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Abstract

This paper presents latent semantic gram-
mars for the unsupervised induction of
English grammar. Latent semantic gram-
mars were induced by applying singu-
lar value decomposition to n-gram by
context-feature matrices. Parsing was
used to evaluate performance. Exper-
iments with context, projectivity, and
prior distributions show the relative per-
formance effects of these kinds of prior
knowledge. Results show that prior dis-
tributions, projectivity, and part of speech

real-world applicability to English UGI. While other
contemporary research in this area is promising, the
case for real-world English UGI has not been as
convincingly made (van Zaanen, 2000; Solan et al.,
2005).

This paper weaves together two threads of in-
quiry. The first thread is latent semantics, which
have not been previously used in UGI. The second
thread is dependency-based UGI, used by Klein and
Manning (2004), which nicely dovetails with our se-
mantic approach. The combination of these threads
allows some exploration of what characteristics are
sufficient for UGI and what characteristics are nec-
essary.

information are not necessary to beat the

right branching baseline. 2 Latent semantics

Previous work has focused on syntax to the exclu-
sion of semantics (Brill and Marcus, 1992; van Zaa-
nen, 2000; Klein and Manning, 2002; Paskin, 2001;
Unsupervised grammar induction (UGI) generates lélein and Manning, 2004; Solan et al., 2005). How-
grammar from raw text. It is an interesting problenever, results from the speech recognition commu-
both theoretically and practically. Theoretically, itnity show that the inclusion of latent semantic infor-
connects to the linguistics debate on innate knowmation can enhance the performance of their mod-
edge (Chomsky, 1957). Practically, it has the poels (Coccaro and Jurafsky, 1998; Bellegarda, 2000;
tential to supersede techniques requiring structurddeng and Khudanpur, 2003). Using latent semantic
text, like treebanks. Finding structure in text withinformation to improve UGI is therefore both novel
little or no prior knowledge is therefore a fundamen-and relevant.
tal issue in the study of language. The latent semantic information used by the
However, UGl is still a largely unsolved problem.speech recognition community above is produced
Recent work (Klein and Manning, 2002; Klein andby latent semantic analysis (LSA), also known as
Manning, 2004) has renewed interest by using a UG&tent semantic indexing (Deerwester et al., 1990;
model to parse sentences from the Wall Street Jourandauer et al., 1998). LSA creates a semantic rep-
nal section of the Penn Treebank (WSJ). These pangsentation of both words and collections of words
ing results are exciting because they demonstraile a vector space, using a two part process. First,
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a term by document matrix is created in which theJohn lkesstring chese.

frequency of wordw; in documentd; is the value (-

of cell ¢;;. Filters may be applied during this pro-

cess which eliminate undesired terms, e.g. common Figure 1: A Dependency Graph
words. Weighting may also be applied to decrease

the contributions of frequent words (Dumais, 1991,)the equation reported in Larsen (1998), a standard

Secondly, singular value decomposition (SVD) ISorthogonal SVD of a unigram/bigram by sentence

applied to the term by document matrix. The M€ matrix of the LSA Touchstone Applied Science As-

sulting matrix decomposition has the property thaéociates Corpus (Landauer et al., 1998) requires over

th?. rer?ovgl of dhlgher-ordttart_dlme?;l]ons f:rfeatle S gigabytes of random access memory. This esti-
optima’ reduced representation of Ihe onginal Még, ;e s prohibitive for all but current supercomput-
trix in the least squares sense (Berry et al., 1995 rs

Therefore, SVD performs a kind of dimensionality

. L However, it is possible to use a non-orthogonal
reduction such that words appearing in different doc’éVD approach with significant memory savings
uments can acquire similar row vector represents-

tions (Landauer and Dumais, 1997). Words can b cullum and Willoughby, 2002). A non—orthog_o_nal
. ) . pproach creates the same matrix decomposition as
compared by taking the cosine of their correspon

. . : ~traditional approaches, but the resulting memor
ing row vectors. Collections of words can likewise bp g y

. : . savings allow dramatically larger matrix decompo-
be compared by first adding the corresponding "O%tions. Thus a non-orthongonal SVD approach is
Gf<ey to the inclusion of ordered latent semantics into

tween the two collection vectors. our UGI model.

A stumbling block to incorporating LSA into UGI
is that grammars are inherently ordered but LSA ig Dependency grammars
not. LSA is unordered because the sum of vectors is
the same regardless of the order in which they wel@ependency structures are an ideal grammar repre-
added. The incorporation of word order into LSAsentation for evaluating UGI. Because dependency
has never been successfully carried out before, atructures have no higher order nodes, Bl, their
though there have been attempts to apply word oevaluation is simple: one may compare with a ref-
der post-hoc to LSA (Wiemer-Hastings and Zipitriagrence parse and count the proportion of correct de-
2001). A straightforward notion of incorporating pendencies. For example, Figure 1 has three depen-
word order into LSA is to use n-grams instead of indencies{( John, likes ), ( cheese, likes ), ( string,
dividual words. In this way a unigram, bigram, andcheese }, so the trial pars¢( John, likes ), ( string,
trigram would each have an atomic vector represetikes ), (cheese, string hasl /3 directed dependen-
tation and be directly comparable. cies correct an@/3 undirected dependencies cor-

It may seem counterintuitive that such an n-gramect. This metric avoids the biases created by brack-
scheme has never been used in conjunction witting, where over-generation or undergeneration of
LSA. Simple as this scheme may be, it quickly falldrackets may cloud actual performance (Carroll et
prey to memory limitations of modern day comput-al., 2003). Dependencies are equivalent with lexical-
ers for computing the SVD. The standard for comized trees (see Figures 1 and 2) so long as the depen-
puting the SVD in the NLP sphere is Berry (1992)'sdencies are projective. Dependencies are projective
SVDPACK, whose single vector Lanczos recursionvhen all heads and their dependents are a contigu-
method with re-orthogonalization was incorporate@us sequence.
into the BellCore LSI tools. Subsequently, either Dependencies have been used for UGI before with
SVDPACK or the LSI tools were used by the ma-mixed success (Paskin, 2001; Klein and Manning,
jority of researchers in this area (Schitze, 199%004). Paskin (2001) created a projective model us-
Landauer and Dumais, 1997; Landauer et al., 1998)g words, and he evaluated on WSJ. Although he
Coccaro and Jurafsky, 1998; Foltz et al., 1998; Bekeported beating the random baseline for that task,
legarda, 2000; Deng and Khudanpur, 2003). Usingoth Klein and Manning (2004) and we have repli-
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Slikes John string lkescheese.

NPJohn VPlikes
|

John likes NP cese gX10

Figure 3: A Nonprojective Dependency Graph

string cheese

Figure 2: A Lexicalized Tree

cated the random baseline above Paskin's resul
Klein and Manning (2004), on the other hand, hav
handily beaten a random baseline using a projectiy
model over part of speech tags and evaluating on
subset of WSJ, WSJ10.

Number of Dependencies

1 2 3 4 5 6 7 8 9 10
Words Distant

4 Unanswered questions

There are several unanswered questions ifrigure 4: Distance Between Dependents in WSJ10
dependency-based English UGI. Some of these

may be motivated from the Klein and Manning43 Context

(2004) model, while others may be motivated

from research efforts outside the UGI communityT he core of several UGl approaches is distributional
Altogether, these questions address what kindhalysis (Brill and Marcus, 1992; van Zaanen, 2000;
of prior knowledge are, or are not necessary foKlein and Manning, 2002; Paskin, 2001; Klein and

successful UGI. Manning, 2004; Solan et al., 2005). The key idea in
such distributional analysis is that the function of a
4.1 Partsof speech word may be known if it can be substituted for an-

Klein and Manning (2004) used part of Speech taggther word (Harris, 1954). If so, both words have the
as basic elements instead of words. Although thisame function. Substitutability must be defined over
move can be motivated on data sparsity grounds, gcontext. In UGI, this context has typically been the
is somewhat at odds with the lexicalized nature opreceding and following words of the target word.
dependency grammars. Since Paskin (2001)’s preVilowever, this notion of context has an implicit as-
ous attempt using words as basic elements was usimption of word order. This assumption is true for
successful, it is not clear whether parts of speech akglish, but is not true for other languages such as

necessary prior knowledge in this context. Latin. Therefore, it is not clear how dependent En-
o glish UGl is on local linear context, e.g. preceding
4.2 Projectivity and following words, or whether an unordered no-

Projectivity is an additional constraint that may notion of context would also be effective.

be necessary for successful UGI. English is a projec- , .

tive language, but other languages, such as Bulgdk4 Prior distributions

ian, are not (Pericliev and llarionov, 1986). NonproKlein and Manning (2004) point their model in the
jective UGI has not previously been studied, and itight direction by initializing the probability of de-

is not clear how important projectivity assumptiongpendencies inversely proportional to the distance be-
are to English UGI. Figure 3 gives an example of &aween the head and the dependent. This is a very
nonprojective construction: not all heads and theigood initialization: Figure 4 shows the actual dis-
dependents are a contiguous sequence. tances for the dataset used, WSJ10.
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Klein (2005) states that, “It should be emphasizedpproach uses a bigram by document matrix such
that this initialization was important in getting rea-that word order is eliminated. Therefore the value
sonable patterns out of this model.” (p. 89). Howof cell;; is the number of timesgram,; occurred
ever, itis not clear that this is necessarily true for alin document;. The matrix had approximate dimen-

UGI models. sions 2.2 million by 460,000.
_ TheContext; .o @pproach uses a bigram by local
4.5 Semantics window matrix. If there are: distinct unigrams in

Semantics have not been included in previous UGhe corpus, the first. columns contain the counts
models, despite successful application in the speedfithe words preceding a target word, and the fast
recognition community (see Section 2). Howevergolumns contain the counts of the words following
there have been some related efforts in unsupervisadtarget word. For example, the value ofcatl;;
part of speech induction (Schiitze, 1995). These &b the number of timesnigram; occurred before
forts have used SVD as a dimensionality reductiothe targetngram;. The value ofcell;; ) is the
step between distributional analysis and clusteringqumber of timesinigram; occurred after the target
Although not labelled as “semantic” this work hasngram,. The matrix had approximate dimensions
produced the best unsupervised part of speech ia-2 million by 280,000.

duction results. Thus our last question is whether After the matrices were constructed, each
SVD can be applied to a UGI model to improve rewas transformed using SVD. Because the non-

sults. orthogonal SVD procedure requires a number of
Lanczos steps approximately proportional to the
5 Method square of the number of dimensions desired, the

. number of dimensions was limited to 100. This kept
51 Materials . . . -
running time and storage requirements within rea-
The WSJ10 dataset was used for evaluation to Bgnable limits, approximately 4 days and 120 giga-
comparable to previous results (Klein and Manningoytes of disk storage to create each.
2004). WSJ10 is a subset of the Wall Street Jour- Next, a parsing table was constructed. For each
nal section of the Penn Treebank, containing onlbigram, the closest unigram neighbor, in terms of
those sentences of 10 words or less after punctuatiedsine, was found, cf. Brill and Marcus (1992). The
has been removed. WSJ10 contains 7422 sentencagighbor, cosine to that neighbor, and cosines of the
To counteract the data sparsity encountered by usiggram’s constituents to that neighbor were stored.
ngrams instead of parts of speech, we used the eThe constituent with the highest cosine to the neigh-
tire WSJ and year 1994 of the North American Newgor was considered the likely head, based on clas-
Text Corpus. These corpora were formatted accordic head test arguments (Hudson, 1987). This data
ing to the same rules as the WSJ10, split into sefivas stored in a lookup table so that for each bigram
tences (as documents) and concatenated. The cofie associated information may be found in constant
bined corpus contained roughly 10 million wordstime.
and 460,000 sentences. Next, the WSJ10 was parsed using the parsing
Dependencies, rather than the original bracketingable described above and a minimum spanning
were used as the gold standard for parsing perfofree algorithm for dependency parsing (McDonald
mance. Since the Penn Treebank does not label d&-al., 2005). Each input sentence was tokenized
pendencies, it was necessary to apply rules to extragi whitespace and lowercased. Moving from left
dependencies from WSJ10 (Collins, 1999). to right, each word was paired with all remaining
words on its right. If a pair existed in the pars-
5.2 Procedure ing table, the associated information was retrieved.
The first step is unsupervised latent semantic granthis information was used to populate the fully con-
mar induction. This was accomplished by first crenected graph that served as input to the minimum
ating n-gram by context feature matrices, where thgpanning tree algorithm. Specifically, when a pair
feature varies as per Section 4.3. Wentexty ., Was retrieved from the parsing table, the arc from
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the stored head to the dependent was given a weiglROOT Johnlikes stringcheese
equal to the cosine between the head and the near- L}

est unigram neighbor for that bigram pair. Likewise
the arc from the dependent to the head was given a
weight equal to the cosine between the dependenﬁ
and the nearest unigram neighbor for that bigram
pair. Thus the weight on each arc was based on the
degree of substitutability between that word and the Figure 6: Left Branching Baseline
nearest unigram neighbor for the bigram pair.

If a bigram was not in the parsing table, it was
given maximum weight, making that dependenc;?nr
maximally unlikely. After all the words in the sen-
tence had been processed, the average of all currh
weights was found, and this average was used as tg% Scoring
weight from a dummy root node to all other nodes"

(the dummy ROOT is further motivated in SectionTwo performance baselines for dependency parsing
5.3). Therefore all words were given equal likeli-were used in this experiment, the so-called right and
hood of being the root of the sentence. The enlgft branching baselines. A right branching baseline
result of this graph construction process israhy predicts that the head of each word is the word to the
n + 1 matrix, wheren is the number of words and left, forming a chain from left to right. An example
there is one dummy root node. Then this graph wds given in Figure 5. Conversely, a left branching
input to the minimum spanning tree algorithm. Theédaseline predicts that the head of each word is the
output of this algorithm is a non-projective depenword to the right, forming a chain from right to left.
dency tree, which was directly compared to the goldn example is given in Figure 6. Although perhaps
standard dependency tree, as well as the respectivet intuitively very powerful baselines, the right and
baselines discussed in Section 5.3. left branching baselines can be very effective for the

To gauge the differential effects of projectivityWSJlO. For WSJ10, most heads are close to their
and prior knowledge, the above procedure was moglependents, as shown in Figure 4. For example, the
ified in additional evaluation trials. Projectivity waspercentage of dependencies with a head either im-
incorporated by using a bottom-up algorithm (Covimediately to the right or left is 53%. Of these neigh-
ington, 2001) The a|gorithm was app||ed in twobOI’ing heads, 17% are I’ight branching, and 36% are
stages. First, it was applied using the nonprojectivigft branching.
parse as input. By comparing the output parse to the By using the sign test, the statistical significance
original nonprojective parse, it is possible to identifyof parsing results can be determined. The sign test is
independent words that could not be incorporategerhaps the most basic non-parametric tests and so is
into the projective parse. In the second stage, théseful for this task because it makes no assumptions
projective algorithm was run again on the nonproregarding the underlying distribution of data.
jective input, except this time the independent words Consider each sentence. Every word must have
were allowed to link to any other words defined byexactly one head. That means thatifowords, there
the parsing table. In other words, the first stage ideris al/n chance of selecting the correct head (exclud-
tifies unattached words, and the second stage “rang self-heads and including a dummy root head). If
pairs” the words by finding a projective attachmentll dependencies in a sentence are independent, then
for them. This method of enforcing projectivity wasa sentence’s dependencies follow a binomial distri-
chosen because it makes use of the same informaution, withn equal to the number of wordg equal
tion as the nonprojective method, but it goes a stejp 1/n, andk equal to the number of correct depen-
further to enforce projectivity. dencies. From this it follows that the expected num-

Prior distributions of dependencies, as depicted iber of correct dependencies per senteneejor 1.
Figure 4, were incorporated by inversely weightindrhus the random baseline for nonprojective depen-

Figure 5: Right Branching Baseline

ohn lkes sting cheese ROOT

aph edges by the distance between words. This
odification transparently applies to both the non-
?jective case and the projective case.
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dency parsing performance is one dependency per Method

sentence. Context/Projectivity/Prior Dependencies Correct
Using the gold standard of the WSJ10, the numberRandom/no/no 14.2%
of correct dependencies found by the latent semanRight branching 17.6%
tic model can be established. The null hypothesisGlobal/no/no 17.9%
is that one randomly generated dependency shouldlobal/nolyes 21.0%
be correct per sentence. Suppose thasentences Global/yes/no 21.4%
have more correct dependencies andsentences Globallyes/yes 21.7%
have fewer correct dependencies (i.e. 0). Under thd-ocal/no/no 22.5%
null hypothesis, half of the values should be abovelLocal/no/yes 25.7%
1 and half below, sp = 1/2. Since signed dif- Locallyes/yes 26.3%
ference is being considered, sentences with depenkocal/yes/no 26.7%
dencies equal to 1 are excluded. The correspondLeft branching 35.8%

ing binomial distribution of the signs to calculate
whether the model is better than chancé(is, p) =
b(r*+77,1/2). The corresponding p-value may be

Table 1: Parsing results on WSJ10

calculated using Equation 1. projectivity and prior distributions have little addi-
tive effect. Thus it appears that they bring to bear
. =l e y) Similar kinds of constraints.
—gik!(n_k)!/u) (1)

7 Discussion

This same method can be used for determining{;h its in Section 6 add h q
statistically significant improvement over right and € results in Section b address the unanswere

left branching baselines. For each sentence, the dﬂyestiops identified in S_ectic_)r? 4,l1.e. par_ts of_spgech,
ference between the number of correct dependeﬁ?mant'cs’ context, projectivity, and prior distribu-
cies in the candidate parse and the number of co ons.

rect dependencies in the baseline may be calculated,! "€ MOst salient result in Section 6 is successiul
The number of positive and negative signed differ” ! Without part of speech tags. As far as we know,

ences are counted a$ ands, respectively, and this is the first time dependency UGI has been suc-

the procedure for calculating statistically significan£€SSTul Without the hidden syntactic structure pro-
improvement is the same. vided by part of speech tags. It is interesting to note

that latent semantic grammars improve upon Paskin
6 Results (2001), even though that model is projective. It ap-

pears that lexical semantics are the reason. Thus
Each model in Table 6 has significantly better perthese results address two of the unanswered ques-
formance than item above using statistical procdions from Section 6 regarding parts of speech and
dure described in Section 5.2. A number of obsemantics. Semantics improve dependency UGI. In
servations can be drawn from this table. First, aflact, they improve dependency UGI so much so that
the models outperform random and right branchingarts of speech are not necessary to beat a right
baselines. This is the first time we are aware dfranching baseline.
that this has been shown with lexical items in de- Context has traditionally been defined locally, e.qg.
pendency UGI. Secondly, local context outperformshe preceding and following word(s). The results
global context. This is to be expected given the relabove indicate that a global definition of context is
atively fixed word order in English, but it is some-also effective, though not quite as highly perform-
what surprising that the differences between locahg as a local definition on the WSJ10. This sug-
and global are not greater. Thirdly, it is clear that thgests that English UGI is not dependent on local lin-
addition of prior knowledge, whether projectivity orear context, and it motivates future exploration of
prior distributions, improves performance. Fourthlyword-order free languages using global context. Itis
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also interesting to note that the differences betwedhough we have not presented evaluation on word-
global and local contexts begin to disappear as prerder free languages, the basic model just described
jectivity and prior distributions are added. This sughas no obvious bias against them. We expect that
gests that there is a certain level of equivalence bé&atent semantic grammars capture some of the uni-
tween a global context model that favors local atversals of grammar induction. A fuller exploration
tachments and a local context model that has no and demonstration is the subject of future research.
tachment bias. .

Projectivity has been assumed in previous cas€ Conclusion

of English UGI (Klein and Manning, 2004; Paskin, This paper presented latent semantic grammars for
2001). As far as we know, this is the first time ahe unsupervised induction of English grammar. The
nonprojective model has outperformed a random Qfreation of latent semantic grammars and their appli-
right branching baseline. Itis interesting that a noncation to parsing were described. Experiments with
projective model can do so well when it assumes sgontext, projectivity, and prior distributions showed
little about the structure of a language. Even morghe relative performance effects of these kinds of
interesting is that the addition of projectivity to theprior knowledge. Results show that assumptions of
models above increases performance only slightlyyrior distributions, projectivity, and part of speech

It is tempting to speculate that projectivity may benformation are not necessary for this task.
something of a red herring for English dependency

parsing, cf. McDonald et al. (2005).
Prior distributions have been previously assumeBe€ferences
as well (Klein and Manning, 2004). The differential jerome R. Bellegarda. 2000. Large vocabulary speech
effect of prior distributions in previous work has not recognition with multispan statistical language mod-
been clear. Our results indicate that a prior distribu- €!S-1EEE Transactions on Speech and Audio Process-
tion will increase performance. However, as with ing, 8(1):76-84.
projectivity, it is interesting how well the models Michael W. Berry, Susan T. Dumais, and Gavin W.
perform without this prior knowledge and how slight f%}'?nr;?dnligg-e\zslms&i'gt‘;?grall'r?;ut;f‘i;?;g‘;ig%ﬁgé'”'
an increase thls prior I_<nowledge gives. Overall, the Mathematics Review, 37(4):573-595.
prior distribution used in the evaluation is not neces-
sary to beat the right branching baseline. Michael W. Berry. 1992. Large scale singular value com-
Projectivity and prior _distr_ibu_tion.s have signifi- Kgglaitgt}z.nsl%g?eltgcf]gdournal of Stpercompuiter
cant overlap when the prior distribution favors closer
attachments. Projectivity, by forcing a head to goV_Eric Brill and Mitchell Marcus. 1992. Automatically

ern a contiguous subsequence. also favors closer a,[_acquiring phrase structure using distributional analy-
g q ! sis. In Speech and Natural Language: Proceedings

tachments. The results reported in Section 6 suggestof a Workshop Held at Harriman, New York, pages
that there is a great deal of overlap in the benefit pro- 155-160, Philadelphia, February 23-26. Association
vided by projectivity and the prior distribution used for Computational Linguistics.

in the evaluation. Either one or the other producesohn Carroll, Guido Minnen, and Ted Briscoe. 2003.
significant benefits, but the combination is much less Parser evaluation using a grammatical relation anno-
impressive. tation scheme. In A. Abeill, editofireebanks: Build-

ing and Using Syntactically Annotated Corpora, chap-

It is worthwhile to reiterate the sparseness of prior ter 17, pages 299—316. Kluwer, Dordrecht.

knowledge contained in the basic model used in

these evaluations. There are essentially four compdleam Chomsky. 1957 Syntactic Structures. Mouton,
nents of prior knowledge. First, the ability to create The Hague.

an ngram by context feature matrix. Secondly, th8loah Coccaro and Daniel Jurafsky. 1998. Towards bet-
application of SVD to that matrix. Thirdly, the cre- ter integratiod of semantic predictors in statietical lan-
ation of a fully condected dependency graph from %‘éﬁ?e?ewc%dggngboll(gofg'ggseogg‘zﬁgagggil S
the post-SVD matrix. And finally, the extraction 2403-2406, Piscataway, NJ, 30th November-4th De-
of a minimum spanning tree from this graph. Al- cember. IEEE.
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