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Abstract

This paper introduces multi-level associa-
tion graphs (MLAGS), a new graph-based
framework for information retrieval (IR).
The goal of that framework is twofold:
First, it is meant to be a meta model of
IR, i.e. it subsumes various IR models
under one common representation. Sec-
ond, it allows to model different forms of
search, such as feedback, associative re-
trieval and browsing at the same time. It
is shown how the new integrated model
gives insights and stimulates new ideas for
IR algorithms. One of these new ideas is
presented and evaluated, yielding promis-
ing experimental results.

1 Introduction

Developing formal models for information retrieval
has a long history. A model of information retrieval
“predicts and explains what a user will find relevant
given the user query” (Hiemstra, 2001). Most IR
models are firmly grounded in mathematics and thus
provide a formalisation of ideas that facilitates dis-
cussion and makes sure that the ideas can be imple-
mented. More specifically, most IR models provide
a so-called retrieval function f(q,d) , which returns
— for given representations of a document d and of a
user information need g — a so-called retrieval status
value by which documents can be ranked according
to their presumed relevance w.r.t. to the query q.

In order to understand the commonalities and dif-
ferences among IR models, this paper introduces the
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notion of meta modeling. Since the word “meta
model” is perhaps not standard terminology in IR,
it should be explained what is meant by it: a meta
model is a model or framework that subsumes other
IR models, such that they are derived by specifying
certain parameters of the meta model.

In terms of IR theory, such a framework conveys
what is common to all IR models by subsuming
them. At the same time, the differences between
models are highlighted in a conceptually simple
way by the different values of parameters that have
to be set in order to arrive at this subsumption. It
will be shown that a graph-based representation of
IR data is very well suited to this problem.

IR models concentrate on the matching process,
i.e. on measuring the degree of overlap between a
query ¢ and a document representation d. On the
other hand, there are the problems of finding suit-
able representations for documents (indexing) and
for users’ information needs (query formulation).
Since users are often not able to adequately state
their information need, some interactive and asso-
ciative procedures have been developed by IR re-
searchers that help to overcome this problem:

e Associative retrieval, i.e. retrieving informa-
tion which is associated to objects known or
suspected to be relevant to the user —e.g. query
terms or documents that have been retrieved al-
ready.

e Feedback, another method for boosting recall,
either relies on relevance information given
by the user (relevance feedback) or assumes
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top-ranked documents to be relevant (pseudo
feedback) and learns better query formulations
from this information.

e Browsing, i.e. exploring a document collec-
tion interactively by following links between
objects such as documents, terms or concepts.

Again, it will be shown that — using a graph-based
representation — these forms of search can be sub-
sumed easily.

2 Related work

2.1 Meta modeling

In the literal sense of the definition above, there is
a rather limited number of meta models for IR, the
most important of which will be described here very
shortly.

Most research about how to subsume various IR
models in a common framework has been done in
the context of Bayesian networks and probabilistic
inference (Turtle and Croft, 1990). In this approach,
models are subsumed by specifying certain proba-
bility distributions. In (Wong and Yao, 1995), the
authors elaborately show how all major IR models
known at that time can be subsumed using proba-
bilistic inference. Language modeling, which was
not known then was later added to the list by (Met-
zler and Croft, 2004).

Another graph-based meta modeling approach
uses the paradigm of spreading activation (SA) as a
simple unifying framework. Given semantic knowl-
edge in the form of a (directed) graph, the idea of
spreading activation is that a measure of relevance
— w.r.t. a current focus of attention — is spread over
the graph’s edges in the form of activation energy,
yielding for each vertex in the graph a degree of re-
latedness with that focus (cf. (Anderson and Pirolli,
1984)). It is easy to see how this relates to IR: us-
ing a graph that contains vertices for both terms and
documents and appropriate links between the two,
we can interpret a query as a focus of attention and
spread that over the network in order to rank docu-
ments by their degree of relatedness to that focus.

A very general introduction of spreading activa-
tion as a meta model is given in the early work by
(Preece, 1981) All later models are hence special
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cases of Preece’s work, including the multi-level as-
sociation graphs introduced in section 3. Preece’s
model subsumes the Boolean retrieval model, coor-
dination level matching and vector space processing.

Finally, an interesting meta model is described by
(van Rijsbergen, 2004) who uses a Hilbert space as
an information space and connects the geometry of
that space to probability and logics. In particular,
he manages to give the familiar dot product between
query and document vector a probabilistic interpre-
tation.

2.2 Graph-based models for associative
retrieval and browsing

The spreading activation paradigm is also often used
for associative retrieval. The idea is to reach vertices
in the graph that are not necessarily directly linked to
query nodes, but are reachable from query nodes via
a large number of short paths along highly weighted
edges.

Besides (Preece, 1981), much more work on SA
was done, a good survey of which can be found in
(Crestani, 1997). A renewed interest in SA was later
triggered with the advent of the WWW where hyper-
links form a directed graph. In particular, variants of
the PageRank (Brin and Page, 1998) algorithm that
bias a random searcher towards some starting nodes
(e.g. an initial result set of documents) bear close re-
semblance to SA (Richardson and Domingos, 2002;
White and Smyth, 2003).

Turning to browsing, we can distinguish three
types of browsing w.r.t. to the vertices of the graph:
index term browsing, which supports the user in for-
mulating his query by picking related terms (Doyle,
1961; Beaulieu, 1997), document browsing which
serves to expand result sets by allowing access to
similar documents or by supporting web browsing
(Smucker and Allan, 2006; Olston and Chi, 2003)
and combined approaches where both index terms
and documents are used simultaneously for brows-
ing.

In this last category, many different possibilities
arise for designing interfaces. A common guiding
principle of many graph-based browsing approahces
is that of interactive spreading activation (Oddy,
1977; Croft and Thompson, 1987). Another ap-
proach, which is very closely related to MLAGsS,
is a multi-level hypertext (MLHT), as proposed in



(Agosti and Crestani, 1993) — a data structure con-
sisting of three levels, for documents, index terms
and concepts. Each level contains objects and links
among them. There are also connections between
objects of two adjacent levels. An MLHT is meant
to be used for interactive query formulation, brows-
ing and search, although (Agosti and Crestani, 1993)
give no precise specification of the processing pro-
cedures.

2.3 Contribution of this work

Compared to Preece’s work, the MLAG framework
makes two sorts of modifications in order to reach
the goals formulated in the introduction: in order to
subsume more IR models, the flexibility and power
of Preece’s model is increased by adding real-valued
edge weights. On the other hand, a clearer distinc-
tion is made between local and global information
through the explicit introduction of “level graphs”.

With the introduction of levels, the MLAG data
structure becomes very closely related to the MLHT
paradigm of (Agosti and Crestani, 1993), MLAGs,
however, generalise MLHTs by allowing arbitrary
types of levels, not only the three types proposed in
(Agosti and Crestani, 1993). Additionally, links in
MLAGs are weighted and the spreading activation
processing defined in the next section makes exten-
sive use of these weights.

All in all, the new model combines the data struc-
ture of multi-level hypertexts (Agosti and Crestani,
1993) with the processing paradigm of spreading ac-
tivation as proposed by Preece (Preece, 1981), re-
fining both with an adequate edge weighting. The
framework is an attempt to be as general as neces-
sary for subsuming all models and allowing for dif-
ferent forms of search, while at the same time being
as specific as possible about the things that are really
common to all IR models.

3 The MLAG model

3.1 Data structure

Formally, the basis of a multi-level association
graph (MLAG) is a union of n level graphs
Ly, ..., L,. Each of these n directed graphs L; =
G(VL;,EL;,WL;) consists of a set of vertices
VL,aset EL; C VL; x VL; of edges and a func-
tion WL; : EL; — R returning edge weights.
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In order to connect the levels, there are n —
1 connecting bipartite graphs (or inverted lists)
I, ....,In_1, where each inverted list I; ;1 con-
sists of vertices VI ;11 = VL; UVLjiq, edges
EIjJJrl - (VLJ X VLJ'Jrl) @] (VLjJrl X VL]) and
weights WIj7j+1 : EIjJ_;,.l — R. Figure 1 depicts
a simple example multi-level association graph with
two levels L, and L; for documents and terms.

d/\ d do
d de
d)% d/

Document level

=

erm level

Figure 1: A simple example MLAG

Assuming that the vertices on a given level cor-
respond to objects of the same type and vertices
in different levels to objects of different types, this
data structure has the following general interpreta-
tion: Each level represents associations between ob-
jects of a given type, e.g. term-term or document-
document similarities. The inverted lists, on the
other hand, represent associations between different
types of objects, e.g. occurrences of terms in docu-
ments.

3.2 Examples
3.2.1 Standard retrieval

The simplest version of a multi-level association
graph consists of just two levels — a term level L; and
a document level L4. This is the variant depicted in
figure 1.

The graph I,4 that connects L; and Ly is an in-
verted list in the traditional sense of the word, i.e. a
term is connected to all documents that it occurs in
and the weight W1 (t,d) of an edge (¢, d) connect-
ing term ¢ and document d conveys the degree to
which ¢ is representative of d’s content, or to which
d is about ¢.



The level graphs L; and L, can be computed in
various ways. As for documents, a straight-forward
way would be to calculate document similarities,
e.g. based on the number of terms shared by two
documents. However, other forms of edges are pos-
sible, such as hyperlinks or citations — if available.
Term associations, on the other hand, can be com-
puted using co-occurrence information. An alterna-
tive would be to use relations from manually created
thesauri or ontologies.

3.2.2 More levels

In order to (partly) take document structure into
account, it can be useful to introduce a level for doc-
ument parts (e.g. headlines and/or passages) in be-
tween the term and the document level. This can
be combined with text summarisation methods (cf.
e.g. (Brandow et al., 1995)) in order to give higher
weights to more important passages in the inverted
list connecting passages to documents.

In distributed or peer-to-peer environments,
databases or peers may be modeled in a separate
layer above the document level, inverted lists in-
dicating where documents are held. Additionally,
a peer’s neighbours in an overlay network may be
modeled by directed edges in the peer level graph.
More extensions are possible and the flexibility of
the MLAG framework allows for the insertion of ar-
bitrary layers.

3.3 Processing paradigm

The operating mode of an MLAG is based on the
spreading activation principle. However, the spread
of activation between nodes of two different levels
is not iterated. Rather, it is carefully controlled, yet
allowing non-linear modifications at some points.

In order to model spreading activation in an
MLAG, we introduce an activation function A;
V L; — R which returns the so-called activation en-
ergies of vertices on a given level L;. The default
value of the activation function is A4;(v) = 0 for all
vertices v € V' L;.

In the following, it is assumed that the MLAG
processing is invoked by activating a set of vertices
A onagiven level L; of the MLAG by modifying the
activation function of that level so that 4;(v) = w,
for each v € A.

A common example of such activation is a query
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being issued by a user. The initial activation is the
result of the query formulation process, which se-
lects some vertices v € A and weights them accord-
ing to their presumed importance w,,. This weight is
then the initial activation energy of the vertex.

Once we have an initial set of activated vertices,
the following general procedure is executed until
some stopping criterion is met:

1. Collect activation values on current level L;,
i.e. determine A;(u) forallu € V' L;.

2. (Optionally) apply a transformation to the acti-
vation energies of L;-nodes, i.e. alter A;(u) by
using a — possibly non-linear — transformation
function or procedure.

3. Spread activation to the next level L;,; along
the links connecting the two levels:
Aipa(v) = Z Ai(u) - Wi(u,v) (1)

(u,v)elm-_H

4. Set A;j(u) = 0 forall u € VL;, ie. “forget”
about the old activation energies

5. (Optionally) apply a transformation to the acti-
vation energies of L, 1-nodes (see step 2).

6. Go to 1, increment ¢ (or decrement, depend-
ing on its value and the configuration of the
MLAG)

If we take a vector space view of this process-
ing mode and if we identify level L; with terms and
level L;41 with documents, we can interpret the ac-
tivation energies A;(u) as a query vector and the
edge weights W1(u,v) of edges arriving at vertex
v € V L1 as a document vector for document v.

This shows that the basic retrieval function re-
alised by steps 1, 3 and 4 of this process is a simple
dot product. We will later see that retrieval functions
of most IR models can actually be written in that
form, provided that the initial activation of query
terms and the edge weights of /; ;1 are chosen cor-
rectly (section 4).

For some models, however, we additionally need
the possibility to perform nonlinear transformations
on result sets in order to subsume them. Steps 2 and
5 of the algorithm allow for arbitrary modifications



of the activation values based on whatever evidence
may be available on the current level or globally —
but not in the inverted list. This will later also allow
to include feedback and associative retrieval tech-
niques.

4 The MLAG as a meta model

In this section, examples will be shown that demon-
strate how existing IR models of ranked retrieval '
can be subsumed using the simple MLAG of figure
1 and the processing paradigm from the last section.
This is done by specifying the following parameters
of that paradigm:

1. How nodes are activated in the very first step
2. How edges of the inverted list are weighted
3. Which transformation is used in 2 and 5.

For each model, the corresponding retrieval func-
tion will be given and the parameter specification
will be discussed shortly. The specification of the
above parameters will be given in the form of triplets
(activationin, edge weights, trans form).

4.1 Vector space model

In the case of the vector space model (Salton et al.,
1975), the retrieval function to be mimicked is as
follows:

flg,d) = wiqwia )

tegnd

where wy, and wyq are a term’s weight in the query
q and the current document d, respectively. This
can be achieved by specifying the parameter triplet
(wiq, wiq, none). This simple representation reflects
the closeness of the MLAG paradigm to the vector
space model that has been hinted at above.

4.2 Probabilistic model

For the probabilistic relevance model (Robertson
and Sparck-Jones, 1976), the MLAG has to realise
the following retrieval function

T pi)

!"This excludes the Boolean model, which can, however, also
be subsumed as shown in section 5.5 of (Preece, 1981)

fad) =3 d; logp?((;:”) 3)
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where d; € {0, 1} indicates whether term i is con-
tained in document d, p; is the probability that a rele-
vant document will contain term ¢ and 7; is the prob-
ability that an irrelevant document will contain it.
This retrieval function is realised by the parameter
triplet (log fz((i:;zg ,d;, none).

Now there is still the question of how the esti-
mates of p; and r; are derived. This task involves the
use of relevance information which can be gained
via feedback, described in section 6.1.

4.3 Language models

The general language modeling retrieval function
(cf. e.g. (Zhai and Lafferty, 2001)) is — admittedly —
not in the linear form of equation 1. But using log-
arithms, products can be turned into sums without
changing the ranking — the logarithm being a mono-
tonic function (note that this is what also happened
in the case of the probabilistic relevance models).
In particular, we will use the approach of com-
paring query and document language models by
Kullback-Leibler divergence (KLD) (Lafferty and
Zhai, 2001) which results in the equation
D(t[M,)

KLD(My||Mq) = ZP(ﬂMq)lOgW
teq

o« =Y P(t|My)log P(t|My)
teq

where P(t|M,) and P(t|Mg) refer to the probabil-
ity that term ¢ will be generated by the unigram lan-
guage model of query ¢q or document d, respectively.
Note that we have simplified the equation by drop-
ping a term ), P(t|M,)log P(t|M,), which de-
pends only on the query, not on the documents to
be ranked.

Now, the triplet (P(t|M,), —logP(t|Mg),t)
can be used to realise this retrieval func-
tion where ¢ stands for a procedure that adds
—P(t|My)log P(t|Mg) to the document node’s
activation level for terms ¢ not occurring in d and
sorts documents by increasing activation values
afterwards.

S Combining IR models

As can be seen from the last equation above, the lan-
guage model retrieval function sums over all terms
in the query. Each term — regardless of whether it



appears in the document d or not — contributes some-
thing that may be interpreted as a “penalty” for the
document. The magnitude of this penalty depends
on the smoothing method used (cf. (Zhai and Laf-
ferty, 2001)). A popular smoothing method uses
so-called Dirichlet priors to estimate document lan-
guage models:
tf+ pp(t|C)

P(t[Ma) it d “4)
where ¢f is t’s frequency in d, p(¢|C) is the term’s
relative frequency in the whole collection and p is
a free parameter. This indicates that if a rare term
is missing from a document, the penalty will be
large, P(t|My) being very small because ¢tf = 0
and p(t|C) small.

Conceptually, it is unproblematic to model the
retrieval function by making I;; a complete bipar-
tite graph, i.e. specifying a (non-zero) value for
P(t|My), even if t does not occur in d. In a practical
implementation, this is not feasible, which is why
we add the contribution of terms not contained in
a document, i.e. —P(t|M,)log P(t|Mg), for terms
that do not occur in d. 2

This transformation indicates an important differ-
ence between language modeling and all other IR
models: language models penalise documents for
the absence of rare (i.e. informative) terms whereas
the other models reward them for the presence of
these terms.

These considerations suggest a combination of
both approaches: starting with an arbitrary “pres-
ence rewarding” model —e.g. the vector space model
— we may integrate the “absence penalising” philos-
ophy by subtracting from a document’s score, for
each missing term, the contribution that one occur-
rence of that term would have earned (cf. (Witschel,
2000)).

For the vector space model, this yields the follow-
ing retrieval function:

flad) = ) wiqwi

teqgnd
(0%

— ﬂ Z wtd(tf = 1)wtq
q teg\d

?In order to do this, we only need to know |d| and the relative
frequency of ¢ in the collection p(t|C'), i.e. information that is
available outside the inverted list.
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where « is a free parameter regulating the relative
influence of penalties, comparable to the p parame-
ter of language models above.

5.1 Experimental results

Table 2 shows retrieval results for combining two
weighting schemes, BM25 (Robertson et al., 1992)
and Lnu.ltn (Singhal et al., 1996), with penalties.
Both of them belong to the family of ¢ f.idf weight-
ing schemes and can hence be regarded as represent-
ing the vector space model, although BM25 was de-
veloped out of the probabilistic model.

Combining them with the idea of “absence penal-
ties” works as indicated above, i.e. weights are ac-
cumulated for each document using the ¢ f.idf-like
retrieval functions. Then, from each score, the con-
tributions that one occurrence of each missing term
would have earned is subtracted. More precisely,
what is subtracted consists of the usual ¢ f.idf weight
for the missing term, where ¢f = 1 is substituted in
the ¢t f part of the formula.

Experiments were run with queries from TREC-7
and TREC-8. In order to study the effect of query
length, very short queries (using only the title field
of TREC queries), medium ones (using title and de-
scription fields) and long ones (using all fields) were
used. Table 1 shows an example TREC query.

< top>

< num> Number: 441

< title> Lyme disease

< desc> Description:

How do you prevent and treat Lyme disease?

< narr> Narrative:

Documents that discuss current prevention and
treatment techniques for Lyme disease are relevant [...]
< /top>

Table 1: A sample TREC query

Table 2 shows that both weighting schemes can
be significantly improved by using penalties, espe-
cially for short queries, reaching and sometimes sur-
passing the performance of retrieval with language
models. This holds even when the parameter « is
not tuned and confirms that interesting insights are
gained from a common representation of IR models
in a graph-based environment. 3

3Note that these figures were obtained without any refine-
ments such as query expansion and are hence substantially



| TREC-7 TREC-8
Weighting very short medium long very short medium long
BM25 0.1770 0.2120  0.2141 0.2268 0.2514 0.2332
+P(a=1) | 0.1867*  0.2194* 0.2178* | 0.2380*  0.2593*  0.2335
+P (bestr) | 0.1896*  0.2220* 0.2185* | 0.2411*  0.2625*  0.2337
best o value 2 2 1.5 2 2 0.25
Lnu.ltn 0.1521 0.1837 0.1920 0.1984 0.2226 0.2013
+P(a=1) | 0.1714*  0.1972* 0.1946* | 0.2176*  0.2305*  0.2040
+P(besta) | 0.1873*  0.2106*  0.1977 0.2394*  0.2396*  0.2064*
best o value 5 5 3 5 4 1.5
LM 0.1856 0.2163 0.2016 0.2505 0.2578 0.2307

Table 2: Mean average precision of BM25 and Lnu.ltn and their corresponding penalty schemes (+ P) for
TREC-7 and TREC-8. Asterisks indicate statistically significant deviations (using a paired Wilcoxon test
on a 95% confidence level) from each baseline, whereas the best run for each query length is marked with
bold font. Performance of language models (LM) is given for reference, where the value of the smoothing
parameter p was set to the average document length.

6 Different forms of search with MLAGs

In order to complete the goals stated in the intro-
duction of this paper, this section will briefly ex-
plain how feedback, associative retrieval and brows-
ing can be modeled within the MLAG framework.

6.1 Feedback

Using the simple term-document MLAG of figure
1, feedback can be implemented by the following
procedure:

1. Perform steps 1 — 4 of the basic processing.

2. Apply a transformation to the activation values
of Lg-nodes, e.g. let the user pick relevant doc-
uments and set their activation to some positive
constant (3.

3. Perform step 3 of the basic processing with
L; = Lgand L;y; = L4, i.e. let activation
flow back to term level.

4. Forget about activation levels of documents.

5. Apply transformation on the term level L, e.g.
apply thresholding to obtain a fixed number of
expansion terms.

6. Spread activation back to the document level to
obtain the final retrieval status values of docu-
ments.

lower than MAP scores achieved by systems actually partici-
pating in TREC.
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In order to instantiate a particular feedback algo-
rithm, there are three parameters to be specified:

e The transformation to be applied in step 2

e The weighting of document-term edges (if dif-
ferent from term-document edges) and

e The transformation applied in step 5.

Unfortunately, due to space constraints, it is out of
the scope of this paper to show how different spec-
ifications lead to well-known feedback algorithms
such as Rocchio (Rocchio, 1971) or the probabilistic
model above.

6.2 Associative retrieval

Associative retrieval in MLAGs exploits the infor-
mation encoded in level graphs: expanding queries
with related terms can be realised by using the term
level graph L; of a simple MLAG (cf. figure 1) in
step 2 of the basic processing, whereas the expan-
sion of document result sets takes place in step 5 on
the document level L,. In order to exploit the rela-
tions encoded in the level graphs, one may again use
spreading activation, but also simpler mechanisms.
Since relations are used directly, dimensionality re-
duction techniques such as LSI cannot and need not
be modeled.

6.3 Browsing

Since the MLAG framework is graph-based, it is
easy to grasp and to be visualised, which makes it



a suitable data structure for browsing. The level
graphs can be used as a flat graphical representa-
tion of the data, which can be exploited directly
for browsing. Depending on their information need,
users can choose to browse either on the term level
L, or on the document level L, and they can switch
between both types of levels at any time using the
inverted list I;4. This applies, of course, also to pas-
sage or any other type of levels if they exist.

7 Conclusions

In this paper, a new graph-based framework for in-
formation retrieval has been introduced that allows
to subsume a wide range of IR models and algo-
rithms. It has been shown how this common rep-
resentation can be an inspiration and lead to new
insights and algorithms that outperform the origi-
nal ones. Future work will aim at finding similar
forms of synergies for the different forms of search,
e.g. new combinations of feedback and associative
retrieval algorithms.
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