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Abstract

The inclusion relation in temporal extents can be regarded as a prime requisite for
the temporal expression. We propose a multi-dimensional temporal logic, combining
the inclusion relation with the conventional precedence relation. First we define the
syntax and the semantics of the fused logic, and then we apply the logic to the
classification of occurrences to events and states, based on their upward/downward
heredities. Thereafter, we consider the mutual relation between the precedence and
the inclusion relations and discuss a proper set of axioms for the realistic time.

1 Introduction

In this paper, we introduce a multi-dimensional modal logic to represent the
temporal structure of events and states. The linear temporal logic is the
prime method of representation of time in natural language semantics. An-
other conventional approach, the interval-based time, has also contributed to
the analysis of time in which two intervals are related in such ways that one
overlaps the other, one includes the other, and so on [6,14,4]. Among such
relations, van Benthem [15] regarded the inclusion relation as important, and
defined the modalities 0" and [, each of which represents ‘all the superin-
tervals’ and the latter ‘all the subintervals,” respectively.! In this paper, we
further develop the idea and discuss the logic of the inclusion relation together
with the conventional precedence.

Here, we do not consider the internal structure of each interval, and identify
a time point with a shorter interval; for fear that the term ‘interval’ might
be misunderstood as a sequence of time points, we employ the word temporal
extent, that is a certain consecutive duration of time, in this study.

The temporal logic is formalized by such modal operators as F, G, P, and
H, each of which represents ‘some future,” ‘all the future,” ‘some past,” and ‘all

! In the original literature [15], they are written as 0*” and Ogouwn-
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the past,” respectively. We add " and [, to these, and propose a polymodal
logic with regard to the ordinary temporal order and the inclusion relation.
With this logic, we express the distinction of events and states.

In the following Section 2, we explain the intrinsic distinction of events
ans states in terms of temporal heredity. In Section 3 we show the syntax and
semantics of the logic. We apply the logic to events and states in Section 4,
and thereafter, we discuss a proper set of axioms for the logic in Section 5. In
Section 6 we summarize our contribution.

2 Upward/downward heredity

Let us consider an example of a simple detective story. If a murder suspect has
an alibi between 2:00am and 4:00am, then (s)he has one also between 2:30au
and 3:30am. Because ‘have an alibi’ is also valid in all the subintervals, this
statement is said to be downward hereditary. On the contrary, if the presumed
time of the death is between 3:00am and 4:00am, then it is also true that the
victim died between 2:00am and 5:00am. As ‘presumed death time’ also holds
in all the superintervals, the statement is said to be upward hereditary [11].

This distinction can be reduced to the following issue; if an event occurs in
a point-wise instant, it becomes upward hereditary. Whereas, if a state persists
with a certain duration of time, it naturally becomes downward hereditary.

The situation is explained in Fig. 1. An event is the perfective? view,
in which whole the event structure including the beginning point and the
culmination point is packed to a sole time point. As in the left-hand side
of Fig. 1, if a temporal extent [ includes this occurrence, so does I' (2 ).
On the contrary, if some state persists for a given temporal extent [’ as in
the right-hand side of the figure, then so does [ (C ['). Hereafter, in case
[ Cl',l'is called to be a super-extent of /, and [ is a sub-extent of I’. In this
paper, we simply call those which are upward hereditary events, and those
which are downward hereditary states, while we call both of them generically
occurrences. If we claim that an occurrence ¢ is an event,

LI implies I' IF o (I C 1), (1)
and if an occurrence 9 is a state,

I'IF ) implies [ I- ¢ (I C I). (2)

2 Note that the perfective view of an occurrence disregards its internal structure and renders
the whole as one instant, which is different from the perfect aspect [1].
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Fig. 2. Two-dimensional time

In the following section, we introduce the two-dimensional time. One di-
mension is the conventional precedence (<), and the other is the inclusion
relation (C); both of which are given between two temporal extents so that
they are arranged in the planar space as in Fig. 2.

3 Syntax and semantics of Kpn

In this section, we first give the syntax of the logic, and later, we give its
Kripke semantics.

3.1 Syntaz

The language consists of propositional variables ¢, v, - - -, logical connectives
-, V, A, =, and modal operators G, H, 1", J, where parentheses and punc-
tuation marks are added if necessary.

Modal operators are interpreted in the following way.

G¢ at all the future time, ¢
Hy at all the past time, ¢
"o in all the super-extents, ¢
U, 1in all the sub-extents, ¢

Modal operators F', P, ', and ¢, are abbreviations of -G—, -H-, -0,
and —L], —, respectively.

Note that the two temporal extents in the precedence relation do not share
a common time (¢t £ t). FOT and O'Fp are differently valuated; the former
refers to some future of a super-extent of the current time while the latter does
to a super-extent of some future. The former does not include the current time
though the latter may include it. Thus, the truth values may be different in the
two sentences. Generally speaking, all these operators are not commutative.

A modal logic with the modality O is normal if (i) the logic includes all the
tautologies, (ii) is closed under Modus Ponens, and (iii) satisfies the following
property:

(K) Blp = ¢) = (Hp = 0Y),

and (iv) if ¢ is a sentence of the logic so is Op. Because all the G, H,O", 0,
satisfy the above conditions, the combined logic is normal.



First, we introduce the set of axioms for G and H and that of ' and
0, independently. The logic Kp, the minimal tense logic, has the following
axioms.

(45) G = GGy (4.) He=HHy

(C5) ¢=GPyp (Ce) o= HFyp
while the logic Ky includes:

(4y) =00y  (4) =00

(C1) e=070p (C) ¢=0J0%

(T3) o= (1) =0

The logic Kp + Kq is the fusion of Kt and Kg,? and we denote it as Krq
hereafter.

3.2 Kripke semantics

We introduce Kripke semantics for Kpg. A Kripke model for the logic is a
tuple (W, <, >, C, D,IF), where W is a non-empty set of possible worlds, and
< and C are binary relations on W. Thus, each temporal extent is regarded
as a possible world, and both of the precedence and the inclusion are two
different accessibilities between the possible worlds. The semantics, i.e., I is
defined inductively as follows.

ulk Ay Gff ulkpand ul- 1,
ulE VvV aiff ul-porulky,
ulkp =1 iff ulFpimplies u IF ¢,
ulk = iff ulf o,
ulEGo iff Yv e W,u < v implies v IF ¢,
ul-He iff Yv e W, u > v implies v I ¢,
ul-O% iff Yo e W,u C v implies v IF ¢,
ulFOp iff Yo € W,u DO v implies v I .
In Kripke semantics, (42) and (44) represent the transitivity, (Cz) and

(C4,) the conversion, and (T%) the reflexivity, respectively. A formula ¢ is
true in model M, denoted by M = ¢, if u IF ¢ for every u € W. Now, we

3 Let L; and L be two modal logics. If L; is axiomatized by the set of axioms A; and Lo
is axiomatized by Az, then the fusion Ly + Lo is axiomatized by the union 4; U 4, [5,2].



define the veridicality as follows.

MEGp= GGy iff Yu,v,wlu<vAv<w—u=<w,
MEHp= HHyp iff Yu,v,wfw>=vAv>=u— w > ul,
M o= GPy iff Yu,vfu<v—v>u,
MEp=HFyp iff Yu,v[u>=v—v<ul,
MEOWw=00 i Yu,v,wluCvAvCw—uCw),
MEOe=00¢ if Yu,v,wludvAv2Dw—uDw,
MEe=00,¢ iff Yu,v[uCv—v2ul,
MEe=00" iff Yu,v[u2dv—uvCul,
MEOW= ¢ iff YuluC ul,
MEOe= ¢ iff YuluDul

If < and C satisfy all of the above conditions for M, M is called to be a

Kro-model. Now, we can construct the canonical model [3]; i.e., Vo, ¢ ¢ Krg
iff there exists Kyp-model M such that M = ¢ (completeness).

4 FEvents and states

4.1  Downward heredity

A proposition is gestalt if it never holds over two temporal extents one of
which properly contains the other [11]. That is, the gestalt of an occurrence
shows the exact temporal extent where the occurrence takes place on the time
axis.

If we directly translate the feature of a state, (2), into a formula,

(2)I e =0

Now let us consider the possibility that there exists a super-extent (O7), in all
the sub-extents of which ¢ still holds ({J,¢). In Fig. 3, if we reside in ¢; and
@ is a state (o = O, p), we can assume an enlarged temporal extent to (2D t;)
where t, IF ;. In case ¢ does not hold before and after the enlarged extent
ty, 1.€.,
to lF H-p AO o A G,

then the enlarged extent specified by ¢, can be regarded as the mazimal extent,
i.e., the gestalt of the state.

Example 1 If “Alice was sleeping between 1ru and 2ru” then we can infer
that she has slept in any sub-extent of [1rm, 2eu], as:

[1:80pu, 2pu] IF{(A sleeps)),
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Fig. 4. Upward heredity

where A stands for ‘Alice.” In this case, we can also infer that there must be
a mazimal extent, including [1ru, 2ru, in any sub-extents of which she sleeps.

[1pu, 2eu) I QT (A sleeps)).
If she actually took a siesta between 12:30pu and Spu,

[12:30pu, 3pu] IF H—=((A sleeps) AN, (A sleeps) N G—({(A sleeps)).

Here, (( ) is an identical event which happens once and for all, and is not a
situation type.

4.2 Upward heredity

On the contrary, if an occurrence of an event is upward hereditary,
1) ¢=0y,

and in this case, ¢ should not appear both in the past and in the future. This
situation is depicted in Fig. 4. The thick line is the gestalt of the event and
is encircled by its temporal extent. Let ¢; be the original temporal extent of
@ and ty (D t1) IF ¢; if ¢ < t3, necessarily t3 If ¢ even though t3 may be
included in 5.

However, in the similar way to the downward heredity, we can assume the
minimal extent in which the event occurred, as:

O (H=p ANO'p A G—g).

Example 2 If “Betty woke up between 7:30au and 8am” then we can infer that
there must be the minimal extent in [7:30au, 8am], that could be more adequately
called an instant, when she got up. Let u be such a small extent, then:

ulF H=((B wakes up)) AN O (B wakes up)) N G={(B wakes up)).
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5 Triangular constraints

The two accessibilities in Section 3 cannot be independent of each other for
a realistic model of time. Here, a model of time means an empirically plau-
sible time, or in other words, all the given temporal extents can be mapped
consistently onto the physical time axis, that is linear and unbounded.

As is the left-hand side of Fig. 5, given three temporal extents ¢, t; and
t3, if t; is included in t3 and 9 precedes t3, then t, should also precede t;. The
figure suggests the following three constraints. First, seen from t,,

FO,p= Fo, (3)

that is, if ¢y IF F'O,p then ¢35 I O ¢, and thus ¢; IF ¢. Next, if we see from t3,
then:

Py =0 Pep. (4)
Namely, if ¢3 IF Pp then t3 IF O, Py, i.e., for all t; C 3, t; IF Pp. Finally, if
we see from t;, then:

O'Pp = Po. (5)
This means that if ¢, IF OTP¢p then ¢35 IF Py and thus ¢, I ¢.

Because the axioms (3), (4), and (5) concerns the same arrangement of
three temporal extents, the meanings should be equivalent. Actually, we can
show that the three axioms are the identical one (see Appendix). We name
the axiom (4A;). The duals?* of them become:

(3)" Gy = GL, ¢,
(5) Hp = O"Hep.

In the very similar way, for the right-hand side of Fig. 5 we can show
that the following conditions represent the same axiom. If ¢, IF O"Fp, then
ts IF F'o and tg IF .

O'"Fo = Fo. (6)
If t5 IF Fp, then t5 IF O, Fo.
Fo=0/Fp. (7)

4 The dual is the contraposition of the original formula, the propositional symbols of which
are replaced for its negatives, and is denoted by (x).



If ts IF PO, then t5 IF O, and t4 I .

The followings are the another family of axioms. We name it (Ay). The
dual of them become:

(6)" Go = O'Gey,
(1) 0.Gp = G,
(8)* Hp = HO, .

Combining (7%;) with the above formulae, we obtain the following equa-
tions of modalities.

G=0G=9,G
H=U0OH=0H
F=0OF=0"F
P=0,P=0'P

At this stage, the following set of axioms:
Kpoa = Kpo + {41, Ay}

can be considered as a proper candidate of the two-dimensional temporal
structure.

6 Discussion

We have proposed a multi-dimensional temporal logic, combining the logic Kn
of the inclusion relation (C) of temporal extents together with the logic Ky
of the conventional precedence relation (<), and showed the syntax and the
semantics of the fusion of them as Kpo. With this logic, we gave explanations
for the gestalt of occurrences in terms of temporal extents, as well as the
progressive and the perfect aspects. Thereafter, we also added several axioms
to constrain the relationship between two different accessibilities, C and <, to
express the realistic time.

Though we have mainly discussed the distinction of upward/ downward
heredity in this paper, we can extend the notion to the classification of aspects.
In [15], the progressive and the perfective aspects were represented by ¢’
and P, respectively. Although these may look rather oversimplified, we can
support the idea in that both of the progressive form {'¢ and the perfect form
Py are downward hereditary (OJ,), as: QT¢ ey 007070 = (4y)+ 0,07,
and Py = O, Py (See (4) in Section 5).

In the similar way to the conventional temporal logic, a set of axioms speci-
fies a kind of multi-dimensional temporal logic. Namely, adding or subtracting



some axioms, we can represent different temporal structures. At the current
stage, Kr+{(44)), (T3)}, i.e., Kro — {(Cy))} was proved to be decidable as in
[17]. The sequent rules for Ky were given in [9] and those for {(4), (1)} with
(K) becomes S4. Although K;+S4 cannot satisfy the cut elimination property
[7], we can employ the restricted cut elimination for the subformulae [12,13].
Because the restricted sequent system satisfies the subformula property, we
can show that the whole sequent system also satisfies it. If a system has the
subformula property, it has a finite model. According to Harrop’s theorem [3],
if a system has a finite model with a finite set of axioms, it is decidable.

On the contrary, because the system {(44,), (Cy))} is same as Kp, Kpo —
{(T%)} is the fusion of two Kr’s and again becomes decidable.

Although we can claim that K;na gives the proper relationship of the in-
clusion and the precedence, the sequent system and the proof method of which
would become more complicated. The logical features such as decidability of
the extended multi-dimensional modal logic, as well as the proof system, are
under investigation.
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Appendix

We here prove the equality of (3) < (4) < (5).

* 3)F (4): By (C) O,p = HF(0,p), and by (3) 0,9 = HFyp. Its dual
becomes PGy = O, p, and thus, PG(Py) = O,Pyp. From (C.,), Py =
PGPy; hence, Pp = O, Py (4).

* (4) F (3): By (C5), Gp = GP(Gyp). From (4) P(Gy) = O,P(Gy), and
by (Ct), PGy = O,PGyp = O,p. Therefore, GPGyp = GO, p. Combining
them, we obtain G = GU, p. Its dual becomes F'O ¢ = Fo.

* (5)F (4): By (C)), Pp = O,0"Pyp. Given ¢'Pyp = Py (5), the right-hand
side of the above is reduced to L, Pp.

* (4) - (5): By (Ct), Hp = O'Q,Hp. Because the dual of (4) becomes
O,Hp = Hyp, we obtain Hp = O"Hyp. Its dual becomes {"Pyp = Pp.

We can show the equality of (6) < (7) < (8) similarly, replacing the modal
operators symmetrically.



