Ferguson, Karen Katz, and Robert Mac-
Intyre. 1995. Bracketing guidelines for Treebank II
style Penn Treebank project. Technical report, Uni-
versity of Pennsylvania.

Don Blaheta. 2004. Function Tagging. Ph.D. thesis,
Brown University.

Eric Brill. 1995. Transformation-based error-driven
learning and natural language processing: A case
study in part-of-speech tagging. Computational Lin-
guistics, 21(4):543–565.

Richard Campbell. 2004. Using linguistic principles
to recover empty categories. In Proceedings of the
42nd Annual Meeting on Association for Computa-
tional Linguistics, pages 645–653.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proceedings of the 1st Meeting of NAACL,
pages 132–139.

Michael Collins. 1999. Head-Driven Statistical Models
for Natural Language Parsing. Ph.D. thesis, Univer-
sity of Pennsylvania.

Diane J. Cook and Lawrence B. Holder. 2000.
Graph-based data mining. IEEE Intelligent Systems,
15(2):32–41.

Péter Dienes. 2004. Statistical Parsing with Non-local
Dependencies. Ph.D. thesis, Universität des Saarlan-
des, Saarbrücken, Germany.

Daniel Gildea. 2001. Statistical Language Understand-
ing Using Frame Semantics. Ph.D. thesis, University
of California, Berkeley.

Ana-Maria Giuglea and Alessandro Moschitti. 2006. Se-
mantic role labeling via framenet, verbnet and prop-
bank. In Proceedings of the 21st International Con-
ference on Computational Linguistics and 44th Annual
Meeting of the Association for Computational Linguis-
tics, pages 929–936.

Julia Hockenmaier. 2003. Parsing with generative mod-
els of predicate-argument structure. In Proceedings of
the 41st Meeting of ACL, pages 359–366.

Valentin Jijkoun and Maarten de Rijke. 2004. Enrich-
ing the output of a parser using memory-based learn-
ing. In Proceedings of the 42nd Meeting of the Asso-
ciation for Computational Linguistics (ACL’04), Main
Volume, pages 311–318, Barcelona, Spain, July.

Valentin Jijkoun. 2006. Graph Transformations for Nat-
ural Language Processing. Ph.D. thesis, University of
Amsterdam.

Thorsten Joachims. 1999. Making large-scale svm
learning practical. In B. Schölkopf, C. Burges, and
A. Smola, editors, Advances in Kernel Methods - Sup-
port Vector Learning. MIT-Press.

Christopher R. Johnson, Miriam R. L. Petruck, Collin F.
Baker, Michael Ellsworth, Josef Ruppenhofer, and
Charles J. Fillmore. 2003. FrameNet: Theory and
Practice. http://www.icsi.berkeley.edu/
∼framenet.

Mark Johnson. 2002. A simple pattern-matching al-
gorithm for recovering empty nodes and their an-
tecedents. In Proceedings of the 40th meeting of ACL,
pages 136–143.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus of
semantic roles. Computational Linguistics, 31(1).

Sameer Pradhan, Wayne Ward, Kadri Hacioglu, Jim Mar-
tin, and Dan Jurafsky. 2005. Semantic role label-
ing using different syntactic views. In Proceedings of
ACL-2005.

A. Schürr. 1997. Programmed graph replacement sys-
tems. In Grzegorz Rozenberg, editor, Handbook of
Graph Grammars and Computing by Graph Transfor-
mation, chapter 7, pages 479–546.

Kristina Toutanova, Aria Haghighi, and Chris Manning.
2005. Joint learning improves semantic role labeling.
In Proceedings of the 43rd Meeting of the Association
for Computational Linguistics (ACL).

Xifeng Yan and Jiawei Han. 2002. gspan: Graph-based
substructure pattern mining. In Proceedings of the
2002 IEEE International Conference on Data Mining
(ICDM).

60


