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1. Motivation

The traditional tri-partition syntax/semantics/pragmatics is commonly used in most of the computer 
systems that aim at the simulation of the human understanding of Natural Language (NL). This 
conception does not reflect the flexible and creative manner that humans use in reality to interpret 
texts. Generally speaking, formal  NL semantics is referential i.e. it assumes that it is possible to 
create a static discourse universe and to equate the objects of this universe to the (static) meanings 
of  words.  The  meaning  of  a  sentence  is  then  built  from  the  meanings  of  the  words  in  a 
compositional  process  and  the  semantic  interpretation  of  a  sentence  is  reduced  to  its  logical 
interpretation based on the truth conditions. The very difficult task of adapting the meaning of a 
sentence to its context is often left  to the pragmatic level,  and this task requires to use a huge 
amount of common sense knowledge about the domain. This approach is seriously challenged (see 
for  example  [4][14]).  It  has  been  showed that  the  above tri-partition  is  very  artificial  because 
linguistic as well as extra-linguistic knowledge interact in the same global process to provide the 
necessary elements for understanding. Linguistic phenomena such as polysemy, plurals, metaphors 
and  shifts  in  meaning  create  real  difficulties  to  the  referential  approach  of  the  NL semantics 
discussed above. As an alternative solution to these problems, [4] proposes an inferential approach 
to the NL semantics in which words trigger inferences depending on the context of their apparition. 
In  the same spirit  we claim that  understanding a  NL text  is  a  reasoning process based on our 
knowledge about  the norms1 of  its  domain i.e.  what  we generally  expect  to  happen in  normal 
situations. But what kind of reasoning is needed for natural language semantics? 

The answer to this question is based on the remark that texts seldom provide normal details that are 
assumed to be known to the reader. Instead, they focus on abnormal situations or at least on events 
that cannot be inferred by default from the text by an ordinary reader. A central issue in the human 
understanding  of  NL is  the  ability  to  infer  systematically  and  easily  an  amount  of  implicit 
information necessary to answer indirect questions about the text. The consequences resulting from 
truth-based entailments are logically valid but they are poor and quite limited. Those obtained by a 
norm-based approach are defeasible: they are admitted as long as the text does not mention explicit 
elements  that  contradict  them.  However  they  provide  richer  information  and  enable  a  deeper 
understanding  of  the  text.  That  is  why  the  norm-based  reasoning  must  be  non-monotonic.  In 
addition to this central question, the representation language must take into account a number of 
modalities (including the temporal aspect) that are very useful to answer different questions on NL 
texts.

The  next  section  gives  a  general  logical  framework  to  represent  in  a  first  order  language  the 
necessary knowledge about a domain and allows non-monotonic reasoning. Section 3 shows how to 
implement our representation language fragment in the formalism of Answer Set Programming by 
transforming them into extended logic programs. In section 4, we discuss the use of our language in 

1 In A.I, the word norm is commonly used in the « normative » sens. Here, it is rather used in the « normal » sens.



the car crash domain to find automatically the cause of an accident from its textual description. The 
kind of inference rules required in this application is showed through a detailed presentation of the 
analysis of a text from the corpus we are using. Finally, we conclude and give some perspectives for 
future work in section 5. 

2. Knowledge representation language

The explicit information evoked in a given text provides the starting point for the reasoning process 
that  aims  to  understand  it.  Thus,  the  first  task  to  do  is  to  extract  from  the  text  this  explicit 
information  and  to  represent  it  in  an  adequate  language.  The  richness  and  flexibility  of  NL 
constrains the representation language to take into account a number of aspects whose necessity and 
importance  may  vary  from  an  application  to  another.  In  what  follows,  we  describe  a  logical 
language which enhances within the first order framework some aspects that we believe to be useful 
in  an  inferential  approach  to  NL semantics. Namely,  the  proposed  language  allows  the 
representation of time, modalities and non-monotonic inferences (see [7] for more details).

2.1 Reification

The first idea that comes to mind when representing knowledge about NL statements is to use first 
order predicates to express properties of objects, agents …etc.  However we need often to treat 
further aspects. For example, we need to represent modalities on the considered properties and to 
reason about  them i.e.  to use the predicate  names themselves as variables over which one can 
quantify in order to avoid the use of ad hoc inference rules, i.e. to factorise the rules at an adequate 
level of abstraction. To solve this problem within the framework of first order logic, we use the 
reification technique, commonly used in Artificial Intelligence (AI). Instead of writing  P(X, Y) to 
express the fact that property P applies to arguments X and Y, we write Holds(P, X, Y). The property 
name  P becomes then an argument  in  the new predicate  Holds.  i.e.  P  will  be a  variable  over 
properties and it can be quantified in inference rules.
The use of the reification technique yields to two main drawbacks: first, it forces a fixed arity for 
the predicate Holds whereas properties in general may have a different number of arguments. The 
second  problem  is  the  necessity  to  redefine  ad  hoc  axioms  about  the  properties  (negation, 
conjunction, disjunction… of properties). One possible solution to the first problem is to consider a 
special  binary  function  combine which  constructs  a  new “complex”  argument  from two  other 
arguments. For example, as the predicate Holds has three arguments then, the predicate Q(X, Y, Z) 
can be reified as :  Holds(combine(Q,  X),  Y,  Z)2.  In  general,  this  corresponds well  to linguistic 
practice: for example the application of a transitive verb to its complement can be considered as a 
unique “complex” property comparable to an intransitive verb. Concerning the second problem, it 
turns out that in practice we often do not need all the axioms but only some particular ones. So we 
have to represent only those axioms that we really need in the application considered. 

   
2.2 Representing time
Generally, narrative texts describe events that take place in a time perceived as continuous. The 
temporal aspect is crucial in their understanding. Two representation approaches are possible for 
time: either we represent the continuous time which reflects the physical reality and use the elegant 
mathematical tools developed for mechanics, or we represent the discrete time which reflects the 
text structure and which corresponds rather to a naive physics. We chose the second approach, 
because generally, texts are written by persons who ignore the mathematical details of motion, and 
they can be understood without having such knowledge. Two approaches are still possible for a 
discrete model of time. Either we use a linear model in which only the events that happened in 
reality  are  represented,  or  we take  into  account  the  unrealized  futures  as  part  of  the  temporal 
information. In this case, we use a branching time model [5][10]. This last model is richer than the 

2 As a concrete example, the ternary predicate bump(A, B, T) (vehicle A bumps vehicle B at time T) is written after 
reification and by using the  combine function as  :  Holds(combine(bump,  B),  A,  T). The term combine(bump,  B) 
expresses then the complex property of « bumping the vehicle B ».



former and can be very useful in some cases. In this paper we are interested only on the linear 
model.  What is important for us in time modelling is to establish an order between the events 
evoked in the text. Of course, this choice limits the use of our language to applications which do not 
need  deeper  structure  of  time  but  it  remains  useful  in  practice  (see  section  4  for  a  possible 
application). Indeed, the unrealized futures are not completely excluded in our model, as they can 
be represented implicitly by modalities (see the modality able in section 4.2.2 ).  
The semantics used for time in our model is situated somehow between an interval-based and a 
point-based semantics: the scene of the accident described in the text is decomposed as a succession 
of ordered time elements. Each time element is denoted by an integer representing its order number. 
This integer is used as an argument in the predicates. The meaning of the element depends on the 
nature of the property.  If  it  is a persistent property, the time parameter denotes the entire time 
interval during which this property remains true (interval based semantics). If the property is not 
persistent (corresponds to an action or a punctual event) then the temporal argument denotes the 
starting point of the interval on which the property occurs and causes at least one persistent property 
to change its truth value. 

2.3 Modalities
Modalities express properties of the predicates other than their truth value, which can be considered 
as a null modality. Different types of modal logics have been developed to formalize the reasoning 
about modalities. Even though the reasoning we want to apply on texts makes use of modalities, it 
can be carried out without developing new modal logics with ‘complete’ axiomatizations. What we 
really need is to represent the modalities as first order predicates using the reification technique 
discussed in section 2.1.,  and to define only useful axioms as inference rules.  For example,  to 
represent the fact that the modality Mod is applied to the predicate P having X1, …, Xn as arguments 
we write : Mod(P, X1, …, Xn) instead of the classical notation : Mod P(X1, …, Xn).
 
2.4 Non-monotonicity
Non-monotonicity is an essential characteristic of the nature of the  reasoning used by humans  to 
understand texts. Among the different approaches proposed in the literature to formalise this variant 
of commonsense reasoning, we have used Reiter’s default  logic [11] to represent our inference 
rules.  The  fixed  point  semantics  used  to  compute  the  default  theories  extensions  seems  to  be 
adequate to the nature of the NL understanding process. Indeed, as discussed in section 1, the NL 
understanding process cannot be decomposed in a sequence of separate steps but it consists in the 
simultaneous satisfaction of several linguistic as well extra-linguistic constraints in a manner that 
can be approached by the search of some fixed point of the meaning of the given text. 
Two  kinds  of  inference  rules  are  considered:  the  strict  inferences  represented  by  material 
implications  and  the  defeasible  ones  represented  by  Reiter’s  defaults.  To  facilitate  the 
implementation of our rules on the answer set programming paradigm (see section 3) we limit their 
forms as follows:

Let A1,…, An, B, C1, …, Ck be first order literals. 
The Expression (1) is a material implication. It means that  B is inferred whenever  A1, …, An are 
verified. Two kinds of default rules are considered. The first form (2) corresponds to a “normal” 
default. It means that if we have A1, …, An then, we can infer B as long as this is consistent. The 
second one (3) corresponds to a semi-normal default and its meaning is that in general, when we 
have  A1, …, An then, we can infer  B as long as this is consistent and none of        ¬Ci (i=1..k) 
belongs to the extension3. Semi normal defaults are particularly useful to establish a priority order 
between inference rules which can not be done using only normal defaults[12].

A1  … An → B                                        (1)
A1  … An : B                                          (2)
A1  … An : B[C1, …, Ck]                       (3)

3 We use a notation in which A : B stands for A : B and A : B[C] stands for A : B, C
                                                                             B                                                B



3. Implementation by Answer Set Programming

3.1. Theoretical backgrounds
Answer Set Programming (ASP) is a recent paradigm covering different kinds of logic programs, 
and  associated  semantics.  It  allows  representing  and  solving  various  problems  in  Artificial 
Intelligence. On one hand, we can cite combinatorial problems as k-coloring graph, path finding, 
timetabling,  ...  On  another  hand,  ASP is  also  concerned  by  problems  arising  when  available 
information is incomplete as non-monotonic reasoning, planning, diagnosis, ... The non familiar 
reader will  find additional information about  ASP on the web site of the working group  WASP 
(http://wasp.unime.it/). 

In  the  present  work  we  are  particularly  interested  in  using ASP as  a  framework  for  default 
reasoning. For this we use Extended Logic Programs (ELP) to represent knowledge by means of 
rules containing positive information and strong or default negative information and we interpret 
them by answer set semantics [3]. Formally, an ELP is a set of rules of the form

c  a1, ..., an, not b1, ..., not bm.                 n 0 and m 0
where c, ai and bj are literals.
For a given rule r, we denote

head(r) = c body+(r)={a1, ..., an} body-(r)={b1, ..., bm} r+=c a1, ..., an

Definition
Let R be a set of rules without default negation ( r  R, body-(r) = ), R is called a Definite Logic 
Program. A literal set X is closed wrt R when  r  R, body+(r)  X head(r)  X.
The set of consequences of R is Cn(R) the minimal literal set that is closed wrt R consistent or equal 
to the whole set of literals of the language

For a given literal set A and an ELP P, the reduct of P by A is the definite Logic Program
PA={r+ | r  P and body-(r)  A = 

Definition
Let P be an ELP and A a literal set. A is an answer set of P if and only if A=Cn(PA)

Examples
P1={a  not b., b  not a., c b.} has two answer sets {a} and {b, c}
P2={a  not a.} has no answer set at all.

We have recalled the basic notions of answer set semantics only in the case of propositional rules. 
But, obviously, for a more flexible knowledge representation, rules may contain variables. In this 
case, a rule is considered as a global schema for the set of fully instanciated rules that can be 
obtained by replacing every variable by every constant in the language.

Example
P={bird(1)., bird(2)., penguin(2)., fly(X)   bird(X), not penguin(X).,  fly(X)   penguin(X).} is 
equivalent to the program
P'={bird(1)., bird(2)., penguin(2)., fly(1)  bird(1), not penguin(1)., fly(1)  penguin(1)., fly(2) 
 bird(2), not penguin(2)., fly(2) : penguin(2).}
Then, P (formally P') has one answer set {bird(1), bird(2), penguin(2), fly(1), fly(2)}.

Let us mention an important point for our work that is answer set semantics for ELP can be viewed 
as a subcase of default logic [2][3]. By translating every rule r = c  a1, ..., an, not b1, ..., not bm. 
into the default rule : T(r) = a1  ... an : c [b1, ..., bm ]

http://wasp.unime.it/


By this way :
If S is an answer set of an ELP P, then Th(S) is an extension of the default theory (T(P))
every extension of (T(P)) is the deductive closure of one answer set of P.

Obviously, in whole generality every default theory cannot be translated into an ELP. But as we 
explain it later, it is possible to encode some restricted default theories in an ELP. By this way it is 
possible to envisage realistic applications of default reasoning since several software packages for 
ASP are available today, e.g. the following ones:

DLV[8] http://www.dbai.tuwien.ac.at/proj/dlv 
Smodels [13] http://www.tcs.hut.fi/Software/smodels 
Cmodels [9] http://www.cs.utexas.edu/users/tag/cmodels.html 
Nomore++[1] http://www.cs.uni­potsdam.de/wv/nom   ore   ++   

3.2. From Default Logic to ASP
Here, we explain how we have encoded our knowledge base that is originally a default theory, into 
an extended logic program. A very important point to note is that our original knowledge base does 
not contain disjunctions.  Since a default theory is a pair consisting in a set of classical formulas and 
a set of default rules, we distinguish two major translations.

classical formulas ELP

one fact : a one rule with an empty body : a.

a conjunction of n facts : a1  ... an n rules with empty bodies: a1. ... an.

a material implication a1  ... an  b one direct rule b  a1, ... ,an. 
and n contrapositive rules :
a1 b, a2, ... ,an.
...
an b a1 ... ,an-1.

default rules ELP

A1, …, An : B
A1, …, An : B[C1, …, Ck]

b ← a1, ..., an, not ¬b. 
b ← a1, ..., an, not ¬b, not ¬c1,..., not ¬cm. 

We have preferred to encode firstly our rules in default logic instead using directly ASP because 
default logic is more compact than ASP, which needs more rules, especially for contrapositives. The 
translation of default logic into ASP can be easily auomated. 

4. From the description of an accident to its cause

4.1. The corpus
We are working on a sample of 60 representative texts of a larger corpus. These texts are short 
descriptions of car accident circumstances. They are written (in French) by persons implied in the 
accidents to be sent to their insurance company4. The length of our texts varies between 9 and 167 
words. They contain 129 sentences whose length varies between 4 and 55 words; the longest report 
has 7 sentences and there are 24 reports that contain only one sentence. The total number of word 
occurrences is 2256. But there are only 500 distinct words corresponding to 391 dictionary entries.

4 We are grateful to the MAIF insurance company for having given us access to the reports that constitute our corpus.

http://www.cs.uni-potsdam.de/wv/nomore
http://www.cs.uni-potsdam.de/wv/nomore
http://www.cs.utexas.edu/users/tag/cmodels.html
http://www.tcs.hut.fi/Software/smodels
http://www.dbai.tuwien.ac.at/proj/dlv


4.2. Our task
4.2.1. Finding the cause of the accident 
The objective of the system we are developing is to find automatically the cause of an accident from 
its textual description. Because of the very controversial nature of causality we must define more 
precisely our objective. We are interested in our study by the interventionist conception of causality 
in which voluntary actions are privileged as potential causes of events. This is in correspondence 
with the practical use of causality in  AI.  Moreover, we claim that the most plausible causes for 
abnormal  situations  like  accidents  are  those  that  reflect  violation  of  norms (anomalies)[6].  We 
consider that the system has understood a text if it finds the same cause as the one given by an 
ordinary human reader. We have then determined manually the cause of each text and we have used 
this information to validate the results of the system.

Two essential  steps are considered in the overall  architecture of the system. The first one “the 
linguistic step” applies a tagger and syntactical analyser to extract a set of surface relations between 
words. These relations are then progressively transformed by an adequate “ linguistic reasoning” 
into the so-called “semantic predicates” which express the explicit information provided by the text. 
The semantic predicates are represented in a “semantic language” as the one discussed in section 2. 
This part of the system, which is under construction, tries to adapt existing methods to deal with the 
problems of anaphora resolution and time ordering of the events described in a text. We will not 
discuss the details of the linguistic step in this paper. The second step: “the semantic step” applies a 
set of strict and default inference rules based on norms of the road domain to enrich the semantic 
predicates  initially  extracted  from  the  text  by  further  semantic  predicates  enhancing  implicit 
information. The inference rules are designed manually and reflect rudimentary reasoning that any 
reader of the text makes systematically. This semantic reasoning process stops as soon as the system 
infers the necessary information that characterizes an anomaly. Section 5 gives further details about 
the semantic reasoning through an example taken from the corpus.

4.2.2. Some specificities 
The majority of the semantic predicates used in our system have the form: Holds(P, A, T) where P 
is  a  simple  or  a  complex  property  (expressed  by  the  binary  function  combine),  A is  an  agent 
(generally a vehicle involved in the accident) and T is the order number of a  time interval during 
which (or at the beginning of which) the property P holds (to simplify, we will say henceforth that 
property P holds at time T). For example Holds(stop, ag, 3) means that the agent ‘ag’ is stopped at 
time 3 and Holds(combine(follows, ag1), ag2, 2) means that at time 2, agent ‘ag2’ follows agent ‘ag1’ 
(in a file of vehicles). When needed a function neg is applied to a property to have its negation. We 
introduce the rule (4)    

Holds(neg(P), A, T) ↔ ¬Holds(P, A, T)                          (4)

The main modalities that we use in our system cope respectively with duties and capacities :

must(P, A, T) means that at time T, agent A has the duty to achieve the property P.
able(P, A, T) means that at time T, agent A is able to achieve the property P. In terms of branching 
time, this means that there is some possible future in which P holds. 

The semantic reasoning is designed so that it converges to a “kernel” containing a limited number 
of semantic predicates5 in terms of which all possible anomalies can be expressed. In a given text, it 
is possible that several anomalies coexist. In this case, the system distinguishes between the primary 
anomaly  which  can  be  considered  as  the  most  plausible  cause  of  the  accident  and  the  other 
anomalies called “derived anomalies”. A primary anomaly has two forms: either an agent A has the 
duty and the capacity to achieve a property P at a time T and at time T+1 a property P' incompatible 

5 The predicates of the kernel are : Holds(control, A, T) [A has the control of his/her vehicle], Holds(moves_back, A, T) [A moves 
back], Holds(starts, A, T) [A moves off], Holds(drives_slowly, A, T) [ A drives fairly slowly], Holds(stops, A, T) [A is stopped], 
Holds(comb(disruptive_factor, X), A, T)  [X is a disruptive factor for A]



with P holds (5) or some disruptive and inevitable factor occurs and causes the accident  (6). The 
form of a derived anomaly (7) differs from that of a primary one only on the agent's capacity.

primary_an(P, A, T)  property(P), vehicle(A), time(T), must(P, A, T), able(P, A, T),
holds(P', A, T+1), incompatible(P, P')               (5)

primary_an(combine(disruptive_factor, X), A, T)  object(X), vehicle(A), time(T),  
holds(combine(disruptive_factor, X), A, T)        (6)

derived_an(P, A, T)   property(P), vehicle(A), time(T), must(P, A, T), ¬ able(P, A, T), holds(P',  
A, T+1), incompatible(P, P')           (7)

4.3. An example
To illustrate  our  methodology,  let  us consider  the following text  of  the corpus (translated into 
english) and explain the inference rules involved in its analysis :

« Whereas vehicle B was overtaking me, the driver lost the control of its vehicle.  It bumped on the 
central guardrail , and crossed the ways.  It then cut my way. My vehicle A initially bumped on  
vehicle B on its right side, before being crushed on the guardrail. »

The set of the semantic predicates extracted from the text are :

holds(overtake, veh_b, 1), ¬ holds(control, veh_b, 2), 
holds(combine(bump, guardrail), veh_b, 3), ¬ holds(stop, veh_b, 4), 

holds(combine(bump, veh_b),veh_a, 5), holds(combine(bump, guardrail), veh_a, 6)
vehicle(veh_a), vehicle(veh_b), object(veh_a), object(veh_b), object(guardrail).

In what follows, we show how the application of inference rules leads to the determination of the 
primary and the derived anomalies:

Rule(8) states that “at the starting state 0, each vehicle has the control”.  
holds(control, A, 0)  agent(A), vehicle(A)                 (8)

It allows to infer :    holds(control, veh_a, 0), holds(control, veh_b, 0)

Rule(9) states that “if B is a vehicle that bumps on A at time T, then B is not stopped at this time”. 
¬ holds(stop, A, T)  vehicle(A), object(B), time(T), holds(combine(bump, B), A, T)  (9)

It allows to infer:   ¬ holds(stop, veh_b, 3), ¬ holds(stop, veh_a, 5), ¬ holds(stop, veh_a, 6)

Rules(10) and (11) state that “if A is a vehicle that bumps on B at time T, then there is at this time a  
shock (symmetric) between A and B”.  

holds(combine(shock, B), A, T)  vehicle(A), object(B), time(T), holds(combine(bump, B), A, T) (10)
holds(combine(shock, A), B, T)  object(A), object(B), time(T), holds(combine(shock, B), A, T)   (11)

The set of predicates inferred by these rules are : 
holds(combine(shock, guardrail), veh_b, 3), holds(combine(shock, veh_b), guardrail, 3),  

holds(combine(shock, veh_b), veh_a, T), holds(combine(shock, veh_a), veh_b, T), 
holds(combine(shock, veh_a), guardrail, T), holds(combine(shock, guardrail), veh_a, T)

Rule(12) states that “if A is implied in two successive shocks at times T and T+1, then we deduce  
that it lost the control after the first shock (during the time interval T)”.  
¬ holds(control, A, T)  agent(A), object(B), object(C), time(T),  holds(combine(shock, A), B, T),  

holds(combine(shock, A), C, T+1)       (12)
It allows to infer:      ¬ holds(control, veh_a, 5)



The remainder of information about the control of vehicles  A and  B during the other time intervals are 
deduced using appropriate rules that handle the persistence of some particular properties. The complete set of 
conclusions concerning control is as follows :

holds(control, veh_b, T) (for 0≤ T ≤ 1), ¬ holds(control, veh_b, T) (for 2≤ T ≤ 6), 
holds(control, veh_a, T) (for 0≤ T ≤ 4), ¬ holds(control, veh_a, T) (for 5≤ T ≤ 6)

Rule(13) states that “in general if there is a collision between a vehicle A and an object B at time T,  
then B represents an obstacle for A at time T-1”. 

holds(combine(obstacle, A), B, T-1)  object(A), vehicle(B), time(T), 
holds(combine(shock, A), B, T), not ¬ holds(combine(obstacle, A), B, T-1)                (13)

We obtain from this rule : 
holds(combine(obstacle, guardrail), veh_b, 1), holds(combine(obstacle, veh_a), veh_b, 4),  
holds(combine(obstacle, veh_b), veh_a, 4), holds(combine(obstacle, guardrail), veh_a, 5)

Rules (14) and (15) allows to infer that some obstacles are not predictable. The rule (14) states that 
“if a vehicle B not controlled represents at time T an obstacle to vehicle A, then this obstacle is not  
predictable for A at this time T”. Whereas rule (15) states that “in general, if a vehicle B bumps a  
vehicle A at time T, then B is considered as an umpredictable obstacle for A at time T”.

¬ predictable(combine(obstacle, B), A, T)  vehicle(B), vehicle(A), time(T),  
holds(combine(obstacle, B), A, T), ¬ holds(control, B, T)      (14)

¬ predictable(combine(obstacle, B), A, T)  vehicle(A), vehicle(B), instant(T), 
vrai(combine(bump, A), B, T), not predictable(combine(obstacle, B), A, T)          (15)

By these two rules we can infer : ¬ predictable(combine(obstacle, veh_a),veh_b, 4),
¬ predictable(combine(obstacle, veh_b), veh_a, 4)

Rule(16) states that “in general, one must keep the control of one's vehicle ”   
must(control,A,T)  vehicle(A), time(T), not ¬ must(control,A,T), 

not ¬ holds(control,A,T)                (16)

This rule infers : must(control, veh_b, 1), must(control, veh_a, 4)

The meaning of rule(17) is that “one must avoid any obstacle”. 
must(combine(avoid, X), A, T)  vehicle(A), object(X), time(T), 

holds(combine(obstacle, X), A, T)              (17)

This rule infers : must(combine(avoid, guardrail), veh_b, 1), must(combine(avoid, veh_a), veh_b, 4)
   must(combine(avoid, veh_b), veh_a, 4), must(combine(avoid, guardrail), veh_a, 5)

Rule(18) states that  “in general the duty to avoid an obstacle turns out to the duty to stop (this  
default is inhibited by a number of situations illustrated in the rule)”

must(stop, A, T)  vehicle(A), object(B), time(T), must(combine(avoid, B), A, T),  
holds(combine(shock, B), A, T+1), not ¬ must(stop, A, T), not must(drive_slowly, A, T), 

not holds(stop, A, T), not holds(combine(follow, A), B, T), not must(not(backwards), A, T-1), 
not must(not(move_off), A, T-1), not ¬ predictable(combine(obstacle, B), A, T)       (18)

We can infer from this rule : must(stop, veh_b, 1), must(stop, veh_a, 5)
Rules (19) and (20) are the main rules that allow to infer agent's capacities :

able(P, A, T)  vehicle(A), object(B), time(T), action(Act), property(P), pcb(Act, P), 
available(Act, P, A, T)              (19)



¬able(P, A, T)  vehicle(A), object(B), time(T), action(Act), property(P), pcb(Act, P), 
¬available(Act, P, A, T)              (20)

they mean that “vehicle A is able to reach property P at time Tn if and only if there is some action 
Act which is a “potential  cause” for P and which is  available for A to reach P at  time T (the 
contrapositives are omitted)”.
The  occurrences  of  the  relation  pcb  (which  abreviates:  potentially  caused  by)  are  statically 
determined  and  stored  in  a  static  database.  In  our  case  we  have  :  pcb(brake,  stop),  
pcb(combine(keep_state, control)6, control). 
By default,  actions are  available  for  agents to  reach the corresponding properties.  This  default 
inference is inhibited by a number of strict rules. In our case, we obtain : 

available(combine(keep_state, control), control, veh_b, 1) (the default is applied) 
¬available(combine(keep_state, control), control, veh_a, 4)7

¬available(brake, stop, veh_a, 5)8

From these results it follows :
able(control, veh_b, 1), ¬ able(stop, veh_a, 4), ¬ able(stop, veh_a, 5).

The application of rules (5) and (7) we can detect the primary and the derived anomalies :
primary_an(control, veh_b, 1), derived_an(control, veh_a, 4), derived_an(stop, veh_a, 5)

Finally, the cause of the accident is expressed by: "the loss of control of vehicle B at time 1"

5. Conclusion and perspectives

This paper defends the idea that inferences are at the heart of the problematic of NL semantics. We 
have  showed that  the  inferences  we  need  to  understand  natural  language  are  based  on  our 
knowledge about the norms of the domain and are non-monotonic since the conclusions of this kind 
of reasoning are in general defeasible. We proposed a general representation language which takes 
into account within a first order framework modalities, time and non-monotonicity that are essential 
aspects in an inferential approach of NL understanding. We presented also how to transform our 
inference rules into extended logic programs. To illustrate our approach in a practical domain we 
have used a corpus of 60 short texts describing the circumstances of road accidents. We have used 
Smodels to implement our reasoning system. With about 200 inference rules, the system succeeds to 
find for each text only one stable model containing the necessary literals which express the primary 
and the derived anomalies. We have determined manually for each text the answer that we hope to 
obtain. Thus, the validation criterion is that the system gives for each text the same answer as the 
predetermined one. The running time varies from a text to another but it does not exceed 30 seconds 
which is rather encouraging. Many other perspectives of future work are open, among them:

• Analyzing more texts of the same domain in order to verify :

- The validity of our hypotheses, especially those concerning the relationship 
between norms and causes and the sufficiency of a linear model of time;

- that the inference rules have a sufficient degree of generality to be adapted 
easily to new situations by giving the expected answers for new reports.

- the adequacy of the proposed representation language to deal with new texts.

• Generalizing the approach to other domains 

6 we consider as action the fact of keeping holded some persistent property.
7 the lost of control because of a shock at time T makes unavailable the action of keeping the control at time T-1.
8 if a vehicle is not under control, then, any action is unavailable for its driver.
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