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Abstract 

Current graph-based approaches to auto-
matic text summarization, such as Le-
xRank and TextRank, assume a static 
graph which does not model how the in-
put texts emerge. A suitable evolutionary 
text graph model may impart a better un-
derstanding of the texts and improve the 
summarization process. We propose a 
timestamped graph (TSG) model that is 
motivated by human writing and reading 
processes, and show how text units in this 
model emerge over time. In our model, 
the graphs used by LexRank and Tex-
tRank are specific instances of our time-
stamped graph with particular parameter 
settings. We apply timestamped graphs on 
the standard DUC multi-document text 
summarization task and achieve compara-
ble results to the state of the art.  

1 Introduction 

Graph-based ranking algorithms such as 
Kleinberg’s HITS (Kleinberg, 1999) or Google’s 
PageRank (Brin and Page, 1998) have been suc-
cessfully applied in citation network analysis and 
ranking of webpages. These algorithms essentially 
decide the weights of graph nodes based on global 
topological information. Recently, a number of 
graph-based approaches have been suggested for 
NLP applications. Erkan and Radev (2004) intro-
duced LexRank for multi-document text summari-
zation. Mihalcea and Tarau (2004) introduced 
TextRank for keyword and sentence extractions. 
Both LexRank and TextRank assume a fully con-
nected, undirected graph, with text units as nodes 

and similarity as edges.  After graph construction, 
both algorithms use a random walk on the graph to 
redistribute the node weights.  

Many graph-based algorithms feature an evolu-
tionary model, in which the graph changes over 
timesteps.  An example is a citation network whose 
edges point backward in time: papers (usually) 
only reference older published works. References 
in old papers are static and are not updated. Simple 
models of Web growth are exemples of this: they 
model the chronological evolution of the Web in 
which a new webpage must be linked by an incom-
ing edge in order to be publicly accessible and may 
embed links to existing webpages. These models 
differ in that they allow links in previously gener-
ated webpages to be updated or rewired. However, 
existing graph models for summarization – 
LexRank and TextRank – assume a static graph, 
and do not model how the input texts evolve. The 
central hypothesis of this paper is that modeling 
the evolution of input texts may improve the sub-
sequent summarization process. Such a model may 
be based on human writing/reading process and 
should show how just composed/consumed units of 
text relate to previous ones. By applying this 
model over a series of timesteps, we obtain a rep-
resentation of how information flows in the con-
struction of the document set and leverage this to 
construct automatic summaries. 

We first introduce and formalize our timestam-
ped graph model in next section.  In particular, our 
formalization subsumes previous works: we show 
in Section 3 that the graphs used by LexRank and 
TextRank are specific instances of our timestam-
ped graph.  In Section 4, we discuss how the result-
ing graphs are applied to automatic multi-
document text summarization: by counting node 
in-degree or applying a random walk algorithm to 
smooth the information flow. We apply these mod-
els to create an extractive summarization program 
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and apply it to the standard Document Understand-
ing Conference (DUC) datasets. We discuss the 
resulting performance in Section 5. 

2 Timestamped Graph 

We believe that a proper evolutionary graph model 
of text should capture the writing and reading 
processes of humans. Although such human proc-
esses vary widely, when we limit ourselves to ex-
pository text, we find that both skilled writers and 
readers often follow conventional rhetorical styles 
(Endres-Niggemeyer, 1998; Liddy, 1991). In this 
work, we explore how a simple model of evolution 
affects graph construction and subsequent summa-
rization. In this paper, our work is only exploratory 
and not meant to realistically model human proc-
esses and we believe that deep understanding and 
inference of rhetorical styles (Mann and Thompson, 
1988) will improve the fidelity of our model.  Nev-
ertheless, a simple model is a good starting point.   

We make two simple assumptions: 
 
1: Writers write articles from the first sentence 

to the last; 
2: Readers read articles from the first sentence 

to the last. 
 
The assumptions suggest that we add sentences 

into the graph in chronological order: we add the 
first sentence, followed by the second sentence, 
and so forth, until the last sentence is added.  

These assumptions are suitable in modeling the 
growth of individual documents. However when 
dealing with multi-document input (common in 
DUC), our assumptions do not lead to a straight-
forward model as to which sentences should ap-
pear in the graph before others.  One simple way is 
to treat multi-document problems simply as multi-
ple instances of the single document problem, 
which evolve in parallel.  Thus, in multi-document 
graphs, we add a sentence from each document in 
the input set into the graph at each timestep. Our 
model introduces a skew variable to model this and 
other possible variations, which is detailed later. 

The pseudocode in Figure 1 summarizes how 
we build a timestamped graph for multi-document 
input set.  Informally, we build the graph itera-
tively, introducing new sentence(s) as node(s) in  

 
 

 
the graph at each timestep. Next, all sentences in 
the graph pick other previously unconnected ones 
to draw a directed edge to.  This process continues 
until all sentences are placed into the graph.  

Figure 2 shows this graph building process in 
mid-growth, where documents are arranged in col-
umns, with dx represents the xth document and sy 
represents the yth sentence of each document. The 
bottom shows the nth sentences of all m documents 
being added simultaneously to the graph. Each new 
node can either connect to a node in the existing 
graph or one of the other m-1 new nodes. Each 
existing node can connect to another existing node 
or to one of the m newly-introduced nodes. Note 
that this model differs from the citation networks 
in such that new outgoing edges are introduced to 
old nodes, and differs from previous models for 
Web growth as it does not require new nodes to 
have incoming edges. 

 

              
Figure 2: Snapshot of a timestamped graph. 

 
Figure 3 shows an example of the graph building 
process over three timesteps, starting from an 
empty graph. Assume that we have three docu-
ments and each document has three sentences. Let 
dxsy indicate the yth sentence in the xth document. 
At timestep 1, sentences d1s1, d2s1 and d3s1 are 

s1

s2 
s3 
. 
. 
. 
. 
. 
sn 

d1  d2  d3  …………  dm 

existing 
graph 

Figure 1: Pseudocode for a specific instance of a  
timestamped graph algorithm 

Input:  M, a cluster of m documents relating to a  
common event;  

Let: i = index to sentences, initially 1;  
G = the timestamped graph, initially empty. 

Step 1:  Add the ith sentence of all documents into G. 
Step 2:  Let each existing sentence in G choose and 

connect to one other existing sentence in G. 
The chosen sentence must be sentence which 
has not been previously chosen by this sentence 
in previous iterations. 

Step 3:  if there are no new sentences to add, break; 
else i++, goto Step 1. 

Output:  G, a timestamped graph. 

m new  
sentences 
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added to the graph. Three edges are introduced to 
the graph, in which the edges are chosen by some 
strategy; perhaps by choosing the candidate sen-
tence by its maximum cosine similarity with the 
sentence under consideration.  Let us say that this 
process connects d1s1→d3s1, d2s1→d3s1 and 
d3s1→d2s1. At timestep 2, sentences d1s2, d2s2 and 
d3s2 are added to the graph and six new edges are 
introduced to the graph. At timestep 3, sentences 
d1s3, d2s3 and d3s3 are added to the graph, and nine 
new edges are introduced. 

 

 
(a) Timestep 1           (b) Timestep 2            (c) Timestep 3 

 
Figure 3: An example of the growth of a  

timestamped graph. 
 

The above illustration is just one instance of a 
timestamped graph with specific parameter settings.  
We generalize and formalize the timestamped 
graph algorithm as follows: 

 
Definition: A timestamped graph algorithm 

tsg(M) is a 9-tuple (d, e, u, f, σ, t, i, s, τ) that speci-
fies a resulting algorithm that takes as input the set 
of texts M and outputs a graph G, where: 

 
d  specifies the direction of the edges, d∈{f, b, u}; 
e  is the number of edges to add for each vertex  

in G at each timestep, e∈ℤ +; 
u  is 0 or 1, where 0 and 1 specifies unweighted and 

weighted edges, respectively; 
f  is the inter-document factor, 0 ≤ f ≤ 1;  
σ is a vertex selection function σ(u, G) that takes 

in a vertex u and G, and chooses a vertex v∈G; 
t  is the type of text units, t∈{word, phrase,  

sentence, paragraph, document}; 
i  is the node increment factor, i∈ℤ +;  
s  is the skew degree, s ≥ -1 and s∈ℤ , where -1 

represent free skew and 0 no skew; 
τ  is a document segmentation function τ(•). 

 
In the TSG model, the first set of parameters d, 

e, u, f deal with the properties of edges; σ, t, i, s 
deal with properties of nodes; finally, τ is a func-

tion that modifies input texts. We now discuss the 
first eight parameters; the relevance of τ will be 
expanded upon later in the paper. 

2.1 Edge Settings 

We can specify the direction of information flow 
by setting different d values. When a node v1 
chooses another node v2 to connect to, we set d to f 
to represent a forward (outgoing) edge. We say 
that v1 propagates some of its information into v2. 
When letting a node v1 choose another node v2 to 
connect to v1 itself, we set d to b to represent a 
backward (incoming) edge, and we say that v1 re-
ceives some information from v2. Similarly, d = u 
specifies undirected edges in which information 
propagates in both directions. The larger amount of 
information a node receives from other nodes, the 
higher the importance of this node. 

Our toy example in Figure 3 has small dimen-
sions: three sentences for each of three documents. 
Experimental document clusters often have much 
larger dimensions. In DUC, clusters routinely con-
tain over 25 documents, and the average length for 
documents can be as large as 50 sentences. In such 
cases, if we introduce one edge for each node at 
each timestep, the resulting graph is loosely con-
nected. We let e be the number of outgoing edges 
for each sentence in the graph at each timestep. To 
introduce more edges into the graph, we increase e. 

We can also incorporate unweighted or 
weighted edges into the graph by specifying the 
value of u. Unweighted edges are good when rank-
ing algorithms based on in-degree of nodes are 
used. However, unlike links between webpages, 
edges between text units often have weights to in-
dicate connection strength. In these cases, un-
weighted edges lose information and a weighted 
representation may be better, such as in cases 
where PageRank-like algorithms are used for rank-
ing.  

Edges can represent information flow from one 
node to another. We may prefer intra-document 
edges over inter-document edges, to model the in-
tuition that information flows within the same 
document more likely than across documents. Thus 
we introduce an inter-document factor f, where 0 ≤ 
f ≤ 1. When this feature is smaller than 1, we re-
place the weight w for inter-document edges by fw.  
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2.2 Node Settings 

In Figure 1 Step 2, every existing node has a 
chance to choose another existing node to connect 
to. Which node to choose is decided by the selec-
tion strategy σ. One strategy is to choose the node 
with the highest similarity. There are many similar-
ity functions to use, including token-based Jaccard 
similarity, cosine similarity, or more complex 
models such as concept links (Ye et al., 2005).  

t controls the type of text unit that represents  
nodes. Depending on the application, text units can 
be words, phrases, sentences, paragraphs or even 
documents. In the task of automatic text summari-
zation, systems are conveniently assessed by let-
ting text units be sentences.  

i controls the number of sentences entering the 
graph at every iteration. Certain models, such as 
LexRank, introduce all of the input sentences in 
one time step (i.e., i = Lmax, where Lmax is the 
maximum length of the input documents), com-
pleting the construction of G in one step.  However, 
to model time evolution, i needs to be set to a value 
smaller than this. 

Most relevant to our study is the skew parame-
ter s. Up to now, the TSG models discussed all 
assume that authors start writing all documents in 
the input set at the same time. It is reflected by 
adding the first sentences of all documents simul-
taneously. However in reality, some documents are 
authored later than others, giving updates or report-
ing changes to events reported earlier. In DUC 
document clusters, news articles are typically taken 
from two or three different newswire sources. They 
report on a common event and thus follow a story-
line. A news article usually gives summary about 
what have been reported in early articles, and gives 
updates or changes on the same event.  

To model this, we arrange the documents in ac-
cordance with the publishing time of the docu-
ments. The earliest document is assigned to 
column 1, the second earliest document to column 
2, and so forth, until the latest document is as-
signed to the last column. The graph construction 
process is the same as before, except that we delay 
adding the first sentences of later documents until a 
proper iteration, governed by s. With s = 1, we de-
lay the addition of the first sentence of column 2 
until the second timestep, and delay the addition of 
the first sentence of column 3 until the third 
timestep. The resulting timestamped graph is 

skewed by 1 timestep (Figure 4 (a)). We can in-
crease the skew degree s if the time intervals be-
tween publishing time of documents are large. 
Figure 4 (b) shows a timestamped graph skewed by 
2 timesteps. We can also skew a graph freely by 
setting s to -1. When we start to add the first sen-
tence dis1 of a document di, we check whether there 
are existing sentences in the graph that want to 
connect to dis1 (i.e., that σ (•,G) = dis1). If there is, 
we add dis1 to the graph; else we delay the addition 
and reassess again in next timestep. The result is a 
freely skewed graph (Figure 4 (c)). In Figure 4 (c), 
we start adding the first sentences of documents d2 
to d4 at timesteps 2, 5 and 7, respectively. At 
timestep 1, d1s1 is added into the graph. At 
timestep 2, an existing node (d1s1 in this case) 
wants to connect to d2s1, so d2s1 is added. d3s1 is 
added at timestep 5 as no existing node wants to 
connect to d3s1 until timestep 5. Similarly, d4s1 is 
added until some nodes choose to connect to it at 
timestep 7. Notice that we hide edges in Figure 4 
for clarity. 

 
   (a) Skewed by 1         (b) Skewed by 2      (c) Freely skewed 
 

Figure 4: Skewing the graphs. Edges are hidden for clarity. 
For each graph, the leftmost column is the earliest document. 
Documents are then chronologically ordered, with the right-

most one being the latest. 

3 Comparison and Properties of TSG  

The TSG representation generalizes many pos-
sible specific algorithm configurations.  As such, it 
is natural that previous works can be cast as spe-
cific instances of a TSG.  For example, we can suc-
cinctly represent the algorithm used in the running 
example in Section 2 as the tuple (f, 1, 0, 1, max-
cosine-based, sentence, 1, 0, null). LexRank and 
TextRank can also be cast as TSGs: (u, N, 1, 1, 
cosine-based, sentence, Lmax, 0, null) and (u, L, 1, 1, 
modified-co-occurrence-based, sentence, L, 0, 
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null). As LexRank is applied in multi-document 
summarizations, e is set to the total number of sen-
tences in the cluster, N, and i is set to the maxi-
mum document length in the cluster, Lmax. 
TextRank is applied in single-document summari-
zation, so both its e and i are set to the length of the 
input document, L. This compact notation empha-
sizes the salient differences between these two al-
gorithm variants: namely that, e, σ and i. 

Despite all of these possible variations, all 
timestamped graphs have two important features, 
regardless of their specific parameter settings. First, 
nodes that were added early have more chosen 
edges than nodes added later, as visible in Figure 3 
(c). If forward edges (d = f) represent information 
flow from one node to another, we can say that 
more information is flowing from these early 
nodes to the rest of the graph. The intuition for this 
is that, during the writing process of articles, early 
sentences have a greater influence to the develop-
ment of the articles’ ideas; similarly, during the 
reading process, sentences that appear early con-
tribute more to the understanding of the articles. 

The fact that early nodes stay in the graph for a 
longer time leads to the second feature: early nodes 
may attract more edges from other nodes, as they 
have larger chance to be chosen and connected by 
other nodes. This is also intuitive for forward 
edges (d = f): during the writing process, later sen-
tences refer back to early sentences more often 
than vice versa; and during the reading process, 
readers tend to re-read early sentences when they 
are not able to understand the current sentence.  

4 Random Walk 

Once a timestamped graph is built, we want to 
compute an importance score for each node.  These 
scores are then used to determine which nodes 
(sentences) are the most important to extract sum-
maries from.  The graph G shows how information 
flows from node to node, but we have yet to let the 
information actually flow. One method to do this is 
to use the in-degree of each node as the score.  
However, most graph algorithms now use an itera-
tive method that allows the weights of the nodes 
redistribute until stability is reached.  One method 
for this is by applying a random walk, used in Pag-
eRank (Brin and Page, 1998). In PageRank the 
Web is treated as a graph of webpages connected 
by links. It assumes users start from a random 

webpage, moving from page to page by following 
the links. Each user follows the links at random 
until he gets “bored” and jumps to a random web-
page. The probability of a user visiting a webpage 
is then proportional to its PageRank score.  PageR-
ank can be iteratively computed by: 
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where N is the total number of nodes in the graph, 
In(u) is the set of nodes that point to u, and Out(u) 
is the set of nodes that node u points to. α is a 
damping factor that can be set between 0 and 1, 
which has the role of integrating into the model the 
probability of jumping from a given node to an-
other random node in the graph. In the context of 
web surfing, a user either clicks on a link on the 
current page at random with probability 1 - α, or 
opens a completely new random page with prob-
ability α. 

Equation 1 does not take into consideration the 
weights of edges, as the original PageRank defini-
tion assumes hyperlinks are unweighted. Thus we 
can use Equation 1 to rank nodes for an un-
weighted timestamped graph. To integrate edge 
weights into the graph, we modify Eq. 1, yielding: 
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where Wvu represents the weight of the edge point-
ing from v to u.  

As we may have a query for each document 
cluster, we also wish to take queries into consid-
eration in ranking the nodes. Haveliwala (2003) 
introduces a topic-sensitive PageRank computation. 
Equations 1 and 2 assume a random walker jumps 
from the current node to a random node with prob-
ability α. The key to creating topic-sensitive Pag-
eRank is that we can bias the computation by 
restricting the user to jump only to a random node 
which has non-zero similarity with the query. Ot-
terbacher et al. (2005) gives an equation for topic-
sensitive and weighted PageRank as: 
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where S is the set of all nodes in the graph, and 
sim(u, Q) is the similarity score between node u 
and the query Q. 

5 Experiments and Results 

We have generalized and formalized evolutionary 
timestamped graph model. We want to apply it on 
automatic text summarization to confirm that these 
evolutionary models help in extracting important 
sentences. However, the parameter space is too 
large to test all possible TSG algorithms. We con-
duct experiments to focus on the following re-
search questions that relating to 3 TSG parameters 
- e, u and s, and the topic-sensitivity of PageRank.  
 

Q1: Do different e values affect the summariza-
tion process? 

Q2: How do topic-sensitivity and edge weight-
ing perform in running PageRank?  

Q3: How does skewing the graph affect infor-
mation flow in the graph? 

 
The datasets we use are DUC 2005 and 2006. 

These datasets both consist of 50 document clus-
ters. Each cluster consists of 25 news articles 
which are taken from two or three different news-
wire sources and are relating to a common event, 
and a query which contains a topic for the cluster 
and a sequence of statements or questions. The 
first three experiments are run on DUC 2006, and 
the last experiment is run on DUC 2005. 

In the first experiment, we analyze how e, the 
number of chosen edges for each node at each 
timestep, affects the performance, with other pa-
rameters fixed. Specifically the TSG algorithm we 
use is the tuple (f, e, 1, 1, max-cosine-based, sen-
tence, 1, 0, null), where e is being tested for differ-
ent values. The node selection function max-
cosine-based takes in a sentence  s and the current 
graph G, computes the TFIDF-based cosine simi-
larities between s and other sentences in G, and 
connects s to e sentence(s) that has(have) the high-
est cosine score(s) and is(are) not yet chosen by s 
in previous iterations. We run topic-sensitive Pag-
eRank with damping factor α set to 0.5 on the 
graphs. Figures 5 (a)-(b) shows the ROUGE-1 and 
ROUGE-2 scores with e set to 1, 2, 3, 4, 5, 6, 7, 10, 
15, 20 and N, where N is the total number of sen-
tences in the cluster. We succinctly represent 

LexRank graphs by the tuple (u, N, 1, 1, cosine-
based, sentence, Lmax, 0, null) in Section 3; it can 
also be represented by a slightly different tuple (f, 
N, 1, 1, max-cosine-based, sentence, 1, 0, null). It 
differs from the first representation in that we itera-
tively add 1 sentence for each document in each 
timestep and let all nodes in the current graph con-
nect to every other node in the graph. In this ex-
periment, when e is set to N, the timestamped 
graph is equivalent to a LexRank graph. We do not 
use any reranker in this experiment. 

 

 

 

N

N

Figure 5: (a) ROUGE-1 and (b) ROUGE-2 scores for 
timestamped graphs with different e settings. N is the total 

number of sentences in the cluster. 
 

The results allow us to make several observa-
tions. First, when e = 2, the system gives the best 
performance, with ROUGE-1 score 0.37728 and 
ROUGE-2 score 0.07692. Some values of e give 
better scores than LexRank graph configuration, in 
which e = N. Second, the system gives very bad 
performance when e = 1. This is because when e is 
set to 1, the graph is too loosely connected and is 
not suitable to apply random walk on it. Third, the 
system gives similar performance when e is set 
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greater than 10. The reason for this is that the 
higher values of e make the graph converge to a 
fully connected graph so that the performance 
starts to converge and display less variability.  

We run a second experiment to analyze how 
topic-sensitivity and edge weighting affect the sys-
tem performance. We use concept links (Ye et al., 
2005) as the similarity function and a MMR 
reranker to remove redundancy. Table 1 shows the 
results. We observe that both topic-sensitive Pag-
eRank and weighted edges perform better than ge-
neric PageRank on unweighted timestamped 
graphs. When topic-sensitivity and edge weighting 
are both set to true, the system gives the best per-
formance. 

 
Topic-
sensitive 

Weighted 
edges 

ROUGE-1 ROUGE-2 

No No 0.39358 0.07690 
Yes No 0.39443 0.07838 
No Yes 0.39823 0.08072 
Yes Yes 0.39845 0.08282 

Table 1: ROUGE-1 and ROUGE-2 scores for different com-
binations of topic-sensitivity and edge weighting(u) settings. 

 
To evaluate how skew degree s affects summa-

rization performance, we use the parameter setting 
from the first experiment, with e fixed to 1. Spe-
cifically, we use the tuple (f, 1, 1, 1, concept-link-
based, sentence, 1, s, null), with s set to 0, 1 and 2. 
Table 2 gives the evaluation results. We observe 
that s = 1 gives the best ROUGE-1 and ROUGE-2 
scores. Compared to the system without skewing (s 
= 0), s = 2 gives slightly better ROUGE-1 score 
but worse ROUGE-2 score. The reason for this is 
that s = 2 introduces a delay interval that is too 
large. We expect that a freely skewed graph (s =  
-1) will give more reasonable delay intervals.  

 
Skew degree ROUGE-1 ROUGE-2 

0 0.36982 0.07580 
1 0.37268 0.07682 
2 0.36998 0.07489 

Table 2: ROUGE-1 and ROUGE-2 scores for  
different skew degrees. 

 
We tune the system using different combina-

tions of parameters, and the TSG algorithm with 
tuple (f, 1, 1, 1, concept-link-based, sentence, 1, 0, 
null) gives the best scores. We run this TSG algo-
rithm with topic-sensitive PageRank and MMR 
reranker on DUC 2005 dataset. The results show 

that our system ranks third in both ROUGE-2 and 
ROUGE-SU4 scores. 

 
Rank System ROUGE-2 System ROUGE-SU4 
1 15 0.0725 15 0.1316 
2 17 0.0717 17 0.1297 
3 TSG 0.0712 TSG 0.1285 
4 10 0.0698 8 0.1279 
5 8 0.0696 4 0.1277 

Table 3: top ROUGE-2 and ROUGE-SU4 
scores in DUC 2005. TSG is our system. 

 

6 Discussion 

A closer inspection of the experimental clusters 
reveals one problem. Clusters that consist of 
documents that are of similar lengths tend to per-
form better than those that contain extremely long 
documents. The reason is that a very long docu-
ment introduces too many edges into the graph. 
Ideally we want to have documents with similar 
lengths in a cluster. One solution to this is that we 
split long documents into shorter documents with 
appropriate lengths. We introduce the last parame-
ter in the formal definition of timestamped graphs, 
τ, which is a document segmentation function τ(•). 
τ(M) takes in as input a set of documents M, ap-
plies segmentation on long documents to split them 
into shorter documents, and output a set of docu-
ments with similar lengths, M’. Slightly better re-
sults are achieved when a segmentation function is 
applied. One shortcoming of applying τ(•) is that 
when a document is split into two shorter ones, the 
early sentences of the second half now come be-
fore the later sentences of the first half, and this 
may introduce inconsistencies in our representation: 
early sentences of the second half contribute more 
into later sentences of the first half than the vice 
versa. 

7 Related Works 

Dorogovtsev and Mendes (2001) suggest schemes 
of the growth of citation networks and the Web, 
which are similar to the construction process of 
timestamped graphs.  

Erkan and Radev (2004) proposed LexRank to 
define sentence importance based on graph-based 
centrality ranking of sentences. They construct a 
similarity graph where the cosine similarity of each 
pair of sentences is computed. They introduce 
three different methods for computing centrality in 
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similarity graphs. Degree centrality is defined as 
the in-degree of vertices after removing edges 
which have cosine similarity below a pre-defined 
threshold. LexRank with threshold is the second 
method that applies random walk on an un-
weighted similarity graph after removing edges 
below a pre-defined threshold. Continuous Le-
xRank is the last method that applies random walk 
on a fully connected, weighted similarity graph. 
LexRank has been applied on multi-document text 
summarization task in DUC 2004, and topic-
sensitive LexRank has been applied on the same 
task in DUC 2006.  

Mihalcea and Tarau (2004) independently pro-
posed another similar graph-based random walk 
model, TextRank. TextRank is applied on keyword 
extraction and single-document summarization. 
Mihalcea, Tarau and Figa (2004) later applied Pag-
eRank to word sense disambiguation. 

8 Conclusion 

We have proposed a timestamped graph model 
which is motivated by human writing and reading 
processes. We believe that a suitable evolutionary 
text graph which changes over timesteps captures 
how information propagates in the text graph. Ex-
perimental results on the multi-document text 
summarization task of DUC 2006 showed that 
when e is set to 2 with other parameters fixed, or 
when s is set to 1 with other parameters fixed, the 
graph gives the best performance. It also showed 
that topic-sensitive PageRank and weighted edges 
improve summarization process. This work also 
unifies representations of graph-based summariza-
tion, including LexRank and TextRank, modeling 
these prior works as specific instances of time-
stamped graphs.  

We are currently looking further on skewed 
timestamped graphs. Particularly we want to look 
at how a freely skewed graph propagates informa-
tion. We are also analyzing in-degree distribution 
of timestamped graphs. 
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