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PREFACE

Recent years have shown an increased interest in bringing the field of graph theory into Natural
Language Processing. In many NLP applications entities can be naturally represented as nodes in a
graph and relations between them can be represented as edges. Recent research has shown that graph-
based representations of linguistic units as diverse as words, sentences and documents give rise to novel
and efficient solutions in a variety of NLP tasks, ranging from part of speech tagging, word sense
disambiguation and parsing to information extraction, semantic role assignment, summarization and
sentiment analysis.

This volume contains papers accepted for presentation at the TextGraphs-2 2007 Workshop on Graph-
Based Algorithms for Natural Language Processing. This event took place on April 26, 2007,
in Rochester, NY, USA, immediately following the HLT-NAACL Human Language Technologies
Conference. It was the second workshop on this topic, building on the success of the first TextGraphs
workshop at HLT-NAACL 2006. The workshop aimed at bringing together researchers working on
problems related to the use of graph-based algorithms for Natural Language Processing and on the
theory of graph-based methods. It addressed a broad spectrum of research areas to foster exchange
of ideas and help to identify principles of using the graph notions that go beyond an ad-hoc usage.
Unveiling these principles will give rise to applying generic graph methods to many new problems that
can be encoded in this framework.

We issued calls for both regular and short, late-breaking papers. In total, ten regular and three short
papers were accepted for presentation, considering the careful reviews of our program committee. We
are indebted to all program committee members for their thoughtful, high quality and elaborate reviews,
especially considering our extremely tight time frame for reviewing. The papers appearing in this
volume have surely benefited from their expert feedback.

This year’s workshop attracted papers employing graphs in a wide range of settings. While some
contributions focus on analyzing the structure of graphs induced by language data or the interaction of
processes on various levels, others use graphs as a means for data representation to solve NLP tasks,
sometimes involving transformations on the graph structure.

H. F. Witschel introduces a new graph based meta model for Information Retrieval that subsumes
many previous retrieval models and supports different forms of search. Improved unigram language
models by a smoothing technique that accounts for word similarities are constructed by B. Jedynak
and D. Karakos. Unsupervised grammar induction using latent semantics is the topic of A. M. Olney’s
research. V. Jijkoun and M. de Rijke view NLP tasks as graph transformations of labelled, directed
graphs and experiment with tasks involving syntax and semantics. Syntactic dependency trees as a basis
for semantic similarity are applied to textual entailment by D. Micol et al. D. Leite et al. find in their
graph-based automatic summarization experiments that linguistic knowledge is necessary to improve
automatic extracts. For multi-document summarization, evolving timestamped graphs are employed in
the contribution of Z. Lin and M.-Y. Kan. A graph for the extraction of patterns combined with an
extension of chance discovery is applied by C. S. Montero and K. Araki to human-computer dialogue
mining. The small-world and scale-free property of linguistic graphs that go in hand with power-law
distributions on entity and entity pair frequencies are examined in four papers: T. Zesch and I. Gurevych
analyze the article and category graph of Wikipedia and measure correlation with WordNet. R. Ferrer
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i Cancho et al. find correlations in the organization of syntactic dependency networks for a wide range
of languages. Co-occurrence degree distributions are examined in a comparative study of Russian and
English by V. Kapustin and A. Jamsen. In the setting of spell checking, M. Choudhury et al. find
that spelling error probabilities for different languages are proportional to the average weighted degree
of the corresponding SpellNet. A transductive classification algorithm based on graph clustering is
described by K. Ganchev and F. Pereira, and tested on various NLP tasks.

Finally, having a prominent researcher as an invited speaker greatly contributes to the quality of the
workshop. We thank Andrew McCallum for his talk and for the support that his prompt acceptance
provided to the workshop.

Chris Biemann, Irina Matveeva, Rada Mihalcea and Dragomir Radev
April 2007
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Daniel Micol, Óscar Ferrández, Rafael Muñoz and Manuel Palomar . . . . . . . . . . . . . . . . . . . . . . . . 73

How Difficult is it to Develop a Perfect Spell-checker? A Cross-Linguistic Analysis through Complex
Network Approach

Monojit Choudhury, Markose Thomas, Animesh Mukherjee,
Anupam Basu and Niloy Ganguly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Vertex Degree Distribution for the Graph of Word Co-Occurrences in Russian
Victor Kapustin and Anna Jamsen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

vii





Conference Program

Thursday, April 26, 2007

8:45–9:00 Opening Remarks

Session 1: Session One

09:00–10:00 Invited Talk by Andrew McCallum

10:00–10:25 Analysis of the Wikipedia Category Graph for NLP Applications
Torsten Zesch and Iryna Gurevych

10:30–11:00 Coffee Break

Session 2: Session Two

11:00–11:25 Multi-level Association Graphs - A New Graph-Based Model for Information Re-
trieval
Hans Friedrich Witschel

11:25–11:50 Extractive Automatic Summarization: Does more Linguistic Knowledge Make a
Difference?
Daniel S. Leite, Lucia H. M. Rino, Thiago A. S. Pardo and Maria das Graças V.
Nunes

11:50–12:15 Timestamped Graphs: Evolutionary Models of Text for Multi-Document Summa-
rization
Ziheng Lin and Min-Yen Kan

12:15–12:30 Unigram Language Models using Diffusion Smoothing over Graphs
Bruno Jedynak and Damianos Karakos

12:30–14:00 Lunch Break

ix



Thursday, April 26, 2007 (continued)

Session 3: Session Three

14:00–14:25 Transductive Structured Classification through Constrained Min-Cuts
Kuzman Ganchev and Fernando Pereira

14:25–14:50 Latent Semantic Grammar Induction: Context, Projectivity, and Prior Distributions
Andrew M Olney

14:50–15:15 Learning to Transform Linguistic Graphs
Valentin Jijkoun and Maarten de Rijke

15:15–15:30 Semi-supervised Algorithm for Human-Computer Dialogue Mining
Calkin S. Montero and Kenji Araki

15:30–16:00 Coffee Break

Session 4: Session Four

16:00–16:25 Correlations in the Organization of Large-Scale Syntactic Dependency Networks
Ramon Ferrer i Cancho, Alexander Mehler, Olga Pustylnikov and Albert Diaz-Guilera

16:25–16:50 DLSITE-2: Semantic Similarity Based on Syntactic Dependency Trees Applied to Textual
Entailment
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Analysis of the Wikipedia Category Graph for NLP Applications
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Abstract

In this paper, we discuss two graphs in
Wikipedia (i) the article graph, and (ii)
the category graph. We perform a graph-
theoretic analysis of the category graph,
and show that it is a scale-free, small
world graph like other well-known lexi-
cal semantic networks. We substantiate
our findings by transferring semantic re-
latedness algorithms defined on WordNet
to the Wikipedia category graph. To as-
sess the usefulness of the category graph
as an NLP resource, we analyze its cover-
age and the performance of the transferred
semantic relatedness algorithms.

1 Introduction

Wikipedia1 is a free multi-lingual online encyclo-
pedia that is constructed in a collaborative effort
of voluntary contributors and still grows exponen-
tially. During this process, Wikipedia has proba-
bly become the largest collection of freely available
knowledge. A part of this knowledge is encoded in
the network structure of Wikipedia pages. In par-
ticular, Wikipedia articles form a network of seman-
tically related terms, while the categories are orga-
nized in a taxonomy-like structure called Wikipedia
Category Graph (WCG).

In this paper, we perform a detailed analysis of
the WCG by computing a set of graph-theoretic pa-
rameters, and comparing them with the parameters
reported for well-known graphs and classical lexical
semantic networks. We show that the WCG, which
is constructed collaboratively, shares many proper-
ties with other lexical semantic networks, such as

1http://www.wikipedia.org

C1

C2 C3

C4 C5

A1

A2 A3

A4

WCG Article Graph

Figure 1: Relations between article graph and WCG.

WordNet (Fellbaum, 1998) or Roget’s Thesaurus2

that are constructed by expert authors. This implies
that the WCG can be used as a resource in NLP ap-
plications, where other semantic networks have been
traditionally employed.

To further evaluate this issue, we adapt algorithms
for computing semantic relatedness on classical se-
mantic networks like WordNet to the WCG. We
evaluate their performance on the task of computing
semantic relatedness using three German datasets,
and show that WCG based algorithms perform very
well.

Article graph Wikipedia articles are heavily
linked, as links can be easily inserted while editing
an article. If we treat each article as a node, and
each link between articles as an edge running from
one node to another, then Wikipedia articles form
a directed graph (see right side of Figure 1). The
article graph has been targeted by numerous stud-
ies, and is not addressed in this paper. Buriol et al.
(2006) analyze the development of the article graph
over time, and find that some regions are fairly sta-
ble, while others are advancing quickly. Zlatic et al.

2http://thesaurus.reference.com
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Figure 2: Structures of semantic networks after Steyvers and Tenenbaum (2005). a) a taxonomy, b) an
arbitrary graph, c) scale-free, small-world graph.

(2006) give a comprehensive overview of the graph
parameters for the largest languages in Wikipedia.
Capocci et al. (2006) study the growth of the article
graph and show that it is based on preferential at-
tachment (Barabasi and Albert, 1999). Voss (2005)
shows that the article graph is scale-free and grows
exponentially.

Category graph Categories in Wikipedia are or-
ganized in a taxonomy-like structure (see left side of
Figure 1 and Figure 2-a). Each category can have an
arbitrary number of subcategories, where a subcate-
gory is typically established because of a hyponymy
or meronymy relation. For example, a category ve-
hicle has subcategories like aircraft or watercraft.
Thus, the WCG is very similar to semantic word-
nets like WordNet or GermaNet (Kunze, 2004). As
Wikipedia does not strictly enforce a taxonomic cat-
egory structure, cycles and disconnected categories
are possible, but rare. In the snapshot of the Ger-
man Wikipedia3 from May 15, 2006, the largest con-
nected component in the WCG contains 99,8% of all
category nodes, as well as 7 cycles.

In Wikipedia, each article can link to an arbitrary
number of categories, where each category is a kind
of semantic tag for that article. A category back-
links to all articles in this category. Thus, article
graph and WCG are heavily interlinked (see Fig-
ure 1), and most studies (Capocci et al., 2006; Zlatic
et al., 2006) have not treated them separately. How-
ever, the WCG should be treated separately, as it
differs from the article graph. Article links are es-
tablished because of any kind of relation between

3Wikipedia can be downloaded from http:
//download.wikimedia.org/

articles, while links between categories are typically
established because of hyponymy or meronymy re-
lations.

Holloway et al. (2005) create and visualize a cat-
egory map based on co-occurrence of categories.
Voss (2006) pointed out that the WCG is a kind of
thesaurus that combines collaborative tagging and
hierarchical indexing. Zesch et al. (2007a) identified
the WCG as a valueable source of lexical semantic
knowledge, but did not analytically analyze its prop-
erties. However, even if the WCG seems to be very
similar to other semantic wordnets, a graph-theoretic
analysis of the WCG is necessary to substantiate this
claim. It is carried out in the next section.

2 Graph-theoretic Analysis of the WCG

A graph-theoretic analysis of the WCG is required
to estimate, whether graph based semantic related-
ness measures developed for semantic wordnets can
be transferred to the WCG. This is substantiated in
a case study on computing semantic relatedness in
section 4.

For our analysis, we treat the directed WCG as
an undirected graph G := (V,E),4 as the relations
connecting categories are reversible. V is a set of
vertices or nodes. E is a set of unordered pairs of
distinct vertices, called edges. Each page is treated
as a node n, and each link between pages is modeled
as an edge e running between two nodes.

Following Steyvers and Tenenbaum (2005), we
characterize the graph structure of a lexical semantic
resource in terms of a set of graph parameters: The

4Newman (2003) gives a comprehensive overview about the
theoretical aspects of graphs.
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PARAMETER Actor Power C.elegans AN Roget WordNet WikiArt WCG
|V | 225,226 4,941 282 5,018 9,381 122,005 190,099 27,865
D - - - 5 10 27 - 17
k 61.0 2.67 14.0 22.0 49.6 4.0 - 3.54
γ - - - 3.01 3.19 3.11 2.45 2.12
L 3.65 18.7 2.65 3.04 5.60 10.56 3.34 7.18
Lrandom 2.99 12.4 2.25 3.03 5.43 10.61 ∼ 3.30 ∼ 8.10
C 0.79 0.08 0.28 0.186 0.87 0.027 ∼ 0.04 0.012
Crandom 0.0003 0.005 0.05 0.004 0.613 0.0001 ∼ 0.006 0.0008

Table 1: Parameter values for different graphs.

Values for Actor (collaboration graph of actors in feature films), Power (the electrical power grid of the western United
States) and C.elegans (the neural network of the nematode worm C. elegans) are from Watts and Strogatz (1998). Values
for AN (a network of word associations by Nelson et al. (1998)), Roget’s thesaurus and WordNet are from Steyvers
and Tenenbaum (2005). Values for Wikiart (German Wikipedia article graph) are from Zlatic et al. (2006). We took
the values for the page set labelled M on their website containing 190,099 pages for German, as it comes closest to a
graph of only articles. Values marked with ‘-’ in the table were not reported in the studies. The values for the WCG are
computed in this study.

degree k of a node is the number of edges that are
connected with this node. Averaging over all nodes
gives the average degree k. The degree distribution
P (k) is the probability that a random node will have
degree k. In some graphs (like the WWW), the de-
gree distribution follows a power law P (k) ≈ k−γ

(Barabasi and Albert, 1999). We use the power law
exponent γ as a graph parameter.

A path pi,j is a sequence of edges that connects
a node ni with a node nj . The path length l(pi,j)
is the number of edges along that path. There can
be more than one path between two nodes. The
shortest path length L is the minimum of all these
paths, i.e. Li,j = min l(pi,j). Averaging over all
nodes gives the average shortest path length L.
The diameter D is the maximum of the shortest path
lengths between all pairs of nodes in the graph.

The cluster coefficient of a certain node ni can
be computed as

Ci =
Ti

ki(ki−1)
2

=
2Ti

ki(ki − 1)

where Ti refers to the number of edges between the
neighbors of node ni and ki(ki − 1)/2 is the maxi-
mum number of edges that can exist between the ki

neighbors of node ni.5 The cluster coefficient C for
the whole graph is the average of all Ci. In a fully
connected graph, the cluster coefficient is 1.

5In a social network, the cluster coefficient measures how
many of my friends (neighboring nodes) are friends themselves.

For our analysis, we use a snapshot of the German
Wikipedia from May 15, 2006. We consider only the
largest connected component of the WCG that con-
tains 99,8% of the nodes. Table 1 shows our results
on the WCG as well as the corresponding values for
other well-known graphs and lexical semantic net-
works. We compare our empirically obtained values
with the values expected for a random graph. Fol-
lowing Zlatic et al. (2006), the cluster coefficient C
for a random graph is

Crandom =
(k2 − k)2

|V |k

The average path length for a random network can
be approximated as Lrandom ≈ log |V | / log k
(Watts and Strogatz, 1998).

From the analysis, we conclude that all graphs
in Table 1 are small world graphs (see Figure 2-c).
Small world graphs (Watts and Strogatz, 1998) con-
tain local clusters that are connected by some long
range links leading to low values of L and D. Thus,
small world graphs are characterized by (i) small
values of L (typically L & Lrandom), together with
(ii) large values of C (C � Crandom).

Additionally, all semantic networks are scale-free
graphs, as their degree distribution follows a power
law. Structural commonalities between the graphs
in Table 1 are assumed to result from the growing
process based on preferential attachment (Capocci
et al., 2006).
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Our analysis shows that WordNet and the WCG
are (i) scale-free, small world graphs, and (ii) have a
very similar parameter set. Thus, we conclude that
algorithms designed to work on the graph structure
of WordNet can be transferred to the WCG.

In the next section, we introduce the task of com-
puting semantic relatedness on graphs and adapt ex-
isting algorithms to the WCG. In section 4, we eval-
uate the transferred algorithms with respect to corre-
lation with human judgments on SR, and coverage.

3 Graph Based Semantic Relatedness
Measures

Semantic similarity (SS) is typically defined via the
lexical relations of synonymy (automobile – car)
and hypernymy (vehicle – car), while semantic re-
latedness (SR) is defined to cover any kind of lexi-
cal or functional association that may exist between
two words (Budanitsky and Hirst, 2006). Dissimi-
lar words can be semantically related, e.g. via func-
tional relationships (night – dark) or when they are
antonyms (high – low). Many NLP applications re-
quire knowledge about semantic relatedness rather
than just similarity (Budanitsky and Hirst, 2006).

We introduce a number of competing approaches
for computing semantic relatedness between words
using a graph structure, and then discuss the changes
that are necessary to adapt semantic relatedness al-
gorithms to work on the WCG.

3.1 Wordnet Based Measures
A multitude of semantic relatedness measures work-
ing on semantic networks has been proposed.

Rada et al. (1989) use the path length (PL) be-
tween two nodes (measured in edges) to compute
semantic relatedness.

distPL = l(n1, n2)

Leacock and Chodorow (1998, LC) normalize the
path-length with the depth of the graph,

simLC(n1, n2) = − log
l(n1, n2)
2× depth

where depth is the length of the longest path in the
graph.

Wu and Palmer (1994, WP) introduce a measure
that uses the notion of a lowest common subsumer of

two nodes lcs(n1, n2). In a directed graph, a lcs is
the parent of both child nodes with the largest depth
in the graph.

simWP =
2 depth(lcs)

l(n1, lcs) + l(n2, lcs) + 2 depth(lcs)

Resnik (1995, Res), defines semantic similarity be-
tween two nodes as the information content (IC)
value of their lcs. He used the relative corpus fre-
quency to estimate the information content value.

Jiang and Conrath (1997, JC) additionally use the
IC of the nodes.

distJC(n1, n2) = IC(n1) + IC(n2)− 2IC(lcs)

Note that JC returns a distance value instead of a
similarity value.

Lin (1998, Lin) defined semantic similarity using
a formula derived from information theory.

simLin(n1, n2) = 2× IC(lcs)
IC(n1) + IC(n2)

Because polysemous words may have more than
one corresponding node in a semantic wordnet, the
resulting semantic relatedness between two words
w1 and w2 can be calculated as

SR =


min

n1∈s(w1),n2∈s(w2)
dist(n1, n2) path

max
n1∈s(w1),n2∈s(w2)

sim(n1, n2) IC

where s(wi) is the set of nodes that represent senses
of word wi. That means, the relatedness of two
words is equal to that of the most related pair of
nodes.

3.2 Adapting SR Measures to Wikipedia
Unlike other wordnets, nodes in the WCG do not
represent synsets or single terms, but a general-
ized concept or category. Therefore, we cannot use
the WCG directly to compute SR. Additionally, the
WCG would not provide sufficient coverage, as it is
relatively small. Thus, transferring SR measures to
the WCG requires some modifications. The task of
estimating SR between terms is casted to the task
of SR between Wikipedia articles devoted to these
terms. SR between articles is measured via the cate-
gories assigned to these articles.

4
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Figure 3: Breaking cycles in the WCG.

We define C1 and C2 as the set of categories as-
signed to article ai and aj , respectively. We then de-
termine the SR value for each category pair (ck, cl)
with ck ∈ C1 and cl ∈ C2. We choose the best
value among all pairs (ck, cl), i.e. the minimum for
path based and the maximum for information con-
tent based measures.

SRbest =

 min
ck∈C1,cl∈C2

(sr(ck, cl)) path based

max
ck∈C1,cl∈C2

(sr(ck, cl)) IIC based

See (Zesch et al., 2007b) for a more detailed descrip-
tion of the adaptation process.

We substitute Resnik’s information content with
the intrinsic information content (IIC) by Seco et
al. (2004) that is computed only from structural in-
formation of the underlying graph. It yields better
results and is corpus independent. The IIC of a node
ni is computed as a function of its hyponyms,

IIC(n) = 1− log(hypo(ni) + 1
log(|C|)

where hypo(ni) is the number of hyponyms of node
ni and |C| is the number of nodes in the taxonomy.

Efficiently counting the hyponyms of a node re-
quires to break cycles that may occur in a WCG.
We perform a colored depth-first-search to detect cy-
cles, and break them as visualized in Figure 3. A
link pointing back to a node closer to the top of the
graph is deleted, as it violates the rule that links in
the WCG typically express hyponymy or meronymy
relations. If the cycle occurs between nodes on the
same level, we cannot decide based on that rule and

simply delete one of the links running on the same
level. This strategy never disconnects any nodes
from a connected component.

4 Semantic Relatedness Experiments

A commonly accepted method for evaluating SR
measures is to compare their results with a gold stan-
dard dataset based on human judgments on word
pairs.6

4.1 Datasets

To create gold standard datasets for evaluation, hu-
man annotators are asked to judge the relatedness of
presented word pairs. The average annotation scores
are correlated with the SR values generated by a par-
ticular measure.

Several datasets for evaluation of semantic re-
latedness or semantic similarity have been created
so far (see Table 2). Rubenstein and Goodenough
(1965) created a dataset with 65 English noun pairs
(RG65 for short). A subset of RG65 has been
used for experiments by Miller and Charles (1991,
MC30) and Resnik (1995, Res30).

Finkelstein et al. (2002) created a larger dataset
for English containing 353 pairs (Fin353), that has
been criticized by Jarmasz and Szpakowicz (2003)
for being culturally biased. More problematic is that
Fin353 consists of two subsets, which have been an-
notated by a different number of annotators. We per-
formed further analysis of their dataset and found
that the inter-annotator agreement7 differs consider-
ably. These results suggest that further evaluation
based on this data should actually regard it as two
independent datasets.

As Wikipedia is a multi-lingual resource, we are
not bound to English datasets. Several German
datasets are available that are larger than the exist-
ing English datasets and do not share the problems
of the Finkelstein datasets (see Table 2). Gurevych
(2005) conducted experiments with a German trans-
lation of an English dataset (Rubenstein and Good-
enough, 1965), but argued that the dataset is too
small and only contains noun-noun pairs connected

6Note that we do not use multiple-choice synonym question
datasets (Jarmasz and Szpakowicz, 2003), as this is a different
task, which is not addressed in this paper.

7We computed the correlation for all annotators pairwise and
summarized the values using a Fisher Z-value transformation.
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CORRELATION r
DATASET YEAR LANGUAGE # PAIRS POS TYPE SCORES # SUBJECTS INTER INTRA

RG65 1965 English 65 N SS continuous 0–4 51 - .850
MC30 1991 English 30 N SS continuous 0–4 38 - -
Res30 1995 English 30 N SS continuous 0–4 10 .903 -
Fin353 2002 English 353 N, V, A SR continuous 0–10 13/16 - -

153 13 .731 -
200 16 .549 -

Gur65 2005 German 65 N SS discrete {0,1,2,3,4} 24 .810 -
Gur350 2006 German 350 N, V, A SR discrete {0,1,2,3,4} 8 .690 -
ZG222 2006 German 222 N, V, A SR discrete {0,1,2,3,4} 21 .490 .647

Table 2: Comparison of German datasets used for evaluating semantic relatedness.

by either synonymy or hyponymy. Thus, she cre-
ated a larger German dataset containing 350 word
pairs (Gur350). It contains nouns, verbs and ad-
jectives that are connected by classical and non-
classical relations (Morris and Hirst, 2004). How-
ever, word pairs for this dataset are biased to-
wards strong classical relations, as they were man-
ually selected. Thus, Zesch and Gurevych (2006)
used a semi-automatic process to create word pairs
from domain-specific corpora. The resulting ZG222
dataset contains 222 word pairs that are connected
by all kinds of lexical semantic relations. Hence, it
is particularly suited for analyzing the capability of
a measure to estimate SR.

4.2 Results and Discussion

Figure 4 gives an overview of our experimental re-
sults of evaluating SR measures based on the WCG
on three German datasets. We use Pearson’s prod-
uct moment correlation r to compare the results with
human judgments. From each dataset, we only use
word pairs where Wikipedia articles corresponding
to these words are available (see section 4.3 for a de-
tailed discussion of word pair coverage). For com-
parison, we give the best results obtained by Ger-
maNet based measures (abbreviated as GN).8

Our results show that the graph-based SR mea-
sures have been successfully transferred to the
WCG. Results on the Gur65 dataset (containing only
word pairs connected by strong classical relations)
are lower than values computed using GermaNet.
This is to be expected, as the WCG is created col-
laboratively without strictly enforcing a certain type

8Additionally, Table 2 gives the inter annotator agreement
for each subset. It constitutes an upper bound of a measure’s
performance on a certain dataset.
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Figure 4: Correlations on different datasets.
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of semantic relation between categories, while Ger-
maNet is carefully modelled to represent the strong
classical relations captured by Gur65. Results on the
two other datasets, which contain a majority of word
pairs connected by non-classical semantic relations,
show that the WCG is better suited than GermaNet
to estimate SR.

Performance of WCG based measures depends on
the dataset and the kind of knowledge used. IIC
based measures (Res, JC and Lin) outperform path
based measures (PL, LC and WP ) on the Gur65
dataset, while path based measures are clearly bet-
ter on SR datasets (Gur350 and ZG222). The im-
pressive performance of the simple PL measure on
the SR datasets cannot be explained with the struc-
tural properties of the WCG, as they are very similar
to those of other semantic networks. Semantically
related terms are very likely to be categorized un-
der the same category, resulting in short path lengths
leading to high SR. The generalization process that
comes along with classification seems to capture the
phenomenon of SR quite well. As each article can
have many categories, different kinds of semantic
relations between terms can be established, but the
type of relation remains unknown.

4.3 Coverage of Word Pairs

If the WCG is to be used as a lexical semantic re-
source in large scale NLP applications, it should
provide broad coverage. As was described in sec-
tion 3.2, computing SR using the WCG relies on
categories assigned to articles. Thus, we consider
a word to be covered by the WCG, if there is a cate-
gorized article with matching title.

Table 3 gives an overview of the number of word
pairs covered in GermaNet or the WCG. Only few
words from Gur65 were not found in one of the re-
sources. This proportion is much higher for Gur350
and ZG222, as these datasets contain many domain
specific terms that are badly covered in GermaNet,
and many word pairs containing verbs and adjectives
that are badly covered in the WCG.9 A number of
word pairs (mostly containing combinations of verbs
or adjectives) were found neither in GermaNet nor

9Resulting from an editorial decision, Wikipedia only con-
tains articles devoted to terms of encyclopedic interest - mainly
nouns. Adjectives and verbs redirect to their corresponding
nouns, if they are covered at all.

Wikipedia (see GN ∪ WCG). If we consider only
noun-noun pairs (NN), the coverage of Wikipedia
exceeds that of GermaNet. The high proportion of
word pairs that are either only found in GermaNet
or in the WCG indicates that they are partially com-
plementary with respect to covered vocabulary.

5 Conclusion

In this paper, we performed a graph-theoretic anal-
ysis of the Wikipedia Category Graph and showed
that it is a scale-free, small-world graph, like other
semantic networks such as WordNet or Roget’s the-
saurus. From this result, we concluded that the
WCG can be used for NLP tasks, where other se-
mantic networks have been traditionally employed.
As Wikipedia is a multi-lingual resource, this en-
ables the transfer of NLP algorithms to languages
that do not have well-developed semantic wordnets.

To substantiate this claim, we described how mea-
sures of semantic relatedness operating on seman-
tic wordnets, like WordNet or GermaNet, can be
adapted to work on the WCG. We showed that the
WCG is well suited to estimate SR between words.
This is due to the categorization process that con-
nects terms which would not be closely related in
a taxonomic wordnet structure. Consequently, Ger-
maNet outperforms the WCG on the task of estimat-
ing semantic similarity. Furthermore, the WCG can-
not be used for tasks that require knowledge about
the exact type of semantic relation.

We performed an analysis of the coverage of
Wikipedia. It covers nouns very well, but is less
suited to compute semantic relatedness across parts-
of-speech. In this case, conventional semantic word-
nets are likely to provide a better knowledge source.
In Zesch et al. (2007b), we show that knowledge
from wordnets and from Wikipedia is complemen-
tary, and can be combined to improve the perfor-
mance on the SR task. As the simple PL measure
performs remarkably well on the SR datasets, in our
future work, we will also consider computing SR us-
ing the path length on the Wikipedia article graph
rather than on the WCG.
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DATASET # PAIRS GN WCG GN ∪ WCG GN \ WCG WCG \ GN GN ∩ WCG
Gur65 65 57 61 65 4 8 53
Gur350 350 208 161 248 87 40 121
Gur350 NN 173 109 115 129 14 20 95
ZG222 222 86 86 118 32 30 56
ZG222 NN 119 57 61 73 12 16 45

Table 3: Number of covered word pairs based on GermaNet (GN) and the WCG on different datasets.

Retrieval from Texts in the Example Domain Elec-
tronic Career Guidance" (SIR), GU 798/1-2.
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Abstract

This paper introduces multi-level associa-
tion graphs (MLAGs), a new graph-based
framework for information retrieval (IR).
The goal of that framework is twofold:
First, it is meant to be a meta model of
IR, i.e. it subsumes various IR models
under one common representation. Sec-
ond, it allows to model different forms of
search, such as feedback, associative re-
trieval and browsing at the same time. It
is shown how the new integrated model
gives insights and stimulates new ideas for
IR algorithms. One of these new ideas is
presented and evaluated, yielding promis-
ing experimental results.

1 Introduction

Developing formal models for information retrieval
has a long history. A model of information retrieval
“predicts and explains what a user will find relevant
given the user query” (Hiemstra, 2001). Most IR
models are firmly grounded in mathematics and thus
provide a formalisation of ideas that facilitates dis-
cussion and makes sure that the ideas can be imple-
mented. More specifically, most IR models provide
a so-called retrieval function f(q, d) , which returns
– for given representations of a document d and of a
user information need q – a so-called retrieval status
value by which documents can be ranked according
to their presumed relevance w.r.t. to the query q.

In order to understand the commonalities and dif-
ferences among IR models, this paper introduces the

notion of meta modeling. Since the word “meta
model” is perhaps not standard terminology in IR,
it should be explained what is meant by it: a meta
model is a model or framework that subsumes other
IR models, such that they are derived by specifying
certain parameters of the meta model.

In terms of IR theory, such a framework conveys
what is common to all IR models by subsuming
them. At the same time, the differences between
models are highlighted in a conceptually simple
way by the different values of parameters that have
to be set in order to arrive at this subsumption. It
will be shown that a graph-based representation of
IR data is very well suited to this problem.

IR models concentrate on the matching process,
i.e. on measuring the degree of overlap between a
query q and a document representation d. On the
other hand, there are the problems of finding suit-
able representations for documents (indexing) and
for users’ information needs (query formulation).
Since users are often not able to adequately state
their information need, some interactive and asso-
ciative procedures have been developed by IR re-
searchers that help to overcome this problem:

• Associative retrieval, i.e. retrieving informa-
tion which is associated to objects known or
suspected to be relevant to the user – e.g. query
terms or documents that have been retrieved al-
ready.

• Feedback, another method for boosting recall,
either relies on relevance information given
by the user (relevance feedback) or assumes
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top-ranked documents to be relevant (pseudo
feedback) and learns better query formulations
from this information.

• Browsing, i.e. exploring a document collec-
tion interactively by following links between
objects such as documents, terms or concepts.

Again, it will be shown that – using a graph-based
representation – these forms of search can be sub-
sumed easily.

2 Related work

2.1 Meta modeling

In the literal sense of the definition above, there is
a rather limited number of meta models for IR, the
most important of which will be described here very
shortly.

Most research about how to subsume various IR
models in a common framework has been done in
the context of Bayesian networks and probabilistic
inference (Turtle and Croft, 1990). In this approach,
models are subsumed by specifying certain proba-
bility distributions. In (Wong and Yao, 1995), the
authors elaborately show how all major IR models
known at that time can be subsumed using proba-
bilistic inference. Language modeling, which was
not known then was later added to the list by (Met-
zler and Croft, 2004).

Another graph-based meta modeling approach
uses the paradigm of spreading activation (SA) as a
simple unifying framework. Given semantic knowl-
edge in the form of a (directed) graph, the idea of
spreading activation is that a measure of relevance
– w.r.t. a current focus of attention – is spread over
the graph’s edges in the form of activation energy,
yielding for each vertex in the graph a degree of re-
latedness with that focus (cf. (Anderson and Pirolli,
1984)). It is easy to see how this relates to IR: us-
ing a graph that contains vertices for both terms and
documents and appropriate links between the two,
we can interpret a query as a focus of attention and
spread that over the network in order to rank docu-
ments by their degree of relatedness to that focus.

A very general introduction of spreading activa-
tion as a meta model is given in the early work by
(Preece, 1981) All later models are hence special

cases of Preece’s work, including the multi-level as-
sociation graphs introduced in section 3. Preece’s
model subsumes the Boolean retrieval model, coor-
dination level matching and vector space processing.

Finally, an interesting meta model is described by
(van Rijsbergen, 2004) who uses a Hilbert space as
an information space and connects the geometry of
that space to probability and logics. In particular,
he manages to give the familiar dot product between
query and document vector a probabilistic interpre-
tation.

2.2 Graph-based models for associative
retrieval and browsing

The spreading activation paradigm is also often used
for associative retrieval. The idea is to reach vertices
in the graph that are not necessarily directly linked to
query nodes, but are reachable from query nodes via
a large number of short paths along highly weighted
edges.

Besides (Preece, 1981), much more work on SA
was done, a good survey of which can be found in
(Crestani, 1997). A renewed interest in SA was later
triggered with the advent of the WWW where hyper-
links form a directed graph. In particular, variants of
the PageRank (Brin and Page, 1998) algorithm that
bias a random searcher towards some starting nodes
(e.g. an initial result set of documents) bear close re-
semblance to SA (Richardson and Domingos, 2002;
White and Smyth, 2003).

Turning to browsing, we can distinguish three
types of browsing w.r.t. to the vertices of the graph:
index term browsing, which supports the user in for-
mulating his query by picking related terms (Doyle,
1961; Beaulieu, 1997), document browsing which
serves to expand result sets by allowing access to
similar documents or by supporting web browsing
(Smucker and Allan, 2006; Olston and Chi, 2003)
and combined approaches where both index terms
and documents are used simultaneously for brows-
ing.

In this last category, many different possibilities
arise for designing interfaces. A common guiding
principle of many graph-based browsing approahces
is that of interactive spreading activation (Oddy,
1977; Croft and Thompson, 1987). Another ap-
proach, which is very closely related to MLAGs,
is a multi-level hypertext (MLHT), as proposed in
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(Agosti and Crestani, 1993) – a data structure con-
sisting of three levels, for documents, index terms
and concepts. Each level contains objects and links
among them. There are also connections between
objects of two adjacent levels. An MLHT is meant
to be used for interactive query formulation, brows-
ing and search, although (Agosti and Crestani, 1993)
give no precise specification of the processing pro-
cedures.

2.3 Contribution of this work

Compared to Preece’s work, the MLAG framework
makes two sorts of modifications in order to reach
the goals formulated in the introduction: in order to
subsume more IR models, the flexibility and power
of Preece’s model is increased by adding real-valued
edge weights. On the other hand, a clearer distinc-
tion is made between local and global information
through the explicit introduction of “level graphs”.

With the introduction of levels, the MLAG data
structure becomes very closely related to the MLHT
paradigm of (Agosti and Crestani, 1993), MLAGs,
however, generalise MLHTs by allowing arbitrary
types of levels, not only the three types proposed in
(Agosti and Crestani, 1993). Additionally, links in
MLAGs are weighted and the spreading activation
processing defined in the next section makes exten-
sive use of these weights.

All in all, the new model combines the data struc-
ture of multi-level hypertexts (Agosti and Crestani,
1993) with the processing paradigm of spreading ac-
tivation as proposed by Preece (Preece, 1981), re-
fining both with an adequate edge weighting. The
framework is an attempt to be as general as neces-
sary for subsuming all models and allowing for dif-
ferent forms of search, while at the same time being
as specific as possible about the things that are really
common to all IR models.

3 The MLAG model

3.1 Data structure

Formally, the basis of a multi-level association
graph (MLAG) is a union of n level graphs
L1, ..., Ln. Each of these n directed graphs Li =
G(V Li, ELi,WLi) consists of a set of vertices
V Li, a set ELi ⊆ V Li × V Li of edges and a func-
tion WLi : ELi → R returning edge weights.

In order to connect the levels, there are n −
1 connecting bipartite graphs (or inverted lists)
I1,2, ..., In−1,n where each inverted list Ij,j+1 con-
sists of vertices V Ij,j+1 = V Lj ∪ V Lj+1, edges
EIj,j+1 ⊆ (V Lj × V Lj+1) ∪ (V Lj+1 × V Lj) and
weights WIj,j+1 : EIj,j+1 → R. Figure 1 depicts
a simple example multi-level association graph with
two levels Ld and Lt for documents and terms.
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Figure 1: A simple example MLAG

Assuming that the vertices on a given level cor-
respond to objects of the same type and vertices
in different levels to objects of different types, this
data structure has the following general interpreta-
tion: Each level represents associations between ob-
jects of a given type, e.g. term-term or document-
document similarities. The inverted lists, on the
other hand, represent associations between different
types of objects, e.g. occurrences of terms in docu-
ments.

3.2 Examples
3.2.1 Standard retrieval

The simplest version of a multi-level association
graph consists of just two levels – a term level Lt and
a document level Ld. This is the variant depicted in
figure 1.

The graph Itd that connects Lt and Ld is an in-
verted list in the traditional sense of the word, i.e. a
term is connected to all documents that it occurs in
and the weight WI(t, d) of an edge (t, d) connect-
ing term t and document d conveys the degree to
which t is representative of d’s content, or to which
d is about t.
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The level graphs Lt and Ld can be computed in
various ways. As for documents, a straight-forward
way would be to calculate document similarities,
e.g. based on the number of terms shared by two
documents. However, other forms of edges are pos-
sible, such as hyperlinks or citations – if available.
Term associations, on the other hand, can be com-
puted using co-occurrence information. An alterna-
tive would be to use relations from manually created
thesauri or ontologies.

3.2.2 More levels
In order to (partly) take document structure into

account, it can be useful to introduce a level for doc-
ument parts (e.g. headlines and/or passages) in be-
tween the term and the document level. This can
be combined with text summarisation methods (cf.
e.g. (Brandow et al., 1995)) in order to give higher
weights to more important passages in the inverted
list connecting passages to documents.

In distributed or peer-to-peer environments,
databases or peers may be modeled in a separate
layer above the document level, inverted lists in-
dicating where documents are held. Additionally,
a peer’s neighbours in an overlay network may be
modeled by directed edges in the peer level graph.
More extensions are possible and the flexibility of
the MLAG framework allows for the insertion of ar-
bitrary layers.

3.3 Processing paradigm

The operating mode of an MLAG is based on the
spreading activation principle. However, the spread
of activation between nodes of two different levels
is not iterated. Rather, it is carefully controlled, yet
allowing non-linear modifications at some points.

In order to model spreading activation in an
MLAG, we introduce an activation function Ai :
V Li → R which returns the so-called activation en-
ergies of vertices on a given level Li. The default
value of the activation function is Ai(v) = 0 for all
vertices v ∈ V Li.

In the following, it is assumed that the MLAG
processing is invoked by activating a set of vertices
A on a given level Li of the MLAG by modifying the
activation function of that level so that Ai(v) = wv

for each v ∈ A.
A common example of such activation is a query

being issued by a user. The initial activation is the
result of the query formulation process, which se-
lects some vertices v ∈ A and weights them accord-
ing to their presumed importance wv. This weight is
then the initial activation energy of the vertex.

Once we have an initial set of activated vertices,
the following general procedure is executed until
some stopping criterion is met:

1. Collect activation values on current level Li,
i.e. determine Ai(u) for all u ∈ V Li.

2. (Optionally) apply a transformation to the acti-
vation energies of Li-nodes, i.e. alter Ai(u) by
using a – possibly non-linear – transformation
function or procedure.

3. Spread activation to the next level Li+1 along
the links connecting the two levels:

Ai+1(v) =
∑

(u,v)∈Ii,i+1

Ai(u) ·WI(u, v) (1)

4. Set Ai(u) = 0 for all u ∈ V Li, i.e. “forget”
about the old activation energies

5. (Optionally) apply a transformation to the acti-
vation energies of Li+1-nodes (see step 2).

6. Go to 1, increment i (or decrement, depend-
ing on its value and the configuration of the
MLAG)

If we take a vector space view of this process-
ing mode and if we identify level Li with terms and
level Li+1 with documents, we can interpret the ac-
tivation energies Ai(u) as a query vector and the
edge weights WI(u, v) of edges arriving at vertex
v ∈ V Li+1 as a document vector for document v.

This shows that the basic retrieval function re-
alised by steps 1, 3 and 4 of this process is a simple
dot product. We will later see that retrieval functions
of most IR models can actually be written in that
form, provided that the initial activation of query
terms and the edge weights of Ii,i+1 are chosen cor-
rectly (section 4).

For some models, however, we additionally need
the possibility to perform nonlinear transformations
on result sets in order to subsume them. Steps 2 and
5 of the algorithm allow for arbitrary modifications
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of the activation values based on whatever evidence
may be available on the current level or globally –
but not in the inverted list. This will later also allow
to include feedback and associative retrieval tech-
niques.

4 The MLAG as a meta model

In this section, examples will be shown that demon-
strate how existing IR models of ranked retrieval 1

can be subsumed using the simple MLAG of figure
1 and the processing paradigm from the last section.
This is done by specifying the following parameters
of that paradigm:

1. How nodes are activated in the very first step

2. How edges of the inverted list are weighted

3. Which transformation is used in 2 and 5.

For each model, the corresponding retrieval func-
tion will be given and the parameter specification
will be discussed shortly. The specification of the
above parameters will be given in the form of triplets
〈activationinit, edge weights, transform〉.

4.1 Vector space model

In the case of the vector space model (Salton et al.,
1975), the retrieval function to be mimicked is as
follows:

f(q, d) =
∑

t∈q∩d

wtqwtd (2)

where wtq and wtd are a term’s weight in the query
q and the current document d, respectively. This
can be achieved by specifying the parameter triplet
〈wtq, wtd, none〉. This simple representation reflects
the closeness of the MLAG paradigm to the vector
space model that has been hinted at above.

4.2 Probabilistic model

For the probabilistic relevance model (Robertson
and Sparck-Jones, 1976), the MLAG has to realise
the following retrieval function

f(q, d) =
∑

i

di log
pi(1− ri)
ri(1− pi)

(3)

1This excludes the Boolean model, which can, however, also
be subsumed as shown in section 5.5 of (Preece, 1981)

where di ∈ {0, 1} indicates whether term i is con-
tained in document d, pi is the probability that a rele-
vant document will contain term i and ri is the prob-
ability that an irrelevant document will contain it.
This retrieval function is realised by the parameter
triplet 〈log pi(1−ri)

ri(1−pi)
, di, none〉.

Now there is still the question of how the esti-
mates of pi and ri are derived. This task involves the
use of relevance information which can be gained
via feedback, described in section 6.1.

4.3 Language models
The general language modeling retrieval function
(cf. e.g. (Zhai and Lafferty, 2001)) is – admittedly –
not in the linear form of equation 1. But using log-
arithms, products can be turned into sums without
changing the ranking – the logarithm being a mono-
tonic function (note that this is what also happened
in the case of the probabilistic relevance models).

In particular, we will use the approach of com-
paring query and document language models by
Kullback-Leibler divergence (KLD) (Lafferty and
Zhai, 2001) which results in the equation

KLD(Mq||Md) =
∑
t∈q

P (t|Mq) log
P (t|Mq)
P (t|Md)

∝ −
∑
t∈q

P (t|Mq) log P (t|Md)

where P (t|Mq) and P (t|Md) refer to the probabil-
ity that term t will be generated by the unigram lan-
guage model of query q or document d, respectively.
Note that we have simplified the equation by drop-
ping a term

∑
t P (t|Mq) log P (t|Mq), which de-

pends only on the query, not on the documents to
be ranked.

Now, the triplet 〈P (t|Mq),− log P (t|Md), t〉
can be used to realise this retrieval func-
tion where t stands for a procedure that adds
−P (t|Mq) log P (t|Md) to the document node’s
activation level for terms t not occurring in d and
sorts documents by increasing activation values
afterwards.

5 Combining IR models

As can be seen from the last equation above, the lan-
guage model retrieval function sums over all terms
in the query. Each term – regardless of whether it
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appears in the document d or not – contributes some-
thing that may be interpreted as a “penalty” for the
document. The magnitude of this penalty depends
on the smoothing method used (cf. (Zhai and Laf-
ferty, 2001)). A popular smoothing method uses
so-called Dirichlet priors to estimate document lan-
guage models:

P (t|Md) =
tf + µp(t|C)

µ + |d|
(4)

where tf is t’s frequency in d, p(t|C) is the term’s
relative frequency in the whole collection and µ is
a free parameter. This indicates that if a rare term
is missing from a document, the penalty will be
large, P (t|Md) being very small because tf = 0
and p(t|C) small.

Conceptually, it is unproblematic to model the
retrieval function by making Itd a complete bipar-
tite graph, i.e. specifying a (non-zero) value for
P (t|Md), even if t does not occur in d. In a practical
implementation, this is not feasible, which is why
we add the contribution of terms not contained in
a document, i.e. −P (t|Mq) log P (t|Md), for terms
that do not occur in d. 2

This transformation indicates an important differ-
ence between language modeling and all other IR
models: language models penalise documents for
the absence of rare (i.e. informative) terms whereas
the other models reward them for the presence of
these terms.

These considerations suggest a combination of
both approaches: starting with an arbitrary “pres-
ence rewarding” model – e.g. the vector space model
– we may integrate the “absence penalising” philos-
ophy by subtracting from a document’s score, for
each missing term, the contribution that one occur-
rence of that term would have earned (cf. (Witschel,
2006)).

For the vector space model, this yields the follow-
ing retrieval function:

f(q, d) =
∑

t∈q∩d

wtqwtd

− α

|q|
∑

t∈q\d

wtd(tf = 1)wtq

2In order to do this, we only need to know |d| and the relative
frequency of t in the collection p(t|C), i.e. information that is
available outside the inverted list.

where α is a free parameter regulating the relative
influence of penalties, comparable to the µ parame-
ter of language models above.

5.1 Experimental results

Table 2 shows retrieval results for combining two
weighting schemes, BM25 (Robertson et al., 1992)
and Lnu.ltn (Singhal et al., 1996), with penalties.
Both of them belong to the family of tf.idf weight-
ing schemes and can hence be regarded as represent-
ing the vector space model, although BM25 was de-
veloped out of the probabilistic model.

Combining them with the idea of “absence penal-
ties” works as indicated above, i.e. weights are ac-
cumulated for each document using the tf.idf -like
retrieval functions. Then, from each score, the con-
tributions that one occurrence of each missing term
would have earned is subtracted. More precisely,
what is subtracted consists of the usual tf.idf weight
for the missing term, where tf = 1 is substituted in
the tf part of the formula.

Experiments were run with queries from TREC-7
and TREC-8. In order to study the effect of query
length, very short queries (using only the title field
of TREC queries), medium ones (using title and de-
scription fields) and long ones (using all fields) were
used. Table 1 shows an example TREC query.

< top>
< num> Number: 441
< title> Lyme disease
< desc> Description:
How do you prevent and treat Lyme disease?
< narr> Narrative:
Documents that discuss current prevention and
treatment techniques for Lyme disease are relevant [...]
< /top>

Table 1: A sample TREC query

Table 2 shows that both weighting schemes can
be significantly improved by using penalties, espe-
cially for short queries, reaching and sometimes sur-
passing the performance of retrieval with language
models. This holds even when the parameter α is
not tuned and confirms that interesting insights are
gained from a common representation of IR models
in a graph-based environment. 3

3Note that these figures were obtained without any refine-
ments such as query expansion and are hence substantially

14



TREC-7 TREC-8

Weighting very short medium long very short medium long
BM25 0.1770 0.2120 0.2141 0.2268 0.2514 0.2332
+ P (α = 1) 0.1867* 0.2194* 0.2178* 0.2380* 0.2593* 0.2335
+ P (best α) 0.1896* 0.2220* 0.2185* 0.2411* 0.2625* 0.2337
best α value 2 2 1.5 2 2 0.25
Lnu.ltn 0.1521 0.1837 0.1920 0.1984 0.2226 0.2013
+ P (α = 1) 0.1714* 0.1972* 0.1946* 0.2176* 0.2305* 0.2040
+ P (best α) 0.1873* 0.2106* 0.1977 0.2394* 0.2396* 0.2064*
best α value 5 5 3 5 4 1.5
LM 0.1856 0.2163 0.2016 0.2505 0.2578 0.2307

Table 2: Mean average precision of BM25 and Lnu.ltn and their corresponding penalty schemes (+ P) for
TREC-7 and TREC-8. Asterisks indicate statistically significant deviations (using a paired Wilcoxon test
on a 95% confidence level) from each baseline, whereas the best run for each query length is marked with
bold font. Performance of language models (LM) is given for reference, where the value of the smoothing
parameter µ was set to the average document length.

6 Different forms of search with MLAGs

In order to complete the goals stated in the intro-
duction of this paper, this section will briefly ex-
plain how feedback, associative retrieval and brows-
ing can be modeled within the MLAG framework.

6.1 Feedback

Using the simple term-document MLAG of figure
1, feedback can be implemented by the following
procedure:

1. Perform steps 1 – 4 of the basic processing.

2. Apply a transformation to the activation values
of Ld-nodes, e.g. let the user pick relevant doc-
uments and set their activation to some positive
constant β.

3. Perform step 3 of the basic processing with
Li = Ld and Li+1 = Lt, i.e. let activation
flow back to term level.

4. Forget about activation levels of documents.

5. Apply transformation on the term level Lt, e.g.
apply thresholding to obtain a fixed number of
expansion terms.

6. Spread activation back to the document level to
obtain the final retrieval status values of docu-
ments.

lower than MAP scores achieved by systems actually partici-
pating in TREC.

In order to instantiate a particular feedback algo-
rithm, there are three parameters to be specified:

• The transformation to be applied in step 2

• The weighting of document-term edges (if dif-
ferent from term-document edges) and

• The transformation applied in step 5.

Unfortunately, due to space constraints, it is out of
the scope of this paper to show how different spec-
ifications lead to well-known feedback algorithms
such as Rocchio (Rocchio, 1971) or the probabilistic
model above.

6.2 Associative retrieval

Associative retrieval in MLAGs exploits the infor-
mation encoded in level graphs: expanding queries
with related terms can be realised by using the term
level graph Lt of a simple MLAG (cf. figure 1) in
step 2 of the basic processing, whereas the expan-
sion of document result sets takes place in step 5 on
the document level Ld. In order to exploit the rela-
tions encoded in the level graphs, one may again use
spreading activation, but also simpler mechanisms.
Since relations are used directly, dimensionality re-
duction techniques such as LSI cannot and need not
be modeled.

6.3 Browsing

Since the MLAG framework is graph-based, it is
easy to grasp and to be visualised, which makes it
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a suitable data structure for browsing. The level
graphs can be used as a flat graphical representa-
tion of the data, which can be exploited directly
for browsing. Depending on their information need,
users can choose to browse either on the term level
Lt or on the document level Ld and they can switch
between both types of levels at any time using the
inverted list Itd. This applies, of course, also to pas-
sage or any other type of levels if they exist.

7 Conclusions

In this paper, a new graph-based framework for in-
formation retrieval has been introduced that allows
to subsume a wide range of IR models and algo-
rithms. It has been shown how this common rep-
resentation can be an inspiration and lead to new
insights and algorithms that outperform the origi-
nal ones. Future work will aim at finding similar
forms of synergies for the different forms of search,
e.g. new combinations of feedback and associative
retrieval algorithms.
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Abstract 

In this article we address the usefulness of 
linguistic-independent methods in extrac-
tive Automatic Summarization, arguing 
that linguistic knowledge is not only useful, 
but may be necessary to improve the in-
formativeness of automatic extracts. An as-
sessment of four diverse AS methods on 
Brazilian Portuguese texts is presented to 
support our claim. One of them is Mihal-
cea’s TextRank; other two are modified 
versions of the former through the inclusion 
of varied linguistic features. Finally, the 
fourth method employs machine learning 
techniques, tackling more profound and 
language-dependent knowledge. 

1 Introduction 

Usually, automatic summarization involves produc-
ing a condensed version of a source text through 
selecting or generalizing its relevant content. As a 
result, either an extract or an abstract will be pro-
duced. An extract is produced by copying text seg-
ments and pasting them into the final text preserving 
the original order. An abstract instead is produced 
by selecting and restructuring information from the 
source text. The resulting structure is thus linguisti-
cally realized independently of the surface choices 
of the source text. This comprises, thus, a rewriting 
task. 

This article focuses solely on extracts of source 
texts written in Brazilian Portuguese. For extrac-
tive Automatic Summarization (AS), several meth-

ods have been suggested that are based upon 
statistics or data readily available in the source 
text. Word frequency (Luhn, 1958) and sentence 
position (Edmundson, 1969) methods are classic 
examples of that. Usually, extractive AS does not 
take into account linguistic and semantic knowl-
edge in order to be portable to distinct domains or 
languages (Mihalcea, 2005). Graph-based methods 
aim at the same and have been gaining a lot of in-
terest because they usually do not rely on any lin-
guistic resource and run pretty fast. Exemplars of 
those are LexRank (Erkan and Radev, 2004) and 
TextRank (Mihalcea and Tarau, 2004). In spite of 
their potentialities, we claim that there is a com-
promise in pursuing a language-free setting: how-
ever portable a system may be, it may also produce 
extracts that lack the degree of informativeness 
needed for use. Informativeness, in the current 
context, refers to the ability of an automatic sum-
marizer to produce summaries that convey most 
information of reference, or ideal, summaries. Our 
assessment thus aimed at verifying if parsimonious 
use of linguistic knowledge could improve extrac-
tive AS. 

We argue that the lack of linguistic knowledge 
in extractive AS can be the reason for weak per-
formance regarding informativeness. This argu-
ment follows from acknowledging that 
improvements on the scores usually obtained in 
that field have not been expressive lately. The most 
common metrics used to date, precision and recall, 
signal average results, suggesting that it is not 
enough to pursue completely language-free sys-
tems, no matter the current demands for portability 
in the global communication scenario. We focus 
here on TextRank, which can be used for summa-
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rizing Brazilian Portuguese texts due to its lan-
guage independence. To show that linguistic 
knowledge does make a difference in extractive 
AS, we compared four automatic summarizers: 
TextRank itself, two other modified versions of 
that, and SuPor-2 (Leite and Rino, 2006). 
TextRank works in a completely unsupervised 
way. Our two variations, although still 
unsupervised, include diverse linguistic knowledge 
in the preprocessing phase. SuPor-2 is the only 
machine learning-based system amongst the four 
ones, and it was built to summarize texts in 
Brazilian Portuguese, although it may be 
customized to other languages. Unlike the others, it 
embeds more sophisticated decision features that 
rely on varied linguistic resources. Some of them 
correspond to full summarization methods by 
themselves: Lexical Chaining (Barzilay and 
Elhadad, 1997), Relationship Mapping (Salton et 
al., 1997), and Importance of Topics (Larocca Neto 
et al., 2000). This is its unique and distinguishing 
characteristic. 
 

 
In what follows we first review the different lev-

els of processing in extractive AS (Section 2), then 
we describe TextRank and its implementation to 
summarize Brazilian Portuguese texts (Section 3). 
Our suggested modifications of TextRank are pre-
sented in Section 4, whilst SuPor-2 is described in 
Section 5. Finally, we compare the results of the 
four automatic summarizers when running on Bra-
zilian Portuguese texts (Section 6), and make some 
remarks on linguistic independence for extractive 
AS in Section 7. 

2 A Review of Automatic Summarization 

Mani (2001) classifies AS methods based upon 
three levels of linguistic processing to summarize a 
text, namely: 
 

• Shallow level. At this level only features at the 
surface of the text are explored. For example, 
location (Edmunson, 1969), sentence length 
and presence of signaling phrases (e.g., Kupiec 
et al., 1995). Combined, such features may 
yield a salience function that drives selection 
of sentences of the source text to include in a 
summary. 

 

• Entity level. The aim here is to build an inter-
nal representation of the source text that con-
veys its entities and corresponding 

relationships. These amount to the information 
that allows identifying important text seg-
ments. Examples of such relations are word 
cooccurrence (e.g., Salton et al., 1997), syno-
nyms and antonyms (e.g., Barzilay and Elha-
dad, 1997), logical relations, such as 
concordance or contradiction, and syntactic 
relations. 

 

• Discourse level. At this level the whole struc-
ture of the source text is modeled, provided 
that its communicative goals can be grasped 
from the source text. The discourse structure is 
intended to help retrieving, e.g., the main top-
ics of the document (e.g, Barzilay and Elha-
dad, 1997; Larocca Neto et al., 2000) or its 
rhetorical structure (e.g., Marcu, 1999), in or-
der to provide the means for AS. 

 

In this work we mainly focus on the entity level. 
Special entities and their relations thus provide the 
means to identify important sentences for building 
an extract. In turn, there is a loss of independence 
from linguistic knowledge, when compared to shal-
lower approaches. Actually, apart from TextRank, 
the other systems described in this paper target en-
tity level methods, as we shall see shortly.  

3 The TextRank Method 

The unsupervised TextRank method (Mihalcea and 
Tarau, 2004) takes after Google’s PageRank (Brin 
and Page, 1998), a graph-based system that helps 
judge the relevance of a webpage through incoming 
and outgoing links. PageRank directed graphs repre-
sent webpages as nodes and their linking to other 
webpages as edges. A random walk model is thus 
applied to build a path between the nodes, in order 
to grade the importance of a webpage in the graph. 

Similarly to grading webpages through travers-
ing a graph, TextRank attempts to weight sentences 
of a text by building an undirected graph. Nodes are 
now sentences, and edges express their similarity 
degrees to other sentences in the text. Actually, the 
degree of similarity is based upon content overlap. 
As such, similarity degrees help assess the overall 
cohesive structure of a text. The more content over-
lap a sentence has with other sentences, the more 
important it is and more likely it is to be included in 
the extract.. Similarity is calculated through equa-
tion [1] (Mihalcea and Tarau, 2004), where Si and Sj 
are sentences and wk is a common token between 
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them. The numerator is the sum of common words 
between Si and Sj. To reduce bias, normalization of 
the involved sentences length takes place, as shows 
the denominator. 
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Once the graph and all similarity degrees are 
produced, sentence importance is calculated by the 
random walk algorithm shown in equation [2]. 
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Initial TR similarity values are randomly set in 
the [0,1] interval. After successive calculations, 
those values converge to the targeted importance 
value. After calculating the importance of the verti-
ces, the sentences are sorted in reverse order and the 
top ones are selected to compose the extract. As 
usual, the number of sentences of the extract is de-
pendent upon a given compression rate. 

  Clearly, TextRank is not language dependent. 
For this reason Mihalcea (2005) could use it to 
evaluate AS on texts in Brazilian Portuguese, be-
sides reporting results on texts in English. She also 
explored distinct means of representing a text with-
out considering linguistic knowledge, emphasizing 
TextRank language and domain independence. She 
varies, e.g., the ways the graphs could be traversed 
using both directed and undirected graphs. Once a 
sentence is chosen to compose an extract, having 
undirected graphs makes possible, to look forward – 
from the sentence to its outgoing edges (i.e., focus-
ing on the set of its following sentences in the text) 
– or to look backward, considering that sentence 
incoming edges and, thus, the set of its preceding 
sentences in the text. 

Another variation proposed by Mihalcea is to 
replace the PageRank algorithm (Equation [2]) by 
HITS (Kleinberg, 1999). This works quite simi-

larly to PageRank. However, instead of aggregat-
ing the scores for both incoming and outgoing 
links of a node in just one final score, it produces 
two independent scores. These are correspondingly 
named “authority” and “hub” scores. 

4 Improving TextRank through varia-
tions on linguistic information 

To improve the similarity scores between sen-
tences in TextRank we fed it with more linguistic 
knowledge, yielding its two modified versions. The 
first variation focused just upon basic preprocess-
ing; the second one, on the use of a thesaurus to 
calculate semantic similarity to promote AS deci-
sions. However, we did not modify the main ex-
tractive algorithm of TextRank: we kept the graph 
undirected and used PageRank as the score deter-
miner. Actually, we modified only the method of 
computing the edges weights. 

4.1 Using Basic Preprocessing Methods 

In applying Equation 1 for similarity scores, only 
exact matches between two words are allowed. 
Since in Brazilian Portuguese there are many mor-
phological and inflexional endings for most words, 
this process becomes troublesome: important 
matches may be ignored. To overcome that, we used 
a stemmer for Brazilian Portuguese (Caldas Jr. et 
al., 2001) based upon Porter’s algorithm (1980). We 
also removed stopwords from the source text, be-
cause they are not useful in determining similarity. 
The resulting version of TextRank is named hereaf-
ter ‘TextRank+Stem+StopwordsRem’. 

4.2 Using a Thesaurus 

Our second TextRank variation involved plugging 
into the system a Brazilian Portuguese thesaurus 
(Dias-da-Silva et al., 2003). Our hypothesis here is 
that semantic similarity of the involved words is 
also important to improve the informativeness of 
the extracts under production. Thus, an extractive 
summarizer should consider not only word repeti-
tion in the source text, but also synonymy and an-
tonymy.  

Although plugging the thesaurus into the 
automatic summarizer did not imply changing its 
main method of calculating similarity, there were 
some obstacles to overcome concerning the follow-
ing:  
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Figure 1. SuPor-2 training phase 

 

 
 

Figure 2. SuPor-2 extraction phase 
 

a) Should we consider only synonyms or both 
synonyms and antonyms in addition to term 
repetition (reiteration)? 

 

b) How to acknowledge, and disentangle, se-
mantic similarity, when polissemy, for ex-
ample, is present? 

 

c) Once the proper relations have been 
determined, how should they be weighted? 
Just considering all thesaural relations to be 
equally important might not be the best ap-
proach. 

Concerning (a), synonyms, antonyms, and term 
repetition were all considered, as suggested by oth-
ers (e.g., Barzilay and Elhadad, 1997). We did not 
tackle (b) to choose the right sense of a word be-
cause of the lack of an effective disambiguation 
procedure for Brazilian Portuguese. Finally, in 
tackling (c) and, thus, grading the importance of 
the relations for sentence similarity, we adopted 
the same weights proposed by Barzilay and Elha-
dad (1997) in their lexical chaining method, which 
is discussed in more detail below. For both reitera-
tion and synonymy, they assume a score of 10 for 

the considered lexical chain; for antonymy, they 
suggest a score of 7. The resulting version of Tex-
tRank is named here ‘TextRank+Thesaurus’. 

5 The SuPor-2 System 

SuPor-2 is an extractive summarizer built from 
scratch for Brazilian Portuguese. It embeds differ-
ent features in order to identify and extract relevant 
sentences of a source text. To configure SuPor-2 
for an adequate combination of such features we 
employ a machine learning approach. Figures 1 
and 2 depict the training and extraction phases, 
respectively. 

For training, machine learning is carried out by a 
Naïve-Bayes classifier that employs Kernel meth-
ods for numeric feature handling, known as Flexi-
ble Bayes (John and Langley, 1995). This 
environment is provided by WEKA1 (Witten and 
Frank, 2005), which is used within SuPor-2 itself. 
The training corpus comprises both source texts 
and corresponding reference extracts. Every sen-
tence from a source text is represented in the train-
                                                        
1 Waikato Environment for Knowledge Analysis. Available at 
http://www.cs.waikato.ac.nz/ml/weka/ (December, 2006) 
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ing dataset as a tuple of the considered features. 
Each tuple is labeled with its class, which signals if 
the sentence appears in a reference extract. The 
class label will be true if the sentence under focus 
matches a sentence of the reference extract and 
false otherwise. 

Once produced, the training dataset is used by 
the Bayesian classifier to depict the sentences that 
are candidates to compose the extract (Figure 2). In 
other words, the probability for the “true” class is 
computed and the top-ranked sentences are se-
lected, until reaching the intended compression 
rate. 

When computing features, three full methods 
(M) and four corpus-based parameters (P) are con-
sidered. Both methods and parameters are mapped 
onto the feature space and are defined as follows: 

 
(M) Lexical Chaining (Barzilay and Elhadad, 

1997). This method computes the connectedness 
between words aiming at determining lexical 
chains in the source text. The stronger a lexical 
chain, the more important it is considered for ex-
traction. Both an ontological resource and Word-
Net (Miller et al., 1990) are used to identify 
different relations, such as synonymy or antonym, 
hypernymy or hyponymy, that intervene to com-
pute connectedness. The lexical chains are then 
used to produce three sets of sentences. To identify 
and extract sentences from those sets, three heuris-
tics are  made available, namely: (H1) selecting 
every sentence s of the source text based on each 
member m of every strong lexical chain of the text. 
In this case, s is the sentence that contains the first 
occurrence of m; (H2) this heuristics is similar to 
the former one, but instead of considering all the 
members of a strong lexical chain, it uses only the 
representative ones. A representative member is 
one whose frequency is greater than the average 
frequency of all words in the chain; (H3) a sen-
tence s is chosen by focusing only on representa-
tive lexical chains of every topic of the source text. 
In SuPor-2, the mapping of this method onto a 
nominal feature is accomplished by signaling 
which heuristics have recommended the sentence. 
Thus, features in the domain may range over the 
values {‘None’, ‘H1’, ‘H2’, ‘H3’, ‘H1H2’, 
‘H1H3’, ‘H2H3’, ‘H1H2H3’}. 

 
(M) Relationship Mapping (Salton et al., 

1997). This method performs similarly to the pre-

vious one and also to TextRank in that it builds up 
a graph interconnecting text segments. However, it 
considers paragraphs instead of sentences as verti-
ces. Hence, graph edges signal the connectiveness 
of the paragraphs of the source text. Similarity 
scores between two paragraphs are thus related to 
the degree of connectivity of the nodes. Similarly 
to Lexical Chaining, Salton et al. also suggest three 
different ways of producing extracts. However, 
they now depend on the way the graph is traversed. 
The so-called dense or bushy path (P1), deep path 
(P2), and segmented path (P3) aim at tackling dis-
tinct textual problems that may damage the quality 
of the resulting extracts. The dense path considers 
that paragraphs are totally independent from each 
other, focusing on the top-ranked ones (i.e., the 
ones that are denser). As a result, it does not guar-
antee that an extract will be cohesive. The deep 
path is intended to overcome the former problem 
by choosing paragraphs that may be semantically 
inter-related. Its drawback is that only one topic, 
even one that is irrelevant, may be conveyed in the 
extract. Thus, it may lack proper coverage of the 
source text. Finally, the segmented path aims at 
overcoming the limitations of the former ones, ad-
dressing all the topics at once. Similarly to Lexical 
Chaining, features in the Relationship method 
range over the set {‘None’,‘P1’,‘P2’,‘P3’, ‘P1P2’, 
‘P1P3’, ‘P2P3’, ‘P1P2P3’}. 

 
(M) Importance of Topics (Larocca Neto et 

al., 2000). This method also aims at identifying the 
main topics of the source text, however through the 
TextTiling algorithm (Hearst, 1993). Once the top-
ics of the source text have been determined, the 
first step is to select sentences that better express 
the importance of each topic. The amount of sen-
tences, in this case, is proportional to the topic im-
portance. The second step is to determine the 
sentences that will actually be included in the ex-
tract. This is carried out by measuring their simi-
larity to their respective topic centroids (Larocca 
Neto et al., 2000). The method thus signals how 
relevant a sentence is to a given topic. In SuPor-2 
this method yields a numeric feature whose value 
conveys the harmonic mean between the sentence 
similarity to the centroid of the topic in which it 
appears and the importance of that topic.  

(P) Sentence Length (Kupiec et al., 1995). 
This parameter just signals the normalized count of 
words of a sentence. 
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(P) Sentence Location (Edmundson, 1969). 
This parameter takes into account the position of a 
sentence in the text. It is valued, thus, in 
{‘II’,‘IM’,‘IF’,‘MI’,‘MM’,‘MF’,‘FI’,‘FM’,‘FF’}. 
In this set the first letter of each label signals the 
position of the sentence within a paragraph (Initial, 
Medium, or Final). Similarly, the second letter sig-
nals the position of the paragraph within the text. 

(P) Occurrence of proper nouns (e.g., Kupiec 
et al., 1995). This parameter accounts for the num-
ber of proper nouns in a sentence.  

(P) Word Frequency (Luhn, 1958). This pa-
rameter mirrors the normalized sum of the word 
frequency in a sentence. 

SuPor-2 provides a flexible way of combining 
linguistic and non-linguistic features for extraction. 
There are profound differences from TextRank. 
First, it is clearly language-dependent. Also, its 
graph-based methods do not assign weights to their 
vertices in order to select sentences for extraction. 
Instead, they traverse a graph in very specific  and 
varied ways that mirror both linguistic interde-
pendencies and important connections between the 
nodes. 

6 Assessing the Four Systems 

To assess the degree of informativeness of the sys-
tems previously described, we adopt ROUGE2 (Lin 
and Hovy, 2003), whose recall rate mirrors the in-
formativeness degree of automatically generated 
extracts by correlating automatic summaries with 
ideal ones. 

The two modified versions of TextRank require 
linguistic knowledge but at a low cost. This is cer-
tainly due to varying only preprocessing, while the 
main decision procedure is kept unchanged and 
language-independent. Those three systems do not 
need training, one of the main arguments in favor 
of TextRank (Mihalcea and Tarau, 2004). In con-
trast, SuPor-2 relies on training and this is certainly 
one of its main bottlenecks. It also employs lin-
guistic knowledge for both preprocessing and ex-
traction, which TextRank purposefully avoids. 
However, using WEKA has made its adjustments 
less demanding and more consistent, indicating 
that scaling up the system is feasible.  

                                                        
2 Recall-Oriented Understudy for Gisting Evaluation. Avail-
able at http://haydn.isi.edu/ROUGE/ (January, 2007). 

In our assessment, the same single-document 
summarization scenario posed by Mihalcea (2005) 
was adopted, namely: (a) we considered the Brazil-
ian Portuguese TeMário corpus (Pardo and Rino, 
2003); (b) we used the same baseline, which se-
lects top-first sentences to include in the extract; 
(c) we adopted a 70-75% compression rate, making 
it compatible with the compression rate of the ref-
erence summaries; and (d) ROUGE was used for 
evaluation in its Ngram(1,1) 95% confidence rate 
setting, without stopwords removal. TeMário com-
prises 100 newspaper articles from online Brazilian 
newswire. A set of corresponding manual summa-
ries produced by an expert in Brazilian Portuguese 
is also included in TeMário. These are our refer-
ence summaries. 

For training and testing SuPor-2, we avoided 
building an additional training corpus by using a 
10-fold cross-validation procedure. Finally, we 
produced three sets of extracts using ‘TextRank +  

Stem + StopwordsRem’, ‘TextRank + Thesaurus’, 
and SuPor-2 on the TeMário source texts. Results 
for informativeness are shown in Table 1. Since 
Mihalcea’s setting was kept unchanged, we just 
included in that table the same results presented in 
(Mihalcea, 2005), i.e., we did not run her systems 
all over again. We also reproduced for comparison 
the TextRank variations reported by Mihalcea, es-
pecially regarding graph-based walks by PageRank 
and HITS. Shaded lines correspond to our sug-
gested methods presented in Sections 4 and 5, 
which involve differing degrees of dependence on 
linguistic knowledge. 

It can be seen that ‘TextRank+Thesaurus’ and 
‘TextRank+Stem+StopwordsRem’ considerably 
outperformed all other versions of TextRank. 
Compared with Mihalcea's best version, i.e., with 
'TextRank (PageRank - backward)', those two 
methods represented a 6% and 9% improvement, 
respectively. We can conclude that neither the way 
the graph is built nor the choice of the graph-based 
ranking algorithm affects the results as signifi-
cantly as do the linguistic-based methods. Clearly, 
both variations proposed in this paper signal that 
linguistic knowledge, even if only used at the pre-
processing stage, provides more informative ex-
tracts than those produced when no linguistic 
knowledge at all is considered. Moreover, at that 
stage little modeling and computational effort is 
demanded, since lexicons, stoplists, and thesauri 
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are quite widely available nowadays for several 
Romance languages. 

Even the baseline outperformed most versions 
of TextRank, showing that linguistic independence 
in a random walk model for extractive AS should 
be reconsidered. Actually, this shows that linguis-
tic knowledge does make a difference, at least for 
summarizing newswire texts in Brazilian Portu-
guese. 

In addition, SuPor-2 performance exceeds the 
best version of TextRank that uses no linguistic 
knowledge – ‘TextRank (PageRank - backward)’ – 
by about 14%. 
 
 

System ROUGE 
NGram(1,1) 

SuPor-2 0,5839 
TextRank+Thesaurus 0,5603 
TextRank+Stem+StopwordsRem 0,5426 
TextRank (PageRank - backward) 0,5121 
TextRank (HIT hub - forward) 0,5002 
TextRank (HITS authority - backward) 0,5002 
Baseline 0,4963 
TextRank (PageRank - undirected) 0,4939 
TextRank (HITS authority - forward) 0,4834 
TextRank (HIT hub - backward) 0,4834 
TextRank (HITS authority - undirected) 0,4814 
TextRank (HIT hub - undirected) 0,4814 
TextRank (PageRank - forward) 0,4574 

 

Table 1. Informativeness comparison between ex-
tractive summarizers 

7 Final Remarks 

A critical issue in the comparison presented above 
is the contrast between having an unsupervised or 
supervised summarizer, which is related to the is-
sue on having linguistic-independent extractive 
summarizers. Perhaps the question that we should 
pose here is how interesting and useful an extrac-
tive automatic summarizer that is totally independ-
ent from linguistic knowledge can actually be. To 
our view, the more non-informative an extract, the 
less useful it may be. So, summarizers that do not 
reach a minimum threshold concerning informa-
tiveness are deemed to failure nowadays. Clearly, 
SuPor-2 requires language-dependent resources, 
but its main extraction procedure is still general 
enough to make it portable and adaptable to new 
domains and languages. Hence, SuPor-2 assess-

ment suggests that it may be interesting to scale up 
SuPor-2. 

Considering that SuPor-2 is one of the best ex-
tractive summarizers for Brazilian Portuguese texts 
(Leite and Rino, 2006) and ‘TextRank+Thesaurus’ 
performed only 4% below it, we can also argue  in 
favor of providing even simple linguistic proce-
dures for extractive AS. The latter system shows 
that TextRank can yield extracts nearly as informa-
tive as those produced by the former, when em-
bedding stemming and stopwords removal. It can 
also perform AS with little computational effort 
and no training, when compared to the supervised 
SuPor-2. As a conclusion, we see that some lin-
guistic knowledge may boost TextRank perform-
ance without too much effort, since language-
dependent resources for preprocessing texts in 
natural language are usually available and easy to 
handle, concerning our addressed approach. 

There are many experiments that may be derived 
from our discussion in this paper (1) Although the 
reported results suggest that linguistic knowledge 
does make a difference when embedded in lan-
guage-free extractive summarizers, the perform-
ance of the top systems assessed through ROUGE 
should be more comprehensively licensed through 
additional assessment tasks. (2) These could also 
incorporate other graph-based algorithms than 
TextRank, such as the LexRank one, aiming at re-
assuring our claim and scaling up graph-based ap-
proaches. (3) Since we addressed language-
independence (thus portability) versus language-
dependence for informativeness, it would also be 
interesting to explore other domains or languages 
to support our claim or, at least, to look for other 
findings to confirm if linguistic knowledge indeed 
makes a difference. (4) Other TextRank variations 
could also be explored, to see if adding more fea-
tures would make TextRank closer to SuPor-2. 
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Abstract 

Current graph-based approaches to auto-
matic text summarization, such as Le-
xRank and TextRank, assume a static 
graph which does not model how the in-
put texts emerge. A suitable evolutionary 
text graph model may impart a better un-
derstanding of the texts and improve the 
summarization process. We propose a 
timestamped graph (TSG) model that is 
motivated by human writing and reading 
processes, and show how text units in this 
model emerge over time. In our model, 
the graphs used by LexRank and Tex-
tRank are specific instances of our time-
stamped graph with particular parameter 
settings. We apply timestamped graphs on 
the standard DUC multi-document text 
summarization task and achieve compara-
ble results to the state of the art.  

1 Introduction 

Graph-based ranking algorithms such as 
Kleinberg’s HITS (Kleinberg, 1999) or Google’s 
PageRank (Brin and Page, 1998) have been suc-
cessfully applied in citation network analysis and 
ranking of webpages. These algorithms essentially 
decide the weights of graph nodes based on global 
topological information. Recently, a number of 
graph-based approaches have been suggested for 
NLP applications. Erkan and Radev (2004) intro-
duced LexRank for multi-document text summari-
zation. Mihalcea and Tarau (2004) introduced 
TextRank for keyword and sentence extractions. 
Both LexRank and TextRank assume a fully con-
nected, undirected graph, with text units as nodes 

and similarity as edges.  After graph construction, 
both algorithms use a random walk on the graph to 
redistribute the node weights.  

Many graph-based algorithms feature an evolu-
tionary model, in which the graph changes over 
timesteps.  An example is a citation network whose 
edges point backward in time: papers (usually) 
only reference older published works. References 
in old papers are static and are not updated. Simple 
models of Web growth are exemples of this: they 
model the chronological evolution of the Web in 
which a new webpage must be linked by an incom-
ing edge in order to be publicly accessible and may 
embed links to existing webpages. These models 
differ in that they allow links in previously gener-
ated webpages to be updated or rewired. However, 
existing graph models for summarization – 
LexRank and TextRank – assume a static graph, 
and do not model how the input texts evolve. The 
central hypothesis of this paper is that modeling 
the evolution of input texts may improve the sub-
sequent summarization process. Such a model may 
be based on human writing/reading process and 
should show how just composed/consumed units of 
text relate to previous ones. By applying this 
model over a series of timesteps, we obtain a rep-
resentation of how information flows in the con-
struction of the document set and leverage this to 
construct automatic summaries. 

We first introduce and formalize our timestam-
ped graph model in next section.  In particular, our 
formalization subsumes previous works: we show 
in Section 3 that the graphs used by LexRank and 
TextRank are specific instances of our timestam-
ped graph.  In Section 4, we discuss how the result-
ing graphs are applied to automatic multi-
document text summarization: by counting node 
in-degree or applying a random walk algorithm to 
smooth the information flow. We apply these mod-
els to create an extractive summarization program 
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and apply it to the standard Document Understand-
ing Conference (DUC) datasets. We discuss the 
resulting performance in Section 5. 

2 Timestamped Graph 

We believe that a proper evolutionary graph model 
of text should capture the writing and reading 
processes of humans. Although such human proc-
esses vary widely, when we limit ourselves to ex-
pository text, we find that both skilled writers and 
readers often follow conventional rhetorical styles 
(Endres-Niggemeyer, 1998; Liddy, 1991). In this 
work, we explore how a simple model of evolution 
affects graph construction and subsequent summa-
rization. In this paper, our work is only exploratory 
and not meant to realistically model human proc-
esses and we believe that deep understanding and 
inference of rhetorical styles (Mann and Thompson, 
1988) will improve the fidelity of our model.  Nev-
ertheless, a simple model is a good starting point.   

We make two simple assumptions: 
 
1: Writers write articles from the first sentence 

to the last; 
2: Readers read articles from the first sentence 

to the last. 
 
The assumptions suggest that we add sentences 

into the graph in chronological order: we add the 
first sentence, followed by the second sentence, 
and so forth, until the last sentence is added.  

These assumptions are suitable in modeling the 
growth of individual documents. However when 
dealing with multi-document input (common in 
DUC), our assumptions do not lead to a straight-
forward model as to which sentences should ap-
pear in the graph before others.  One simple way is 
to treat multi-document problems simply as multi-
ple instances of the single document problem, 
which evolve in parallel.  Thus, in multi-document 
graphs, we add a sentence from each document in 
the input set into the graph at each timestep. Our 
model introduces a skew variable to model this and 
other possible variations, which is detailed later. 

The pseudocode in Figure 1 summarizes how 
we build a timestamped graph for multi-document 
input set.  Informally, we build the graph itera-
tively, introducing new sentence(s) as node(s) in  

 
 

 
the graph at each timestep. Next, all sentences in 
the graph pick other previously unconnected ones 
to draw a directed edge to.  This process continues 
until all sentences are placed into the graph.  

Figure 2 shows this graph building process in 
mid-growth, where documents are arranged in col-
umns, with dx represents the xth document and sy 
represents the yth sentence of each document. The 
bottom shows the nth sentences of all m documents 
being added simultaneously to the graph. Each new 
node can either connect to a node in the existing 
graph or one of the other m-1 new nodes. Each 
existing node can connect to another existing node 
or to one of the m newly-introduced nodes. Note 
that this model differs from the citation networks 
in such that new outgoing edges are introduced to 
old nodes, and differs from previous models for 
Web growth as it does not require new nodes to 
have incoming edges. 

 

              
Figure 2: Snapshot of a timestamped graph. 

 
Figure 3 shows an example of the graph building 
process over three timesteps, starting from an 
empty graph. Assume that we have three docu-
ments and each document has three sentences. Let 
dxsy indicate the yth sentence in the xth document. 
At timestep 1, sentences d1s1, d2s1 and d3s1 are 

s1

s2 
s3 
. 
. 
. 
. 
. 
sn 

d1  d2  d3  …………  dm 

existing 
graph 

Figure 1: Pseudocode for a specific instance of a  
timestamped graph algorithm 

Input:  M, a cluster of m documents relating to a  
common event;  

Let: i = index to sentences, initially 1;  
G = the timestamped graph, initially empty. 

Step 1:  Add the ith sentence of all documents into G. 
Step 2:  Let each existing sentence in G choose and 

connect to one other existing sentence in G. 
The chosen sentence must be sentence which 
has not been previously chosen by this sentence 
in previous iterations. 

Step 3:  if there are no new sentences to add, break; 
else i++, goto Step 1. 

Output:  G, a timestamped graph. 

m new  
sentences 
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added to the graph. Three edges are introduced to 
the graph, in which the edges are chosen by some 
strategy; perhaps by choosing the candidate sen-
tence by its maximum cosine similarity with the 
sentence under consideration.  Let us say that this 
process connects d1s1→d3s1, d2s1→d3s1 and 
d3s1→d2s1. At timestep 2, sentences d1s2, d2s2 and 
d3s2 are added to the graph and six new edges are 
introduced to the graph. At timestep 3, sentences 
d1s3, d2s3 and d3s3 are added to the graph, and nine 
new edges are introduced. 

 

 
(a) Timestep 1           (b) Timestep 2            (c) Timestep 3 

 
Figure 3: An example of the growth of a  

timestamped graph. 
 

The above illustration is just one instance of a 
timestamped graph with specific parameter settings.  
We generalize and formalize the timestamped 
graph algorithm as follows: 

 
Definition: A timestamped graph algorithm 

tsg(M) is a 9-tuple (d, e, u, f, σ, t, i, s, τ) that speci-
fies a resulting algorithm that takes as input the set 
of texts M and outputs a graph G, where: 

 
d  specifies the direction of the edges, d∈{f, b, u}; 
e  is the number of edges to add for each vertex  

in G at each timestep, e∈ℤ +; 
u  is 0 or 1, where 0 and 1 specifies unweighted and 

weighted edges, respectively; 
f  is the inter-document factor, 0 ≤ f ≤ 1;  
σ is a vertex selection function σ(u, G) that takes 

in a vertex u and G, and chooses a vertex v∈G; 
t  is the type of text units, t∈{word, phrase,  

sentence, paragraph, document}; 
i  is the node increment factor, i∈ℤ +;  
s  is the skew degree, s ≥ -1 and s∈ℤ , where -1 

represent free skew and 0 no skew; 
τ  is a document segmentation function τ(•). 

 
In the TSG model, the first set of parameters d, 

e, u, f deal with the properties of edges; σ, t, i, s 
deal with properties of nodes; finally, τ is a func-

tion that modifies input texts. We now discuss the 
first eight parameters; the relevance of τ will be 
expanded upon later in the paper. 

2.1 Edge Settings 

We can specify the direction of information flow 
by setting different d values. When a node v1 
chooses another node v2 to connect to, we set d to f 
to represent a forward (outgoing) edge. We say 
that v1 propagates some of its information into v2. 
When letting a node v1 choose another node v2 to 
connect to v1 itself, we set d to b to represent a 
backward (incoming) edge, and we say that v1 re-
ceives some information from v2. Similarly, d = u 
specifies undirected edges in which information 
propagates in both directions. The larger amount of 
information a node receives from other nodes, the 
higher the importance of this node. 

Our toy example in Figure 3 has small dimen-
sions: three sentences for each of three documents. 
Experimental document clusters often have much 
larger dimensions. In DUC, clusters routinely con-
tain over 25 documents, and the average length for 
documents can be as large as 50 sentences. In such 
cases, if we introduce one edge for each node at 
each timestep, the resulting graph is loosely con-
nected. We let e be the number of outgoing edges 
for each sentence in the graph at each timestep. To 
introduce more edges into the graph, we increase e. 

We can also incorporate unweighted or 
weighted edges into the graph by specifying the 
value of u. Unweighted edges are good when rank-
ing algorithms based on in-degree of nodes are 
used. However, unlike links between webpages, 
edges between text units often have weights to in-
dicate connection strength. In these cases, un-
weighted edges lose information and a weighted 
representation may be better, such as in cases 
where PageRank-like algorithms are used for rank-
ing.  

Edges can represent information flow from one 
node to another. We may prefer intra-document 
edges over inter-document edges, to model the in-
tuition that information flows within the same 
document more likely than across documents. Thus 
we introduce an inter-document factor f, where 0 ≤ 
f ≤ 1. When this feature is smaller than 1, we re-
place the weight w for inter-document edges by fw.  
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2.2 Node Settings 

In Figure 1 Step 2, every existing node has a 
chance to choose another existing node to connect 
to. Which node to choose is decided by the selec-
tion strategy σ. One strategy is to choose the node 
with the highest similarity. There are many similar-
ity functions to use, including token-based Jaccard 
similarity, cosine similarity, or more complex 
models such as concept links (Ye et al., 2005).  

t controls the type of text unit that represents  
nodes. Depending on the application, text units can 
be words, phrases, sentences, paragraphs or even 
documents. In the task of automatic text summari-
zation, systems are conveniently assessed by let-
ting text units be sentences.  

i controls the number of sentences entering the 
graph at every iteration. Certain models, such as 
LexRank, introduce all of the input sentences in 
one time step (i.e., i = Lmax, where Lmax is the 
maximum length of the input documents), com-
pleting the construction of G in one step.  However, 
to model time evolution, i needs to be set to a value 
smaller than this. 

Most relevant to our study is the skew parame-
ter s. Up to now, the TSG models discussed all 
assume that authors start writing all documents in 
the input set at the same time. It is reflected by 
adding the first sentences of all documents simul-
taneously. However in reality, some documents are 
authored later than others, giving updates or report-
ing changes to events reported earlier. In DUC 
document clusters, news articles are typically taken 
from two or three different newswire sources. They 
report on a common event and thus follow a story-
line. A news article usually gives summary about 
what have been reported in early articles, and gives 
updates or changes on the same event.  

To model this, we arrange the documents in ac-
cordance with the publishing time of the docu-
ments. The earliest document is assigned to 
column 1, the second earliest document to column 
2, and so forth, until the latest document is as-
signed to the last column. The graph construction 
process is the same as before, except that we delay 
adding the first sentences of later documents until a 
proper iteration, governed by s. With s = 1, we de-
lay the addition of the first sentence of column 2 
until the second timestep, and delay the addition of 
the first sentence of column 3 until the third 
timestep. The resulting timestamped graph is 

skewed by 1 timestep (Figure 4 (a)). We can in-
crease the skew degree s if the time intervals be-
tween publishing time of documents are large. 
Figure 4 (b) shows a timestamped graph skewed by 
2 timesteps. We can also skew a graph freely by 
setting s to -1. When we start to add the first sen-
tence dis1 of a document di, we check whether there 
are existing sentences in the graph that want to 
connect to dis1 (i.e., that σ (•,G) = dis1). If there is, 
we add dis1 to the graph; else we delay the addition 
and reassess again in next timestep. The result is a 
freely skewed graph (Figure 4 (c)). In Figure 4 (c), 
we start adding the first sentences of documents d2 
to d4 at timesteps 2, 5 and 7, respectively. At 
timestep 1, d1s1 is added into the graph. At 
timestep 2, an existing node (d1s1 in this case) 
wants to connect to d2s1, so d2s1 is added. d3s1 is 
added at timestep 5 as no existing node wants to 
connect to d3s1 until timestep 5. Similarly, d4s1 is 
added until some nodes choose to connect to it at 
timestep 7. Notice that we hide edges in Figure 4 
for clarity. 

 
   (a) Skewed by 1         (b) Skewed by 2      (c) Freely skewed 
 

Figure 4: Skewing the graphs. Edges are hidden for clarity. 
For each graph, the leftmost column is the earliest document. 
Documents are then chronologically ordered, with the right-

most one being the latest. 

3 Comparison and Properties of TSG  

The TSG representation generalizes many pos-
sible specific algorithm configurations.  As such, it 
is natural that previous works can be cast as spe-
cific instances of a TSG.  For example, we can suc-
cinctly represent the algorithm used in the running 
example in Section 2 as the tuple (f, 1, 0, 1, max-
cosine-based, sentence, 1, 0, null). LexRank and 
TextRank can also be cast as TSGs: (u, N, 1, 1, 
cosine-based, sentence, Lmax, 0, null) and (u, L, 1, 1, 
modified-co-occurrence-based, sentence, L, 0, 
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null). As LexRank is applied in multi-document 
summarizations, e is set to the total number of sen-
tences in the cluster, N, and i is set to the maxi-
mum document length in the cluster, Lmax. 
TextRank is applied in single-document summari-
zation, so both its e and i are set to the length of the 
input document, L. This compact notation empha-
sizes the salient differences between these two al-
gorithm variants: namely that, e, σ and i. 

Despite all of these possible variations, all 
timestamped graphs have two important features, 
regardless of their specific parameter settings. First, 
nodes that were added early have more chosen 
edges than nodes added later, as visible in Figure 3 
(c). If forward edges (d = f) represent information 
flow from one node to another, we can say that 
more information is flowing from these early 
nodes to the rest of the graph. The intuition for this 
is that, during the writing process of articles, early 
sentences have a greater influence to the develop-
ment of the articles’ ideas; similarly, during the 
reading process, sentences that appear early con-
tribute more to the understanding of the articles. 

The fact that early nodes stay in the graph for a 
longer time leads to the second feature: early nodes 
may attract more edges from other nodes, as they 
have larger chance to be chosen and connected by 
other nodes. This is also intuitive for forward 
edges (d = f): during the writing process, later sen-
tences refer back to early sentences more often 
than vice versa; and during the reading process, 
readers tend to re-read early sentences when they 
are not able to understand the current sentence.  

4 Random Walk 

Once a timestamped graph is built, we want to 
compute an importance score for each node.  These 
scores are then used to determine which nodes 
(sentences) are the most important to extract sum-
maries from.  The graph G shows how information 
flows from node to node, but we have yet to let the 
information actually flow. One method to do this is 
to use the in-degree of each node as the score.  
However, most graph algorithms now use an itera-
tive method that allows the weights of the nodes 
redistribute until stability is reached.  One method 
for this is by applying a random walk, used in Pag-
eRank (Brin and Page, 1998). In PageRank the 
Web is treated as a graph of webpages connected 
by links. It assumes users start from a random 

webpage, moving from page to page by following 
the links. Each user follows the links at random 
until he gets “bored” and jumps to a random web-
page. The probability of a user visiting a webpage 
is then proportional to its PageRank score.  PageR-
ank can be iteratively computed by: 
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where N is the total number of nodes in the graph, 
In(u) is the set of nodes that point to u, and Out(u) 
is the set of nodes that node u points to. α is a 
damping factor that can be set between 0 and 1, 
which has the role of integrating into the model the 
probability of jumping from a given node to an-
other random node in the graph. In the context of 
web surfing, a user either clicks on a link on the 
current page at random with probability 1 - α, or 
opens a completely new random page with prob-
ability α. 

Equation 1 does not take into consideration the 
weights of edges, as the original PageRank defini-
tion assumes hyperlinks are unweighted. Thus we 
can use Equation 1 to rank nodes for an un-
weighted timestamped graph. To integrate edge 
weights into the graph, we modify Eq. 1, yielding: 
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where Wvu represents the weight of the edge point-
ing from v to u.  

As we may have a query for each document 
cluster, we also wish to take queries into consid-
eration in ranking the nodes. Haveliwala (2003) 
introduces a topic-sensitive PageRank computation. 
Equations 1 and 2 assume a random walker jumps 
from the current node to a random node with prob-
ability α. The key to creating topic-sensitive Pag-
eRank is that we can bias the computation by 
restricting the user to jump only to a random node 
which has non-zero similarity with the query. Ot-
terbacher et al. (2005) gives an equation for topic-
sensitive and weighted PageRank as: 
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where S is the set of all nodes in the graph, and 
sim(u, Q) is the similarity score between node u 
and the query Q. 

5 Experiments and Results 

We have generalized and formalized evolutionary 
timestamped graph model. We want to apply it on 
automatic text summarization to confirm that these 
evolutionary models help in extracting important 
sentences. However, the parameter space is too 
large to test all possible TSG algorithms. We con-
duct experiments to focus on the following re-
search questions that relating to 3 TSG parameters 
- e, u and s, and the topic-sensitivity of PageRank.  
 

Q1: Do different e values affect the summariza-
tion process? 

Q2: How do topic-sensitivity and edge weight-
ing perform in running PageRank?  

Q3: How does skewing the graph affect infor-
mation flow in the graph? 

 
The datasets we use are DUC 2005 and 2006. 

These datasets both consist of 50 document clus-
ters. Each cluster consists of 25 news articles 
which are taken from two or three different news-
wire sources and are relating to a common event, 
and a query which contains a topic for the cluster 
and a sequence of statements or questions. The 
first three experiments are run on DUC 2006, and 
the last experiment is run on DUC 2005. 

In the first experiment, we analyze how e, the 
number of chosen edges for each node at each 
timestep, affects the performance, with other pa-
rameters fixed. Specifically the TSG algorithm we 
use is the tuple (f, e, 1, 1, max-cosine-based, sen-
tence, 1, 0, null), where e is being tested for differ-
ent values. The node selection function max-
cosine-based takes in a sentence  s and the current 
graph G, computes the TFIDF-based cosine simi-
larities between s and other sentences in G, and 
connects s to e sentence(s) that has(have) the high-
est cosine score(s) and is(are) not yet chosen by s 
in previous iterations. We run topic-sensitive Pag-
eRank with damping factor α set to 0.5 on the 
graphs. Figures 5 (a)-(b) shows the ROUGE-1 and 
ROUGE-2 scores with e set to 1, 2, 3, 4, 5, 6, 7, 10, 
15, 20 and N, where N is the total number of sen-
tences in the cluster. We succinctly represent 

LexRank graphs by the tuple (u, N, 1, 1, cosine-
based, sentence, Lmax, 0, null) in Section 3; it can 
also be represented by a slightly different tuple (f, 
N, 1, 1, max-cosine-based, sentence, 1, 0, null). It 
differs from the first representation in that we itera-
tively add 1 sentence for each document in each 
timestep and let all nodes in the current graph con-
nect to every other node in the graph. In this ex-
periment, when e is set to N, the timestamped 
graph is equivalent to a LexRank graph. We do not 
use any reranker in this experiment. 

 

 

 

N

N

Figure 5: (a) ROUGE-1 and (b) ROUGE-2 scores for 
timestamped graphs with different e settings. N is the total 

number of sentences in the cluster. 
 

The results allow us to make several observa-
tions. First, when e = 2, the system gives the best 
performance, with ROUGE-1 score 0.37728 and 
ROUGE-2 score 0.07692. Some values of e give 
better scores than LexRank graph configuration, in 
which e = N. Second, the system gives very bad 
performance when e = 1. This is because when e is 
set to 1, the graph is too loosely connected and is 
not suitable to apply random walk on it. Third, the 
system gives similar performance when e is set 
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greater than 10. The reason for this is that the 
higher values of e make the graph converge to a 
fully connected graph so that the performance 
starts to converge and display less variability.  

We run a second experiment to analyze how 
topic-sensitivity and edge weighting affect the sys-
tem performance. We use concept links (Ye et al., 
2005) as the similarity function and a MMR 
reranker to remove redundancy. Table 1 shows the 
results. We observe that both topic-sensitive Pag-
eRank and weighted edges perform better than ge-
neric PageRank on unweighted timestamped 
graphs. When topic-sensitivity and edge weighting 
are both set to true, the system gives the best per-
formance. 

 
Topic-
sensitive 

Weighted 
edges 

ROUGE-1 ROUGE-2 

No No 0.39358 0.07690 
Yes No 0.39443 0.07838 
No Yes 0.39823 0.08072 
Yes Yes 0.39845 0.08282 

Table 1: ROUGE-1 and ROUGE-2 scores for different com-
binations of topic-sensitivity and edge weighting(u) settings. 

 
To evaluate how skew degree s affects summa-

rization performance, we use the parameter setting 
from the first experiment, with e fixed to 1. Spe-
cifically, we use the tuple (f, 1, 1, 1, concept-link-
based, sentence, 1, s, null), with s set to 0, 1 and 2. 
Table 2 gives the evaluation results. We observe 
that s = 1 gives the best ROUGE-1 and ROUGE-2 
scores. Compared to the system without skewing (s 
= 0), s = 2 gives slightly better ROUGE-1 score 
but worse ROUGE-2 score. The reason for this is 
that s = 2 introduces a delay interval that is too 
large. We expect that a freely skewed graph (s =  
-1) will give more reasonable delay intervals.  

 
Skew degree ROUGE-1 ROUGE-2 

0 0.36982 0.07580 
1 0.37268 0.07682 
2 0.36998 0.07489 

Table 2: ROUGE-1 and ROUGE-2 scores for  
different skew degrees. 

 
We tune the system using different combina-

tions of parameters, and the TSG algorithm with 
tuple (f, 1, 1, 1, concept-link-based, sentence, 1, 0, 
null) gives the best scores. We run this TSG algo-
rithm with topic-sensitive PageRank and MMR 
reranker on DUC 2005 dataset. The results show 

that our system ranks third in both ROUGE-2 and 
ROUGE-SU4 scores. 

 
Rank System ROUGE-2 System ROUGE-SU4 
1 15 0.0725 15 0.1316 
2 17 0.0717 17 0.1297 
3 TSG 0.0712 TSG 0.1285 
4 10 0.0698 8 0.1279 
5 8 0.0696 4 0.1277 

Table 3: top ROUGE-2 and ROUGE-SU4 
scores in DUC 2005. TSG is our system. 

 

6 Discussion 

A closer inspection of the experimental clusters 
reveals one problem. Clusters that consist of 
documents that are of similar lengths tend to per-
form better than those that contain extremely long 
documents. The reason is that a very long docu-
ment introduces too many edges into the graph. 
Ideally we want to have documents with similar 
lengths in a cluster. One solution to this is that we 
split long documents into shorter documents with 
appropriate lengths. We introduce the last parame-
ter in the formal definition of timestamped graphs, 
τ, which is a document segmentation function τ(•). 
τ(M) takes in as input a set of documents M, ap-
plies segmentation on long documents to split them 
into shorter documents, and output a set of docu-
ments with similar lengths, M’. Slightly better re-
sults are achieved when a segmentation function is 
applied. One shortcoming of applying τ(•) is that 
when a document is split into two shorter ones, the 
early sentences of the second half now come be-
fore the later sentences of the first half, and this 
may introduce inconsistencies in our representation: 
early sentences of the second half contribute more 
into later sentences of the first half than the vice 
versa. 

7 Related Works 

Dorogovtsev and Mendes (2001) suggest schemes 
of the growth of citation networks and the Web, 
which are similar to the construction process of 
timestamped graphs.  

Erkan and Radev (2004) proposed LexRank to 
define sentence importance based on graph-based 
centrality ranking of sentences. They construct a 
similarity graph where the cosine similarity of each 
pair of sentences is computed. They introduce 
three different methods for computing centrality in 
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similarity graphs. Degree centrality is defined as 
the in-degree of vertices after removing edges 
which have cosine similarity below a pre-defined 
threshold. LexRank with threshold is the second 
method that applies random walk on an un-
weighted similarity graph after removing edges 
below a pre-defined threshold. Continuous Le-
xRank is the last method that applies random walk 
on a fully connected, weighted similarity graph. 
LexRank has been applied on multi-document text 
summarization task in DUC 2004, and topic-
sensitive LexRank has been applied on the same 
task in DUC 2006.  

Mihalcea and Tarau (2004) independently pro-
posed another similar graph-based random walk 
model, TextRank. TextRank is applied on keyword 
extraction and single-document summarization. 
Mihalcea, Tarau and Figa (2004) later applied Pag-
eRank to word sense disambiguation. 

8 Conclusion 

We have proposed a timestamped graph model 
which is motivated by human writing and reading 
processes. We believe that a suitable evolutionary 
text graph which changes over timesteps captures 
how information propagates in the text graph. Ex-
perimental results on the multi-document text 
summarization task of DUC 2006 showed that 
when e is set to 2 with other parameters fixed, or 
when s is set to 1 with other parameters fixed, the 
graph gives the best performance. It also showed 
that topic-sensitive PageRank and weighted edges 
improve summarization process. This work also 
unifies representations of graph-based summariza-
tion, including LexRank and TextRank, modeling 
these prior works as specific instances of time-
stamped graphs.  

We are currently looking further on skewed 
timestamped graphs. Particularly we want to look 
at how a freely skewed graph propagates informa-
tion. We are also analyzing in-degree distribution 
of timestamped graphs. 
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Abstract

We propose to use graph-based diffusion
techniques with data-dependent kernels
to build unigram language models. Our
approach entails building graphs, where
each vertex corresponds uniquely to a
word from a closed vocabulary, and the
existence of an edge (with an appropri-
ate weight) between two words indicates
some form of similarity between them. In
one of our constructions, we place an edge
between two words if the number of times
these words were seen in a training set
differs by at most one count. This graph
construction results in a similarity ma-
trix with small intrinsic dimension, since
words with the same counts have the same
neighbors. Experimental results from a
benchmark task from language modeling
show that our method is competitive with
the Good-Turing estimator.

1 Diffusion over Graphs

1.1 Notation

Let G = (V,E) be an undirected graph, whereV
is a finite set of vertices, andE ⊂ V × V is the
set of edges. Also, letV be a vocabulary of words,
whose probabilities we want to estimate. Each ver-
tex corresponds uniquely to a word, i.e., there is a
one-to-one mapping betweenV andV . Without loss
of generality, we will useV to denote both the set
of words and the set of vertices. Moreover, to sim-

plify notation, we assume that the lettersx, y, z will
always denote vertices ofG.

The existence of an edge betweenx, y will be
denoted byx ∼ y. We assume that the graph
is strongly connected (i.e., there is a path between
any two vertices). Furthermore, we define a non-
negative real valued functionw overV × V , which
plays the role of thesimilarity between two words
(the higher the value ofw(x, y), the more similar
wordsx, y are). In the experimental results section,
we will compare different measures of similarity be-
tween words which will result in different smooth-
ing algorithms. The degree of a vertex is defined as

d(x) =
∑

y∈V :x∼y
w(x, y). (1)

We assume that for any vertexx, d(x) > 0; that is,
every word is similar to at least some other word.

1.2 Smoothing by Normalized Diffusion

The setting described here was introduced in (Szlam
et al., 2006). First, we define a Markov chain{Xt},
which corresponds to a random walk over the graph
G. Its initial value is equal toX0, which has dis-
tribution π0. (Althoughπ0 can be chosen arbitrar-
ily, we assume in this paper that it is equal to the
empirical, unsmoothed, distribution of words over a
training set.) We then define the transition matrix as
follows:

T (x, y) = P (X1 = y|X0 = x) = d−1(x)w(x, y).
(2)

This transition matrix, together withπ0, induces a
distribution overV , which is equal to the distribu-
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tion π1 of X1:

π1(y) =
∑
x∈V

T (x, y)π0(x). (3)

This distribution can be construed as asmoothed
version ofπ0, since theπ1 probability of an un-
seen word will always be non-zero, if it has a non-
zero similarity to a seen word. In the same way, a
whole sequence of distributionsπ2, π3, . . . can be
computed; we only considerπ1 as our smoothed es-
timate in this paper. (One may wonder whether the
stationarydistribution of this Markov chain, i.e., the
limiting distribution ofXt, ast → ∞, has any sig-
nificance; we do not address this question here, as
this limiting distribution may have very little depen-
dence onπ0 in the Markov chain cases under con-
sideration.)

1.3 Smoothing by Kernel Diffusion

We assume here that for any vertexx, w(x, x) = 0
and thatw is symmetric. Following (Kondor and
Lafferty, 2002), we define the following matrix over
V × V

H(x, y) = w(x, y)δ(x ∼ y)− d(x)δ(x = y), (4)

where δ(u) is the delta function which takes the
value 1 if propertyu is true, and 0 otherwise. The
negative of the matrix H is called the Laplacian of
the graph and plays a central role in spectral graph
theory (Chung, 1997). We further define the heat
equation over the graphG as

∂

∂t
Kt = HKt, t > 0, (5)

with initial conditionK0 = I, whereKt is a time-
dependent square matrix of same dimension asH,
andI is the identity matrix.Kt(x, y) can be inter-
preted as the amount of heat that reaches vertexx
at timet, when starting with a unit amount of heat
concentrated aty. Using (1) and (4), the right hand
side of (5) expands to

HKt(x, y) =
∑
z:z∼x

w(x, z) (Kt(z, y)−Kt(x, y)) .

(6)
From this equation, we see that the amount of heat
at x will increase (resp. decrease) if the current
amount of heat atx (namelyKt(x, y)) is smaller

(resp. larger) than the weighted average amount of
heat at the neighbors ofx, thus causing the system
to reach a steady state.

The heat equation (5) has a unique solution which
is the matrix exponentialKt = exp(tH), (see (Kon-
dor and Lafferty, 2002)) and which can be defined
equivalently as

etH = lim
n→+∞

(
I +

tH

n

)n
(7)

or as

etH = I + tH +
t2

2!
H2 +

t3

3!
H3 + · · · (8)

Moreover, if the initial condition is replaced by
K0(x, y) = π0(x)δ(x = y) then the solution of
the heat equation is given by the matrix product
π1 = Ktπ0. In the following,π0 will be the em-
pirical distribution over the training set andt will be
chosen by trial and error. As before,π1 will provide
a smoothed version ofπ0.

2 Unigram Language Models

Let Tr be a training set ofn tokens, andT a sepa-
rate test set ofm tokens. We denote byn(x),m(x)
the number of times the wordx has been seen in
the training and test set, respectively. We assume a
closed vocabularyV containingK words. A uni-
gram model is a probability distributionπ over the
vocabularyV. We measure its performace using
the average code length (Cover and Thomas, 1991)
measured on the test set:

l(π) = − 1
|T |

∑
x∈V

m(x) log2 π(x). (9)

The empirical distribution over the training set is

π0(x) =
n(x)
n

. (10)

This estimate assigns a probability 0 to all unseen
words, which is undesirable, as it leads to zero prob-
ability of word sequences which can actually be ob-
served in practice. A simple way to smooth such
estimates is to add a small, not necessarily integer,
count to each word leading to the so-called add-β
estimateπβ, defined as

πβ(x) =
n(x) + β

n+ βK
. (11)
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One may observe that

πβ(x) = (1−λ)π0(x) +λ
1
K
, with λ =

βK

n+ βK
.

(12)
Hence add-β estimators perform a linear interpola-
tion betweenπ0 and the uniform distribution over
the entire vocabulary.

In practice, a much more efficient smoothing
method is the so-called Good-Turing (Orlitsky et al.,
2003; McAllester and Schapire, 2000). The Good-
Turing estimate is defined as

πGT (x) =
rn(x)+1(n(x) + 1)

nrn(x)
, if n(x) < M

= απ0(x), otherwise,

whererj is the number of distinct words seen j times
in the training set, andα is such thatπGT sums up
to 1 over the vocabulary. The thresholdM is em-
pirically chosen, and usually lies between 5 and 10.
(Choosing a much largerM decreases the perfor-
mance considerably.)

The Good-Turing estimator is used frequently in
practice, and we will compare our results against it.
The add-β will provide a baseline, as well as an idea
of the variation between different smoothers.

3 Graphs over sets of words

Our objective, in this section, is to show how to de-
sign various graphs on words; different choices for
the edges and for the weight functionw lead to dif-
ferent smoothings.

3.1 Full Graph and add-β Smoothers

The simplest possible choice is the complete graph,
where all vertices are pair-wise connected. In the
case of normalized diffusion, choosing

w(x, y) = αδ(x = y) + 1, (13)

with α 6= 0 leads to the add-β smoother with param-
eterβ = α−1n.

In the case of kernel smoothing with the complete
graph andw ≡ 1, one can show, see (Kondor and
Lafferty, 2002) that

Kt(x, y) = K−1
(
1 + (K − 1)e−Kt

)
if x = y

= K−1
(
1− e−Kt

)
if x 6= y.

This leads to another add-β smoother.

3.2 Graphs based on counts

A more interesting way of designing the word graph
is through a similarity function which is based on
the training set. For the normalized diffusion case,
we propose the following

w(x, y) = δ(|n(x)− n(y)| ≤ 1). (14)

That is, 2 words are “similar” if they have been seen
a number of times which differs by at most one. The
obtained estimator is denoted byπND. After some
algebraic manipulations, we obtain

πND(y) =
1
n

n(y)+1∑
j=n(y)−1

jrj
rj−1 + rj + rj+1

. (15)

This estimator has a Good-Turing “flavor”. For ex-
ample, the total mass associated with the unseen
words is ∑

y;n(y)=0

π1(y) =
1
n

r1

1 + r1
r0

+ r2
r0

. (16)

Note that the estimate of the unseen mass, in the case
of the Good-Turing estimator, is equal ton−1r1,
which is very close to the above when the vocabu-
lary is large compared to the size of the training set
(as is usually the case in practice).

Similarly, in the case of kernel diffusion, we
choosew ≡ 1 and

x ∼ y ⇐⇒ |n(x)− n(y)| ≤ 1 (17)

The timet is chosen to be|V |−1. The smoother can-
not be computed in closed form. We used the for-
mula (7) withn = 3 in the experiments. Larger
values ofn did not improve the results.

4 Experimental Results

In our experiments, we used Sections 00-22 (con-
sisting of∼ 106 words) of the UPenn Treebank cor-
pus for training, and Sections 23-24 (consisting of
∼ 105 words) for testing. We split the training set
into 10 subsets, leading to 10 datasets of size∼ 105

tokens each. The first of these sets was further split
in subsets of size∼ 104 tokens each. Averaged re-
sults are presented in the tables below for various
choices of the training set size. We show the mean
code-length, as well as the standard deviation (when
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mean code length std

πβ, β = 1 12.94 0.05
πGT 11.40 0.08
πND 11.42 0.08
πKD 11.51 0.08

Table 1: Results with training set of size∼ 104.

mean code length std

πβ, β = 1 11.10 0.03
πGT 10.68 0.06
πND 10.69 0.06
πKD 10.74 0.08

Table 2: Results with training set of size∼ 105.

available). In all cases, we choseK = 105 as the
fixed size of our vocabulary.

The results show thatπND, the estimate ob-
tained with the Normalized Diffusion, is competi-
tive with the Good-TuringπGT . We performed a
Kolmogorov-Smirnov test in order to determine if
the code-lengths obtained withπND andπGT in Ta-
ble 1 differ significantly. The result is negative (P-
value = .65), and the same holds for the larger train-
ing set in Table 2 (P-value=.95). On the other hand,
πKD (obtained with Kernel Diffusion) is not as effi-
cient, but still better than add-β with β = 1.

5 Concluding Remarks

We showed that diffusions on graphs can be useful
for language modeling. They yield naturally smooth
estimates, and, under a particular choice of the “sim-
ilarity” function between words, they are competi-
tive with the Good-Turing estimator, which is con-
sidered to be the state-of-the-art in unigram lan-
guage modeling. We plan to perform more exper-

mean code length

πβ, β = 1 10.34
πGT 10.30
πND 10.30
πKD 10.31

Table 3: Results with training set of size∼ 106.

iments with other definitions of similarity between
words. For example, we expect similarities based
on co-occurence in documents, or based on notions
of semantic closeness (computed, for instance, using
the WordNet hierarchy) to yield significant improve-
ments over estimators which are only based on word
counts.
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Abstract

We extend the Blum and Chawla
(2001) graph min-cut algorithm to
structured problems. This extension
can alternatively be viewed as a joint
inference method over a set of train-
ing and test instances where parts of
the instances interact through a pre-
specified associative network. The
method has has an efficient approxima-
tion through a linear-programming re-
laxation. On small training data sets,
the method achieves up to 34.8% rela-
tive error reduction.

1 Introduction

We describe a method for transductive classifi-
cation in structured problems. Our method ex-
tends the Blum and Chawla (2001) algorithm for
transductive classification. In that algorithm,
each training and test instance is represented
by a vertex in a graph. The algorithm finds the
min-cut that separates the positively and nega-
tively labeled instances. We give a linear pro-
gram that implements an approximation of this
algorithm and extend it in several ways. First,
our formulation can be used in cases where there
are more than two labels. Second, we can use
the output of a classifier to provide a prior pref-
erence of each instance for a particular label.
This lets us trade off the strengths of the min-
cut algorithm against those of a standard classi-
fier. Finally, we extend the algorithm further to
deal with structured output spaces, by encoding

parts of instances as well as constraints that en-
sure a consistent labeling of an entire instance.

The rest of this paper is organized as follows.
Section 2 explains what we mean by transduc-
tive classification and by structured problems.
Section 3 reviews the Blum and Chawla (2001)
algorithm, how we formulate it as a linear pro-
gram and our proposed extensions. Section 4
relates our proposal to previous work. Section 5
describes our experimental results on real and
synthetic data and Section 6 concludes the pa-
per.

2 Concepts and Notation

In this work we combine two separate ap-
proaches to learning: transductive methods, in
which classification of test instances arises from
optimizing a single objective involving both
training and test instances; and structured clas-
sification, in which instances involve several in-
terdependent classification problems. The de-
scription of structured problems also introduces
useful terminology for the rest of the paper.

2.1 Transductive Classification

In supervised classification, training instances
are used to induce a classifier that is then ap-
plied to individual test instances that need to
be classified. In transductive classification, a
single optimization problem is set up involving
all training and test instances; the solution of
the optimization problem yields labels for the
test instances. In this way, the test instances
provide evidence about the distribution of the
data, which may be useful when the labeled data
is limited and the distribution of unlabeled data
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Figure 1: An example where unlabeled data
helps to reveal the underlying distribution of
the data points, borrowed from Sindhwani et al.
(2005). The circles represent data points (unla-
beled are empty, positive have a “+” and neg-
ative have a “-”). The dashed lines represent
decision boundaries for a classifier. The first fig-
ure shows the labeled data and the max-margin
decision boundary (we use a linear boundary to
conform with Occam’s razor principle). The sec-
ond figure shows the unlabeled data points re-
vealing the distribution from which the training
examples were selected. This distribution sug-
gests that a linear boundary might not be ap-
propriate for this data. The final figure shows
a more appropriate decision boundary given the
distribution of the unlabeled data.

is informative about the location of the decision
boundary. Figure 1 illustrates this.

2.2 Structured Classification

The usual view of structured classification is as
follows. An instance consists of a set of classifi-
cation problems in which the labels of the differ-
ent problems are correlated according to a cer-
tain graphical structure. The collection of clas-
sification labels in the instance forms a single
structured label. A typical structured problem
is part of speech (POS) tagging. The parts of
speech of consecutive words are strongly corre-
lated, while the POS of words that are far away
do not influence each other much. In the natu-
ral language processing tasks that motivate this
work, we usually formalize this observation with
a Markov assumption, implemented by breaking
up the instance into parts consisting of pairs of
consecutive words. We assign a score for each
possible label of each part and then use a dy-
namic programming algorithm to find the high-
est scoring label of the entire instance.

In the rest of this paper, it will be sometimes

more convenient to think of all the (labeled and
unlabeled) instances of interest as forming a sin-
gle joint classification problem on a large graph.
In this joint problem, the atomic classification
problems are linked according to the graphical
structure imposed by their partition into struc-
tured classification instances. As we will see,
other links between atomic problems arise in our
setting that may cross between different struc-
tured instances.

2.3 Terminology

For structured problems, instance refers to an
entire problem (for example, an entire sentence
for POS tagging). A token refers to the smallest
unit that receives a label. In POS tagging, a to-
ken is a word. A part is one or more tokens and
is a division used by a learning algorithm. For
all our experiments, a part is a pair of consecu-
tive tokens, but extension to other types of parts
is trivial. If two parts share a token then a con-
sistent label for those parts has to have the same
label on the shared token. For example in the
sentence “I love learning .” we have parts for
“I love” and “love learning”. These share the
token “love” and two labels for the two parts
has to agree on the label for the token in order
to be consistent. In all our experiments, a part
is a pair of consecutive tokens so two parts are
independent unless one immediately follows the
other.

3 Approach

We extend the min-cut formulation of Blum and
Chawla (2001) to multiple labels and structured
variables by adapting a linear-programming en-
coding of metric labeling problems. By relaxing
the linear program, we obtain an efficient ap-
proximate inference algorithm. To understand
our method, it is useful to review the min-
cut transductive classification algorithm (Sec-
tion 3.1) as well as the metric labeling prob-
lem and its linear programming relaxation (Sec-
tion 3.2). Section 3.3 describes how to encode
a multi-way min-cut problem as an instance of
metric labeling as well as a trivial extension that
lets us introduce a bias when computing the cut.
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Section 3.4 extends this formalism to structured
classification.

3.1 Min-Cuts for Transductive
Classification

Blum and Chawla (2001) present an efficient
algorithm for semi-supervised machine learning
in the unstructured binary classification setting.
At a high level, the algorithm is as follows:

• Construct a graph where each instance cor-
responds to a vertex;

• Add weighted edges between similar ver-
tices with weight proportional to a measure
of similarity;

• Find the min-cut that separates positively
and negatively labeled training instances;

• Label all instances on the positive side of
the cut as positive and all others as nega-
tive.

For our purposes we need to consider two exten-
sions to this problem: multi-way classification
and constrained min-cut.

For multi-way classification, instead of com-
puting the binary min-cut as above, we need
to find the multi-way min-cut. Unfortunately,
doing this in general is NP-hard, but a poly-
nomial time approximation exists (Dahlhaus et
al., 1992). In Section 3.3 we describe how we
approximate this problem.

We extend this approach to structured data
by constructing a graph whose vertices corre-
spond to different parts of the instance, and add
weighted edges between similar parts. We then
find the multi-way min-cut that separates ver-
tices with different labels subject to some con-
straints: if two parts overlap then the labels have
to be consistent. Our main contribution is an al-
gorithm that approximately computes this con-
strained multi-way min-cut with a linear pro-
gramming relaxation.

3.2 Metric Labeling

Kleinberg and Tardos (1999) introduce the met-
ric labeling problem as a common inference
problem in a variety of fields. The inputs to

the problem are a weighted graph G = (V,E), a
set of labels L = {i|i ∈ 1 . . . k}, a cost function
c(v, i) which represents the preference of each
vertex for each possible label and a metric d(i, j)
between labels i and j. The goal is to assign a
label to each vertex l : V → L so as to minimize
the cost given by:

c(l) =
∑

v∈V c(v, l(v))
+

∑
(u,v)∈E d(l(u), l(v)) · w(u, v) . (1)

Kleinberg and Tardos (1999) give a linear pro-
gramming approximation for this problem with
an approximation factor of two and explain how
this can be extended to an O(log k) approxima-
tion for arbitrary metrics by creating a hierar-
chy of labels. Chekuri et al. (2001) present an
improved linear program that incorporates arbi-
trary metrics directly and provides an approxi-
mation at least as good as that of Kleinberg and
Tardos (1999). The idea in the new linear pro-
gram is to have a variable for each edge labeling
as well as one for each vertex labeling.

Following Chekuri et al. (2001), we represent
the event that vertex u has label i by the vari-
able x(u, i) having the value 1; if x(u, i) = 0 then
vertex v must have some other label. Similarly,
we use the variable and value x(u, i, v, j) = 1 to
mean that the vertices u and v (which are con-
nected by an edge) have label i and j respec-
tively. The edge variables allow us to encode
the costs associated with violated edges in the
metric labeling problem. Edge variables should
agree with vertex labels, and by symmetry we
should have x(u, i, v, j) = x(v, j, u, i). If the
linear program gives an integer solution, this is
clearly the optimal solution to the original met-
ric labeling instance. Chekuri et al. (2001) de-
scribe a rounding procedure to compute an in-
teger solution to the LP that is guaranteed to
be an approximation of the optimal integer so-
lution. For the problems we considered, this was
very rarely necessary. Their linear program re-
laxation is shown in Figure 2. The cost function
is the sum of the vertex costs and edge costs.
The first constraint requires that each vertex
have a total of one labeling unit distributed over
its labels, that is, we cannot assign more or less
than one label per vertex. The second constraint
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min
X
u∈V

X
i∈L

c(u, i)x(u, i)

+
X

(u,v)∈E

X
k,j∈L

w(u, v)d(i, j)x(u, i, v, j)

subject to X
i∈L

x(u, i) = 1 ∀u ∈ V

x(u, i)−
X
j∈L

x(u, i, v, j) = 0 ∀u ∈ V, v ∈ N(u), i ∈ L

x(u, i, v, j)− x(v, j, u, i) = 0 ∀u, v ∈ V, i, j ∈ L

x(u, i, v, j), x(u, i) ∈ [0, 1] ∀u, v ∈ V, i, j ∈ L

Figure 2: The Chekuri et al. (2001) linear pro-
gram used to approximate metric labeling. See
text for discussion.

requires that vertex- and edge-label variables are
consistent: the label that vertex variables give
a vertex should agree with the labels that edge
variables give that vertex. The third constraint
imposes the edge-variable symmetry condition,
and the final constraint requires that all the vari-
ables be in the range [0, 1].

3.3 Min Cut as an Instance of Metric
Labeling

Given an instance of the (multi-way) min-cut
problem, we can translate it to an instance of
metric labeling as follows. The underlying graph
and edge weights will be the same as min-cut
problem. We add vertex costs (c(u, i) ∀u ∈
V, i ∈ L) and a label metric (d(i, j) ∀i, j ∈ L).
For all unlabeled vertices set the vertex cost to
zero for all labels. For labeled vertices set the
cost of the correct label to zero and all other la-
bels to infinity. Finally let d(i, j) be one if i 6= j
and zero otherwise.

The optimal solution to this instance of metric
labeling will be the same as the optimal solution
of the initial min cut instance: the cost of any
labeling is the number of edges that link vertices
with different labels, which is exactly the num-
ber of cut edges. Also by the same argument,
every possible labeling will correspond to some
cut and approximations of the metric labeling
formulation will be approximations of the origi-

nal min-cut problem.
Since the metric labeling problem allows ar-

bitrary affinities between a vertex in the graph
and possible labels for that vertex, we can triv-
ially extend the algorithm by introducing a bias
at each vertex for labels more compatible with
that vertex. We use the output of a classifier to
bias the cost towards agreement with the clas-
sifier. Depending on the strength of the bias,
we can trade off our confidence in the perfor-
mance of the min-cut algorithm against the our
confidence in a fully-supervised classifier.

3.4 Extension to Structured
Classification

To extend this further to structured classifica-
tion we modify the Chekuri et al. (2001) linear
program (Figure 2). In the structured case, we
construct a vertex for every part of an instance.
Since we want to find a consistent labeling for an
entire instance composed of overlapping parts,
we need to add some more constraints to the lin-
ear program. We want to ensure that if two ver-
tices correspond to two overlapping parts, then
they are assigned consistent labels, that is, the
token shared by two parts is given the same label
by both. First we add a new zero-weight edge
between every pair of vertices corresponding to
overlapping parts. Since its weight is zero, this
edge will not affect the cost. We then add a
constraint to the linear-program that the edge
variables for inconsistent labelings of the new
edges have a value of zero.

More formally, let (u, i, v, j) ∈ Λ denote that
the part u having label i is consistent with the
part v having label j; if u and v do not share any
tokens, then any pair of labels for those parts are
consistent. Now add zero-weight edges between
overlapping parts. Then the only modification
to the linear program is that

x(u, i)−
∑

j∈L x(u, i, v, j) = 0
∀u ∈ V, v ∈ N(u), i ∈ L

will become

x(u, i)−
∑

j:(u,i,v,j)∈Λ x(u, i, v, j) = 0
∀u ∈ V, v ∈ N(u), i ∈ L .
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min
X
u∈V

X
i∈L

c(u, i)x(u, i)

+
X

(u,v)∈E

X
k,j∈L

w(u, v)d(i, j)x(u, i, v, j)

subject to X
i∈L

x(u, i) = 1 ∀u ∈ V

x(u, i)−
X

j:(u,i,v,j)∈Λ

x(u, i, v, j) = 0 ∀u ∈ V, v ∈ N(u), i ∈ L

x(u, i, v, j)− x(v, j, u, i) = 0 ∀ (u, i, v, j) ∈ Λ

x(u, i, v, j), x(u, i) ∈ [0, 1] ∀u, v ∈ V, i, j ∈ L

Figure 3: The modified linear program used to
approximate metric labeling. See text for dis-
cussion.

What this modification does is to ensure that all
the mass of the edge variables between vertices
u and v lies in consistent labelings for their edge.
The modified linear program is shown in Figure
3. We can show that this can be encoded as
a larger instance of the metric labeling problem
(with roughly |V |+|E| more vertices and a label
set that is four times as large), but modifying the
linear program directly results in a more efficient
implementation. The final LP has one variable
for each labeling of each edge in the graph, so
we have O(|E||L|2) variables. Note that |L| is
the number of labelings of a pair of tokens for
us – even so, computation of a single dataset
took on the order of minutes using the Xpress
MP package.

4 Relation to Previous work

Our work is set of extensions to the work of-
Blum and Chawla (2001), which we have already
described. Our extensions allow us to handle
multi-class and structured data, as well as to
take hints from a classifier. We can also spec-
ify a similarity metric between labels so that a
cut-edge can cost different amounts depending
on what partitions it spans.

Taskar et al. (2004a) describe a class of
Markov networks with associative clique poten-
tials. That is, the clique potentials always prefer

that all the nodes in the clique have the same
label. The inference problem in these networks
is to find the assignment of labels to all nodes in
the graph that maximizes the sum of the clique
potentials. Their paper describes a linear pro-
gramming relaxation to find (or approximate)
this inference problem which is very similar to
the LP formulation of Chekuri et al. (2001) when
all cliques are of size 2. They generalize this
to larger cliques and prove that their LP gives
an integral solution when the label alphabet has
size 2 (even for large cliques). For the learn-
ing problem they exploit the dual of the LP for-
mulation and use a maximum margin objective
similar to the one used by Taskar et al. (2004b).
If we ignore the learning problem and focus on
inference, one could view our work as inference
over a Markov network created by combining a
set of linear chain conditional random fields with
an associative Markov network (with arbitrary
structure). A direction for future work would be
to train the associative Markov network either
independently from the chain-structured model
or jointly with it. This would be very similar to
the joint inference work described in the next
paragraph, and could be seen as a particular
instantiation of either a non-linear conditional
random field (Lafferty et al., 2001) or relational
Markov network (Taskar et al., 2002).

Sutton and McCallum (2004) consider the use
of linear chain CRFs augmented with extra skip
edges which encode a probabilistic belief that
the labels of two entities might be correlated.
They provide experimental results on named en-
tity recognition for e-mail messages announcing
seminars, and their system achieves a 13.7% rel-
ative reduction in error on the “Speaker” field.
Their work differs from ours in that they add
skip edges only between identical capitalized
words and only within an instance, which for
them is an e-mail message. In particular, they
can never have an edge between labeled and un-
labeled parts. Their approach is useful for iden-
tification of personal names but less helpful for
other named entity tasks where the names may
not be capitalized.

Lafferty et al. (2004) show a representer the-
orem allowing the use of Mercer kernels with
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CRFs. They use a kernel CRF with a graph
kernel (Smola and Kondor, 2003) to do semi-
supervised learning. For them, the graph de-
fines an implicit representation of the data, but
inference is still performed only on the (chain)
structure of the CRF. By contrast, we perform
inference over the whole set of examples at the
same time.

Altun et al. (2006) extend the use of graph-
based regularization to structured variables.
Their work is in the framework of maximum
margin learning for structured variables where
learning is framed as an optimization problem.
They modify the objective function by adding
a penalty whenever two parts that are expected
to have a similar label assign a different score to
the same label. They show improvements of up
to 5.3% on two real tasks: pitch accent predic-
tion and optical character recognition (OCR).
Unfortunately, to solve their optimization prob-
lem they have to invert an n×n matrix, where n
is the number of parts in the training and test-
ing data times the number of possible labels for
each part. Because of this they are forced to
train on an unrealistically small amount of data
(4-40 utterances for pitch accent prediction and
10 words for OCR).

5 Experiments

We performed experiments using our approach
on three different datasets using a conditional
random field as the base classifier. Unless oth-
erwise noted this was regularized using a zero-
mean Gaussian prior with a variance of 1.

The first dataset is the pitch-accent prediction
dataset used in semi-supervised learning by Al-
tun et al. (2006). There are 31 real and binary
features (all are encoded as real values) and only
two labels. Instances correspond to an utterance
and each token corresponds to a word. Altun
et al. (2006) perform experiments on 4 and 40
training instances using at most 200 unlabeled
instances.

The second dataset is the reference part of
the Cora information extraction dataset.1 This

1The Cora IE dataset has been used in Seymore et
al. (1999), Peng and McCallum (2004), McCallum et
al. (2000) and Han et al. (2003), among others. We

consists of 500 computer science research paper
citations. Each token in a citation is labeled as
being part of the name of an author, part of the
title, part of the date or one of several other
labels that we combined into a single category
(“other”).

The third dataset is the chunking dataset
from the CoNLL 2000 (Sang and Buchholz,
2000) shared task restricted to noun phrases.
The task for this dataset is, given the words in a
sentence as well as automatically assigned parts
of speech for these words, label each word with
B-NP if it is the first word in a base noun phrase,
I-NP if it is part of a base noun phrase but not
the first word and O if it is not part of a noun
phrase.

For all experiments, we let each word be a
token and consider parts consisting of two con-
secutive tokens.

5.1 Pitch Accent Prediction

For the pitch accent prediction dataset, we used
the 5-nearest neighbors of each instance accord-
ing to the Euclidean distance in the original fea-
ture space to construct the graph for min-cut.
Table 1 shows the results of our experiments on
this data, as well as the results reported by Al-
tun et al. (2006). The numbers in the table are
per-token accuracy and each entry is the mean
of 10 random train-test data selections.

For this problem, our method improves per-
formance over the base CRF classifier (except
when the training data consists of only 4 utter-
ances), but we do not see improvements as dra-
matic as those observed by Altun et al. (2006).
Note that even the larger dataset here is quite
small – 40 utterances where each token has been
annotated with a binary value.

5.2 Cora-IE

For the Cora information extraction dataset, we
used the first 100 principal components of the
feature space to find 5 nearest neighbors of each
part. This approximation is due to the cost of
comuting nearest neighbors in high dimensions.
In these experiments we trained on 40 instances

obtained the dataset from http://www.cs.umass.edu/
~mccallum/data/cora-ie.tar.gz.
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Method 4:80 40:80 40:200
CRF 71.2 72.5 73.1

MinCut 69.4 74.4 74.3
STR 70.7 75.7 77.5
SVM 69.9 72.0 73.1

Table 1: Results on the pitch accent prediction
task. The methods we compare are as follows.
CRF is supervised CRF training. MinCut is our
method with a CRF as base classifier. STR and
SVM are the semi-supervised results reported in
Altun et al. (2006). The experiments are 4 la-
beled and 80 unlabeled, 40 labeled and 80 unla-
beled and 40 labeled and 200 unlabeled respec-
tively.

Variance 10 100 1000
CRF 84.5% 84.3% 83.9%
MinCut 88.8% 89.6% 89.9%

Table 2: Accuracy on the Cora-IE dataset as
a percentage of tokens correctly classified at dif-
ferent settings for the CRF variance. Results for
training on 40 instances and testing on 80. In
all cases the scores are the mean of 10 random
selections of 120 instances from the set of 500
available.

and used 80 as testing data. In all cases we
randomly selected training and testing instances
10 times from the total set of 500. Table 2
shows the average accuracies for the 10 repe-
titions, with different values for the variance of
the Gaussian prior used to regularize the CRF.
If we choose the optimal value for each method,
our approach gives a 34.8% relative reduction
in error over the CRF, and improves over it in
each of the 10 random data selections, and all
settings of the Guassian prior variance.

5.3 CoNLL NP-Chunking

Our results are worst for the CoNLL NP-
Chunking dataset. As above, we used 10 ran-
dom selections of training and test sets, and
used the 100 principal components of the fea-
ture space to find 5 nearest neighbors of each
part. Table 3 shows the results of our experi-
ments. The numbers in the table are per-token

Method 20:40 40:80
CRF 87.6 90.6

MinCut(CRF) 88.2 89.6

Table 3: Results on the NP-chunking task. The
table compares a CRF with our method using a
CRF as a base classifier. The experiments use
20 labeled and 40 unlabeled and 40 labeled and
80 unlabeled instances.

accuracy as before. When the amount of train-
ing data is very small (20 instances) we improve
slightly over the base CRF classifier, but with
an increased amount of training data, the small
improvement is replaced with a small loss.

6 Discussion

We have presented a new transductive algorithm
for structured classification, which achieves er-
ror reductions on some real-world problems. Un-
fortunately, those gains are not always realized,
and sometimes our approach leads to an increase
in error. The main reason that our approach
does not always work seems to be that our mea-
sure of similarity between different parts is very
coarse. In general, finding all the pairs of parts
have the same label is as difficult as finding the
correct labeling of all instances, but it might be
possible to use unlabeled data to learn the sim-
ilarity measure.
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Abstract

This paper presents latent semantic gram-
mars for the unsupervised induction of
English grammar. Latent semantic gram-
mars were induced by applying singu-
lar value decomposition to n-gram by
context-feature matrices. Parsing was
used to evaluate performance. Exper-
iments with context, projectivity, and
prior distributions show the relative per-
formance effects of these kinds of prior
knowledge. Results show that prior dis-
tributions, projectivity, and part of speech
information are not necessary to beat the
right branching baseline.

1 Introduction

Unsupervised grammar induction (UGI) generates a
grammar from raw text. It is an interesting problem
both theoretically and practically. Theoretically, it
connects to the linguistics debate on innate knowl-
edge (Chomsky, 1957). Practically, it has the po-
tential to supersede techniques requiring structured
text, like treebanks. Finding structure in text with
little or no prior knowledge is therefore a fundamen-
tal issue in the study of language.

However, UGI is still a largely unsolved problem.
Recent work (Klein and Manning, 2002; Klein and
Manning, 2004) has renewed interest by using a UGI
model to parse sentences from the Wall Street Jour-
nal section of the Penn Treebank (WSJ). These pars-
ing results are exciting because they demonstrate

real-world applicability to English UGI. While other
contemporary research in this area is promising, the
case for real-world English UGI has not been as
convincingly made (van Zaanen, 2000; Solan et al.,
2005).

This paper weaves together two threads of in-
quiry. The first thread is latent semantics, which
have not been previously used in UGI. The second
thread is dependency-based UGI, used by Klein and
Manning (2004), which nicely dovetails with our se-
mantic approach. The combination of these threads
allows some exploration of what characteristics are
sufficient for UGI and what characteristics are nec-
essary.

2 Latent semantics

Previous work has focused on syntax to the exclu-
sion of semantics (Brill and Marcus, 1992; van Zaa-
nen, 2000; Klein and Manning, 2002; Paskin, 2001;
Klein and Manning, 2004; Solan et al., 2005). How-
ever, results from the speech recognition commu-
nity show that the inclusion of latent semantic infor-
mation can enhance the performance of their mod-
els (Coccaro and Jurafsky, 1998; Bellegarda, 2000;
Deng and Khudanpur, 2003). Using latent semantic
information to improve UGI is therefore both novel
and relevant.

The latent semantic information used by the
speech recognition community above is produced
by latent semantic analysis (LSA), also known as
latent semantic indexing (Deerwester et al., 1990;
Landauer et al., 1998). LSA creates a semantic rep-
resentation of both words and collections of words
in a vector space, using a two part process. First,
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a term by document matrix is created in which the
frequency of wordwi in documentdj is the value
of cell cij . Filters may be applied during this pro-
cess which eliminate undesired terms, e.g. common
words. Weighting may also be applied to decrease
the contributions of frequent words (Dumais, 1991).
Secondly, singular value decomposition (SVD) is
applied to the term by document matrix. The re-
sulting matrix decomposition has the property that
the removal of higher-order dimensions creates an
optimal reduced representation of the original ma-
trix in the least squares sense (Berry et al., 1995).
Therefore, SVD performs a kind of dimensionality
reduction such that words appearing in different doc-
uments can acquire similar row vector representa-
tions (Landauer and Dumais, 1997). Words can be
compared by taking the cosine of their correspond-
ing row vectors. Collections of words can likewise
be compared by first adding the corresponding row
vectors in each collection, then taking the cosine be-
tween the two collection vectors.

A stumbling block to incorporating LSA into UGI
is that grammars are inherently ordered but LSA is
not. LSA is unordered because the sum of vectors is
the same regardless of the order in which they were
added. The incorporation of word order into LSA
has never been successfully carried out before, al-
though there have been attempts to apply word or-
der post-hoc to LSA (Wiemer-Hastings and Zipitria,
2001). A straightforward notion of incorporating
word order into LSA is to use n-grams instead of in-
dividual words. In this way a unigram, bigram, and
trigram would each have an atomic vector represen-
tation and be directly comparable.

It may seem counterintuitive that such an n-gram
scheme has never been used in conjunction with
LSA. Simple as this scheme may be, it quickly falls
prey to memory limitations of modern day comput-
ers for computing the SVD. The standard for com-
puting the SVD in the NLP sphere is Berry (1992)’s
SVDPACK, whose single vector Lanczos recursion
method with re-orthogonalization was incorporated
into the BellCore LSI tools. Subsequently, either
SVDPACK or the LSI tools were used by the ma-
jority of researchers in this area (Schütze, 1995;
Landauer and Dumais, 1997; Landauer et al., 1998;
Coccaro and Jurafsky, 1998; Foltz et al., 1998; Bel-
legarda, 2000; Deng and Khudanpur, 2003). Using

John likesstring cheese.

Figure 1: A Dependency Graph

the equation reported in Larsen (1998), a standard
orthogonal SVD of a unigram/bigram by sentence
matrix of the LSA Touchstone Applied Science As-
sociates Corpus (Landauer et al., 1998) requires over
60 gigabytes of random access memory. This esti-
mate is prohibitive for all but current supercomput-
ers.

However, it is possible to use a non-orthogonal
SVD approach with significant memory savings
(Cullum and Willoughby, 2002). A non-orthogonal
approach creates the same matrix decomposition as
traditional approaches, but the resulting memory
savings allow dramatically larger matrix decompo-
sitions. Thus a non-orthongonal SVD approach is
key to the inclusion of ordered latent semantics into
our UGI model.

3 Dependency grammars

Dependency structures are an ideal grammar repre-
sentation for evaluating UGI. Because dependency
structures have no higher order nodes, e.g.NP, their
evaluation is simple: one may compare with a ref-
erence parse and count the proportion of correct de-
pendencies. For example, Figure 1 has three depen-
dencies{( John, likes ), ( cheese, likes ), ( string,
cheese )}, so the trial parse{( John, likes ), ( string,
likes ), ( cheese, string )} has1/3 directed dependen-
cies correct and2/3 undirected dependencies cor-
rect. This metric avoids the biases created by brack-
eting, where over-generation or undergeneration of
brackets may cloud actual performance (Carroll et
al., 2003). Dependencies are equivalent with lexical-
ized trees (see Figures 1 and 2) so long as the depen-
dencies are projective. Dependencies are projective
when all heads and their dependents are a contigu-
ous sequence.

Dependencies have been used for UGI before with
mixed success (Paskin, 2001; Klein and Manning,
2004). Paskin (2001) created a projective model us-
ing words, and he evaluated on WSJ. Although he
reported beating the random baseline for that task,
both Klein and Manning (2004) and we have repli-

46



Slikes

NPJohn VPlikes

John likes NPcheese

string cheese

Figure 2: A Lexicalized Tree

cated the random baseline above Paskin’s results.
Klein and Manning (2004), on the other hand, have
handily beaten a random baseline using a projective
model over part of speech tags and evaluating on a
subset of WSJ, WSJ10.

4 Unanswered questions

There are several unanswered questions in
dependency-based English UGI. Some of these
may be motivated from the Klein and Manning
(2004) model, while others may be motivated
from research efforts outside the UGI community.
Altogether, these questions address what kinds
of prior knowledge are, or are not necessary for
successful UGI.

4.1 Parts of speech

Klein and Manning (2004) used part of speech tags
as basic elements instead of words. Although this
move can be motivated on data sparsity grounds, it
is somewhat at odds with the lexicalized nature of
dependency grammars. Since Paskin (2001)’s previ-
ous attempt using words as basic elements was un-
successful, it is not clear whether parts of speech are
necessary prior knowledge in this context.

4.2 Projectivity

Projectivity is an additional constraint that may not
be necessary for successful UGI. English is a projec-
tive language, but other languages, such as Bulgar-
ian, are not (Pericliev and Ilarionov, 1986). Nonpro-
jective UGI has not previously been studied, and it
is not clear how important projectivity assumptions
are to English UGI. Figure 3 gives an example of a
nonprojective construction: not all heads and their
dependents are a contiguous sequence.

John string likescheese.

Figure 3: A Nonprojective Dependency Graph
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4.3 Context

The core of several UGI approaches is distributional
analysis (Brill and Marcus, 1992; van Zaanen, 2000;
Klein and Manning, 2002; Paskin, 2001; Klein and
Manning, 2004; Solan et al., 2005). The key idea in
such distributional analysis is that the function of a
word may be known if it can be substituted for an-
other word (Harris, 1954). If so, both words have the
same function. Substitutability must be defined over
a context. In UGI, this context has typically been the
preceding and following words of the target word.
However, this notion of context has an implicit as-
sumption of word order. This assumption is true for
English, but is not true for other languages such as
Latin. Therefore, it is not clear how dependent En-
glish UGI is on local linear context, e.g. preceding
and following words, or whether an unordered no-
tion of context would also be effective.

4.4 Prior distributions

Klein and Manning (2004) point their model in the
right direction by initializing the probability of de-
pendencies inversely proportional to the distance be-
tween the head and the dependent. This is a very
good initialization: Figure 4 shows the actual dis-
tances for the dataset used, WSJ10.
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Klein (2005) states that, “It should be emphasized
that this initialization was important in getting rea-
sonable patterns out of this model.” (p. 89). How-
ever, it is not clear that this is necessarily true for all
UGI models.

4.5 Semantics

Semantics have not been included in previous UGI
models, despite successful application in the speech
recognition community (see Section 2). However,
there have been some related efforts in unsupervised
part of speech induction (Schütze, 1995). These ef-
forts have used SVD as a dimensionality reduction
step between distributional analysis and clustering.
Although not labelled as “semantic” this work has
produced the best unsupervised part of speech in-
duction results. Thus our last question is whether
SVD can be applied to a UGI model to improve re-
sults.

5 Method

5.1 Materials

The WSJ10 dataset was used for evaluation to be
comparable to previous results (Klein and Manning,
2004). WSJ10 is a subset of the Wall Street Jour-
nal section of the Penn Treebank, containing only
those sentences of 10 words or less after punctuation
has been removed. WSJ10 contains 7422 sentences.
To counteract the data sparsity encountered by using
ngrams instead of parts of speech, we used the en-
tire WSJ and year 1994 of the North American News
Text Corpus. These corpora were formatted accord-
ing to the same rules as the WSJ10, split into sen-
tences (as documents) and concatenated. The com-
bined corpus contained roughly 10 million words
and 460,000 sentences.

Dependencies, rather than the original bracketing,
were used as the gold standard for parsing perfor-
mance. Since the Penn Treebank does not label de-
pendencies, it was necessary to apply rules to extract
dependencies from WSJ10 (Collins, 1999).

5.2 Procedure

The first step is unsupervised latent semantic gram-
mar induction. This was accomplished by first cre-
ating n-gram by context feature matrices, where the
feature varies as per Section 4.3. TheContextglobal

approach uses a bigram by document matrix such
that word order is eliminated. Therefore the value
of cellij is the number of timesngrami occurred
in documentj . The matrix had approximate dimen-
sions 2.2 million by 460,000.

TheContextlocal approach uses a bigram by local
window matrix. If there aren distinct unigrams in
the corpus, the firstn columns contain the counts
of the words preceding a target word, and the lastn
columns contain the counts of the words following
a target word. For example, the value of atcellij
is the number of timesunigramj occurred before
the targetngrami. The value ofcelli(j+n) is the
number of timesunigramj occurred after the target
ngrami. The matrix had approximate dimensions
2.2 million by 280,000.

After the matrices were constructed, each
was transformed using SVD. Because the non-
orthogonal SVD procedure requires a number of
Lanczos steps approximately proportional to the
square of the number of dimensions desired, the
number of dimensions was limited to 100. This kept
running time and storage requirements within rea-
sonable limits, approximately 4 days and 120 giga-
bytes of disk storage to create each.

Next, a parsing table was constructed. For each
bigram, the closest unigram neighbor, in terms of
cosine, was found, cf. Brill and Marcus (1992). The
neighbor, cosine to that neighbor, and cosines of the
bigram’s constituents to that neighbor were stored.
The constituent with the highest cosine to the neigh-
bor was considered the likely head, based on clas-
sic head test arguments (Hudson, 1987). This data
was stored in a lookup table so that for each bigram
the associated information may be found in constant
time.

Next, the WSJ10 was parsed using the parsing
table described above and a minimum spanning
tree algorithm for dependency parsing (McDonald
et al., 2005). Each input sentence was tokenized
on whitespace and lowercased. Moving from left
to right, each word was paired with all remaining
words on its right. If a pair existed in the pars-
ing table, the associated information was retrieved.
This information was used to populate the fully con-
nected graph that served as input to the minimum
spanning tree algorithm. Specifically, when a pair
was retrieved from the parsing table, the arc from
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the stored head to the dependent was given a weight
equal to the cosine between the head and the near-
est unigram neighbor for that bigram pair. Likewise
the arc from the dependent to the head was given a
weight equal to the cosine between the dependent
and the nearest unigram neighbor for that bigram
pair. Thus the weight on each arc was based on the
degree of substitutability between that word and the
nearest unigram neighbor for the bigram pair.

If a bigram was not in the parsing table, it was
given maximum weight, making that dependency
maximally unlikely. After all the words in the sen-
tence had been processed, the average of all current
weights was found, and this average was used as the
weight from a dummy root node to all other nodes
(the dummy ROOT is further motivated in Section
5.3). Therefore all words were given equal likeli-
hood of being the root of the sentence. The end
result of this graph construction process is ann by
n + 1 matrix, wheren is the number of words and
there is one dummy root node. Then this graph was
input to the minimum spanning tree algorithm. The
output of this algorithm is a non-projective depen-
dency tree, which was directly compared to the gold
standard dependency tree, as well as the respective
baselines discussed in Section 5.3.

To gauge the differential effects of projectivity
and prior knowledge, the above procedure was mod-
ified in additional evaluation trials. Projectivity was
incorporated by using a bottom-up algorithm (Cov-
ington, 2001). The algorithm was applied in two
stages. First, it was applied using the nonprojective
parse as input. By comparing the output parse to the
original nonprojective parse, it is possible to identify
independent words that could not be incorporated
into the projective parse. In the second stage, the
projective algorithm was run again on the nonpro-
jective input, except this time the independent words
were allowed to link to any other words defined by
the parsing table. In other words, the first stage iden-
tifies unattached words, and the second stage “re-
pairs” the words by finding a projective attachment
for them. This method of enforcing projectivity was
chosen because it makes use of the same informa-
tion as the nonprojective method, but it goes a step
further to enforce projectivity.

Prior distributions of dependencies, as depicted in
Figure 4, were incorporated by inversely weighting

ROOTJohnlikes stringcheese

Figure 5: Right Branching Baseline

John likes string cheese ROOT

Figure 6: Left Branching Baseline

graph edges by the distance between words. This
modification transparently applies to both the non-
projective case and the projective case.

5.3 Scoring

Two performance baselines for dependency parsing
were used in this experiment, the so-called right and
left branching baselines. A right branching baseline
predicts that the head of each word is the word to the
left, forming a chain from left to right. An example
is given in Figure 5. Conversely, a left branching
baseline predicts that the head of each word is the
word to the right, forming a chain from right to left.
An example is given in Figure 6. Although perhaps
not intuitively very powerful baselines, the right and
left branching baselines can be very effective for the
WSJ10. For WSJ10, most heads are close to their
dependents, as shown in Figure 4. For example, the
percentage of dependencies with a head either im-
mediately to the right or left is 53%. Of these neigh-
boring heads, 17% are right branching, and 36% are
left branching.

By using the sign test, the statistical significance
of parsing results can be determined. The sign test is
perhaps the most basic non-parametric tests and so is
useful for this task because it makes no assumptions
regarding the underlying distribution of data.

Consider each sentence. Every word must have
exactly one head. That means that forn words, there
is a1/n chance of selecting the correct head (exclud-
ing self-heads and including a dummy root head). If
all dependencies in a sentence are independent, then
a sentence’s dependencies follow a binomial distri-
bution, withn equal to the number of words,p equal
to 1/n, andk equal to the number of correct depen-
dencies. From this it follows that the expected num-
ber of correct dependencies per sentence isnp, or 1.
Thus the random baseline for nonprojective depen-
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dency parsing performance is one dependency per
sentence.

Using the gold standard of the WSJ10, the number
of correct dependencies found by the latent seman-
tic model can be established. The null hypothesis
is that one randomly generated dependency should
be correct per sentence. Suppose thatr+ sentences
have more correct dependencies andr− sentences
have fewer correct dependencies (i.e. 0). Under the
null hypothesis, half of the values should be above
1 and half below, sop = 1/2. Since signed dif-
ference is being considered, sentences with depen-
dencies equal to 1 are excluded. The correspond-
ing binomial distribution of the signs to calculate
whether the model is better than chance isb(n, p) =
b(r+ +r−, 1/2). The corresponding p-value may be
calculated using Equation 1.

1−
r+
−1∑

k=0

n!

k!(n− k)!
1/2(1/2)n−k (1)

This same method can be used for determining
statistically significant improvement over right and
left branching baselines. For each sentence, the dif-
ference between the number of correct dependen-
cies in the candidate parse and the number of cor-
rect dependencies in the baseline may be calculated.
The number of positive and negative signed differ-
ences are counted asr+ and r−, respectively, and
the procedure for calculating statistically significant
improvement is the same.

6 Results

Each model in Table 6 has significantly better per-
formance than item above using statistical proce-
dure described in Section 5.2. A number of ob-
servations can be drawn from this table. First, all
the models outperform random and right branching
baselines. This is the first time we are aware of
that this has been shown with lexical items in de-
pendency UGI. Secondly, local context outperforms
global context. This is to be expected given the rel-
atively fixed word order in English, but it is some-
what surprising that the differences between local
and global are not greater. Thirdly, it is clear that the
addition of prior knowledge, whether projectivity or
prior distributions, improves performance. Fourthly,

Method
Context/Projectivity/Prior Dependencies Correct
Random/no/no 14.2%
Right branching 17.6%
Global/no/no 17.9%
Global/no/yes 21.0%
Global/yes/no 21.4%
Global/yes/yes 21.7%
Local/no/no 22.5%
Local/no/yes 25.7%
Local/yes/yes 26.3%
Local/yes/no 26.7%
Left branching 35.8%

Table 1: Parsing results on WSJ10

projectivity and prior distributions have little addi-
tive effect. Thus it appears that they bring to bear
similar kinds of constraints.

7 Discussion

The results in Section 6 address the unanswered
questions identified in Section 4, i.e. parts of speech,
semantics, context, projectivity, and prior distribu-
tions.

The most salient result in Section 6 is successful
UGI without part of speech tags. As far as we know,
this is the first time dependency UGI has been suc-
cessful without the hidden syntactic structure pro-
vided by part of speech tags. It is interesting to note
that latent semantic grammars improve upon Paskin
(2001), even though that model is projective. It ap-
pears that lexical semantics are the reason. Thus
these results address two of the unanswered ques-
tions from Section 6 regarding parts of speech and
semantics. Semantics improve dependency UGI. In
fact, they improve dependency UGI so much so that
parts of speech are not necessary to beat a right
branching baseline.

Context has traditionally been defined locally, e.g.
the preceding and following word(s). The results
above indicate that a global definition of context is
also effective, though not quite as highly perform-
ing as a local definition on the WSJ10. This sug-
gests that English UGI is not dependent on local lin-
ear context, and it motivates future exploration of
word-order free languages using global context. It is
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also interesting to note that the differences between
global and local contexts begin to disappear as pro-
jectivity and prior distributions are added. This sug-
gests that there is a certain level of equivalence be-
tween a global context model that favors local at-
tachments and a local context model that has no at-
tachment bias.

Projectivity has been assumed in previous cases
of English UGI (Klein and Manning, 2004; Paskin,
2001). As far as we know, this is the first time a
nonprojective model has outperformed a random or
right branching baseline. It is interesting that a non-
projective model can do so well when it assumes so
little about the structure of a language. Even more
interesting is that the addition of projectivity to the
models above increases performance only slightly.
It is tempting to speculate that projectivity may be
something of a red herring for English dependency
parsing, cf. McDonald et al. (2005).

Prior distributions have been previously assumed
as well (Klein and Manning, 2004). The differential
effect of prior distributions in previous work has not
been clear. Our results indicate that a prior distribu-
tion will increase performance. However, as with
projectivity, it is interesting how well the models
perform without this prior knowledge and how slight
an increase this prior knowledge gives. Overall, the
prior distribution used in the evaluation is not neces-
sary to beat the right branching baseline.

Projectivity and prior distributions have signifi-
cant overlap when the prior distribution favors closer
attachments. Projectivity, by forcing a head to gov-
ern a contiguous subsequence, also favors closer at-
tachments. The results reported in Section 6 suggest
that there is a great deal of overlap in the benefit pro-
vided by projectivity and the prior distribution used
in the evaluation. Either one or the other produces
significant benefits, but the combination is much less
impressive.

It is worthwhile to reiterate the sparseness of prior
knowledge contained in the basic model used in
these evaluations. There are essentially four compo-
nents of prior knowledge. First, the ability to create
an ngram by context feature matrix. Secondly, the
application of SVD to that matrix. Thirdly, the cre-
ation of a fully connected dependency graph from
the post-SVD matrix. And finally, the extraction
of a minimum spanning tree from this graph. Al-

though we have not presented evaluation on word-
order free languages, the basic model just described
has no obvious bias against them. We expect that
latent semantic grammars capture some of the uni-
versals of grammar induction. A fuller exploration
and demonstration is the subject of future research.

8 Conclusion

This paper presented latent semantic grammars for
the unsupervised induction of English grammar. The
creation of latent semantic grammars and their appli-
cation to parsing were described. Experiments with
context, projectivity, and prior distributions showed
the relative performance effects of these kinds of
prior knowledge. Results show that assumptions of
prior distributions, projectivity, and part of speech
information are not necessary for this task.
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Abstract

We argue in favor of the the use of la-
beled directed graph to represent various
types of linguistic structures, and illustrate
how this allows one to view NLP tasks as
graph transformations. We present a gen-
eral method for learning such transforma-
tions from an annotated corpus and de-
scribe experiments with two applications
of the method: identification of non-local
depenencies (using Penn Treebank data)
and semantic role labeling (using Propo-
sition Bank data).

1 Introduction

Availability of linguistically annotated corpora such
as the Penn Treebank (Bies et al., 1995), Proposition
Bank (Palmer et al., 2005), and FrameNet (John-
son et al., 2003) has stimulated much research on
methods for automatic syntactic and semantic anal-
ysis of text. Rich annotations of corpora has al-
lowed for the development of techniques for recov-
ering deep linguistic structures: syntactic non-local
dependencies (Johnson, 2002; Hockenmaier, 2003;
Dienes, 2004; Jijkoun and de Rijke, 2004) and se-
mantic arguments (Gildea, 2001; Pradhan et al.,
2005; Toutanova et al., 2005; Giuglea and Moschitti,
2006). Most state-of-the-art methods for the latter
two tasks use a cascaded architecture: they employ
syntactic parsers and re-cast the corresponding tasks
as pattern matching (Johnson, 2002) or classifica-
tion (Pradhan et al., 2005) problems. Other meth-

ods (Jijkoun and de Rijke, 2004) use combinations
of pattern matching and classification.

The method presented in this paper belongs to
the latter category. Specifically, we propose (1) to
use a flexible and expressive graph-based represen-
tation of linguistic structures at different levels; and
(2) to view NLP tasks as graph transformation prob-
lems: namely, problems of transforming graphs of
one type into graphs of another type. An exam-
ple of such a transformation is adding a level of
the predicate argument structure or semantic argu-
ments to syntactically annotated sentences. Further-
more, we describe a general method to automati-
cally learn such transformations from annotated cor-
pora. Our method combines pattern matching on
graphs and machine learning (classification) and can
be viewed as an extension of the Transformation-
Based Learning paradigm (Brill, 1995). After de-
scribing the method for learning graph transforma-
tions we demonstrate its applicability on two tasks:
identification of non-local dependencies (using Penn
Treebank data) and semantic roles labeling (using
Proposition Bank data).

The paper is organized as follows. In Section 2
we give our motivations for using graphs to encode
linguistic data. In Section 3 we describe our method
for learning graph transformations and in Section 4
we report on experiments with applications of our
method. We conclude in Section 5.

2 Graphs for linguistic structures and
language processing tasks

Trees and graphs are natural and common ways of
encoding linguistic information, in particular, syn-
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tactic structures (phrase trees, dependency struc-
tures). In this paper we use node- and edge-labeled
directed graphs as our representational formalism.
Figures 1 and 2 give informal examples of such rep-
resentations.

Figure 1 shows a graph encoding of the Penn
Treebank annotation of the local (solid edges) and
non-local (dashed edges) syntantic structure of the
sentence directors this month planned to seek more
seats. In this example, the co-indexing-based im-
plicit annotation of the non-local dependency (sub-
ject control) in the Penn Treebank (Bies et al., 1995)
is made explicit in the graph-based encoding.

Figure 2 shows a graph encoding of linguistic
structures for the sentence Lorillard Inc stopped us-
ing crocodolite in sigarette filters in 1956. Here,
solid lines correspond to surface syntactic structure,
produced by Charniak’s parser (Charniak, 2000),
and dashed lines are an encoding of the Proposition
Bank annotation of the semantic roles with respect
to the verb stopped.

Graph-based representations allow for a uniform
view on the linguistic structures on different layers.
An advantage of such a uniform view is that ap-
parently different NLP tasks can be considered as

VP

to seek NP

seats

VP

planned

S

directors S

this month

NP

NP

Figure 3: Output of a syntactic parser.

manipulations with graphs, in other words, as graph
transformation problems.

Consider the task of recovering non-local depen-
dencies (such as control, WH-extraction, topicaliza-
tion) in the surface syntactic phrase trees produced
by the state-of-the-art parser of (Charniak, 2000).
Figure 3 shows a graph-based encoding of the output
of the parser, and the task in question would consist
in transforming the graph in Figure 3 into the graph
in Figure 1. We notice that this transformation can
be realised as a sequence of independent and rela-
tively simple graph transformations: adding nodes
and edges to the graph or changing their labels (e.g.,
from NP to NP-SBJ).

Similarly, for the example in Figure 2, adding a
semantic layer (dashed edges) to the syntactic struc-
ture can also be seen as transforming a graph.

In general, we can view NLP tasks as adding ad-
ditional linguistic information to text, based on the
information already present: e.g., syntactic pars-
ing taking part-of-speech tagged sentences as in-
put (Collins, 1999), or anaphora resolution tak-
ing sequences of syntactically analysed and named-
entity-tagged sentences. If both input and output lin-
guistic structures are encoded as graphs, such NLP
tasks become graph transformation problems.

In the next section we describe our general
method for learning graph transformations from an
annotated corpus.

3 Learning graph transformations

We start with a few basic definitions. Similar
to (Schürr, 1997), we define ıemphgraph as a rela-
tional structure, i.e., a set of objects and relations
between them; we represent such structures as sets
of first-order logic atomic predicates defining nodes,
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directed edges and their attributes (labels). Con-
stants used in the predicates represent objects (nodes
and edges) of graphs, as well as attribute names and
values. Atomic predicates node(·), edge(·, ·, ·) and
attr(·, ·, ·) define nodes, edges and their attributes.
We refer to (Schürr, 1997; Jijkoun, 2006) for formal
definitions and only illustrate these concepts with an
example. The following set of predicates:

node(n1), node(n2), edge(e, n1, n2),
attr(n1, label, Src), attr(n2, label, Dst)

defines a graph with two nodes, n1 and n2, hav-
ing labels Src and Dst (encoded as attributes named
label), and an (unlabelled) edge e going from n1 to
n2.

A pattern is an arbitrary graph and an occurence
of a pattern P in graph G is a total injective homo-
morphism Ω from P to G, i.e., a mapping that asso-
ciates each object of P with one object G and pre-
serves the graph structure (relations between nodes,
edges, attribute names and values). We will also use
the term occurence to refer to the graph Ω(P ), a sub-
graph of G, the image of the mapping Ω on P .

A graph rewrite rule is a triple r =
〈lhsr, Cr, rhsr〉: the left-hand side, the constraint
and the right-hand side of r, respectively, where lhsr

and rhsr are graphs and Cr is a function that returns
0 or 1 given a graph G, pattern lhsr and its occurence
in G (i.e., Cr specifies a constraint on occurences of
a pattern in a graph).

To apply a rewrite rule r = 〈lhsr, Cr, rhsr〉 to
a graph G means finding all occurences of lhsr in
G for which Cr evaluates to 1, and replacing such
occurences of lhsr with occurences of rhsr. Effec-
tively, objects and relations present in lhsr but not in
rhsr will be removed from G, objects and relations
in rhsr but not in lhsr will be added to G, and com-
mon objects and relations will remain intact. Again,
we refer to (Jijkoun, 2006) for formal definitions.

As will be discussed below, our method for learn-
ing graph transformations is based on the ability to
compare pairs of graphs, identifying where the two
graphs are similar and where they differ. An align-
ment of two graphs is a partial one-to-one homomor-
phism between their nodes and edges, such that if
two edges of the two graphs are aligned, their re-
spective endpoints are aligned as well. A maximal

alignment of two graphs is an alignment that maxi-
mizes the sum of (1) the number of aligned objects
(nodes and edges), and (2) the number of match-
ing attribute values of all aligned objects. In other
words, a maximal alignment identifies as many sim-
ilarities between two graphs as possible. Given an
alignment of two graphs, it is possible to extract a
list of rewrite rules that can transform one graph into
another. For a maximal alignment such a list will
consist of rules with the smallest possible left- and
right-hand sides. See (Jijkoun, 2006) for details.

As stated above, we view NLP applications as
graph transformation modules. Our supervised
method for learning graph transformation requires
two corpora: input graphs In = {Ink} and corre-
sponding output graphs Out = {Outk}, such that
Outk is the desired output of the NLP module on
the input Ink.

The result of the method is an ordered list of graph
rewrite rules R = 〈r1, . . . rn〉, that can be applied in
sequence to input graphs to produce the output of the
NLP module.

Our method for learning graph transforma-
tions follows the structure of Transformation-Based
Learning (Brill, 1995) and proceeds iteratively, as
shown in Figure 4. At each iteration, we compare
and align pairs of input and output graphs, identify
possible rewrite rules and select rules with the most
frequent left-hand sides. For each selected rewrite
rule r, we extract all occurences of its left-hand
side and use them to train a two-class classifier im-
plementing the constraint Cr: the classifier, given
an encoding of an occurence of the left-hand side
predicts whether this particular occurence should
be replaced with the corresponding right-hand side.
When encoding an occurence as a feature vector, we
add as features all paths and all attributes of nodes
and edges in the one-edge neighborhood from the
nodes of the occurence. For the experiments de-
scribed in this paper we used the SVM Light classi-
fier (Joachims, 1999) with a standard linear kernel.
See (Jijkoun, 2006) for details.

4 Applications

Having presented a general method for learning
graph transformations, we now illustrate the method
at work and describe two applications to concrete
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NLP problems: identification of non-local depen-
dencies (with the Penn Treebank data) and semantic
role labeling (with the Proposition Bank data).

4.1 Non-local dependencies

State-of-the-art statistical phrase structure parsers,
e.g., Charniak’s and Collins’ parsers trained on
the Penn Treebank, produce syntactic parse trees
with bare phrase labels, (NP, PP, S, see Figure 3),
i.e., providing surface grammatical analysis of sen-
tences, even though the training corpus, the Penn
Treebank, is richer and contains additional gram-
matical and semantic information: it distinguishes
various types of modifiers, complements, subjects,
objects and annotates non-local dependencies, i.e.,
relations between phrases not adjacent in the parse
tree (see Figure 1). The task of recovering this in-
formation in the parser’s output has received a good
deal of attention. (Campbell, 2004) presents a rule-
based algorithm for empty node identification in
syntactic trees, competitive with the machine learn-
ing methods we mention next. In (Johnson, 2002)
a simple pattern-matching algorithm was proposed
for inserting empty nodes into syntactic trees, with
patterns extracted from the Penn Treebank. (Dienes,
2004) used a preprocessor that identified surface lo-
cation of empty nodes and a syntactic parser incor-
porating non-local dependencies into its probabilis-

tic model. (Jijkoun and de Rijke, 2004) described
an extension of the pattern-matching method with a
classifier trained on the dependency graphs derived
from the Penn Treebank data.

In order to apply our graph transformation method
to the task of identifying non-local dependencies,
we need to encode the information provided in the
Penn Treebank annotations and in the output of a
syntactic parser using directed labeled graphs. We
used a straightforward encoding of syntactic trees,
with nodes representing terminals and non-terminals
and edges defining the parent-child relationship. For
each node, we used the attribute type to specify
whether it is a terminal or a non-terminal. Ter-
minals corresponding to Penn empty nodes were
marked with the attribute empty = 1. For each
terminal (i.e., each word), the values of attributes
pos, word and lemma provided the part-of-speech tag,
the actual form and the lemma of the word. For
non-terminals, the attribute label contained the la-
bel of the corresponding syntactic phrase. The co-
indexing of empty nodes and non-terminals used in
the Penn Treebank to annotate non-local dependen-
cies was encoded using explicit edges with a distinct
type attribute, connecting empty nodes with their an-
tecedents (e.g., the dashed edge in Figure 1). For
each non-terminal node, its head child was marked
by attaching attribute head with value 1 to the corre-
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sponding parent-child edge, and the lexical head of
each non-terminal was explicitly indicated using ad-
ditional edges with the attribute type = lexhead. We
used a heuristic method of (Collins, 1999) for head
identification.

When Penn Treebank sentences and the output of
the parser are encoded as directed labeled graphs
as described above, the task of identifying non-
local dependencies can be formulated as transform-
ing phrase structure graphs produced by a parser into
graphs of the type used in Penn Treebank annota-
tions.

We parsed the strings of the Penn Treebank with
Charniak’s parser and then used the data from sec-
tions 02–21 of the Penn Treebank for training: en-
coding of the parser’s output was used as the cor-
pus of input graphs for our learning method, and
the encoding of the original Penn annotations was
used as the corpus of output graphs. Similarly, we
used the data of sections 00–01 for development and
section 23 for testing. Using the input and output
corpora, we ran the learning method as described
above, at each iteration considering 20 most frequent
left-hand sides of rewrite rules. At each iteration,
the learned rewrite rules were applied to the current
training and development corpora to create a cor-
pus of input graphs for the next iteration (see Fig-
ure 4) and to estimate the performance of the system
at the current iteration. The system was evaluated
on the development corpus with respect to non-local
dependencies using the “strict” evaluation measure
of (Johnson, 2002): the F1 score of precision and
recall of correctly identified empty nodes and an-
tecedents. If the absolute improvement of the F1

score for the evaluation measure was smaller than
0.1, the learning cycle was terminated, otherwise a
new iteration was started.

The learning cycle terminated after 12 iterations.
The resulting sequence of 12 × 20 = 240 graph
rewrite rules was applied to the test corpus of in-
put graphs: Charniak’s parser output on the strings
of section 23 of the Penn Treebank. The result
was evaluated against the original annotations of the
Penn Treebank.

The results of the evaluation of the system on
empty nodes and non-local dependencies and the
PARSEVAL F1 score on local syntactic phrase
structure against the test corpus at each iteration are

Stage P R F1 PARSEVAL F1

Initial 0.0 0.0 0.0 88.7
1 88.2 38.6 53.7 88.4
2 87.2 48.6 62.5 88.4
3 87.5 51.9 65.2 88.4
4 86.7 52.1 65.1 88.4
5 86.1 56.3 68.1 88.3
6 86.0 57.2 68.7 88.4
7 86.3 61.3 71.7 88.4
8 86.6 63.4 73.2 88.4
9 86.7 64.6 74.0 88.4

10 86.7 64.9 74.2 88.4
11 86.6 65.1 74.3 88.4
12 86.7 65.2 74.4 88.4

Table 1: Evaluation of our method for identification
of empty nodes and their antecedents (12 first itera-
tions).

shown in Table 1.
As one can expect, at each iteration the method

extracts graph rewrite rules that introduce empty
nodes and non-local relations into syntactic struc-
tures, increasing the recall. The performance of the
final system (P/R/F1 = 86.7/65.2/74.4) for the task
of identifying non-local dependencies is compara-
ble to the performance of the best model of (Di-
enes, 2004): P/R/F1=82.5/70.1/75.8. The PARSE-
VAL score for the present system (88.4) is, however,
higher than the 87.3 for the system of Dienes.

Another effect of the learned transformations is
changing node labels of non-terminals, specifically,
modifying labels to include Penn functional tags
(e.g., changing NP in the input graph in Figure 3 to
NP-SBJ in the output graph in Figure 1). In fact, 17%
of all learned rewrite rules involved only changing
labels of non-terminal nodes. Analysis of the results
showed that the system is capable of assigning Penn
function tags to constituents produced by Charniak’s
parser with F1 = 91.4 (we use here the evalua-
tion measure of (Blaheta, 2004): the F1 score of the
precision and recall for assigning function tags to
constituents with surface spans correctly identified
by Charniak’s parser). Comparison to the evalua-
tion results of the function tagging method presented
in (Blaheta, 2004) is shown in Table 2.

The present system outperforms the system of
Blaheta on semantic tags such as -TMP or -MNR
marking temporal and manner adjuncts, respec-
tively, but performs worse on syntactic tags such
as -SBJ or -PRD marking subjects and predicatives,
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(Blaheta, 2004) Here
Type Count P / R / F1 P / R / F1

All tags 8480 - 93.3 / 89.6 / 91.4

Syntactic 4917 96.5 / 95.3 / 95.9 95.4 / 95.5 / 95.5
Semantic 3225 86.7 / 80.3 / 83.4 89.7 / 82.5 / 86.0

Table 2: Evaluation of adding Penn Treebank func-
tion tags.

respectively. Note that the present method was not
specifically designed to add functional tags to con-
stituent labels. The method is not even “aware” that
functional tags exists: it simply treats NP and NP-SBJ
as different labels and tries to correct labels compar-
ing input and output graphs in the training corpora.

In general, of the 240 graph rewrite rules ex-
tracted during the 12 iterations of the method, 25%
involved only one graph node in the left-hand side,
16% two nodes, 12% three nodes, etc. The two
most complicated extracted rewrite rules involved
left-hand sides with ten nodes.

We now switch to the second application of our
graph transformation method.

4.2 Semantic role labeling

Put very broadly, the task of semantic role labeling
consists in detecting and labeling simple predicates:
Who did what to whom, where, when, how, why, etc.
There is no single definition of a universal set of
semantic roles and moreover, different NLP appli-
cations may require different specificity of role la-
bels. In this section we apply the graph transforma-
tion method to the task of identification of semantic
roles as annotated in the Proposition Bank (Palmer
et al., 2005), PropBank for short. In PropBank, for
all verbs (except copular) of the syntactically anno-
tated sentences of the Wall Street Journal section of
the Penn Treebank, semantic arguments are marked
using references to the syntactic constituents of the
Penn Treebank. For the 49,208 syntactically anno-
tated sentences of the Penn Treebank, the PropBank
annotated 112,917 verb predicates (2.3 predicates
per sentence on average), with a total of 292,815 se-
mantic arguments (2.6 arguments per predicate on
average).

PropBank does not aim at cross-verb semantically
consistent labeling of arguments, but rather at anno-
tating the different ways arguments of a verb can

be realized syntactically in the corpus, which re-
sulted in the choice of theory-neutral numbered la-
bels (e.g., Arg0, Arg1, etc.) for semantic arguments.
Figure 2 shows an example of a PropBank annota-
tion (dashed edges).

In this section we address a specific NLP task:
identifying and labeling semantic arguments in the
output of a syntactic parser. For the example in
Figure 2 this task corresponds to adding “semantic”
nodes and edges to the syntactic tree.

As before, in order to apply our graph transfor-
mation method, we need to encode the available in-
formation using graphs. Our encoding of syntactic
phrase structure is the same as in Section 4.1 and the
encoding of the semantic annotations of PropBank
is straightforward. For each PropBank predicate, a
new node with attributes type = propbank and label =
pred is added. Another node with label = head and
nodes for all semantic arguments of the predicate
(with labels indicating PropBank argument names)
are added and connected to the predicate node. Ar-
gument nodes with label ARGM (adjunct) addition-
ally have a feature attribute with values TMP, LOC,
etc., as specified in PropBank. The head node and
all argument nodes are linked to their respective syn-
tactic constituents, as specified in the PropBank an-
notation. All introduced semantic edges are marked
with the attribute type = propbank.

As before, we used section 02–21 of the Prop-
Bank (which annotates the same text as the Penn
Treebank) to train our graph transformation system,
section 00-01 for development and section 23 for
testing. We ran three experiments, taking three dif-
ferent corpora of input graphs:

1. the original syntactic structures of the Penn
Treebank containing function tags, empty
nodes, non-local dependencies, etc.;

2. the output of Charniak’s parser (i.e., bare syn-
tactic trees) on the strings of sections 02–21;
and

3. the output of Charniak’s parser processed
with the graph transformation system described
in 4.1.

For all three experiments we used the gold stan-
dard syntactic and semantic annotations from the
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Penn Treebank Charniak Charniak +
Iter. P R P R P R

1 90.0 70.7 79.5 58.6 79.9 59.1
2 90.7 76.5 81.2 63.9 81.0 64.2
3 90.7 78.1 81.3 65.6 81.1 65.8
4 90.6 78.9 81.4 66.5 81.2 66.7
5 90.5 80.4 81.4 67.0 81.2 68.3
6 90.4 81.2 81.4 68.3 81.1 68.8
7 90.3 81.9 81.3 68.9 81.0 69.3
8 90.3 82.2 81.3 69.3 81.0 69.8
9 90.3 82.5 81.3 69.6 81.0 70.1

10 90.3 82.8 81.4 69.8 81.0 70.3
11 90.3 83.0 81.3 69.9 81.0 70.4
12 90.3 83.2

Table 3: Evaluation of our method for semantic role
identification with Propbank: with Charniak parses
and with parses processed by the system of Sec-
tion 4.1.

Penn Treebank and PropBank as the corpora of out-
put graphs (for the experiment with bare Charniak
parses, we dropped function tags, empty nodes and
non-local dependencies from the syntactic annota-
tion of the output graphs: we did not want our sys-
tem to start recovering these annotations, but were
interested in the identification of PropBank informa-
tion alone).

For each of the experiments, we used the corpora
of input and output graphs as before, at each itera-
tion extracting 20 rewrite rules with most frequent
left-hand sides, applying the rules to the develop-
ment data to measure the current performance of the
system. We stopped the learning in case the perfor-
mance improvement was less than a threshold and,
otherwise, continued the learning loop. As our per-
formance measure we used the F1 score of precision
and recall of the correctly identified and labeled non-
empty constituents—semantic arguments.

In all experiments, the learning stopped after 11
or 12 iterations. The results of the evaluation of the
system at each iteration on the test section of Prop-
Bank are shown in Table 3.

As one may expect, the performance of our se-
mantic role labeler is substantially higher on the
gold Penn Treebank syntactic structures than on the
parser’s output. Surprisingly, however, adding extra
information to the parser’s output (i.e., processing it
with the system of Section 4.1) does not significantly
improve the performance of the resulting system.

In Table 4 we compare our system for semantic

System P R F1

(Pradhan et al., 2005) 80.9 76.8 78.8
Here 81.0 70.4 75.3

Table 4: Evaluation of our methods for semantic role
identification with Propbank (12 first iterations).

roles labeling with the output of Charniak’s parser to
the state-of-the-art system of (Pradhan et al., 2005).

While showing good precision, our system per-
forms worse than state-of-the-art with respect to re-
call. Taking into account the iterative nature of
the method and imperfect rule selection criteria (we
simply take the most frequent left-hand sides), we
believe that it is the rule selection and learning termi-
nation condition that account for the relatively low
recall values. Indeed, in all three experiments de-
scribed above the learning loop stops while the recall
is still on the rise, albeit very slowly. It seems that
a more careful rule selection mechanism and loop
termination criteria are needed to address the recall
problem.

5 Conclusions

In this paper we argued that encoding diverse and
complex linguistic structures as directed labeled
graphs allows one to view many NLP tasks as graph
transformation problems. We proposed a general
method for learning graph transformation from an-
notated corpora and described experiments with two
NLP applications.

For the task of identifying non-local dependen-
cies and for function tagging our general method
demonstrates performance similar to the state-of-
the-art systems, designed specifically for these tasks.
For the PropBank semantic role labeling the method
shows a relatively low recall, which can be explained
by our sub-optimal “rule of thumb” heuristics (such
as selecting 20 most frequent rewrite rules at each
iteration of the learning method). We see two ways
of avoiding such heuristics. First, one can define
and fine-tune the heuristics for each specific appli-
cation. Second, one can use more informed rewrite
rule selection methods, based on graph-based rela-
tional learning and frequent subgraph detection al-
gorithms (Cook and Holder, 2000; Yan and Han,
2002). Furthermore, more experiments are required
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to see how the details of encoding linguistic in-
formation in graphs affect the performance of the
method.
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Abstract

This paper describes the analysis of weak
local coherence utterances during human-
computer conversation through the appli-
cation of an emergent data mining tech-
nique,data crystallization. Results reveal
that by adding utterances with weak local
relevance the performance of a baseline
conversational partner, in terms of user
satisfaction, showed betterment.

1 Introduction

Data mining can be defined as the process of find-
ing new and potentially useful knowledge from data.
An enhanced trend of data mining ischance discov-
ery, which in spite of being an emergent field of re-
search has been applied to different branches of sci-
ence. Recently, data crystallization (Ohsawa, 2005)
has been proposed as a chance discovery extension
devoted to find desired unobservable events within
a given data. This method of data mining has been
intended for revealing events that are significant but
arenot included in the analyzed data (sparseness).

The knowledge database of a conversational part-
ner computer program is a good example of data
sparseness, making very difficult to realize a human-
like conversation between a user and a computer,
since the database is missing relevant or coherent
answers for a given user input, e.g., ELIZA sys-
tem (Weizenbaum, 1966), corpus-based dialogue
systems (Inui et al., 2003), and so forth. Herring
(1999) noticed the weak sequential coherence dur-
ing human-computer interaction that is caused by

weak local relevance, pointing out the violation of
the Gricean maxim of local relevance during the di-
alogue. However, we argue that conversational re-
sponses - often of very weak local relevance - gener-
ated by a conversational partner computer program
(or “chatbot”) could successfully simulate human-
like coherent dialogue (see example given by (Her-
ring, 1999), where topical coherence is stated in
spite of violation of local relevance Gricean maxim).
Moreover, we argue that weak local relevance utter-
ances could be regarded astopic-shifting utterances.
These utterances are vital in order to keep the flow of
the dialogue and its overall coherence. Determining
the moment when the topic-shifting utterances are
needed is hence essential to the success of a chatbot.

In this paper KeyGraph and data crystallization
techniques are applied to analyze human-computer
trivial dialogue,chat, considering as chances to dis-
cover themissing topic-shifting utterances, used to
improve the overall sequential coherence and the
flow of the computer dialogue.

2 Human-Computer Conversation
Analysis Approach

During the process of dialogue mining, in order to
analyze the behavior of human-computer conversa-
tional interaction, the interrelationship of utterances
of a dialogue section was obtained. The following is
a fragment of an analyzed dialogue section between
a user and ALICE chatbot (Wallace, 2005):
[1] User: hi

[2] Chatbot: hello there! what is your name?

[3] User: Joe

[4] Chatbot: Ok, I will call you Joe
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[5] User: what should I call you?

[6] Chatbot: my name is Alice

[7] User: cool [....]

(Conversation continues)

[17] User: what do you mean by robot? there are lots of differ-

ent robots

[18] Chatbot: It is a good question. Have you tried a web

search? Would you like to know more?

[19] User: sure

[20] Chatbot: Ok let’s do it. What would you like to know?

[21] User: what Alice thinks a robot means

[22] Chatbot: is that a rhetorical question? I would search for it

[23] User: when I hear robot, I think of something that moves

[24] Chatbot: you never know what to expect from life. Why?

oh yeah, we are talking about something that moves [....]

For the analysis, the application of data crystal-
lization is introduced in order to identify the miss-
ing topic-shifting utterances. The interrelationship
of utterances (user-chatbot) is represented in a co-
occurrence document created as described below.

2.1 The KeyGraph

The KeyGraph has been used as a data-mining tool
for extracting patterns of the appearance of chance
events (Ohsawa et al.(2003)). The KeyGraph iden-
tifies relationships between terms in a document
particularly focusing on co-occurrence relationships
of both high-probability and low-probability events.
Montero et al. (2005) have applied this tool for ana-
lyzing the dynamic behavior of human-human chat,
identifying criticality.

In this paper the KeyGraph is applied in combi-
nation with data crystallization in order to visual-
ized utterances that do not appear during human-
computer chat. The interrelationship of utterances
(user-chatbot) is represented in a co-occurrence doc-
ument created by the following algorithm:a) Each ut-

terance (from both, the user and the chatbot) was considered as

one sentence. b) Each sentence was segmented into words. c)

High frequency words were eliminated, i.e., I, you, is, follow-

ups and the like, as to avoid false co-occurrence. d) A vectorial

representation of each sentence (at word level) was obtained and

sentences co-occurrence relationship was determined as1:

D= w1:: S1, S2, S4 .../ w2:: S9, S25 .../

w3:: S1, S3, S10 .../ ... /wn:: S24, S25, ... Sm

1Since follow-ups were eliminated, the number of sentences
in D might be smaller than the actual number of sentences in
the dialogue.

where:wk (k = 1, 2, 3, ..., n), represents a word in a sentence.

Sl (l = 1, 2, 3, ..., m), represents a sentence.

Then it could be said that the obtainedD docu-
ment contains the co-occurrence relationship of the
utterances during the analyzed dialogue section. In
the graph, the most frequent items inD are shown
as black nodes and the most strongly co-occurring
item-pairs are linked by black lines according to the
Jaccard coefficient:

J(Sx, Sy) = p(Sx ∩ Sy)/p(Sx ∪ Sy)

wherep(Sx ∩ Sy) is the probability that both el-
ementsSx and Sy co-occur in a line inD, and
p(Sx ∪ Sy) is the probability that eitherSx or Sy

appears in a line. In the graph, nodes are interpreted
as sentences (fromD) and clusters of nodes as par-
ticular topics (Figure 1).

2.2 Data Crystallization

Data crystallization (Ohsawa, 2005), is dedicated to
experts working in real domains where discoveries
of events that are important but are not included in
the analyzed data are desired. The process of data
crystallization involves to insertdummy items in
the given data in order to represent unobservable
events. In this paper, each dummy item inserted in
theD document (one in each vector ofD) is named
XY , whereX represents the level of the insertion
and Y represents the line where the dummy item
was inserted. The KeyGraph is applied to the newD
document and all of the dummy nodes that did not
appear linking clusters in the graph are eliminated
from the data, and then the cycle is iterated to higher
levels. In the case of theD document of Sec.2.1,
after the first level of insertion it becomes:

D′= w1:: S1, S2, S4 ...11 / w2:: S9, S25 ...12 /

w3:: S1, S3, S10 ...13 / ... / wn:: S24, S25, ... Sm 1n

where1 o (o = 1, 2, 3, ..., n), represents each dummy item

inserted in each vector ofD.

After feeding the KeyGraph withD′, all the
dummy items that did not appear linking clusters as
bridges in the outputted graph are deleted. At this
point new dummy items with higher hierarchy (2x)
are inserted inD′, and the cycle iterates. Unobserv-
able events and their relations with other events are
to be visualized by the application of KeyGraph iter-
atively to the data that is been crystallized (Figure 2).
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Figure 1: User-Computer Chat Graph Figure 2: Crystallized Data Graph

3 Experiment and Visual Results

The performed experiment was carried out in three
stages. In the first stage of the experiment, three dif-
ferent dialogue sections (including the one shown in
Sec.2) between three native English speakers and a
chatbot (Wallace, 2005) were analyzed in order to
find co-occurrence between the users’ utterance and
the chatbot replies, i.e.,D document. ThisD docu-
ment was then examined by the KeyGraph (unsuper-
vised process). Figure 1 shows the graphical view of
the dialogue in Sec.2 (48 turns, user - chatbot, in to-
tal). A characteristic of the KeyGraph is the visual-
ization of co-occurring events by means of clusters.
In Figure 1, the nodes represent sentences from the
D document, the clusters represent the relationship
among those sentences, i.e., a specific topic, and the
nodes that link the clusters represent the transition
from one topic to the next. It can be observed that
the main clusters are not interconnected, leading to
the conclusion that the chatbot in many cases could
not keep a smooth and natural flow of the dialogue.

In the second stage of the experiment, acrystal-
lized document of utterance co-occurrence, i.e.,D′

document, was obtained for the same dialogue sec-
tions, following the process described in Sec.2.2.
The graphical output of the dialogue in Sec.2, af-
ter crystallization, can be observed in Figure 2. It
can be seen in this figure how the two main clusters
appear to be interconnected by the dummy item1 3.

Although this dummy item was inserted in the third
line of theD document, it appears in the graph con-
necting the two main clusters. The dummy item1 3
branches from utterance [24]. This interconnecting
point can be regarded as the system considering it
appropriate to insert a topic-shifting utterance at this
point of the conversation. In doing so, a well in-
terconnected graph is obtained (Figure 2). This in-
formation is valuable for making the chatbot to ask
“intelligent questions” as a mean ofconversational
responses to keep the interest from the user.

In the third stage of the experiment, the informa-
tion yielded by the previous analysis, i.e., regard-
ing the timing where a topic-shifting utterance might
be needed, was used to feed the chatbot database.
Topic-shifting responses were inserted by hand (su-
pervised process) as general patterns (around one
hundred patterns) for smoothly change the topic
when there is not a pattern that matches a given ut-
terance. In this way a bridge, represented in Figure
2 by the dummy item, is created giving to the di-
alogue the desired smoothness. Seven users (four
native English speakers, three non native speakers)
were requested to perform a chat with the plain chat-
bot and with the enhanced chatbot (the users did
not know which chatbot was plain or which was en-
hanced). The time set up was maximum 30 minutes-
chat with each program, the user was free to stop
at any time before the time limit. The evaluation of
the chatbots performances was made through a ques-
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Turns % V.R.* Accuracy/relevance
Baseline 74 21.11% fair
Enhanced 128 7.37% good
V.R.* = Vague Reply (This table contains the average of Turns and VR)

Table 1: Chatbots Overall Performance

tionnaire given to the users. In the questionnaire the
degree of satisfaction of the user was surveyed based
on the accuracy/relevance of the chatbot responses
and its ability to keep the dialogue flowing. The ac-
curacy/relevance had a ranking scale:1. excellent, 2.

good, 3. average, 4. fair, and 5. poor, while the user satis-
faction ranked :1. very satisfied, 2. satisfied, 3. not sure, 4.

dissatisfied, and 5. very dissatisfied.
The four native English speaker users globally

agreed ranking enhanced chatbot as having “good”
accurate/relevant responses during the overall dia-
logue, giving remarks like “interesting to talk with”,
“better at keeping the conversation going”, “easier
to talk to”, and “more impression of consciousness”.
In the case of the plain chatbot, the native speakers
showed “dissatisfied” at its performance, giving re-
marks like “loop responses”, “slow in keeping the
conversation going”, “no so nice responses”, “no
constant memory”. Table 1 shows a resume of the
average performance of the chatbot for all of the
users. An example of a vague reply is given in the
following fragment:

Chatbot: What is like living in Sapporo?

User: sweet as

Chatbot: In the context of living in Sapporo I don’t under-

stand “what is like living in Sapporo?”[vague reply]

Two non native English speaker users ranked the
enhanced chatbot as having “fair” and “average”
accurate/relevant responses while the plain chat-
bot was ranked as having “poor” and “fair” accu-
rate/relevant responses. The third non native En-
glish speaker user ranked both chatbots as “poor”
due to “the chatbots lack of understanding deixis,
and anaphor”.

As a mean of discussion, in Figure 2 it could be
expected that the dummy item1 3 would branch
from utterance [25]{User: no, you asked me who is the

best robot}, which is in the same cluster with utterance
[24]. However, under closer examination it becomes
clear that utterance [24] has stronger co-occurrence
with utterance [38]{Chatbot: I know you are but what am

I} than utterance [25]. Hence, the algorithm suggests

to link the clusters via utterance [24].
In other aspect, based on the feedback given by

the seven users of the experiment, the overall per-
formance of the enhanced chatbot can be considered
better than the plain chatbot. It is worth noticing
that the evaluation of the non native English speaker
users tended to emphasize the grammatical aspect
of the chatbots responses. On the other hand, the
evaluation of the native English speaker users tended
to emphasize the smoothness of the dialogue. Al-
though there is still plenty of room for improve-
ment and research a betterment in the chatbot per-
formance could be seen through this approach.

4 Conclusion

In this paper the application of a novel data mining
method, data crystallization, for visualizing missing
topic-shifting utterances during human-computer
chat has been described. Based on this informa-
tion, during the experiment, the use of weak local
relevance utterances, i.e., topic-shifting responses,
despite of violation of Grecian maxim of local rel-
evance, showed to meliorate the overall dialogue
flow. Future research will be oriented to the ex-
tended implementation of the obtained results for
enhancing the chat flow modeling of a conversa-
tional partner program.
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Abstract

We study the correlations in the connec-
tivity patterns of large scale syntactic de-
pendency networks. These networks are
induced from treebanks: their vertices de-
note word forms which occur as nuclei
of dependency trees. Their edges con-
nect pairs of vertices if at least two in-
stance nuclei of these vertices are linked
in the dependency structure of a sentence.
We examine the syntactic dependency net-
works of seven languages. In all these
cases, we consistently obtain three find-
ings. Firstly, clustering, i.e., the probabil-
ity that two vertices which are linked to
a common vertex are linked on their part,
is much higher than expected by chance.
Secondly, the mean clustering of vertices
decreases with their degree — this find-
ing suggests the presence of a hierarchical

network organization. Thirdly, the mean
degree of the nearest neighbors of a ver-
tex x tends to decrease as the degree of
x grows — this finding indicates disassor-
tative mixing in the sense that links tend
to connect vertices of dissimilar degrees.
Our results indicate the existence of com-
mon patterns in the large scale organiza-
tion of syntactic dependency networks.

1 Introduction

During the last decade, the study of the statisti-
cal properties of networks as different as technical,
biological and social networks has grown tremen-
dously. See (Barabási and Albert, 2002; Dorogovt-
sev and Mendes, 2002; Newman, 2003) for a review.
Among them many kinds of linguistic networks have
been studied: e.g., free word association networks
(Steyvers and Tenenbaum, 2005), syllable networks
(Soares et al., 2005), thesaurus networks (Sigman
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and Cecchi, 2002), and document networks (Mehler,
2006). See (Mehler, 2007a) for a review of linguis-
tic network studies. Here we focus on the so called
global syntactic dependency networks (GSDN) (Fer-
rer i Cancho et al., 2004; Ferrer i Cancho, 2005).
A GSDN is induced from a dependency treebank in
two steps:

1. The vertices of the network are obtained from
the word forms appearing as nuclei in the in-
put treebank and from punctuation marks as far
as they have been annotated and mapped onto
dependency trees. The notion of a nucleus is
adapted from Lucien Tesnière: a nucleus is a
node of a dependency tree. Note that multipart
nuclei may also occur. We use the term type
in order to denote word forms and punctuation
marks. The reason that we induce vertices from
types, but not from lexemes, is that not all cor-
pora are lemmatized. Thus, the type level is the
least common denominator which allows com-
paring the different networks. Note also that a
systematization of the corpora with respect to
the inclusion of punctuation marks is needed.

2. Two vertices (i.e. types) of a GSDN are con-
nected if there is at least one dependency tree in
which their corresponding instance nuclei are
linked. When it comes to applying the appa-
ratus of complex network theory, the arc direc-
tion is generally disregarded (Newman, 2003).
Thus, GSDNs are simple undirected graphs
without loops or multiple edges.

The attribute ‘global’ distinguishes macroscopic
syntactic dependency networks from their micro-
scopic counterparts in the form of syntactic depen-
dency structures of single sentences. The latter are
the usual object of dependency grammars and re-
lated formalisms. The goal of this article is to shed
light on the large-scale organization of syntactic de-
pendency structures. In terms of theoretical linguis-
tics, we aim to determine the statistical properties
that are common to all languages (if they exist), the
ones that are not and to explain our findings. To
achieve this goal, we must overcome the limits of
many studies of linguistic networks. Firstly, by us-
ing GSDNs we intend to solve the problems of co-
occurrence networks in which words are linked if

they (a) are adjacent, (b) co-occur within a short
window (Ferrer i Cancho and Solé, 2001; Milo et al.,
2004; Antiqueira et al., 2006; Masucci and Rodgers,
2006) or (c) appear in the same sentence (Caldeira
et al., 2006). This approach is problematic: with
a couple of exceptions (Bordag et al., 2003; Fer-
rer i Cancho and Solé, 2001), no attempt is made
to filter out statistically insignificant co-occurrences.
Unfortunately the filter used in (Ferrer i Cancho
and Solé, 2001) is not well-defined because it does
not consider fluctuations of the frequencies of word
co-occurrences. (Bordag et al., 2003) implement
a collocation measure based on the Poisson distri-
bution and, thus, induce collocation instead of co-
occurrence networks. However, the notion of a sen-
tence window and related notions are problematic as
the probability that two words depend syntactically
decays exponentially with the number of intermedi-
ate words (Ferrer i Cancho, 2004). Further, (Ferrer
i Cancho et al., 2004) shows that the proportion of
syntactically wrong links captured from a sentence
by linking adjacent words is about 0.3 while this
proportion is about 0.5 when linking a word to its
1st and 2nd neighbors. Thus, dependency treebanks
offer connections between words that are linguisti-
cally precise according to a dependency grammar
formalism. Secondly, the majority of linguistic net-
work studies is performed on English only — with
some exceptions (Soares et al., 2005; Ferrer i Can-
cho et al., 2004; Mehler, 2006). Concerning GS-
DNs, (Ferrer i Cancho et al., 2004) considers three
languages but the syntactic dependency information
of sentences is systematically incomplete in two of
them. Here we aim to use complete treebanks and
analyze more (i.e. seven) languages so that we can
obtain stronger conclusions about the common sta-
tistical patterns of GSDNs than in (Ferrer i Cancho
et al., 2004).

Therefore, this article is about statistical regulari-
ties of the organization of GSDNs. These networks
are analyzed with the help of complex network the-
ory and, thus by means of quantitative graph the-
ory. We hypothesize that GSDNs are homoge-
neous in terms of their network characteristics while
they differ from non-syntactic networks. The long-
term objective to analyze such distinctive features
is to explore quality criteria of dependency tree-
banks which allow separating high quality annota-
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tions from erroneous ones.
The remainder of this article is organized as fol-

lows: Section 2 introduces the statistical measures
that will be used for studying GSDNs of seven lan-
guages. Section 3 presents the treebanks and their
unified representations from which we induce these
networks. Section 4 shows the results and Section 5
discusses them.

2 The statistical measures

Two essential properties of a network are N , the
number of vertices (i.e. the number of types), and k̄
the mean vertex degree (Barabási and Albert, 2002).
The literature about distinctive indices and distribu-
tions of complex networks is huge. Here we focus
on correlations in the network structure (Serrano et
al., 2006). The reason is that correlation analysis
provides a deeper understanding of network orga-
nization compared to classical aggregative “small-
world” indices. For instance, two networks may
have the same degree distribution (whose similarity
is measured by the exponent of power laws fitted to
them) while they differ in the degree correlation of
the vertices forming a link. Correlation analysis is
performed as follows: We define p(k) as the propor-
tion of vertices with degree k. Here we study three
measures of correlation (Serrano et al., 2006):

• k̄nn(k) is the average degree of the nearest
neighbors of the vertices with degree k (Pastor-
Satorras et al., 2001). If k̄nn(k) tends to grow
as k grows the network is said to exhibit assor-
tative mixing. In this case, edges tend to con-
nect vertices of similar degree. If in contrast to
this k̄nn(k) tends to shrink as k grows, the net-
work is said to exhibit disassortative mixing. In
this case, edges tend to connect vertices of dis-
similar degree. If there are no correlations, then
k̄nn(k) = κ with κ =

〈
k2

〉
/ 〈k〉; 〈k〉 = k̄ is

the 1st and
〈
k2

〉
the 2nd moment of the degree

distribution, namely

〈k〉 =
N−1∑
k=1

kp(k) (1)

〈
k2

〉
=

N−1∑
k=1

k2p(k). (2)

In order to enable comparisons of different net-
works, k̄nn(k) is normalized using κ and re-
placed by k̄nn(k)/κ.

• c̄(k) is the mean clustering coefficient of ver-
tices of degree k. The clustering coefficient of
a vertex is defined as the proportion of pairs of
adjacent vertices (u, v) such that u and v are
linked.

• c̄ is the mean clustering coefficient defined as

c̄ =
N−1∑
k=1

p(k)c̄(k). (3)

In order to test the significance of c̄, we calcu-
late c̄binom = k̄/(N − 1), the expected cluster-
ing coefficient in a control binomial graph. In
a binomial graph, two vertices are linked with
probability p. p = k̄/(N − 1) is chosen so that
the expected number of links of the binomial
graphs is nk̄/2 as in the original network.

Assortative mixing is known to be characteristic
for social-semiotic, but not for technical networks
(Newman, 2003). Recently, (Mehler, 2006) has
shown that this characteristic varies a lot for differ-
ent document networks and thus allows distinguish-
ing linguistic networks which are homogeneously
called ‘small-worlds’. We have excluded on purpose
the Pearson correlation coefficient of the degrees at
the endpoints of edges that has been used in previous
studies (Ferrer i Cancho et al., 2004) due to the sta-
tistical problems that this measure has in large net-
works with power degree distributions (Serrano et
al., 2006).

3 The treebanks

We analyze seven treebanks each from a different
language. Their features are summarized in Table
1. A comprehensive description of these and re-
lated banks is given by (Kakkonen, 2005). As ex-
plained by Kakkonen, one generally faces the prob-
lem of the heterogeneity not only of the annotation
schemes, but also of the serialization formats used
by them. Thus, we unified the various formats in or-
der to get a single interface to the analysis of syntac-
tic dependency networks derived thereof. Although
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there exists a representation format for syntactic an-
notations (i.e. TIGER-XML — cf. (Mengel and Lez-
ius, 2000)) we decided to use the Graph eXchange
Language (GXL) in order to solve the heterogeneity
problem. The GXL has been proposed as a uniform
format for data interchange (Holt et al., 2006). It
allows representing attributed, directed, undirected,
mixed, ordered, hierarchical graphs as well as hyper-
graphs. Its application-dependent attribution model
concerns vertices, edges and graphs. Because of
its expressiveness it was utilized in modeling con-
stituency structures (Pustylnikov, 2006) as well as
nonlinear document structures (Mehler, 2007b). We
utilize it to map syntactic dependency structures.

Our GXL binding is schematically explained as
follows: corpora are mapped onto graphs which se-
rialize graph models of sentence-related dependency
structures. Each of these structures is mapped as a
forest whose directed edges are mapped by means
of the GXL’s edge model. This model preserves the
orientation of the input dependency relations. Figure
1 visualizes a sample dependency tree of the Slovene
dependency treebank (Džeroski et al., 2006).

Figure 1: Visualization of a sample sentence of the
Slovene dependency treebank (Džeroski et al., 2006)
based on its reconstruction in terms of the GXL.

4 Results

A summary of the network measures obtained on the
seven corpora is shown in Table 2. We find that
c̄ � c̄binom indicating a clear tendency of vertices
connected to be connected if they are linked to the
same vertex.

Since the Italian and the Romanian corpus are
Romanic languages and the size of their networks
is similar, they are paired in the figures. Figure 2
shows that the clustering c̄(k) decreases as k in-

creases. Figure 3 shows that k̄nn(k) decreases as
k increases, indicating the presence of disassortative
mixing when forming links, i.e. links tend to com-
bine vertices of dissimilar degrees. For sufficiently
large k the curves suggest a power-law behavior, i.e.
k̄nn(k) ∼ k−η.

5 Discussion

We have found that the behavior of k̄nn(k) suggests
k̄nn(k) ∼ k−η for sufficiently large k. A power-law
behavior has been found in technical systems (Ser-
rano et al., 2006). In a linguistic context, a power-
law like behavior with two regimes has been found
in the word adjacency network examined in (Ma-
succi and Rodgers, 2006). A decreasing k̄nn(k) for
growing k (an indicator of dissortative mixing) has
been found in biological and social systems (Serrano
et al., 2006). A decreasing c̄(k) for growing k has
been found in many non-linguistic systems (e.g. the
Internet map at the autonomous system level), and
also in a preliminary study of Czech and German
syntactic dependency networks (Ferrer i Cancho et
al., 2004). (Ravasz and Barabási, 2003) suggest
that this behavior indicates the existence of a hierar-
chical network organization (Ravasz and Barabási,
2003). In our case this may indicate the existence
of a core vocabulary surrounded by more and more
special vocabularies. This observation is in accor-
dance with a multipart organization of the rank fre-
quency distribution of the lexical units involved. But
this stratification is not simply due to the words’
collocation patterns, but to their behavior in syntac-
tic dependency structures. We have also found that
c̄ � c̄binom, which is a common feature of non-
linguistic (Newman, 2003) and linguistic networks
(Mehler, 2007a) and, thus, is not very informative.

In sum, we have seen that GSDNs follow a com-
mon pattern of statistical correlations regardless of
the heterogeneity of the languages and annotation
criteria used. This suggests that the structure of
GSDNs may originate from language independent
principles. Since the correlational properties of GS-
DNs are not unique to these networks, our findings
suggest that these principles may also be common
to certain non-linguistic systems. Thus, in order to
make GSDNs distinguishable in terms of their char-
acteristics, finding more expressive network coeffi-
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Figure 2: c̄(k), the mean clustering coefficient of vertices of degree k. (a) Danish, (b) Dutch, (c) Russian,
(d) Slovene, (e) Swedish and (f) Italian (black) and Romanian (gray).
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Figure 3: k̄nn(k)/κ, the normalized mean degree of the nearest neighbors of vertices of degree k. (a) Danish,
(b) Dutch, (c) Russian, (d) Slovene, (e) Swedish and (f) Italian (black) and Romanian (gray).
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Treebank Language Size (#nuclei) Marks included Reference

Alpino Treebank v. 1.2 Dutch 195.069 yes (van der Beek et al., 2002)
Danish Dependency Treebank v. 1.0 Danish 100.008 yes (Kromann, 2003)
Sample of sentences of the http://www.phobos.ro/

Dependency Grammar Annotator Romanian 36.150 no roric/DGA/dga.html

Russian National Corpus Russian 253.734 no (Boguslavsky et al., 2002)
A sample of the Slovene
Dependency Treebank v. 0.4 Slovene 36.554 yes (Džeroski et al., 2006)
Talkbanken05 v. 1.1 Swedish 342.170 yes (Nivre et al., 2006)
Turin University Treebank v. 0.1 Italian 44.721 no (Bosco et al., 2000)

Table 1: Summary of the features of the treebanks used in this study. Besides the name, language and
version of the corpus we indicate its size in terms of the number of nuclei tokens in the treebank. We also
indicate if punctuation marks are treated as vertices of the syntactic structure of sentencess or not.

Language N k̄ c̄ c̄binom

Alpino Treebank v. 1.2 28491 8.1 0.24 0.00028

Danish Dependency Treebank v. 1.0 19136 5.7 0.20 0.00030

Dependency Grammar Annotator 8867 5.3 0.093 0.00060

Russian National Corpus 58285 6.1 0.088 0.00010

Slovene Dependency Treebank v. 0.4 8354 5.3 0.12 0.00064

Talkbanken05 v. 1.1 25037 10.5 0.27 0.00042

Turin University Treebank v. 0.1 8001 6.9 0.18 0.00086

Table 2: Summary of the properties of the GSDNs analyzed. N is the number of vertices, k̄ is the mean
degree, c̄ is the mean clustering coefficient, c̄binom is the clustering coefficient of the control binomial graph.

cients is needed. A possible track could be consid-
ering the weight of a link, which is known to pro-
vide a more accurate description of the architecture
of complex networks (Barrat et al., 2004).

Acknowledgement
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Abstract

In this paper we attempt to deduce tex-
tual entailment based on syntactic depen-
dency trees of a given text-hypothesis pair.
The goals of this project are to provide an
accurate and fast system, which we have
called DLSITE-2, that can be applied in
software systems that require a near-real-
time interaction with the user. To accom-
plish this we use MINIPAR to parse the
phrases and construct their correspond-
ing trees. Later on we apply syntactic-
based techniques to calculate the seman-
tic similarity between text and hypothe-
sis. To measure our method’s precision we
used the test text corpus set from Second
PASCAL Recognising Textual Entailment
Challenge (RTE-2), obtaining an accuracy
rate of 60.75%.

1 Introduction

There are several methods used to determine tex-
tual entailment for a given text-hypothesis pair. The
one described in this paper uses the information
contained in the syntactic dependency trees of such
phrases to deduce whether there is entailment or
not. In addition, semantic knowledge extracted from
WordNet (Miller et al., 1990) has been added to
achieve higher accuracy rates.

It has been proven in several competitions and
other workshops that textual entailment is a complex
task. One of these competitions is PASCAL Recog-
nising Textual Entailment Challenge (Bar-Haim et

al., 2006), where each participating group develops a
textual entailment recognizing system attempting to
accomplish the best accuracy rate of all competitors.
Such complexity is the reason why we use a combi-
nation of various techniques to deduce whether en-
tailment is produced.

Currently there are few research projects related
to the topic discussed in this paper. Some systems
use syntactic tree matching as the textual entailment
decision core module, such as (Katrenko and Adri-
aans, 2006). It is based on maximal embedded syn-
tactic subtrees to analyze the semantic relation be-
tween text and hypothesis. Other systems use syn-
tactic trees as a collaborative module, not being the
core, such as (Herrera et al., 2006). The application
discussed in this paper belongs to the first set of sys-
tems, since syntactic matching is its main module.

The remainder of this paper is structured as fol-
lows. In the second section we will describe the
methods implemented in our system. The third one
contains the experimental results, and the fourth and
last discusses such results and proposes future work
based on our actual research.

2 Methods

The system we have built aims to provide a good
accuracy rate in a short lapse of time, making it
feasible to be included in applications that require
near-real-time responses due to their interaction with
the user. Such a system is composed of few mod-
ules that behave collaboratively. These include tree
construction, filtering, embedded subtree search and
graph node matching. A schematic representation of
the system architecture is shown in Figure 1.
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Figure 1: DLSITE-2 system architecture.

Each of the steps or modules of DLSITE-2 is de-
scribed in the following subsections, that are num-
bered sequentially according to their execution or-
der.

2.1 Tree generation

The first module constructs the corresponding syn-
tactic dependency trees. For this purpose, MINI-
PAR (Lin, 1998) output is generated and afterwards
parsed for each text and hypothesis of our corpus.
Phrase tokens, along with their grammatical infor-
mation, are stored in an on-memory data structure
that represents a tree, which is equivalent to the men-
tioned syntactic dependency tree.

2.2 Tree filtering

Once the tree has been constructed, we may want
to discard irrelevant data in order to reduce our sys-
tem’s response time and noise. For this purpose we
have generated a database of relevant grammatical
categories, represented in Table 1, that will allow
us to remove from the tree all those tokens whose
category does not belong to such list. The result-
ing tree will have the same structure as the original,
but will not contain any stop words nor irrelevant to-
kens, such as determinants or auxiliary verbs. The
whole list of ignored grammatical categories is rep-
resented in Table 2.

We have performed tests taking into account and
discarding each grammatical category, which has al-
lowed us to generate both lists of relevant and ig-
nored grammatical categories.

Verbs, verbs with one argument, verbs with two ar-
guments, verbs taking clause as complement, verb
Have, verb Be
Nouns
Numbers
Adjectives
Adverbs
Noun-noun modifiers

Table 1: Relevant grammatical categories.

2.3 Graph embedding detection

The next step of our system consists in determining
whether the hypothesis’ tree is embedded into the
text’s. Let us first define the concept of embedded
tree (Katrenko and Adriaans, 2006).

Definition 1: Embedded tree A tree
T1 = (V1, E1) is embedded into another
one T2 = (V2, E2) iff

1. V1 ⊆ V2, and
2. E1 ⊆ E2

where V1 and V2 represent the vertices,
and E1 and E2 the edges.

In other words, a tree, T1, is embedded into an-
other one, T2, if all nodes and branches of T1 are
present in T2.

We believe that it makes sense to reduce the strict-
ness of such a definition to allow the appearance
of intermediate nodes in the text’s branches that are
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Determiners
Pre-determiners
Post-determiners
Clauses
Inflectional phrases
Preposition and preposition phrases
Specifiers of preposition phrases
Auxiliary verbs
Complementizers

Table 2: Ignored grammatical categories.

not present in the corresponding hypothesis’ branch,
which means that we allow partial matching. There-
fore, a match between two branches will be pro-
duced if all nodes of the first one, namely θ1 ∈ E1,
are present in the second, namely θ2 ∈ E2, and their
respective order is the same, allowing the possibil-
ity of appearance of intermediate nodes that are not
present in both branches. This is also described in
(Katrenko and Adriaans, 2006).

To determine whether the hypothesis’ tree is em-
bedded into the text’s, we perform a top-down
matching process. For this purpose we first compare
the roots of both trees. If they coincide, we then pro-
ceed to compare their respective child nodes, which
are the tokens that have some sort of dependency
with their respective root token.

In order to add more flexibility to our system,
we do not require the pair of tokens to be ex-
actly the same, but rather set a threshold that rep-
resents the minimum similarity value between them.
This is a difference between our approach and the
one described in (Katrenko and Adriaans, 2006).
Such a similarity is calculated by using the Word-
Net::Similarity tool (Pedersen et al., 2004), and,
concretely, the Wu-Palmer measure, as defined in
Equation 1 (Wu and Palmer, 1994).

Sim(C1, C2) =
2N3

N1 +N2 + 2N3
(1)

where C1 and C2 are the synsets whose similarity
we want to calculate, C3 is their least common su-
perconcept, N1 is the number of nodes on the path
from C1 to C3, N2 is the number of nodes on the
path from C2 to C3, and N3 is the number of nodes
on the path from C3 to the root. All these synsets

and distances can be observed in Figure 2.

Figure 2: Distance between two synsets.

If the similarity rate is greater or equal than the
established threshold, which we have set empirically
to 80%, we will consider the corresponding hypoth-
esis’ token as suitable to have the same meaning
as the text’s token, and will proceed to compare its
child nodes in the hypothesis’ tree. On the other
hand, if such similarity value is less than the cor-
responding threshold, we will proceed to compare
the children of such text’s tree node with the actual
hypothesis’ node that was being analyzed.

The comparison between the syntactic depen-
dency trees of both text and hypothesis will be com-
pleted when all nodes of either tree have been pro-
cessed. If we have been able to find a match for all
the tokens within the hypothesis, the corresponding
tree will be embedded into the text’s and we will be-
lieve that there is entailment. If not, we will not be
able to assure that such an implication is produced
and will proceed to execute the next module of our
system.

Next, we will present a text-hypothesis pair sam-
ple where the syntactic dependency tree of the hy-
pothesis (Figure 3(b)) is embedded into the text’s
(Figure 3(a)). The mentioned text-hypothesis pair
is the following:

Text: Mossad is one of the world’s most
well-known intelligence agencies, and is
often viewed in the same regard as the CIA
and MI6.
Hypothesis: Mossad is an intelligence
agency.
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(a) Mossad is one of the world’s most well-known intelligence agencies, and is often viewed
in the same regard as the CIA and MI6.

(b) Mossad is an intelligence
agency.

Figure 3: Representation of a hypothesis’ syntactic dependency tree that is embedded into the text’s.

As one can see in Figure 3, the hypothesis’ syn-
tactic dependency tree represented is embedded into
the text’s because all of its nodes are present in
the text in the same order. There is one exception
though, that is the word an. However, since it is a
determinant, the filtering module will have deleted
it before the graph embedding test is performed.
Therefore, in this example the entailment would be
recognized.

2.4 Graph node matching

Once the embedded subtree comparison has fin-
ished, and if its result is negative, we proceed to per-
form a graph node matching process, termed align-
ment, between both the text and the hypothesis. This
operation consists in finding pairs of tokens in both
trees whose lemmas are identical, no matter whether
they are in the same position within the tree. We
would like to point out that in this step we do not
use the WordNet::Similarity tool.

Some authors have already designed similar
matching techniques, such as the ones described in
(MacCartney et al., 2006) and (Snow et al., 2006).
However, these include semantic constraints that we
have decided not to consider. The reason of this
decision is that we desired to overcome the textual
entailment recognition from an exclusively syntactic
perspective. Therefore, we did not want this module

to include any kind of semantic knowledge.
The weight given to a token that has been found

in both trees will depend on the depth in the hypoth-
esis’ tree and the token’s grammatical relevance.
The first of these factors depends on an empirically-
calculated weight that assigns less importance to a
node the deeper it is located in the tree. This weight
is defined in Equation 2. The second factor gives
different relevance depending on the grammatical
category and relationship. For instance, a verb will
have the highest weight, while an adverb or an ad-
jective will have less relevance. The values assigned
to each grammatical category and relationship are
also empirically-calculated and are shown in Tables
3 and 4, respectively.

Grammatical category Weight
Verbs, verbs with one argument, verbs
with two arguments, verbs taking
clause as complement

1.0

Nouns, numbers 0.75
Be used as a linking verb 0.7
Adjectives, adverbs, noun-noun mod-
ifiers

0.5

Verbs Have and Be 0.3

Table 3: Weights assigned to the grammatical cate-
gories.
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Grammatical relationship Weight
Subject of verbs, surface subject, ob-
ject of verbs, second object of ditran-
sitive verbs

1.0

The rest 0.5

Table 4: Weights assigned to the grammatical rela-
tionships.

Let τ and λ represent the text’s and hypothesis’
syntactic dependency trees, respectively. We as-
sume we have found members of a synset, namely β,
present in both τ and λ. Now let γ be the weight as-
signed to β’s grammatical category (defined in Table
3), σ the weight of β’s grammatical relationship (de-
fined in Table 4), µ an empirically-calculated value
that represents the weight difference between tree
levels, and δβ the depth of the node that contains
the synset β in λ. We define the function φ(β) as
represented in Equation 2.

φ(β) = γ · σ · µ−δβ (2)

The value obtained by calculating the expression
of Equation 2 would represent the relevance of a
synset in our system. The experiments performed
reveal that the optimal value for µ is 1.1.

For a given pair (τ , λ), we define the set ξ as the
one that contains the synsets present in both trees:

ξ = τ ∩ λ ∀α ∈ τ, β ∈ λ (3)

Therefore, the similarity rate between τ and λ, de-
noted by the symbol ψ, would be defined as:

ψ(τ, λ) =
∑
ν∈ξ

φ(ν) (4)

One should note that a requirement of our sys-
tem’s similarity measure would be to be independent
of the hypothesis length. Thus, we must define the
normalized similarity rate, as shown in Equation 5.

ψ(τ, λ) =
ψ(τ, λ)∑

β∈λ

φ(β)
=

∑
ν∈ξ

φ(ν)∑
β∈λ

φ(β)
(5)

Once the similarity value, ψ(τ, λ), has been cal-
culated, it will be provided to the user together with

the corresponding text-hypothesis pair identifier. It
will be his responsibility to choose an appropriate
threshold that will represent the minimum similarity
rate to be considered as entailment between text and
hypothesis. All values that are under such a thresh-
old will be marked as not entailed. For this purpose,
we suggest using a development corpus in order to
obtain the optimal threshold value, as it is done in
the RTE challenges.

3 Experimental results

The experimental results shown in this paper were
obtained processing a set of text-hypothesis pairs
from RTE-2. The organizers of this challenge pro-
vide development and test corpora to the partic-
ipants, both of them containing 800 pairs manu-
ally annotated for logical entailment. It is com-
posed of four subsets, each of them correspond-
ing to typical true and false entailments in different
tasks, such as Information Extraction (IE), Informa-
tion Retrieval (IR), Question Answering (QA), and
Multi-document Summarization (SUM). For each
task, the annotators selected the same amount of true
entailments as negative ones (50%-50% split).

The organizers have also defined two measures to
evaluate the participating systems. All judgments
returned by the systems will be compared to those
manually assigned by the human annotators. The
percentage of matching judgments will provide the
accuracy of the system, i.e. the percentage of cor-
rect responses. As a second measure, the average
precision will be computed. This measure evaluates
the ability of the systems to rank all the pairs in the
corpus according to their entailment confidence, in
decreasing order from the most certain entailment to
the least. Average precision is a common evaluation
measure for system rankings that is defined as shown
in Equation 6.

AP =
1
R

n∑
i=1

E(i)
#correct up to pair i

i
(6)

where n is the amount of the pairs in the test corpus,
R is the total number of positive pairs in it, i ranges
over the pairs, ordered by their ranking, and E(i) is
defined as follows:
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E(i) =

1 if the i− th pair is positive,

0 otherwise.
(7)

As we previously mentioned, we tested our sys-
tem against RTE-2 development corpus, and used
the test one to evaluate it.

First, Table 5 shows the accuracy (ACC) and av-
erage precision (AP), both as a percentage, obtained
processing the development corpus from RTE-2 for
a threshold value of 68.9%, which corresponds to
the highest accuracy that can be obtained using our
system for the mentioned corpus. It also provides
the rate of correctly predicted true and false entail-
ments.

Task ACC AP TRUE FALSE
IE 52.00 51.49 54.00 50.00
IR 55.50 58.99 32.00 79.00
QA 57.50 54.72 53.00 62.00
SUM 65.00 81.35 39.00 91.00
Overall 57.50 58.96 44.50 70.50

Table 5: Results obtained for the development cor-
pus.

Next, let us show in Table 6 the results obtained
processing the test corpus, which is the one used
to compare the different systems that participated in
RTE-2, with the same threshold as before.

Task ACC AP TRUE FALSE
IE 50.50 47.33 75.00 26.00
IR 64.50 67.67 59.00 70.00
QA 59.50 58.16 80.00 39.00
SUM 68.50 75.86 49.00 88.00
Overall 60.75 57.91 65.75 55.75

Table 6: Results obtained for the test corpus.

As one can observe in the previous table, our
system provides a high accuracy rate by using
mainly syntactical measures. The number of text-
hypothesis pairs that succeeded the graph embed-
ding evaluation was three for the development cor-
pus and one for the test set, which reflects the strict-
ness of such module. However, we would like to

point out that the amount of pairs affected by the
mentioned module will depend on the corpus na-
ture, so it can vary significantly between different
corpora.

Let us now compare our results with the ones that
were achieved by the systems that participated in
RTE-2. One should note that the criteria for such
ranking is based exclusively on the accuracy, ignor-
ing the average precision value. In addition, each
participating group was allowed to submit two dif-
ferent systems to RTE-2. We will consider here the
best result of both systems for each group. The men-
tioned comparison is shown in Table 7, and contains
only the systems that had higher accuracy rates than
our approach.

Participant Accuracy
(Hickl et al., 2006) 75.38
(Tatu et al., 2006) 73.75
(Zanzotto et al., 2006) 63.88
(Adams, 2006) 62.62
(Bos and Markert, 2006) 61.62
DLSITE-2 60.75

Table 7: Comparison of some of the teams that par-
ticipated in RTE-2.

As it is reflected in Table 7, our system would
have obtained the sixth position out of twenty-four
participants, which is an accomplishment consider-
ing the limited number of resources that it has built-
in.

Since one of our system’s modules is based on
(Katrenko and Adriaans, 2006), we will compare
their results with ours to analyze whether the modi-
fications we introduced perform correctly. In RTE-
2, they obtained an accuracy rate of 59.00% for the
test corpus. The reason why we believe we have
achieved better results than their system is due to
the fact that we added semantic knowledge to our
graph embedding module. In addition, the syntactic
dependency trees to which we have applied such a
module have been previously filtered to ensure that
they do not contain irrelevant words. This reduces
the system’s noise and allows us to achieve higher
accuracy rates.

In the introduction of this paper we mentioned
that one of the goals of our system was to provide
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a high accuracy rate in a short lapse of time. This is
one of the reasons why we chose to construct a light
system where one of the aspects to minimize was its
response time. Table 8 shows the execution times1

of our system for both development and test text cor-
pora from RTE-2. These include total and average2

response times.

Development Test
Total 1045 1023
Average 1.30625 1.27875

Table 8: DLSITE-2 response times (in seconds).

As we can see, accurate results can be obtained
using syntactic dependency trees in a short lapse of
time. However, there are some limitations that our
system does not avoid. For instance, the tree em-
bedding test is not applicable when there is no verb
entailment. This is reflected in the following pair:

Text: Tony Blair, the British Prime Minis-
ter, met Jacques Chirac in London.
Hypothesis: Tony Blair is the British
Prime Minister.

The root node of the hypothesis’ tree would be
the one corresponding to the verb is. Since the en-
tailment here is implicit, there is no need for such a
verb to appear in the text. However, this is not com-
patible with our system, since is would not match
any node of the text’s tree, and thus the hypothesis’
tree would not be found embedded into the text’s.

The graph matching process would not behave
correctly either. This is due to the fact that the main
verb, which has the maximum weight because it is
the root of the hypothesis’ tree and its grammatical
category has the maximum relevance, is not present
in the text, so the overall similarity score would have
a considerable handicap.

The example of limitation of our system that we
have presented is an apposition. To avoid this spe-
cific kind of situations that produce an undesired be-
havior in our system, we could add a preprocess-
ing module that transforms the phrases that have the

1The machine we used to measure the response times had an
Intel Core 2 Duo processor at 2GHz.

2Average response times are calculated diving the totals by
the number of pairs in the corpus.

structureX , Y , Z intoX is Y , andZ. For the shown
example, the resulting text and hypothesis would be
as follows:

Text: Tony Blair is the British Prime Min-
ister, and met Jacques Chirac in London.
Hypothesis: Tony Blair is the British
Prime Minister.

The transformed text would still be syntactically
correct, and the entailment would be detected since
the hypothesis’ syntactic dependency tree is embed-
ded into the text’s.

4 Conclusions and future work

The experimental results obtained from this research
demonstrate that it is possible to apply a syntactic-
based approach to deduce textual entailment from a
text-hypothesis pair. We can obtain good accuracy
rates using the discussed techniques with very short
response times, which is very useful for assisting
different kinds of tasks that demand near-real-time
responses to user interaction.

The baseline we set for our system was to achieve
better results than the ones we obtained with our last
participation in RTE-2. As it is stated in (Ferrández
et al., 2006), the maximum accuracy value obtained
by then was 55.63% for the test corpus. Therefore,
our system is 9.20% more accurate compared to the
one that participated in RTE-2, which represents a
considerable improvement.

The authors of this paper believe that if higher ac-
curacy rates are desired, a step-based system must be
constructed. This would have several preprocessing
units, such as negation detectors, multi-word associ-
ators and so on. The addition of these units would
definitely increase the response time preventing the
system from being used in real-time tasks.

Future work can be related to the cases where no
verb entailment is produced. For this purpose we
propose to extract a higher amount of semantic in-
formation that would allow us to construct a charac-
terized representation based on the input text, so that
we can deduce entailment even if there is no appar-
ent structure similarity between text and hypothesis.
This would mean to create an abstract conceptual-
ization of the information contained in the analyzed
phrases, allowing us to deduce ideas that are not
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explicitly mentioned in the parsed text-hypothesis
pairs.

In addition, the weights and thresholds defined
in our system have been established empirically. It
would be interesting to calculate those values by
means of a machine learning algorithm and com-
pare them to the ones we have obtained empirically.
Some authors have already performed this compari-
son, being one example the work described in (Mac-
Cartney et al., 2006).
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Abstract

The difficulties involved in spelling er-
ror detection and correction in a lan-
guage have been investigated in this work
through the conceptualization of SpellNet
– the weighted network of words, where
edges indicate orthographic proximity be-
tween two words. We construct SpellNets
for three languages - Bengali, English and
Hindi. Through appropriate mathemati-
cal analysis and/or intuitive justification,
we interpret the different topological met-
rics of SpellNet from the perspective of
the issues related to spell-checking. We
make many interesting observations, the
most significant among them being that
the probability of making a real word error
in a language is propotionate to the aver-
age weighted degree of SpellNet, which is
found to be highest for Hindi, followed by
Bengali and English.

1 Introduction

Spell-checking is a well researched area in NLP,
which deals with detection and automatic correc-
tion of spelling errors in an electronic text docu-
ment. Several approaches to spell-checking have
been described in the literature that use statistical,
rule-based, dictionary-based or hybrid techniques
(see (Kukich, 1992) for a dated but substantial sur-
vey). Spelling errors are broadly classified as non-
word errors (NWE) and real word errors (RWE). If
the misspelt string is a valid word in the language,
then it is called an RWE, else it is an NWE. For ex-
ample, in English, the word “fun” might be misspelt

as “gun” or “vun”; while the former is an RWE, the
latter is a case of NWE. It is easy to detect an NWE,
but correction process is non-trivial. RWE, on the
other hand are extremely difficult to detect as it re-
quires syntactic and semantic analysis of the text,
though the difficulty of correction is comparable to
that of NWE (see (Hirst and Budanitsky, 2005) and
references therein).

Given a lexicon of a particular language, how
hard is it to develop a perfect spell-checker for that
language? Since context-insensitive spell-checkers
cannot detect RWE and neither they can effectively
correct NWE, the difficulty in building a perfect
spell-checker, therefore, is reflected by quantities
such as the probability of a misspelling being RWE,
probability of more than one word being orthograph-
ically closer to an NWE, and so on. In this work,
we make an attempt to understand and formalize
some of these issues related to the challenges of
spell-checking through a complex network approach
(see (Albert and Barabási, 2002; Newman, 2003)
for a review of the field). This in turn allows us to
provide language-specific quantitative bounds on the
performance level of spell-checkers.

In order to formally represent the orthographic
structure (spelling conventions) of a language, we
conceptualize the lexicon as a weighted network,
where the nodes represent the words and the weights
of the edges indicate the orthoraphic similarity be-
tween the pair of nodes (read words) they connect.
We shall call this network the Spelling Network or
SpellNet for short. We build the SpellNets for three
languages – Bengali, English and Hindi, and carry
out standard topological analysis of the networks
following complex network theory. Through appro-
priate mathematical analysis and/or intuitive justi-

81



fication, we interpret the different topological met-
rics of SpellNet from the perspective of difficulties
related to spell-checking. Finally, we make sev-
eral cross-linguistic observations, both invariances
and variances, revealing quite a few interesting facts.
For example, we see that among the three languages
studied, the probability of RWE is highest in Hindi
followed by Bengali and English. A similar obser-
vation has been previously reported in (Bhatt et al.,
2005) for RWEs in Bengali and English.

Apart from providing insight into spell-checking,
the complex structure of SpellNet also reveals the
self-organization and evolutionary dynamics under-
lying the orthographic properties of natural lan-
guages. In recent times, complex networks have
been successfully employed to model and explain
the structure and organization of several natural
and social phenomena, such as the foodweb, pro-
tien interaction, formation of language invento-
ries (Choudhury et al., 2006), syntactic structure of
languages (i Cancho and Solé, 2004), WWW, social
collaboration, scientific citations and many more
(see (Albert and Barabási, 2002; Newman, 2003)
and references therein). This work is inspired by
the aforementioned models, and more specifically
a couple of similar works on phonological neigh-
bors’ network of words (Kapatsinski, 2006; Vite-
vitch, 2005), which try to explain the human per-
ceptual and cognitive processes in terms of the orga-
nization of the mental lexicon.

The rest of the paper is organized as follows. Sec-
tion 2 defines the structure and construction pro-
cedure of SpellNet. Section 3 and 4 describes the
degree and clustering related properties of Spell-
Net and their significance in the context of spell-
checking, respectively. Section 5 summarizes the
findings and discusses possible directions for future
work. The derivation of the probability of RWE in a
language is presented in Appendix A.

2 SpellNet: Definition and Construction

In order to study and formalize the orthographic
characteristics of a language, we model the lexicon
Λ of the language as an undirected and fully con-
nected weighted graph G(V, E). Each word w ∈ Λ
is represented by a vertex vw ∈ V , and for every
pair of vertices vw and vw′ in V , there is an edge

Figure 1: The structure of SpellNet: (a) the weighted
SpellNet for 6 English words, (b) Thresholded coun-
terpart of (a), for θ = 1

(vw, vw′) ∈ E. The weight of the edge (vw, vw′), is
equal to ed(w,w′) – the orthographic edit distance
between w and w′ (considering substitution, dele-
tion and insertion to have a cost of 1). Each node
vw ∈ V is also assigned a node weight WV (vw)
equal to the unigram occurrence frequency of the
word w. We shall refer to the graph G(V, E) as the
SpellNet. Figure 1(a) shows a hypothetical SpellNet
for 6 common English words.

We define unweighted versions of the graph
G(V, E) through the concept of thresholding as
described below. For a threshold θ, the graph
Gθ(V, Eθ) is an unweighted sub-graph of G(V, E),
where an edge (vw, vw′) ∈ E is assigned a weight 1
in Eθ if and only if the weight of the edge is less than
or equal to θ, else it is assigned a weight 0. In other
words, Eθ consists of only those edges in E whose
edge weight is less than or equal to θ. Note that all
the edges in Eθ are unweighted. Figure 1(b) shows
the thresholded SpellNet shown in 1(a) for θ = 1.

2.1 Construction of SpellNets

We construct the SpellNets for three languages –
Bengali, English and Hindi. While the two Indian
languages – Bengali and Hindi – use Brahmi derived
scripts – Bengali and Devanagari respectively, En-
glish uses the Roman script. Moreover, the orthog-
raphy of the two Indian languages are highly phone-
mic in nature, in contrast to the morpheme-based or-
thography of English. Another point of disparity lies
in the fact that while the English alphabet consists
of 26 characters, the alphabet size of both Hindi and
Bengali is around 50.
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The lexica for the three languages have
been taken from public sources. For En-
glish it has been obtained from the website
www.audiencedialogue.org/susteng.html; for Hindi
and Bengali, the word lists as well as the unigram
frequencies have been estimated from the mono-
lingual corpora published by Central Institute of
Indian Languages. We chose to work with the most
frequent 10000 words, as the medium size of the
two Indian language corpora (around 3M words
each) does not provide sufficient data for estimation
of the unigram frequencies of a large number
of words (say 50000). Therefore, all the results
described in this work pertain to the SpellNets
corresponding to the most frequent 10000 words.
However, we believe that the trends observed do not
reverse as we increase the size of the networks.

In this paper, we focus on the networks at three
different thresholds, that is for θ = 1, 3, 5, and study
the properties of Gθ for the three languages. We
do not go for higher thresholds as the networks be-
come completely connected at θ = 5. Table 1 re-
ports the values of different topological metrics of
the SpellNets for the three languages at three thresh-
olds. In the following two sections, we describe in
detail some of the topological properties of Spell-
Net, their implications to spell-checking, and obser-
vations in the three languages.

3 Degree Distribution

The degree of a vertex in a network is the number of
edges incident on that vertex. Let Pk be the prob-
ability that a randomly chosen vertex has degree k
or more than k. A plot of Pk for any given network
can be formed by making a histogram of the degrees
of the vertices, and this plot is known as the cumu-
lative degree distribution of the network (Newman,
2003). The (cumulative) degree distribution of a net-
work provides important insights into the topologi-
cal properties of the network.

Figure 2 shows the plots for the cumulative de-
gree distribution for θ = 1, 3, 5, plotted on a log-
linear scale. The linear nature of the curves in the
semi-logarithmic scale indicates that the distribution
is exponential in nature. The exponential behaviour
is clearly visible for θ = 1, however at higher thresh-
olds, there are very few nodes in the network with

low degrees, and therefore only the tail of the curve
shows a pure exponential behavior. We also observe
that the steepness (i.e. slope) of the log(Pk) with re-
spect to k increases with θ. It is interesting to note
that although most of the naturally and socially oc-
curring networks exhibit a power-law degree distri-
bution (see (Albert and Barabási, 2002; Newman,
2003; i Cancho and Solé, 2004; Choudhury et al.,
2006) and references therein), SpellNets feature ex-
ponential degree distribution. Nevertheless, similar
results have also been reported for the phonological
neighbors’ network (Kapatsinski, 2006).

3.1 Average Degree

Let the degree of the node v be denoted by k(v). We
define the quantities – the average degree 〈k〉 and the
weighted average degree 〈kwt〉 for a given network
as follows (we drop the subscript w for clarity of
notation).

〈k〉 =
1
N

∑

v∈V

k(v) (1)

〈kwt〉 =
∑

v∈V k(v)WV (v)∑
v∈V WV (v)

(2)

where N is the number of nodes in the network.
Implication: The average weighted degree of

SpellNet can be interpreted as the probability of
RWE in a language. This correlation can be derived
as follows. Given a lexicon Λ of a language, it can
be shown that the probability of RWE in a language,
denoted by prwe(Λ) is given by the following equa-
tion (see Appendix A for the derivation)

prwe(Λ) =
∑

w∈Λ

∑

w′∈Λ

w 6=w′

ρed(w,w′)p(w) (3)

Let neighbor(w, d) be the number of words in Λ
whose edit distance from w is d. Eqn 3 can be rewrit-
ten in terms of neighbor(w, d) as follows.

prwe(Λ) =
∑

w∈Λ

∞∑

d=1

ρd neighbor(w, d)p(w) (4)

Practically, we can always assume that d is bounded
by a small positive integer. In other words, the
number of errors simultaneously made on a word
is always small (usually assumed to be 1 or a
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English Hindi Bengali

θ = 1 θ = 3 θ = 5 θ = 1 θ = 3 θ = 5 θ = 1 θ = 3 θ = 5

M 8.97k 0.70M 8.46M 17.6k 1.73M 17.1M 11.9k 1.11M 13.2M

〈k〉 2.79 140.25 1692.65 4.52 347.93 3440.06 3.38 223.72 2640.11
〈kwt〉 6.81 408.03 1812.56 13.45 751.24 4629.36 7.73 447.16 3645.37

rdd 0.696 0.480 0.289 0.696 0.364 0.129 0.702 0.389 0.155
〈CC〉 0.101 0.340 0.563 0.172 0.400 0.697 0.131 0.381 0.645
〈CCwt〉 0.221 0.412 0.680 0.341 0.436 0.760 0.229 0.418 0.681

〈l〉 7.07 3.50 N.E 7.47 2.74 N.E 8.19 2.95 N.E
D 24 14 N.E 26 12 N.E 29 12 N.E

Table 1: Various topological metrics and their associated values for the SpellNets of the three languages
at thresholds 1, 3 and 5. Metrics: M – number of edges; 〈k〉 – average degree; 〈kwt〉 – average weighted
degree; 〈CC〉 – average clustering coefficient; 〈CCwt〉 - average weighted clustering coefficient; rdd –
Pearson correlation coefficient between degrees of neighbors; 〈l〉 – average shortest path; D – diameter.
N.E – Not Estimated. See the text for further details on definition, computation and significance of the
metrics.
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Figure 2: Cumulative degree distribution of SpellNets at different thresholds presented in semi-logarithmic
scale.

slowly growing function of the word length (Kukich,
1992)). Let us denote this bound by θ. Therefore,

prwe(Λ) ≈
∑

w∈Λ

θ∑

d=1

ρd neighbor(w, d)p(w) (5)

Since ρ < 1, we can substitute ρd by ρ to get an
upper bound on prwe(Λ), which gives

prwe(Λ) < ρ
∑

w∈Λ

θ∑

d=1

neighbor(w, d)p(w) (6)

The term
∑θ

d=1 neighbor(w, d) computes the
number of words in the lexicon, whose edit distance
from w is atmost θ. This is nothing but k(vw), i.e.
the degree of the node vw, in Gθ. Moreover, the term
p(w) is proportionate to the node weight WV (vw).
Thus, rewriting Eqn 6 in terms of the network pa-
rameters for Gθ, we get (subscript w is dropped for

clarity)

prwe(Λ) < ρ

∑
v∈V k(v)WV (v)∑

v∈V WV (v)
(7)

Comparing Eqn 2 with the above equation, we can
directly obtain the relation

prwe(Λ) < C1〈kwt〉 (8)

where C1 is some constant of proportionality. Note
that for θ = 1, prwe(Λ) ∝ 〈kwt〉. If we ignore
the distribution of the words, that is if we assume
p(w) = 1/N , then prwe(Λ) ∝ 〈k〉.

Thus, the quantity 〈kwt〉 provides a good estimate
of the probability of RWE in a language.

Observations and Inference: At θ = 1, the av-
erage weighted degrees for Hindi, Bengali and En-
glish are 13.81, 7.73 and 6.61 respectively. Thus, the
probability of RWE in Hindi is significantly higher
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Figure 3: Scatter-plots for degree versus unigram
frequency at different θ for Hindi

than that of Bengali, which in turn is higher than
that of English (Bhatt et al., 2005). Similar trends
are observed at all the thresholds for both 〈kwt〉 and
〈k〉. This is also evident from Figures 2, which show
the distribution of Hindi to lie above that of Bengali,
which lies above English (for all thresholds).

The average degree 〈k〉 is substantially smaller
(0.5 to 0.33 times) than the average weighted de-
gree 〈kwt〉 for all the 9 SpellNets. This suggests
that the higher degree nodes in SpellNet have higher
node weight (i.e. occurrence frequency). Indeed, as
shown in Figure 3 for Hindi, the high unigram fre-
quency of a node implies higher degree, though the
reverse is not true. The scatter-plots for the other
languages are similar in nature.

3.2 Correlation between Degrees of Neighbors
The relation between the degrees of adjacent words
is described by the degree assortativity coefficient.
One way to define the assortativity of a network is
through the Pearson correlation coefficient between
the degrees of the two vertices connected by an edge.
Each edge (u, v) in the network adds a data item
corresponding to the degrees of u and v to two data
sets x and y respectively. The Pearson correlation
coefficient for the data sets x and y of n items each
is then defined as

r =
n

∑
xy −∑

x
∑

y√
[n

∑
x2 − (

∑
x)2][n

∑
y2 − (

∑
y)2]

Observation: r is positive for the networks in
which words tend to associate with other words of
similar degree (i.e. high degree with high degree
and vice versa), and it is negative for networks in

which words associate with words having degrees
in the opposite spectrum. Refering to table 1, we
see that the correlation coefficient rdd is roughly the
same and equal to around 0.7 for all languages at
θ = 1. As θ increases, the correlation decreases as
expected, due to the addition of edges between dis-
similar words.

Implication: The high positive correlation coeffi-
cients suggest that SpellNets feature assortative mix-
ing of nodes in terms of degrees. If there is an RWE
corresponding to a high degree node vw, then due
to the assortative mixing of nodes, the misspelling
w′ obtained from w, is also expected to have a high
degree. Since w′ has a high degree, even after detec-
tion of the fact that w′ is a misspelling, choosing the
right suggestion (i.e. w) is extremely difficult un-
less the linguistic context of the word is taken into
account. Thus, more often than not it is difficult to
correct an RWE, even after successful detection.

4 Clustering and Small World Properties

In the previous section, we looked at some of the de-
gree based features of SpellNets. These features pro-
vide us insights regarding the probability of RWE in
a language and the level of difficulty in correcting
the same. In this section, we discuss some of the
other characteristics of SpellNets that are useful in
predicting the difficulty of non-word error correc-
tion.

4.1 Clustering Coefficient

Recall that in the presence of a complete list of valid
words in a language, detection of NWE is a trivial
task. However, correction of NWE is far from triv-
ial. Spell-checkers usually generate a suggestion list
of possible candidate words that are within a small
edit distance of the misspelling. Thus, correction be-
comes hard as the number of words within a given
edit distance from the misspelling increases. Sup-
pose that a word w ∈ Λ is transformed into w′ due
to some typing error, such that w′ /∈ Λ. Also assume
that ed(w,w′) ≤ θ. We want to estimate the number
of words in Λ that are within an edit distance θ of
w′. In other words we are interested in finding out
the degree of the node vw′ in Gθ, but since there is
no such node in SpellNet, we cannot compute this
quantity directly. Nevertheless, we can provide an
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approximate estimate of the same as follows.
Let us conceive of a hypothetical node vw′ . By

definition of SpellNet, there should be an edge con-
necting vw′ and vw in Gθ. A crude estimate of
k(vw′) can be 〈kwt〉 of Gθ. Due to the assortative
nature of the network, we expect to see a high corre-
lation between the values of k(vw) and k(vw′), and
therefore, a slightly better estimate of k(vw′) could
be k(vw). However, as vw′ is not a part of the net-
work, it’s behavior in SpellNet may not resemble
that of a real node, and such estimates can be grossly
erroneous.

One way to circumvent this problem is to look
at the local neighborhood of the node vw. Let us
ask the question – what is the probability that two
randomly chosen neighbors of vw in Gθ are con-
nected to each other? If this probability is high, then
we can expect the local neighborhood of vw to be
dense in the sense that almost all the neighbors of
vw are connected to each other forming a clique-like
local structure. Since vw′ is a neighbor of vw, it is
a part of this dense cluster, and therefore, its degree
k(vw′) is of the order of k(vw). On the other hand,
if this probability is low, then even if k(vw) is high,
the space around vw is sparse, and the local neigh-
borhood is star-like. In such a situation, we expect
k(vw′) to be low.

The topological property that measures the prob-
ability of the neighbors of a node being connected
is called the clustering coefficient (CC). One of the
ways to define the clustering coefficient C(v) for a
vertex v in a network is

C(v) =
number of triangles connected to vertex v

number of triplets centered on v

For vertices with degree 0 or 1, we put C(v) = 0.
Then the clustering coefficient for the whole net-
work 〈CC〉 is the mean CC of the nodes in the net-
work. A corresponding weighted version of the CC
〈CCwt〉 can be defined by taking the node weights
into account.

Implication: The higher the value of
k(vw)C(vw) for a node, the higher is the probability
that an NWE made while typing w is hard to correct
due to the presence of a large number of ortho-
graphic neighbors of the misspelling. Therefore,
in a way 〈CCwt〉 reflects the level of difficulty in
correcting NWE for the language in general.

Observation and Inference: At threshold 1,
the values of 〈CC〉 as well as 〈CCwt〉 is higher
for Hindi (0.172 and 0.341 respectively) and Ben-
gali (0.131 and 0.229 respectively) than that of En-
glish (0.101 and 0.221 respectively), though for
higher thresholds, the difference between the CC
for the languages reduces. This observation further
strengthens our claim that the level of difficulty in
spelling error detection and correction are language
dependent, and for the three languages studied, it is
hardest for Hindi, followed by Bengali and English.

4.2 Small World Property

As an aside, it is interesting to see whether the Spell-
Nets exhibit the so called small world effect that is
prevalent in many social and natural systems (see
(Albert and Barabási, 2002; Newman, 2003) for def-
inition and examles). A network is said to be a small
world if it has a high clustering coefficient and if the
average shortest path between any two nodes of the
network is small.

Observation: We observe that SpellNets indeed
feature a high CC that grows with the threshold. The
average shortest path, denoted by 〈l〉 in Table 1, for
θ = 1 is around 7 for all the languages, and reduces
to around 3 for θ = 3; at θ = 5 the networks are
near-cliques. Thus, SpellNet is a small world net-
work.

Implication: By the application of triangle in-
equality of edit distance, it can be easily shown that
〈l〉 × θ provides an upper bound on the average edit
distance between all pairs of the words in the lexi-
con. Thus, a small world network, which implies a
small 〈l〉, in turn implies that as we increase the error
bound (i.e. θ), the number of edges increases sharply
in the network and soon the network becomes fully
connected. Therefore, it becomes increasingly more
difficult to correct or detect the errors, as any word
can be a possible suggestion for any misspelling. In
fact this is independently observed through the ex-
ponential rise in M – the number of edges, and fall
in 〈l〉 as we increase θ.

Inference: It is impossible to correct very noisy
texts, where the nature of the noise is random and
words are distorted by a large edit distance (say 3 or
more).
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5 Conclusion

In this work, we have proposed the network of ortho-
graphic neighbors of words or the SpellNet and stud-
ied the structure of the same across three languages.
We have also made an attempt to relate some of the
topological properties of SpellNet to spelling error
distribution and hardness of spell-checking in a lan-
guage. The important observations of this study are
summarized below.

• The probability of RWE in a language can
be equated to the average weighted degree of
SpellNet. This probablity is highest in Hindi
followed by Bengali and English.

• In all the languages, the words that are more
prone to undergo an RWE are more likely to be
misspelt. Effectively, this makes RWE correc-
tion very hard.

• The hardness of NWE correction correlates
with the weighted clustering coefficient of the
network. This is highest for Hindi, followed by
Bengali and English.

• The basic topology of SpellNet seems to be an
invariant across languages. For example, all
the networks feature exponential degree distri-
bution, high clustering, assortative mixing with
respect to degree and node weight, small world
effect and positive correlation between degree
and node weight, and CC and degree. However,
the networks vary to a large extent in terms of
the actual values of some of these metrics.

Arguably, the language-invariant properties of
SpellNet can be attributed to the organization of
the human mental lexicon (see (Kapatsinski, 2006)
and references therein), self-organization of ortho-
graphic systems and certain properties of edit dis-
tance measure. The differences across the lan-
guages, perhaps, are an outcome of the specific or-
thographic features, such as the size of the alphabet.
Another interesting observation is that the phonemic
nature of the orthography strongly correlates with
the difficulty of spell-checking. Among the three
languages, Hindi has the most phonemic and En-
glish the least phonemic orthography. This corre-
lation calls for further investigation.

Throughout the present discussion, we have fo-
cussed on spell-checkers that ignore the context;
consequently, many of the aforementioned results,
especially those involving spelling correction, are
valid only for context-insensitive spell-checkers.
Nevertheless, many of the practically useful spell-
checkers incorporate context information and the
current analysis on SpellNet can be extended for
such spell-checkers by conceptualizing a network
of words that capture the word co-occurrence pat-
terns (Biemann, 2006). The word co-occurrence
network can be superimposed on SpellNet and the
properties of the resulting structure can be appro-
priately analyzed to obtain similar bounds on hard-
ness of context-sensitive spell-checkers. We deem
this to be a part of our future work. Another way
to improve the study could be to incorporate a more
realistic measure for the orthographic similarity be-
tween the words. Nevertheless, such a modification
will have no effect on the analysis technique, though
the results of the analysis may be different from the
ones reported here.

Appendix A: Derivation of the Probability
of RWE

We take a noisy channel approach, which is a com-
mon technique in NLP (for example (Brown et al.,
1993)), including spellchecking (Kernighan et al.,
1990). Depending on the situation. the channel may
model typing or OCR errors. Suppose that a word w,
while passing through the channel, gets transformed
to a word w′. Therefore, the aim of spelling cor-
rection is to find the w∗ ∈ Λ (the lexicon), which
maximizes p(w∗|w′), that is

argmax
w∈Λ

p(w|w′) = argmax
w∈Λ

p(w′|w)p(w)

(9)
The likelihood p(w′|w) models the noisy channel,
whereas the term p(w) is traditionally referred to
as the language model (see (Jurafsky and Martin,
2000) for an introduction). In this equation, as well
as throughout this discussion, we shall assume a uni-
gram language model, where p(w) is the normalized
frequency of occurrence of w in a standard corpus.

We define the probability of RWE for a word w,
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prwe(w), as follows

prwe(w) =
∑

w′∈Λ

w 6=w′

p(w′|w) (10)

Stated differently, prwe(w) is a measure of the prob-
ability that while passing through the channel, w
gets transformed into a form w′, such that w′ ∈ Λ
and w′ 6= w. The probability of RWE in the lan-
guage, denoted by prwe(Λ), can then be defined in
terms of the probability prwe(w) as follows.

prwe(Λ) =
∑

w∈Λ

prwe(w)p(w) (11)

=
∑

w∈Λ

∑

w′∈Λ

w 6=w′

p(w′|w)p(w)

In order to obtain an estimate of the likelihood
p(w′|w), we use the concept of edit distance (also
known as Levenstein distance (Levenstein, 1965)).
We shall denote the edit distance between two words
w and w′ by ed(w, w′). If we assume that the proba-
bility of a single error (i.e. a character deletion, sub-
stitution or insertion) is ρ and errors are independent
of each other, then we can approximate the likeli-
hood estimate as follows.

p(w′|w) = ρed(w,w′) (12)

Exponentiation of edit distance is a common mea-
sure of word similarity or likelihood (see for exam-
ple (Bailey and Hahn, 2001)).

Substituting for p(w′|w) in Eqn 11, we get

prwe(Λ) =
∑

w∈Λ

∑

w′∈Λ

w 6=w′

ρed(w,w′)p(w) (13)
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Abstract 

Degree distributions for word forms co-
occurrences for large Russian text collec-
tions are obtained. Two power laws fit the 
distributions pretty good, thus supporting 
Dorogovtsev-Mendes model for Russian. 
Few different Russian text collections 
were studied, and statistical errors are 
shown to be negligible. The model expo-
nents for Russian are found to differ from 
those for English, the difference probably 
being due to the difference in the collec-
tions structure. On the contrary, the esti-
mated size of the supposed kernel lexicon 
appeared to be almost the same for the 
both languages, thus supporting the idea 
of importance of word forms for a percep-
tual lexicon of a human. 

1 Introduction 

Few years ago Ferrer and Solé (2001a) draw the 
attention of researchers to the fact that the lexicon of 
a big corpus (British National Corpus – BNC –in 
the case) most probably consists of two major com-
ponents: a compact kernel lexicon of about 103 – 
104 words, and a cloud of all other words. Ferrer 
and Solé studied word co-occurrence in BNC in 
(2001b). Two word forms1 in BNC were considered 
as “interacting” when they appeared in the same 
sentence and the words’ distance didn’t exceed 2. 
Ferrer and Solé (2001b) treated also some other no-
                                                           
1 Strictly speaking, word forms, not words. 

tions of word interaction, but the results obtained 
don’t differ qualitatively. The interacting words 
form a graph, where the vertices are the words 
themselves, and the edges are the words’ co-
occurrences. The fact of the collocation considered 
to be important, not the number of collocations of 
the same pair of words. Ferrer and Solé (2001b) 
studied vertices degree distribution and found two 
power laws for that distribution with a crossover at a 
degree approximately corresponding to the previ-
ously found size of the supposed kernel lexicon of 
about 103 – 104 words. In (Solé et al, 2005) word 
co-occurrence networks were studied for small 
(about 104 lines of text) corpora of English, Basque, 
and Russian. The authors claim the same two-
regime word degree distribution behavior for all the 
languages. 

Dorogovtsev and Mendes (2001, 2003: 151-156) 
offered an abstract model of language evolution, 
which provides for two power laws for word degree 
distribution with almost no fitting, and also explains 
that the volume of the region of large degrees (the 
kernel lexicon) is almost independent of the corpus 
volume. Difference between word (lemma) and 
word form for an analytic language (e.g. English) 
seems to be small. Dorogovtsev-Mendes model cer-
tainly treats word forms, not lemmas, as vertices in 
a corpus graph. Is it really true for inflecting lan-
guages like Russian? Many researchers consider a 
word form, not a word (lemma) be a perceptual 
lexicon unit (Zasorina, 1977; Ventsov and Kas-
sevich, 1998; Verbitskaya et. al., 2003; Ventsov et. 
al., 2003). So a hypothesis that word forms in a cor-
pus of  an inflecting language should exhibit degree 
distribution similar to that of BNC looks appealing. 
An attempt to investigate word frequency rank sta-
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tistics for Russian was made by Gelbukh and Si-
dorov (2001), but they studied only Zipf law on too 
small texts to reveal the kernel lexicon effects. To 
study the hypothesis one needs a corpus or a collec-
tion2 of texts comparable in volume with the BNC 
part that was examined in (Ferrer and Solé, 2001b), 
i.e. about 4.107 word occurrences. Certainly, texts 
that were analyzed in (Solé et al, 2005) were much 
smaller. 

Recently Kapustin and Jamsen (2006) and Ka-
pustin (2006) studied a big (~5.107 word occur-
rences) collection of Russian. The collection 
exhibited power law behavior similar to that of 
BNC except that the vertex degree at the crossover 
point and the average degree were about 4-5 times 
less than that of BNC. These differences could be 
assigned either to a collection nature (legislation 
texts specifics) or to the properties of the (Russian) 
language itself. We shall reference the collection 
studied in (Kapustin and Jamsen, 2006; Kapustin, 
2006) as “RuLegal”. 

In this paper we present a study of another big 
collection of Russian texts. We have found that 
degree distributions (for different big sub-collec-
tions) are similar to those of BNC and of RuLegal. 
While the exponents and the kernel lexicon size are 
also similar to those of BNC, the average degree 
for these collections are almost twice less than the 
average degree of BNC, and the nature of this dif-
ference is unclear still.  

The rest of the paper has the following struc-
ture. Technology section briefly describes the col-
lection and the procedures of building of co-
occurrence graph and of calculation of exponents 
of power laws. In Discussion section we compare 
the results obtained with those of Kapustin and 
Jamsen (2006), Kapustin (2006), and (Ferrer and 
Solé, 2001b). In Conclusion some considerations 
for future research are discussed. 

2 Technology 

At present Russian National Corpus is unavailable 
for bulk statistical research due to copyright con-
siderations. So we bought a CD (“World Literature 
in Russian”) in a bookstore – a collection of fiction 
translations to Russian. We’ll call the collection 
                                                           
2 We consider a corpus to be a special type of a text collection, 
which comprises text samples chosen for language research 
purposes, while a more general term “collection “ refers to a 
set of full texts brought together for some other purpose. 

WLR. The size of the whole collection is more 
than 108 word occurrences. The source format of 
the collection is HTML, but its files contain essen-
tially no formatting, just plain paragraphs. We 
made three non-overlapping samples from WLR 
(WLR1–3). The samples were approximately of 
the same size. Each sample was processed the 
same way. The idea behind using more than one 
sample was to estimate statistical errors. 

We used open source Russian grapheme analy-
sis module (Sokirko, 2001) to strip HTML and to 
split the texts into words and sentences. Word co-
occurrences were defined as in (Ferrer and Solé, 
2001b): two words are “interacting” if and only if 
they: (a) appear in the same sentence, and (b) the 
word distance is either 1 (adjacent words) or 2 (one 
word or a number or a date in-between). A found 
co-occurred pair of words was tried out against 
MySQL database of recorded word pairs, and if it 
wasn’t found in the database, it was put there. 
Then we use a simple SQL query to get a table of 
count of vertices p(k) vs. vertex degree k. 

Figure 1. Raw degree distribution for WLR1. 
The raw results for one of the samples are 

shown on Fig. 1. For the two other samples the 
distributions are similar. All distributions are al-
most linear (in log-log coordinates, that means that 
they obey power law), but fitting is impossible due 
to high fluctuations. As noted by Dorogovtsev and 
Mendes (2003: 222-223), cumulative distribution 
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P(k) = ΣK≥k p(K) fluctuates much less, so we 
calculated the cumulative degree distributions 
(Fig.2). Cumulative degree distributions for all 
three WLR samples are very similar. 

Figure 2. Cumulative degree distributions for 
WLR1 (lower curve) and RuLegal (upper curve). 

3 Discussion 

To estimate statistical errors we have normalized 
the distributions to make them comparable: the 
degree ranges were reduced to the largest one, then 
the cumulative degree distribution was sampled 
with the step of 1/3, as in (Ferrer and Solé, 2001a, 
Dorogovtsev and Mendes, 2003: 222-223). When 
we use WLR samples only, the statistical errors are 
less than 7% in the middle of the curves and reach 
a margin of 77% in small degrees region. With the 
inclusion of RuLegal sample, difference between 
samples becomes larger – up to 13% in the middle 
of the curves), but are still small enough. 

In both cases (with and without RuLegal) we 
attempted to fit either a single power law (a 
straight line in log-log coordinates) or two/three 
power laws with one/two crossover points. Strong 
changes and large statistical errors of the distribu-
tions in the low degree region prevent meaningful 
usage of these points for fitting. We have made 
attempts to fit all three approximations for all 
points, and omitting one or two points with the 

lowest degrees. To choose between the hypotheses 
we minimized Schwarz information criterion 
(Schwarz, 1978): 

SIC=N*ln(Σi(pi-pˆi)2/N)-m*ln(N) 
where pi – cumulative distribution at i-th point; 
 pˆi – fitting law at the same point; 
 N – number of sampling points (13–15, 
  depending on the number of  
  omitted points); 
 m – number of fitting parameters (2, 4 or 6) 

SIC (1/2/3 power laws) Omitted 
points WLR1–3 WLR1–3 + 

RuLegal 
0 –44 / –85 / –68 –42 / –93 / –77 
1 –46 / –85 / –65 –43 / –93 / –73 
2 –47 / –80 / –60 –44 / –86 / –67 

Table 1. Fitting power laws to averaged degree 
distributions – Schwarz information criterion 

 WLR1–3 WLR1–3 
+ RuLegal RuLegal BNC

γ1 –0.95 –0.95 –0.95 –0.5

γ2 –1.44 –1.46 –1.75 –1.7
kcross 670 670 510 2000
Vkernel 4.103 4.103 4.103 5.103

kaverage 36 31 15 72 
Collection 
size 

3.107 14.107 5.107 4.107

Table 2. Parameters of the best fit two power laws 
for the cumulative distributions 

Clearly two power laws fit the curves better. 
The exponents, the crossover degree and estimated 
size of the kernel lexicon (number of vertices with 
high degrees above the crossover) for the best fits 
(two powers, zero/one omitted point) are shown in 
Table 2. The exponents for the raw distributions 
are γ1 and γ2 minus 1. 

Disagreement between English and Russian 
seems to exist. Probably, the differences are still 
due to the collections’ nature (the difference be-
tween different Russian collections is noticeable). 

4 Conclusion 

We found that ergodic hypothesis for word form 
degree distribution seems to work for large text 
collections – differences between the distributions 
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are small (except for the few smallest degrees). At 
least, a single big enough sample permits reliable 
calculation of degree distribution parameters. 

Dorogovtsev-Mendes model, which yields two 
power laws for the degree distribution for the word 
forms graph, gives pretty good explanation both 
for an analytic language (English) and for an in-
flecting one (Russian), though numeric parameters 
for both languages differ. The estimated sizes of 
the supposed kernel lexicons for the both lan-
guages are almost the same, the fact supports the 
point that word form is a perceptual lexicon unit. 

To make more rigorous statements concerning 
statistical properties of various languages, we plan 
to calculate other important characteristics of the 
co-occurrence graph for Russian: clustering coeffi-
cient and average shortest path. Also we hope that 
legal obstacles to Russian National Corpus usage 
will have been overcome. Other statistical lan-
guage graph studies are also interesting; among 
them are investigation of networks of lemmas, and 
statistical research of agglutinated languages. 
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