
Towards a redundancy elimination algorithm
for underspecified descriptions

Alexander Koller and Stefan Thater

Department of Computational Linguistics
Universität des Saarlandes, Saarbrücken, Germany

{koller,stth}@coli.uni-sb.de

Abstract
This paper proposes an efficient algorithm for the redundancy elimination problem: Given
an underspecified semantic representation (USR), compute an USR which has fewer read-
ings, but still describes at least one representative of each semantic equivalence class of the
original readings. The algorithm operates on underspecified chart representations which
are derived from dominance graphs; it can be applied to the USRs computed by large-
scale grammars. To our knowledge, it is the first redundancy elimination algorithm which
maintains underspecification, rather than just enumerating non-redundant readings.

1 Introduction

Underspecification is the standard approach to dealing with scope ambiguities in
computational semantics [12,6,7,2]. The basic idea is to not enumerate all possible
semantic representations for each syntactic analysis, but to derive a single compact
underspecified representation (USR). This simplifies semantics construction, and
current algorithms support the efficient enumeration of readings from an USR [10].

In addition, underspecification has the potential for eliminating incorrect or re-
dundant readings by inferences based on context or world knowledge, without even
enumerating them. For instance, sentences with scope ambiguities often have read-
ings which are semantically equivalent. In this case, we typically need to retain
only one reading from each equivalence class. This situation is illustrated by the
following two sentences from the Rondane treebank, which is distributed with the
English Resource Grammar (ERG; [5]), a broad-coverage HPSG grammar.

(1) For travellers going to Finnmark there is a bus service from Oslo to Alta
through Sweden. (Rondane 1262)

(2) We quickly put up the tents in the lee of a small hillside and cook for the first
time in the open. (Rondane 892)

For the two example sentences, the ERG (Version 01-2006) derives USRs with
seven and six quantifiers, respectively, that correspond to various types of noun

{koller,stth}@coli.uni-sb.de

phrases (including proper names and pronouns). The USR for (1) describes 3960
readings, which are all semantically equivalent to each other. On the other hand, the
USR for (2) has 480 readings, which fall into two classes of mutually equivalent
readings, characterised by the relative scope of “the lee of” and “a small hillside.”

This paper presents an algorithm for the redundancy elimination problem: Given
an USR, compute an USR which has fewer readings, but still describes at least one
representative of each equivalence class – without enumerating any readings. This
algorithm computes the one or two representatives of the semantic equivalence
classes in the above examples, so subsequent modules don’t have to deal with all
the other equivalent readings. It also closes the gap between the large number of
readings predicted by the grammar and the intuitively perceived much lower degree
of ambiguity of these sentences. Finally, it can be helpful for a grammar designer
because it is much more feasible to check whether two readings are linguistically
reasonable than 480.

We model equivalence in terms of rewrite rules that permute quantifiers without
changing the semantics of the readings. The particular USRs we work with are un-
derspecified chart representations, which can be computed from dominance graphs
(or USRs in some other underspecification formalisms) efficiently [10]. The algo-
rithm can deal with many interesting cases, but is incomplete in the sense that the
resulting USR may still describe multiple equivalent readings.

To our knowledge, this is the first algorithm in the literature for redundancy
elimination on the level of USRs. There has been previous research on enumerating
only some representatives of each equivalence class [13,4], but these approaches
don’t maintain underspecification: After running their algorithms, we have a set of
readings rather than an underspecified representation.

Plan of the paper. We will first define dominance graphs and review the necessary
background theory in Section 2. We will then give a formal definition of equiva-
lence and derive some first results in Section 3. Section 4 presents the redundancy
elimination algorithm. Finally, Section 5 concludes and points to further work.

2 Dominance Graphs

The basic underspecification formalism we assume here are labelled dominance
graphs [1]. Dominance graphs are equivalent to leaf-labelled normal dominance
constraints [7], which have been discussed extensively in previous literature.

Definition 2.1 A (compact) dominance graph is a directed graph (V,E]D) with
two kinds of edges, tree edges E and dominance edges D, such that:

(i) the graph (V,E) defines a collection of node disjoint trees of height 0 or 1. We
call the trees in (V,E) the fragments of the graph.

(ii) if (v,v′) is a dominance edge in D, then v is a hole and v′ is a root in G. A node
v is a root (in G) if v does not have incoming tree edges; otherwise, v is a hole.

A labelled dominance graph over a ranked signature Σ is a triple G = (V,E]D,L)

ay

sampley

seex,y

ax

repr-ofx,z

az

compz

1 2 3

4 5 6

7

ay
ax

az
1

2

3

sampley seex,yrepr-ofx,zcompz

ay

ax

sampley seex,y

repr-ofx,z

az

compz

1

2

3

Fig. 1. A dominance graph that represents the five readings of the sentence “a representative
of a company saw a sample” (left) and two (of five) configurations.

1 2 3

4 5 6

7

h2h1 h4h3 h6h5

1 3

4 5 6

7

h2h1 h6h5

→ →
h2h1

h4h3

h6h5

2

1 3

4 5 6 7

Fig. 2. An example computation of a solved form.

such that (V,E]D) is a dominance graph and L : V Σ is a partial labelling
function which assigns a node v a label with arity n iff v is a root with n outgoing
tree edges. Nodes without labels (i.e., holes) must have outgoing dominance edges.

We will write v: f (v1, . . . ,vk) for a fragment whose root v is labelled with f and
whose holes are v1, . . . ,vk. We will write R(F) for the root of the fragment F , and
we will typically just say graph instead of labelled dominance graph.

An example of a labelled dominance graph is shown to the left of Fig. 1. Tree
edges are drawn as solid lines, and dominance edges are drawn as dotted lines, di-
rected from top to bottom. This graph can serve as an USR for the sentence “a repre-
sentative of a company saw a sample” if we demand that the holes are “plugged” by
roots while realising the dominance edges as dominance, as in the two (of five) con-
figurations shown to the right [7]. Configurations encode semantic representations
of the sentence, and we freely read configurations as ground terms over Σ.

2.1 Solving dominance graphs

Algorithms for solving a dominance graph in order to compute the readings it de-
scribes typically compute its minimal solved forms [1,3]. In this paper, we restrict
ourselves to hypernormally connected graphs (defined below), for which one can
show that all solved forms are minimal and bijectively correspond to configurations.

Let G,G′ be dominance graphs. We say that G is in solved form iff it is a forest,
and G is a solved form of G′ if G is in solved form and more specific than G′ i.e., G
and G′ have the same labels and tree fragments, and the reachability relation of G
extends that of G′. G′ is solvable if it has a solved form G. If G′ is hypernormally
connected, then each hole in G has exactly one outgoing dominance edge, and G
can be mapped to a configuration by identifying the two ends of each dominance
edge; conversely, we can find a unique solved form for each configuration. The
graph to the left of Fig. 2 shows one of the (minimal) solved forms of the example
graph, which corresponds to the configuration in the middle of Fig. 1.

Compute-Chart(G)
1 if there is an entry for G in the chart
2 then return true
3 free← Free-Fragments(G)
4 if free = /0

5 then return false
6 if G contains only one fragment
7 then return true
8 for each F ∈ free
9 do split← Split(G,F)

10 for each S ∈Wccs(G−F)
11 do if Compute-Chart(S) = false
12 then return false
13 add (G,split) to the chart
14 return true

{1,2,3,4,5,6,7} :〈1,h1 7→ {4},h2 7→ {2,3,5,6,7}〉
〈2,h3 7→ {1,4,5},h4 7→ {3,6,7}〉
〈3,h5 7→ {5},h6 7→ {1,2,4,5,7}〉

{2,3,5,6,7} :〈2,h3 7→ {5},h4 7→ {3,6,7}〉
〈3,h5 7→ {6},h6 7→ {2,5,7}〉

{3,6,7} :〈3,h5 7→ {6},h6 7→ {7}〉
{2,5,7} :〈2,h3 7→ {5},h4 7→ {7}〉
{1,4,5} :〈1,h1 7→ {4},h2 7→ {5}〉

{1,2,4,5,7} :〈1,h1 7→ {4},h2 7→ {2,5,7}〉
〈2,h3 7→ {1,4,5},h4 7→ {7}〉

Fig. 3. The chart solver and an example chart computed for the dominance graph in Fig. 2.

The key concept of the solver we build upon is that of a free fragment [3]. A
fragment F in a solvable graph G is free iff there is a solved form in which F is at
the root. It can be shown that a fragment is free iff it has no incoming dominance
edges and its holes are in different biconnected components of the graph i.e., they
are disconnected if the root of the fragment is removed from the graph [3]. Remov-
ing a free fragment from a graph splits the graph into different weakly connected
components (wccs) – one for each hole. Thus each free fragment F induces a split
of G, which consists of a reference to F and a mapping of the other fragments to the
hole to which they are connected. For instance, the example graph has three free
fragments: 1, 2, and 3. By removing fragment 2, the graph is decomposed into two
wccs, which are connected to the holes h3 and h4, respectively (see Fig. 2).

The solver [10] is shown in Fig. 3. It computes a chart-like data structure which
assigns sets of splits to subgraphs. For each subgraph it is called on, the solver
computes the free fragments, the splits they induce, and calls itself recursively on
the wccs of each split. It records subgraphs and splits in the chart, and will not
repeat work for a subgraph it has encountered before. The algorithm returns true iff
the original graph was solvable. The chart tells us how to build the minimal solved
forms of the graph: For each subgraphs, pick any split, compute a solved form for
each wcc recursively, and plug them into the given hole of the split’s root fragment.
As an example, the chart for the graph in Fig. 1 is shown to the right of Fig. 3.

Notice that the chart which the solver computes, while possibly exponentially
larger than the original graph, is still exponentially smaller than the entire set of
readings because common subgraphs (such as {2,5,7} in the example) are repre-
sented only once. Thus the chart can still serve as an underspecified representation.

2.2 Hypernormally connected dominance graphs

A hypernormal path [1] in a graph G is a path in the undirected version Gu of G that
does not use two dominance edges that are incident to the same hole. We say that
G is hypernormally connected (hnc) iff each pair of nodes is connected by a simple

hypernormal path in G. Hnc graphs are equivalent to chain-connected dominance
constraints [9], and are closely related to dominance nets [11]. The results in this
paper are restricted to hnc graphs, but this does not limit the applicability of our
results: an empirical study suggests that all dominance graphs that are generated by
current large-scale grammars are (or should be) hnc [8].

The key property of hnc dominance graphs is that their solved forms correspond
to configurations, and we will freely switch between solved forms and their corre-
sponding configurations. Another important property of hnc graphs which we will
use extensively in the proofs below is that it is possible to predict which holes of
fragments can dominate other fragments in a solved form.

Lemma 2.2 Let G be a hnc graph with free fragment F. Then all weakly connected
components of G−F are hnc.

Proposition 2.3 Let F1,F2 be fragments in a hnc dominance graph G. If there is a
solved form S of G in which R(F1) dominates R(F2), then there is exactly one hole
h of F1 which is connected to R(F2) by a simple hypernormal path which doesn’t
use R(F1). In particular, h dominates R(F2) in S.

Proof. Let’s say that F1 dominates F2 in some solved form S. There is a run of
the solver which computes S. This run chooses F1 as a free fragment before it
chooses F2. Let’s call the subgraph in which the split for F1 is chosen, G′. G′ is hnc
(Lemma 2.2), so in particular there is a simple hypernormal path from the hole h
of F1 which is in the same wcc as F2 to R(F2); this path doesn’t use R(F1). On the
other hand, assume there were another hole h′ of F1 which is connected to R(F2) by
a path that doesn’t use R(F1). Then the path via R(F2) would connect h and h′ even
if R(F1) were removed, so h and h′ would be in the same biconnected component
of G, in contradiction to the assumption that F1 is free in G′.

For the second result, note that F2 is assigned to the hole h in the split for F1.2

The following definition captures the complex condition in Prop. 2.3:

Definition 2.4 Let G be a hnc dominance graph. A fragment F1 in G is called a
possible dominator of another fragment F2 in G iff it has exactly one hole h which
is connected to R(F2) by a simple hypernormal path which doesn’t use R(F1). We
write ch(F1,F2) for this unique h.

3 Equivalence

Equivalence is traditionally defined as the relation between formulas which have
the same interpretation. However, even first-order equivalence is an undecidable
problem, thus an algorithm which checks for semantic equivalence of different con-
figurations of a graph can’t possibly be efficient. On the other hand, we do not need
to solve the full semantic equivalence problem, as we only want to compare formu-
las that are readings of the same sentence i.e., different configurations of the same
USR. Such formulas only differ in the way that the fragments are combined. We

can therefore approximate equivalence by using a rewrite system that permutes frag-
ments and defining equivalence of configurations as mutual rewritability as usual.

By way of example, consider again the two (equivalent) configurations shown
in Fig. 1. We can obtain the second configuration from the first one by applying the
following rewrite rule, which rotates the nodes 1 and 2:

ax(az(P,Q),R)→ az(P,ax(Q,R)) (3)

The formulas on both sides of the arrow are semantically equivalent in first-order
logic for any choice of the subformulas P, Q, and R. Thus the equivalence of the
two configurations with respect to our one-rule rewrite system implies that they are
also semantically equivalent.

While we will require that the rewriting approximation is sound i.e., rewrites
formulas into equivalent formulas, we cannot usually hope to achieve completeness
i.e., there will be semantic equivalences that are not modelled by the rewriting
equivalence. However, we believe that the rewriting-based system will still prove
to be useful in practical applications, as the permutation of quantifiers is exactly the
kind of variability that an underspecified description allows.

We formalise this rewriting-based notion of equivalence as follows. The defini-
tion uses the abbreviation x[1,k) for x1, . . . ,xk−1, and x(k,n] for xk+1, . . . ,xn.

Definition 3.1 A permutation system R is a system of rewrite rules over a signature
Σ of the following form:

f1(x[1,i), f2(y[1,k),z,y(k,m]),x(i,n]) → f2(y[1,k), f1(x[1,i),z,x(i,n]),y(k,m])

The permutability relation P(R) is the binary relation P(R)⊆ (Σ×N)2 which con-
tains exactly the pairs ((f1, i),(f2,k)) and ((f2,k),(f1, i)) for each such rewrite rule.

As usual, we say that two terms are equivalent with respect to R, s≈R t, iff there
is a sequence of rewrite steps and inverse rewrite steps that rewrite s into t. We say
that R is sound with respect to a semantic notion of equivalence ≡ if ≈R ⊆≡. If G
is a graph over Σ and R a permutation system, then we write SCR(G) for the set of
equivalence classes Conf(G)/≈R, where Conf(G) is the set of configurations of G.

A rewrite system (let’s call it Rfol) which is sound for the standard equivalence
relation of first-order logic could use rule (3) and the three other permutations of
two existential quantifiers, plus the following rule for universal quantifiers:

everyx(X ,everyy(Y,Z))→ everyy(Y,everyx(X ,Z))

The other three permutations of universal quantifiers, as well as the permutations
of universal and existential quantifiers, are not sound.

It is possible to compute SCR(G) by solving G and using a theorem prover for
equational reasoning to compute the equivalence classes of the configurations, but
this is very inefficient. To replace this by a computation on the USR, we must be
able to recognise whether two fragments of a graph can be permuted in all config-
urations of the graph. This is not possible in general: If we don’t know in advance

xi+1 xnx1 xi-1 y1 yk-1 yk+1 ym

y1 yk-1 yk+1 ymz

F2

F1

… …

… …vk

v = ui

u

F2

F1

x1 xi-1 xi+1 xn

… …

… …

z

v

ui

vk = u

(a)

F2

W

F1
ui

?

vj vk

w

πr
πu

v (b)

Fig. 4. Diagrams for the proof of Lemma 3.3

which hole of one fragment the other fragment can plug, we can’t know whether the
two fragments can be permuted. However, in a hnc graph, the hole of a fragment
which another fragment can plug is determined uniquely (because of Lemma 2.3),
and can be recognised without solving the graph.

Definition 3.2 Let R be a permutation system. Two fragments F1 and F2 with root
labels f1 and f2 in a graph G are called R-permutable iff they are possible domina-
tors of each other and ((f1,ch(F1,F2)),(f2,ch(F2,F1))) ∈ P(R).

Lemma 3.3 Let R be a permutation system, let F1 = u: f1(u1, . . . ,un) and F2 =
v: f2(v1, . . . ,vm) be R-permutable fragments in the hnc graph G, such that F2 is free,
and let C1 be a configuration of G in which u is the father of v. Then:

(a) It is possible to apply a R-rewrite step or an inverse R-rewrite step to C1 at u;
call the resulting tree C2.

(b) C2 is also a configuration of G.

(c) C2 ≈R C1.

Proof. Let i = ch(F1,F2) and k = ch(F2,F1); we know that ((f1, i),(f2,k)) ∈ P(R).
(a) F1 is a possible dominator of F2, so ui is plugged with v in C1 (Lemma 2.3).

Thus the (possibly inverse) rule which justified the tuple ((f1, i),(f2,k)) is applica-
ble at u.

(b) We must verify that every dominance edge in G is realised by C2. As Fig. 4a
shows, all dominance edges that do not go out of a hole of F1 are still trivially
realised by C2. Now let’s consider dominances out of the holes of F1.
• Dominance edges out of any u j with j 6= i are still satisfied (see the figure).
• Dominance edges from ui to a node in z are still satisfied (see the figure).
• Dominance edges from ui to v: Such edges cannot exist in G as F2 is free.
• Dominance edges from ui to a node w in some y j with j 6= k: Such edges cannot

exist either. F2 is a possible dominator of the fragment W whose root w is, so
there is a simple hypernormal path πw from ch(F2,W) to w which doesn’t use v;
ch(F2,W) = v j because v j dominates w in C1 (Lemma 2.3). On the other hand,
F2 is a possible dominator of F1, so there is a simple hypernormal path πu from
vk to ui which doesn’t use v. Now if there were a dominance edge from ui to w
in G, then v j and vk would be in the same biconnected component (they would
be connected via πu ◦ (ui,w) ◦ π−1

w if v were removed), which contradicts the
freeness of F2 (see Fig. 4b).

4 Underspecified redundancy elimination

Now we can finally consider the problem of strengthening an USR in order to
remove redundant readings which are equivalent to other readings. We will define
an algorithm which gets as its input a graph G, a chart as computed by COMPUTE-
CHART, and a permutability relation P(R). It will then remove splits from the chart,
to the effect that the chart represents fewer solved forms of the original graph, but at
least one representative from each class in SCR(G) remains. The subgraph sharing
of the original chart will be retained, so the computed chart is still an USR.

The key concept in the redundancy elimination algorithm is that of a permutable
split. Intuitively, a split of G is called permutable if its root fragment F is per-
mutable with all other fragments in G which could end up above F . Because of
Lemma 3.3, we can then always pull F to the root by a sequence of rewrite steps.
This means that for any configuration of G, there is an equivalent configuration
whose root is F – i.e., by choosing the split for F , we lose no equivalence classes.

Definition 4.1 Let R be a permutation system. A split S of a graph G is called R-
permutable iff the root fragment F of S is R-permutable with all other fragments in
G which are possible dominators of F in G.

In the graph of Fig. 1, all three splits are Rfol-permutable: For each of the upper
fragments, the other two upper fragments are possible dominators, but as all three
fragments are labelled with existential quantifiers and Rfol contains all permutations
of existential quantifiers, the fragments are permutable with each other. And indeed,
we can pick any of the three fragments as the root fragment, and the resulting split
will describe a representative of the single equivalence class of the graph.

Proposition 4.2 Let G be a hnc graph, and let S be a permutable split of G. Then
SC(S) = SC(G).

Proof. If G is unsolvable, the claim is trivially true. Otherwise, let C be an arbi-
trary configuration of G; we must show that S = (F,h1 7→ G1, . . . ,hn 7→ Gn) has a
configuration C′ which is equivalent to C.

Let’s say that the fragments which properly dominate F in C are F1, . . . ,Fn
(n ≥ 0), ordered in such a way that Fi dominates Fj in C for all i < j. Each Fi is
a possible dominator of F , by Prop. 2.3. Because S is permutable, this means that
each Fi is permutable with F in G. By applying Lemma 3.3 n times (first to F and
Fn, then to F and Fn−1, and so on), we can compute a configuration C′ of G in
which F is at the root and such that C′ ≈R C. But C is a configuration of S, which
proves the theorem. 2

This suggests the following redundancy elimination algorithm:

Redundancy-Elimination(Ch,G,R)
1 for each subgraph G′ in Ch
2 do if G′ has an R-permutable split S
3 then remove all splits for G′ except for S from Ch

Because of Prop. 4.2, the algorithm is correct in that for each configuration C of
G, the reduced chart still has a configuration C′ with C≈R C′. The particular choice
of S doesn’t affect the correctness of the algorithm (but may change the number
of remaining configurations). However, the algorithm is not complete in the sense
that the reduced chart can have no two equivalent configurations. We will illustrate
this below. We can further optimize the algorithm by deleting subgraphs (and their
splits) that are not referenced anymore by using reference counters. This doesn’t
change the set of solved forms of the chart, but may further reduce the chart size.

In the running example, we would run REDUNDANCY-ELIMINATION on the
chart in Fig. 3. As we have seen, all three splits of the entire graph are permutable,
so we can pick any of them e.g., the split with root fragment 2, and delete the splits
with root fragments 1 and 3. This reduces the reference count of some subgraphs
(e.g. {2,3,5,6,7}) to 0, so we can remove these subgraphs too. The resulting chart
is shown below, which represents a single solved form (the one shown in Fig. 2).

{1,2,3,4,5,6,7} : 〈2,h2 7→ {1,4},h4 7→ {3,6,7}〉
{1,4} : 〈1,h1 7→ {4}〉
{3,6,7} : 〈3,h5 7→ {6},h6 7→ {7}〉

Now consider variations of the graph in Fig. 1 in which the quantifier labels are
different; these variant graphs have exactly the same chart, but fewer fragment pairs
will be permutable. If all three quantifiers are universal, then the configurations fall
into two equivalence classes which are distinguished by the relative scope of the
fragments 1 and 2. The algorithm will recognise that the split with root fragment 3
is permutable and delete the splits for 1 and 2. The resulting chart has two solved
forms. Thus the algorithm is still complete in this case. If, however, the fragments
1 and 2 are existential quantifiers and the fragment 3 is universal, there are three
equivalence classes, but the chart computed by the algorithm will have four solved
forms. The problem stems from the fact that neither of the existential quantifiers is
permutable as long as the universal quantifier is still in the same subgraph; but the
two configurations in which 2 dominates 3 are equivalent.

Runtime analysis. Given a graph G with n nodes and m edges, we can compute a
table which specifies for each pair u,v of root nodes whether there is a unique hole
of u from which v can be reached via a simple hypernormal path which doesn’t use
u, and which hole this is. A naive algorithm for doing this iterates over all u and v
and then performs a depth-first search through G, which takes time O(n2(n + m)),
which is a negligible runtime in practice.

Given this table, we can determine the possible dominators of each fragment
in time O(n) (because there are at most O(n) possible dominators). Thus it takes
time O(n) to decide whether a split is permutable, and time O(n ·S), where S is the
number of splits in the chart, to run the entire elimination algorithm. The reference
counting optimisation adds nothing to this asymptotic runtime, as each split may
trigger at most one reference count update for each hole of the split’s root fragment.

5 Conclusion

We have presented an algorithm for redundancy elimination on underspecified chart
representations. It checks for each subgraph in the chart whether it has a permutable
split; if yes, it removes all other splits for this subgraph. This reduces the set of
described readings, while making sure that at least one representative of each orig-
inal equivalence class remains while maintaining underspecification. Equivalence
is defined with respect to a certain class of rewriting systems which approximates
semantic equivalence of the described formulas and fits well with the underspecifi-
cation setting. The algorithm runs in polynomial time in the size of the chart.

The algorithm is useful in practice: it reduces the USRs for (1) and (2) from the
introduction to one and two solved forms, respectively. In fact, initial experiments
with the Rondane treebank suggest that it reduces the number of readings of a
typical sentence by an order of magnitude. It does this efficiently: Even on USRs
with billions of readings, for which the enumeration of readings would take about
a year, it finishes after a few seconds. However, the algorithm is not complete in
the sense that the computed chart has no more equivalent readings. We have some
ideas for achieving this kind of completeness, which we will explore in future work.
Another line in which the present work could be extended is to allow equivalence
with respect to arbitrary rewrite systems.

References

[1] Althaus, E., D. Duchier, A. Koller, K. Mehlhorn, J. Niehren and S. Thiel, An efficient graph
algorithm for dominance constraints, Journal of Algorithms 48 (2003), pp. 194–219.

[2] Blackburn, P. and J. Bos, “Representation and Inference for Natural Language. A First Course
in Computational Semantics,” CSLI Publications, 2005.

[3] Bodirsky, M., D. Duchier, J. Niehren and S. Miele, An efficient algorithm for weakly normal
dominance constraints, in: ACM-SIAM Symposium on Discrete Algorithms (2004).

[4] Chaves, R. P., Non-redundant scope disambiguation in underspecified semantics, in:
Proceedings of the 8th ESSLLI Student Session, Vienna, 2003, pp. 47–58.

[5] Copestake, A. and D. Flickinger, An open-source grammar development environment and
broad-coverage english grammar using HPSG, in: Proc. of LREC, 2000.

[6] Copestake, A., D. Flickinger, C. Pollard and I. Sag, Minimal recursion semantics: An
introduction., Journal of Language and Computation (2004), to appear.

[7] Egg, M., A. Koller and J. Niehren, The Constraint Language for Lambda Structures, Logic,
Language, and Information 10 (2001), pp. 457–485.

[8] Fuchss, R., A. Koller, J. Niehren and S. Thater, Minimal recursion semantics as dominance
constraints: Translation, evaluation, and analysis, in: Proc. of ACL, Barcelona, 2004.

[9] Koller, A., J. Niehren and S. Thater, Bridging the gap between underspecification formalisms:
Hole semantics as dominance constraints, in: Proc. of EACL-03, 2003.

[10] Koller, A. and S. Thater, The evolution of dominance constraint solvers, in: Proc. of ACL-05
Workshop on Software, Ann Arbor, 2005.

[11] Niehren, J. and S. Thater, Bridging the gap between underspecification formalisms: Minimal
recursion semantics as dominance constraints, in: Proc. of ACL-03, 2003.

[12] van Deemter, K. and S. Peters, “Semantic Ambiguity and Underspecification,” CSLI, 1996.
[13] Vestre, E., An algorithm for generating non-redundant quantifier scopings, in: Proc. of EACL,

Berlin, 1991, pp. 251–256.

	Introduction
	Dominance Graphs
	Solving dominance graphs
	Hypernormally connected dominance graphs

	Equivalence
	Underspecified redundancy elimination
	Conclusion
	References

