
TextGraphs-2: Graph-Based Algorithms for Natural Language Processing, pages 25–32,
Rochester, April 2007 c©2007 Association for Computational Linguistics

Timestamped Graphs: Evolutionary Models of Text for
Multi-document Summarization

 Ziheng Lin, Min-Yen Kan
School of Computing

National University of Singapore
Singapore 177543

{linzihen, kanmy}@comp.nus.edu.sg

Abstract

Current graph-based approaches to auto-
matic text summarization, such as Le-
xRank and TextRank, assume a static
graph which does not model how the in-
put texts emerge. A suitable evolutionary
text graph model may impart a better un-
derstanding of the texts and improve the
summarization process. We propose a
timestamped graph (TSG) model that is
motivated by human writing and reading
processes, and show how text units in this
model emerge over time. In our model,
the graphs used by LexRank and Tex-
tRank are specific instances of our time-
stamped graph with particular parameter
settings. We apply timestamped graphs on
the standard DUC multi-document text
summarization task and achieve compara-
ble results to the state of the art.

1 Introduction

Graph-based ranking algorithms such as
Kleinberg’s HITS (Kleinberg, 1999) or Google’s
PageRank (Brin and Page, 1998) have been suc-
cessfully applied in citation network analysis and
ranking of webpages. These algorithms essentially
decide the weights of graph nodes based on global
topological information. Recently, a number of
graph-based approaches have been suggested for
NLP applications. Erkan and Radev (2004) intro-
duced LexRank for multi-document text summari-
zation. Mihalcea and Tarau (2004) introduced
TextRank for keyword and sentence extractions.
Both LexRank and TextRank assume a fully con-
nected, undirected graph, with text units as nodes

and similarity as edges. After graph construction,
both algorithms use a random walk on the graph to
redistribute the node weights.

Many graph-based algorithms feature an evolu-
tionary model, in which the graph changes over
timesteps. An example is a citation network whose
edges point backward in time: papers (usually)
only reference older published works. References
in old papers are static and are not updated. Simple
models of Web growth are exemples of this: they
model the chronological evolution of the Web in
which a new webpage must be linked by an incom-
ing edge in order to be publicly accessible and may
embed links to existing webpages. These models
differ in that they allow links in previously gener-
ated webpages to be updated or rewired. However,
existing graph models for summarization –
LexRank and TextRank – assume a static graph,
and do not model how the input texts evolve. The
central hypothesis of this paper is that modeling
the evolution of input texts may improve the sub-
sequent summarization process. Such a model may
be based on human writing/reading process and
should show how just composed/consumed units of
text relate to previous ones. By applying this
model over a series of timesteps, we obtain a rep-
resentation of how information flows in the con-
struction of the document set and leverage this to
construct automatic summaries.

We first introduce and formalize our timestam-
ped graph model in next section. In particular, our
formalization subsumes previous works: we show
in Section 3 that the graphs used by LexRank and
TextRank are specific instances of our timestam-
ped graph. In Section 4, we discuss how the result-
ing graphs are applied to automatic multi-
document text summarization: by counting node
in-degree or applying a random walk algorithm to
smooth the information flow. We apply these mod-
els to create an extractive summarization program

25

and apply it to the standard Document Understand-
ing Conference (DUC) datasets. We discuss the
resulting performance in Section 5.

2 Timestamped Graph

We believe that a proper evolutionary graph model
of text should capture the writing and reading
processes of humans. Although such human proc-
esses vary widely, when we limit ourselves to ex-
pository text, we find that both skilled writers and
readers often follow conventional rhetorical styles
(Endres-Niggemeyer, 1998; Liddy, 1991). In this
work, we explore how a simple model of evolution
affects graph construction and subsequent summa-
rization. In this paper, our work is only exploratory
and not meant to realistically model human proc-
esses and we believe that deep understanding and
inference of rhetorical styles (Mann and Thompson,
1988) will improve the fidelity of our model. Nev-
ertheless, a simple model is a good starting point.

We make two simple assumptions:

1: Writers write articles from the first sentence

to the last;
2: Readers read articles from the first sentence

to the last.

The assumptions suggest that we add sentences

into the graph in chronological order: we add the
first sentence, followed by the second sentence,
and so forth, until the last sentence is added.

These assumptions are suitable in modeling the
growth of individual documents. However when
dealing with multi-document input (common in
DUC), our assumptions do not lead to a straight-
forward model as to which sentences should ap-
pear in the graph before others. One simple way is
to treat multi-document problems simply as multi-
ple instances of the single document problem,
which evolve in parallel. Thus, in multi-document
graphs, we add a sentence from each document in
the input set into the graph at each timestep. Our
model introduces a skew variable to model this and
other possible variations, which is detailed later.

The pseudocode in Figure 1 summarizes how
we build a timestamped graph for multi-document
input set. Informally, we build the graph itera-
tively, introducing new sentence(s) as node(s) in

the graph at each timestep. Next, all sentences in
the graph pick other previously unconnected ones
to draw a directed edge to. This process continues
until all sentences are placed into the graph.

Figure 2 shows this graph building process in
mid-growth, where documents are arranged in col-
umns, with dx represents the xth document and sy
represents the yth sentence of each document. The
bottom shows the nth sentences of all m documents
being added simultaneously to the graph. Each new
node can either connect to a node in the existing
graph or one of the other m-1 new nodes. Each
existing node can connect to another existing node
or to one of the m newly-introduced nodes. Note
that this model differs from the citation networks
in such that new outgoing edges are introduced to
old nodes, and differs from previous models for
Web growth as it does not require new nodes to
have incoming edges.

Figure 2: Snapshot of a timestamped graph.

Figure 3 shows an example of the graph building
process over three timesteps, starting from an
empty graph. Assume that we have three docu-
ments and each document has three sentences. Let
dxsy indicate the yth sentence in the xth document.
At timestep 1, sentences d1s1, d2s1 and d3s1 are

s1

s2
s3
.
.
.
.
.
sn

d1 d2 d3 ………… dm

existing
graph

Figure 1: Pseudocode for a specific instance of a
timestamped graph algorithm

Input: M, a cluster of m documents relating to a
common event;

Let: i = index to sentences, initially 1;
G = the timestamped graph, initially empty.

Step 1: Add the ith sentence of all documents into G.
Step 2: Let each existing sentence in G choose and

connect to one other existing sentence in G.
The chosen sentence must be sentence which
has not been previously chosen by this sentence
in previous iterations.

Step 3: if there are no new sentences to add, break;
else i++, goto Step 1.

Output: G, a timestamped graph.

m new
sentences

26

added to the graph. Three edges are introduced to
the graph, in which the edges are chosen by some
strategy; perhaps by choosing the candidate sen-
tence by its maximum cosine similarity with the
sentence under consideration. Let us say that this
process connects d1s1→d3s1, d2s1→d3s1 and
d3s1→d2s1. At timestep 2, sentences d1s2, d2s2 and
d3s2 are added to the graph and six new edges are
introduced to the graph. At timestep 3, sentences
d1s3, d2s3 and d3s3 are added to the graph, and nine
new edges are introduced.

(a) Timestep 1 (b) Timestep 2 (c) Timestep 3

Figure 3: An example of the growth of a

timestamped graph.

The above illustration is just one instance of a
timestamped graph with specific parameter settings.
We generalize and formalize the timestamped
graph algorithm as follows:

Definition: A timestamped graph algorithm

tsg(M) is a 9-tuple (d, e, u, f, σ, t, i, s, τ) that speci-
fies a resulting algorithm that takes as input the set
of texts M and outputs a graph G, where:

d specifies the direction of the edges, d∈{f, b, u};
e is the number of edges to add for each vertex

in G at each timestep, e∈ℤ +;
u is 0 or 1, where 0 and 1 specifies unweighted and

weighted edges, respectively;
f is the inter-document factor, 0 ≤ f ≤ 1;
σ is a vertex selection function σ(u, G) that takes

in a vertex u and G, and chooses a vertex v∈G;
t is the type of text units, t∈{word, phrase,

sentence, paragraph, document};
i is the node increment factor, i∈ℤ +;
s is the skew degree, s ≥ -1 and s∈ℤ , where -1

represent free skew and 0 no skew;
τ is a document segmentation function τ(•).

In the TSG model, the first set of parameters d,

e, u, f deal with the properties of edges; σ, t, i, s
deal with properties of nodes; finally, τ is a func-

tion that modifies input texts. We now discuss the
first eight parameters; the relevance of τ will be
expanded upon later in the paper.

2.1 Edge Settings

We can specify the direction of information flow
by setting different d values. When a node v1
chooses another node v2 to connect to, we set d to f
to represent a forward (outgoing) edge. We say
that v1 propagates some of its information into v2.
When letting a node v1 choose another node v2 to
connect to v1 itself, we set d to b to represent a
backward (incoming) edge, and we say that v1 re-
ceives some information from v2. Similarly, d = u
specifies undirected edges in which information
propagates in both directions. The larger amount of
information a node receives from other nodes, the
higher the importance of this node.

Our toy example in Figure 3 has small dimen-
sions: three sentences for each of three documents.
Experimental document clusters often have much
larger dimensions. In DUC, clusters routinely con-
tain over 25 documents, and the average length for
documents can be as large as 50 sentences. In such
cases, if we introduce one edge for each node at
each timestep, the resulting graph is loosely con-
nected. We let e be the number of outgoing edges
for each sentence in the graph at each timestep. To
introduce more edges into the graph, we increase e.

We can also incorporate unweighted or
weighted edges into the graph by specifying the
value of u. Unweighted edges are good when rank-
ing algorithms based on in-degree of nodes are
used. However, unlike links between webpages,
edges between text units often have weights to in-
dicate connection strength. In these cases, un-
weighted edges lose information and a weighted
representation may be better, such as in cases
where PageRank-like algorithms are used for rank-
ing.

Edges can represent information flow from one
node to another. We may prefer intra-document
edges over inter-document edges, to model the in-
tuition that information flows within the same
document more likely than across documents. Thus
we introduce an inter-document factor f, where 0 ≤
f ≤ 1. When this feature is smaller than 1, we re-
place the weight w for inter-document edges by fw.

27

2.2 Node Settings

In Figure 1 Step 2, every existing node has a
chance to choose another existing node to connect
to. Which node to choose is decided by the selec-
tion strategy σ. One strategy is to choose the node
with the highest similarity. There are many similar-
ity functions to use, including token-based Jaccard
similarity, cosine similarity, or more complex
models such as concept links (Ye et al., 2005).

t controls the type of text unit that represents
nodes. Depending on the application, text units can
be words, phrases, sentences, paragraphs or even
documents. In the task of automatic text summari-
zation, systems are conveniently assessed by let-
ting text units be sentences.

i controls the number of sentences entering the
graph at every iteration. Certain models, such as
LexRank, introduce all of the input sentences in
one time step (i.e., i = Lmax, where Lmax is the
maximum length of the input documents), com-
pleting the construction of G in one step. However,
to model time evolution, i needs to be set to a value
smaller than this.

Most relevant to our study is the skew parame-
ter s. Up to now, the TSG models discussed all
assume that authors start writing all documents in
the input set at the same time. It is reflected by
adding the first sentences of all documents simul-
taneously. However in reality, some documents are
authored later than others, giving updates or report-
ing changes to events reported earlier. In DUC
document clusters, news articles are typically taken
from two or three different newswire sources. They
report on a common event and thus follow a story-
line. A news article usually gives summary about
what have been reported in early articles, and gives
updates or changes on the same event.

To model this, we arrange the documents in ac-
cordance with the publishing time of the docu-
ments. The earliest document is assigned to
column 1, the second earliest document to column
2, and so forth, until the latest document is as-
signed to the last column. The graph construction
process is the same as before, except that we delay
adding the first sentences of later documents until a
proper iteration, governed by s. With s = 1, we de-
lay the addition of the first sentence of column 2
until the second timestep, and delay the addition of
the first sentence of column 3 until the third
timestep. The resulting timestamped graph is

skewed by 1 timestep (Figure 4 (a)). We can in-
crease the skew degree s if the time intervals be-
tween publishing time of documents are large.
Figure 4 (b) shows a timestamped graph skewed by
2 timesteps. We can also skew a graph freely by
setting s to -1. When we start to add the first sen-
tence dis1 of a document di, we check whether there
are existing sentences in the graph that want to
connect to dis1 (i.e., that σ (•,G) = dis1). If there is,
we add dis1 to the graph; else we delay the addition
and reassess again in next timestep. The result is a
freely skewed graph (Figure 4 (c)). In Figure 4 (c),
we start adding the first sentences of documents d2
to d4 at timesteps 2, 5 and 7, respectively. At
timestep 1, d1s1 is added into the graph. At
timestep 2, an existing node (d1s1 in this case)
wants to connect to d2s1, so d2s1 is added. d3s1 is
added at timestep 5 as no existing node wants to
connect to d3s1 until timestep 5. Similarly, d4s1 is
added until some nodes choose to connect to it at
timestep 7. Notice that we hide edges in Figure 4
for clarity.

 (a) Skewed by 1 (b) Skewed by 2 (c) Freely skewed

Figure 4: Skewing the graphs. Edges are hidden for clarity.
For each graph, the leftmost column is the earliest document.
Documents are then chronologically ordered, with the right-

most one being the latest.

3 Comparison and Properties of TSG

The TSG representation generalizes many pos-
sible specific algorithm configurations. As such, it
is natural that previous works can be cast as spe-
cific instances of a TSG. For example, we can suc-
cinctly represent the algorithm used in the running
example in Section 2 as the tuple (f, 1, 0, 1, max-
cosine-based, sentence, 1, 0, null). LexRank and
TextRank can also be cast as TSGs: (u, N, 1, 1,
cosine-based, sentence, Lmax, 0, null) and (u, L, 1, 1,
modified-co-occurrence-based, sentence, L, 0,

28

null). As LexRank is applied in multi-document
summarizations, e is set to the total number of sen-
tences in the cluster, N, and i is set to the maxi-
mum document length in the cluster, Lmax.
TextRank is applied in single-document summari-
zation, so both its e and i are set to the length of the
input document, L. This compact notation empha-
sizes the salient differences between these two al-
gorithm variants: namely that, e, σ and i.

Despite all of these possible variations, all
timestamped graphs have two important features,
regardless of their specific parameter settings. First,
nodes that were added early have more chosen
edges than nodes added later, as visible in Figure 3
(c). If forward edges (d = f) represent information
flow from one node to another, we can say that
more information is flowing from these early
nodes to the rest of the graph. The intuition for this
is that, during the writing process of articles, early
sentences have a greater influence to the develop-
ment of the articles’ ideas; similarly, during the
reading process, sentences that appear early con-
tribute more to the understanding of the articles.

The fact that early nodes stay in the graph for a
longer time leads to the second feature: early nodes
may attract more edges from other nodes, as they
have larger chance to be chosen and connected by
other nodes. This is also intuitive for forward
edges (d = f): during the writing process, later sen-
tences refer back to early sentences more often
than vice versa; and during the reading process,
readers tend to re-read early sentences when they
are not able to understand the current sentence.

4 Random Walk

Once a timestamped graph is built, we want to
compute an importance score for each node. These
scores are then used to determine which nodes
(sentences) are the most important to extract sum-
maries from. The graph G shows how information
flows from node to node, but we have yet to let the
information actually flow. One method to do this is
to use the in-degree of each node as the score.
However, most graph algorithms now use an itera-
tive method that allows the weights of the nodes
redistribute until stability is reached. One method
for this is by applying a random walk, used in Pag-
eRank (Brin and Page, 1998). In PageRank the
Web is treated as a graph of webpages connected
by links. It assumes users start from a random

webpage, moving from page to page by following
the links. Each user follows the links at random
until he gets “bored” and jumps to a random web-
page. The probability of a user visiting a webpage
is then proportional to its PageRank score. PageR-
ank can be iteratively computed by:

 ∑
∈

−+=
)(

)(
)(

1)1()(
uInv

vPR
vOutN

uPR αα (1)

where N is the total number of nodes in the graph,
In(u) is the set of nodes that point to u, and Out(u)
is the set of nodes that node u points to. α is a
damping factor that can be set between 0 and 1,
which has the role of integrating into the model the
probability of jumping from a given node to an-
other random node in the graph. In the context of
web surfing, a user either clicks on a link on the
current page at random with probability 1 - α, or
opens a completely new random page with prob-
ability α.

Equation 1 does not take into consideration the
weights of edges, as the original PageRank defini-
tion assumes hyperlinks are unweighted. Thus we
can use Equation 1 to rank nodes for an un-
weighted timestamped graph. To integrate edge
weights into the graph, we modify Eq. 1, yielding:

 ∑ ∑∈
∈

−+=
)(

)(

)()1()(
uInv

vOutx
vx

vu vPR
w

w
N

uPR αα (2)

where Wvu represents the weight of the edge point-
ing from v to u.

As we may have a query for each document
cluster, we also wish to take queries into consid-
eration in ranking the nodes. Haveliwala (2003)
introduces a topic-sensitive PageRank computation.
Equations 1 and 2 assume a random walker jumps
from the current node to a random node with prob-
ability α. The key to creating topic-sensitive Pag-
eRank is that we can bias the computation by
restricting the user to jump only to a random node
which has non-zero similarity with the query. Ot-
terbacher et al. (2005) gives an equation for topic-
sensitive and weighted PageRank as:

∑ ∑∑ ∈
∈∈

−+=
)(

)(

)()1(
),(

),()(
uInv

vOutx
vx

vu

Sy

vPR
w

w
Qysim

QusimuPR αα (3)

29

where S is the set of all nodes in the graph, and
sim(u, Q) is the similarity score between node u
and the query Q.

5 Experiments and Results

We have generalized and formalized evolutionary
timestamped graph model. We want to apply it on
automatic text summarization to confirm that these
evolutionary models help in extracting important
sentences. However, the parameter space is too
large to test all possible TSG algorithms. We con-
duct experiments to focus on the following re-
search questions that relating to 3 TSG parameters
- e, u and s, and the topic-sensitivity of PageRank.

Q1: Do different e values affect the summariza-
tion process?

Q2: How do topic-sensitivity and edge weight-
ing perform in running PageRank?

Q3: How does skewing the graph affect infor-
mation flow in the graph?

The datasets we use are DUC 2005 and 2006.

These datasets both consist of 50 document clus-
ters. Each cluster consists of 25 news articles
which are taken from two or three different news-
wire sources and are relating to a common event,
and a query which contains a topic for the cluster
and a sequence of statements or questions. The
first three experiments are run on DUC 2006, and
the last experiment is run on DUC 2005.

In the first experiment, we analyze how e, the
number of chosen edges for each node at each
timestep, affects the performance, with other pa-
rameters fixed. Specifically the TSG algorithm we
use is the tuple (f, e, 1, 1, max-cosine-based, sen-
tence, 1, 0, null), where e is being tested for differ-
ent values. The node selection function max-
cosine-based takes in a sentence s and the current
graph G, computes the TFIDF-based cosine simi-
larities between s and other sentences in G, and
connects s to e sentence(s) that has(have) the high-
est cosine score(s) and is(are) not yet chosen by s
in previous iterations. We run topic-sensitive Pag-
eRank with damping factor α set to 0.5 on the
graphs. Figures 5 (a)-(b) shows the ROUGE-1 and
ROUGE-2 scores with e set to 1, 2, 3, 4, 5, 6, 7, 10,
15, 20 and N, where N is the total number of sen-
tences in the cluster. We succinctly represent

LexRank graphs by the tuple (u, N, 1, 1, cosine-
based, sentence, Lmax, 0, null) in Section 3; it can
also be represented by a slightly different tuple (f,
N, 1, 1, max-cosine-based, sentence, 1, 0, null). It
differs from the first representation in that we itera-
tively add 1 sentence for each document in each
timestep and let all nodes in the current graph con-
nect to every other node in the graph. In this ex-
periment, when e is set to N, the timestamped
graph is equivalent to a LexRank graph. We do not
use any reranker in this experiment.

N

N

Figure 5: (a) ROUGE-1 and (b) ROUGE-2 scores for
timestamped graphs with different e settings. N is the total

number of sentences in the cluster.

The results allow us to make several observa-
tions. First, when e = 2, the system gives the best
performance, with ROUGE-1 score 0.37728 and
ROUGE-2 score 0.07692. Some values of e give
better scores than LexRank graph configuration, in
which e = N. Second, the system gives very bad
performance when e = 1. This is because when e is
set to 1, the graph is too loosely connected and is
not suitable to apply random walk on it. Third, the
system gives similar performance when e is set

30

greater than 10. The reason for this is that the
higher values of e make the graph converge to a
fully connected graph so that the performance
starts to converge and display less variability.

We run a second experiment to analyze how
topic-sensitivity and edge weighting affect the sys-
tem performance. We use concept links (Ye et al.,
2005) as the similarity function and a MMR
reranker to remove redundancy. Table 1 shows the
results. We observe that both topic-sensitive Pag-
eRank and weighted edges perform better than ge-
neric PageRank on unweighted timestamped
graphs. When topic-sensitivity and edge weighting
are both set to true, the system gives the best per-
formance.

Topic-
sensitive

Weighted
edges

ROUGE-1 ROUGE-2

No No 0.39358 0.07690
Yes No 0.39443 0.07838
No Yes 0.39823 0.08072
Yes Yes 0.39845 0.08282

Table 1: ROUGE-1 and ROUGE-2 scores for different com-
binations of topic-sensitivity and edge weighting(u) settings.

To evaluate how skew degree s affects summa-

rization performance, we use the parameter setting
from the first experiment, with e fixed to 1. Spe-
cifically, we use the tuple (f, 1, 1, 1, concept-link-
based, sentence, 1, s, null), with s set to 0, 1 and 2.
Table 2 gives the evaluation results. We observe
that s = 1 gives the best ROUGE-1 and ROUGE-2
scores. Compared to the system without skewing (s
= 0), s = 2 gives slightly better ROUGE-1 score
but worse ROUGE-2 score. The reason for this is
that s = 2 introduces a delay interval that is too
large. We expect that a freely skewed graph (s =
-1) will give more reasonable delay intervals.

Skew degree ROUGE-1 ROUGE-2

0 0.36982 0.07580
1 0.37268 0.07682
2 0.36998 0.07489

Table 2: ROUGE-1 and ROUGE-2 scores for
different skew degrees.

We tune the system using different combina-

tions of parameters, and the TSG algorithm with
tuple (f, 1, 1, 1, concept-link-based, sentence, 1, 0,
null) gives the best scores. We run this TSG algo-
rithm with topic-sensitive PageRank and MMR
reranker on DUC 2005 dataset. The results show

that our system ranks third in both ROUGE-2 and
ROUGE-SU4 scores.

Rank System ROUGE-2 System ROUGE-SU4
1 15 0.0725 15 0.1316
2 17 0.0717 17 0.1297
3 TSG 0.0712 TSG 0.1285
4 10 0.0698 8 0.1279
5 8 0.0696 4 0.1277

Table 3: top ROUGE-2 and ROUGE-SU4
scores in DUC 2005. TSG is our system.

6 Discussion

A closer inspection of the experimental clusters
reveals one problem. Clusters that consist of
documents that are of similar lengths tend to per-
form better than those that contain extremely long
documents. The reason is that a very long docu-
ment introduces too many edges into the graph.
Ideally we want to have documents with similar
lengths in a cluster. One solution to this is that we
split long documents into shorter documents with
appropriate lengths. We introduce the last parame-
ter in the formal definition of timestamped graphs,
τ, which is a document segmentation function τ(•).
τ(M) takes in as input a set of documents M, ap-
plies segmentation on long documents to split them
into shorter documents, and output a set of docu-
ments with similar lengths, M’. Slightly better re-
sults are achieved when a segmentation function is
applied. One shortcoming of applying τ(•) is that
when a document is split into two shorter ones, the
early sentences of the second half now come be-
fore the later sentences of the first half, and this
may introduce inconsistencies in our representation:
early sentences of the second half contribute more
into later sentences of the first half than the vice
versa.

7 Related Works

Dorogovtsev and Mendes (2001) suggest schemes
of the growth of citation networks and the Web,
which are similar to the construction process of
timestamped graphs.

Erkan and Radev (2004) proposed LexRank to
define sentence importance based on graph-based
centrality ranking of sentences. They construct a
similarity graph where the cosine similarity of each
pair of sentences is computed. They introduce
three different methods for computing centrality in

31

similarity graphs. Degree centrality is defined as
the in-degree of vertices after removing edges
which have cosine similarity below a pre-defined
threshold. LexRank with threshold is the second
method that applies random walk on an un-
weighted similarity graph after removing edges
below a pre-defined threshold. Continuous Le-
xRank is the last method that applies random walk
on a fully connected, weighted similarity graph.
LexRank has been applied on multi-document text
summarization task in DUC 2004, and topic-
sensitive LexRank has been applied on the same
task in DUC 2006.

Mihalcea and Tarau (2004) independently pro-
posed another similar graph-based random walk
model, TextRank. TextRank is applied on keyword
extraction and single-document summarization.
Mihalcea, Tarau and Figa (2004) later applied Pag-
eRank to word sense disambiguation.

8 Conclusion

We have proposed a timestamped graph model
which is motivated by human writing and reading
processes. We believe that a suitable evolutionary
text graph which changes over timesteps captures
how information propagates in the text graph. Ex-
perimental results on the multi-document text
summarization task of DUC 2006 showed that
when e is set to 2 with other parameters fixed, or
when s is set to 1 with other parameters fixed, the
graph gives the best performance. It also showed
that topic-sensitive PageRank and weighted edges
improve summarization process. This work also
unifies representations of graph-based summariza-
tion, including LexRank and TextRank, modeling
these prior works as specific instances of time-
stamped graphs.

We are currently looking further on skewed
timestamped graphs. Particularly we want to look
at how a freely skewed graph propagates informa-
tion. We are also analyzing in-degree distribution
of timestamped graphs.

Acknowledgments
The authors would like to thank Prof. Wee Sun Lee
for his very helpful comments on random walk and
the construction process of timestamped graphs,
and thank Xinyi Yin (Yin, 2007) for his help in
spearheading the development of this work. We
also would like to thank the reviewers for their

helpful suggestions in directing the future of this
work.

References
Jon M. Kleinberg. 1999. Authoritative sources in a hy-

perlinked environment. In Proceedings of ACM-
SIAM Symposium on Discrete Algorithms, 1999.

Sergey Brin and Lawrence Page. 1998. The anatomy of
a large-scale hypertextual Web search engine. Com-
puter Networks and ISDN Systems, 30(1-7).

Günes Erkan and Dragomir R. Radev. 2004. LexRank:
Graph-based centrality as salience in text summari-
zation. Journal of Artificial Intelligence Research,
(22).

Rada Mihalcea and Paul Tarau. 2004. TextRank: Bring-
ing order into texts. In Proceedings of EMNLP 2004.

Rada Mihalcea, Paul Tarau, and Elizabeth Figa. 2004.
PageRank on semantic networks, with application to
word sense disambiguation. In Proceedings of
COLING 2004.

S.N. Dorogovtsev and J.F.F. Mendes. 2001. Evolution
of networks. Submitted to Advances in Physics on
6th March 2001.

Shiren Ye, Long Qiu, Tat-Seng Chua, and Min-Yen
Kan. 2005. NUS at DUC 2005: Understanding docu-
ments via concepts links. In Proceedings of DUC
2005.

Xinyi Yin, 2007. Random walk and web information
processing for mobile devices. PhD Thesis.

Taher H. Haveliwala. 2003. Topic-sensitive pagerank: A
context-sensitive ranking algorithm for web search.
IEEE Transactions on Knowledge and Data Engi-
neering

Jahna Otterbacher, Günes Erkan and Dragomir R.
Radev. 2005. Using Random Walks for Question-
focused Sentence Retrieval. In Proceedings of
HLT/EMNLP 2005.

Brigitte Endres-Niggemeyer. 1998. Summarizing infor-
mation. Springer New York.

Elizabeth D. Liddy. 1991. The discourse-level structure
of empirical abstracts: an exploratory study. Infor-
mation Processing and Management 27(1):55-81.

William C. Mann and Sandra A. Thompson. 1988. Rhe-
torical structure theory: Towards a functional theory
of text organization. Text 8(3): 243-281.

32

