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Abstract

Formal verification techniques provide a way to determine whether regulatory doc-
uments are consistent and whether implementations conform to them. To apply
these techniques a formal description of the regulation needs to be extracted. We
present a framework, under which NLP techniques can be brought to bear, to aid
a requirements engineer in extracting the formal description.

1 Introduction

Regulatory documents, which include the vast bodies of legislation, operating
procedures and organizational policy, are meant to be accessible to the people
affected by them. Hence, they have to be in natural language (NL). On
the other hand, regulations are expected to be consistent, and the governed
entities/events are expected to conform to the regulation.

For example, the Food and Drug Administration’s Code of Federal Reg-
ulations (FDA CFR) governs the bloodbanks in Americall] The bloodbanks
perform safety-critical functions like the testing of blood for communicable
disease agents (like HIV). It is highly desirable to determine whether (a) the
CFR is consistent, and (b) a bloodbank’s implementation of such a function
conforms to the CFR.
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The problem of creating descriptions of regulation which can be checked
for consistency has been explored by several authors 18], but the challenge of
checking an implementation for conformance has not been addressed, and this
is the main goal of our work. The conformance guarantees can be obtained
if formal descriptions of regulation and implementations are available, and if
verification techniques [ can be applied to these descriptions. But extracting
a formal description of regulation is expensive, as regulatory bases like the
CFR are large (about a million words) and complex.

Formal descriptions of regulation are usually extracted by an individual
who has a background in logic, e.g., [18]. We will call this individual the
requirements engineer. In this paper, we describe a framework to assist a
requirements engineer in extracting a formal description of regulation for use
in conformance checking.

An overview of the framework, the theoretical background and the various
constraints that apply is given in Section 2l This lets us determine the nature
of the description that needs to be extracted from the regulation. We then
turn to the question of how these descriptions might be composed. In Section
B, we attempt to map the denotations of sentences assigned by Kratzer [12]
to a form that can be used for the task at hand. Some difficulties arise in
this mapping, mainly because notions of obligation (that which is required)
and permission (that which is allowed) are not captured in the denotations.
We argue that an account of these notions is essential to the task at hand.
Section M describes a semantic representation, and composition procedure to
assist the requirements engineer in extracting the required description. By
treating obligations and permissions as different dimensions of the description
computed, the difficulties encountered in Section Bl are addressed.

The approach is motivated by our case study of the FDA CFR, and we
use () and (&) as examples through the course of this paper 2] (@ conveys
an obligation to perform a test for HIV and Hepatitis B, and (B) conveys a
permission not to test source plasma (a blood component) for Hepatitis B.

(1) Except as specified in @), you must test each donation of human blood or blood
component, for evidence of infection due to the Human immunodeficiency virus,
and the Hepatitis B virus.

(2)  You are not required to test donations of Source Plasma for evidence of infection
due to the Hepatitis B virus.

2 A Framework

To determine whether an implementation (bloodbank) conforms to the regu-
lation (CFR), we extract specifications in the Computation Tree Logic (CTL)
from the CFR. Then, given a description of a bloodbank’s procedure (as a
finite transition system, or model) there is an efficient search procedure to

2 (@ and @) are modified versions of sentences that appear in the FDA CFR 610.40. The
actual sentences are very long, and the modifications are made in the interests of space.



determine if the model conforms to the CTL specification [3]. This is known
as temporal model checking [2/T3]. The problem of conformance checking is
thus split into three steps:

(1) Extract CTL specifications from the regulation - This is done by a
requirements engineer, and our goal is to assist her. We use CTL as the
specification language, because it allows for efficient model checking [3].

(2) Obtain a model of an implementation - We assume the availability of
models. There are tools that aid in extracting models from software [5], and
in creating models if they cannot be extracted directly [T1].

(3) Apply model checking to determine if the model conforms to the CTL
specification.

Formally, a model can be defined as follows:

Definition 2.1 A model M is the five-tuple (S, 1,0, 1), where:

(a) S is a set of states, I C S is a non-empty set of initial states,

(b) 6 C S x S is a total transition relation (that is, Vs € S: [ € S : (s,t) € §]),

(c) 7 is a set of propositions (with power set 27 ), and

(d) I1: S — 27 is a function from states to sets of propositions. I1(s) for s € S can be

thought of as the propositions true at s.

Figure 1(a) and 1(b) show models of two different bloodbanks. The left-
most state is the initial state. Each state is labeled with TI(s). The propo-
sitions have the following interpretation: d’ is true (d’ € II(s)) iff a donation
of blood or blood component is being processed, sp’ is true iff a donation of
source plasma is being processed, thiv’ is true iff a test for HIV has been per-
formed, and thepb' is true iff a test for Hepatitis B has been performed. The
use of the propositions deo (denoting deontic accessibility) and app; (denoting
the application of a permission) is explained in later sections.

(a) A model of a bloodbank (b) A model of a bloodbank

which tests all donations which does not test dona-
tions of source plasma for
Hepatitis B

Fig. 1. Two models of bloodbanks

Definition 2.2 Given a finite set of propositions m, CTL formulas are defined induc-
tively as follows:

(a) p € 7 is a formula,

(b) Boolean combinations and negations of formulas are formulas,

(c) if ¢, and ¢ are formulas, then AG(¢) (on all paths, globally ¢), AX (@) (on all
paths, at the next state ¢), and pAUY) (on all paths, ¢ until ) are formulas.



The only temporal operator in CTL that we use is AG (for reasons that
we describe below), and hence rather than define the interpretation formally,
we will give some examples. Let M; be the model in Figure 1(a), and M, be
the model in Figure 1(b). The CTL specification AG(deo — (d’ — thiv')) holds
of both models, since on all paths (from the initial state, the leftmost one in
Figures 1(a), and 1(b)), globally, in all deontically accessible states deo, if a
donation of blood or blood component is being processed d’, it is tested for HIV
thiv'. Hence, we write M; F AG(deo — (d' — thiv')), and M, E AG(deo — (d' —
thiv')). Also, My E AG(deo — (sp’ — thepl’)). But, My ¥ AG(deo — (sp’ — thepl'))
(since there is a state s with sp’ € TI(s), and thept’ € TI(s)).

2.1 Approaches to extracting specifications

The central problem we face is that CTL and other temporal logics that lend
themselves to model checking are not expressive enough for a compositional
semantic procedure to be defined for natural language. One reason is that
CTL, like propositional logic, cannot express relations between entities.

There are several routes one might take to address this problem, i.e., design
more expressive logics that allow for tractable model checking, focus on a
subset of NL from which an automatic translation is guaranteed, or make
the procedure machine-assisted. While the design of more expressive logics
makes the composition of specifications easier, using them for model checking
needs the creation of more expressive models (which requires more effort).
As a result, there is a trade-off between amount of effort spent in obtaining
models, and that in obtaining the specifications. Our decision to work with
less expressive models is motivated by the extensive tool support available
for creating and extracting such models [BJIT]. Further, subsets of NL for
which automatic translation is guaranteed, such as the one derived by Holt
and Klein [T0], assume (among other things) that references are resolved and
hence cannot be directly applied to regulatory documents. We are thus left
with the choice of making the procedure machine-assisted.

There have been two kinds of machine-assisted approaches to extracting
temporal logic specifications: (a) composing the semantics in a general seman-
tic framework which is then mapped to temporal logic [7], and (b) attempting
to compose the semantics in the temporal logic directly [6]. In the latter ap-
proach, a human specifies denotations for a portion of the sentence, and the
rest of the composition happens automatically. We attempt to compose the
semantics in a temporal logic directly like [6], as it lends itself to defining
semantic representations with which a requirements engineer can interact in
well-defined ways.

2.2 Constraints on the CTL specifications

We apply two constraints to the CTL specifications:
(i) The specifications extracted should hold of all and only the valid mod-



els. There may be several implementations that aim to conform to a single
base of regulation. Given (1) and (2), the models in Figures 1(a) and 1(b) are
both valid. This is an important difference from the NL sentences considered
in previous approaches, which were elicited from appropriate users by pre-
senting them with a single model. For example, Holt and Klein [T0)] obtained
specifications by asking users to describe a particular timing diagram.

(ii) To account for the variation between models, all temporal information
about the governed entities/events is modelled through propositions. The only
use of the temporal operators in CTL is to obtain a quantification over paths
and states. A mapping will need to be performed so that the propositions
used in the specifications can be evaluated at a states in different models, and
the critical assumption is that this mapping will be very easy to specify.

3 From Sets of Worlds to Sets of Models

Several approaches in formal semantics take sentences to denote sets of worlds.
For normative statements, we assume (following Kratzer [12]) that worlds are
connected by an accessibility relation. Consider ([l) in Section [l which among
other things requires a test for Hepatitis B if no exceptions apply. A denotation
of this requirement is given in (B)), and is the set of worlds wy, such that for
every deontically accessible world w, for every entity = such that z is a donation
in that world d'(z,w), if no exception holds of that donation —e’(z,w), a test
for Hepatitis B is carried out for that donation thepd'(z,w). We will assume
that negation has the highest precedence. Therefore —a — b = (-a) — b, and
brackets are used to resolve other ambiguities.

(3)  Awp.Vw : (w € deo(wg) — (Va : (d'(x,w) — (—e'(x,w) — thepd' (z,w)))))

A difference between worlds in Kratzer’s denotations and states in a model
is that: in a state there is no notion of entities and relations between them.
All that is available at a state s is the set of propositions which are true at
that state II(s). To map (B) to a form that is useful for checking conformance,
we need two assumptions.

First, we assume that regulation denotes the set of models that conform to
it. Intuitively speaking, wg in (B]) can be thought of as a model in its entirety,
and w € deo(wy) correspond to special states in the model. A universal quan-
tification over accessible worlds can be replaced with the CTL AG operator.
We then obtain the denotation in (@), read as : on every path in M, if a state is
deontically accessible, for each donation x at that state, if no exception holds,
a test is carried out. In a model, only special states (like when the bloodbank
has finished processing all the donations it has received) need to conform to
the regulation, and deo can be thought of as marking those states.

(4) AM. M E AG(deo — (Vx : (d'(z) — (—€'(z) — thepb'(x)))))

@) is still not in CTL because of the universal quantification over enti-
ties x at a state. The universal quantifier can be eliminated by assuming a



serial processing model. This has the effect that at the deontically accessible
states, exactly one donation is under consideration (e.g. the models in Fig-
ures |1 (a)] and . In the sections of the CFR that we examined, a universal
quantification over entities is absolutely essential when these entities corre-
spond to inputs of an implemenation. This assumption lets us tie the inputs
to states, and use the quantification over states to achieve the quantification
over entities. Thus (@) can be reduced to ().

(5) AM. M E AG(deo — (d' — (=€’ — thepl’)))

A problem that is encountered in taking this approach is that there is no
distinction between obligations, and permissions (both of which stem from the
Hohfeldian legal conceptions of right, duty, privilege, and no right [9]). While
this did not cause a problem for the obligation in (), if one were to follow the
same procedure for the permission in (), we would get the denotation in ().

(6) AM. M E —-(AG(deo — (sp’ — thepb')))

A model satisfies (@) only if there is some path in which there is a state that
is deontically accessible, and if a donation of source plasma is being processed
it 1s not tested. This is too strong a requirement, because an organization may
choose not to do what it is permitted to do. The model in Figure is a
valid model, which would be declared invalid if (@) were required of it.

Another problem is that it is not clear how one would use (@) in interpreting
the exemption ¢’ in ([H). A reasonable candidate is ¢/ = deo — (sp’ — —thepl').
But this is not the exemption because it is true in every deontically accessible
state in which a donation of source plasma is not being processed. Consider a
state s at which sp’ = false (sp’ € 1I(s)). At s, ¢’ = (deo — (false — —thepl’)) =
(deo — true) = true. The specification in (H), at s is: AG(deo — (—e — —thepd')) =
AG(deo — (—true — —thept')) = AG(deo — true) = AG(true) = true . Therefore, a
model that doesn’t test any donation for Hepatitis B would conform to (H).
We now turn to the task of addressing these problems by revising how the
specifications are composed.

4 Extracting the specifications

To aid the requirements engineer in extracting the specifications, the idea
is to present her with intermediate semantic representations of the sentence
with which she interacts. The intermediate representations that we use fall
into the category of abstract syntaz trees (ASTs). ASTs are generally used as
intermediate representations in compiling code in a high-level programming
language to machine dependant code. The internal nodes in ASTs are oper-
ators (predicates/meta-predicates), the subtrees they dominate are operands
(arguments), and leaf nodes correspond to variables or constants (the require-
ments engineer specifies the denotation of the leaves). An AST encodes the
resolution of scope ambiguities, i.e., if p; dominates p, in the AST, then p,
outscopes ps.



Section L] describes some phenomena in natural language that can be
used in the construction of the ASTs, and how these ASTs can be interpreted.
In Section BE2, we describe how the ASTs and their interpretation for ([Il) and
@) (in Figures Bl and ) address the problems described in Section Bl

4.1 Abstract Syntaz Trees (ASTs) and their interpretation

To capture the distinction between obligations and permissions, the denotation

¢

of each node N in an AST is given by the 3-tuple: [N]] = OJJVV , where Oy
Pn

is a set of propositional logic formulas which correspond to the obligations

that have been satisified, and Py is a set of propositional logic formulas that
correspond to the permissions that have been taken, and ¢y is a propositional
logic formula which can be thought of as indicating whether N is true at a
state. The set of obligations O obtained from the policy base is the union
of the obligations obtained at the root of the AST for each sentence. The

denotation of the policy base is then given by: Am. M E AG [deo— A ¢| . We
€O
now identify various linguistic constructions that can be used to obtain ASTs.

T:{Hll,EIHI:I ' T:[eln,men]
Fig. 2. Semantics of the Copy meta-predicate
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Fig. 3. AST and its interpretation for (1)

Distributive readings and the Copy meta-predicate: (1) is ambigu-
ous between a collective reading (where there is a single test for both the

3 We assume that obligation and permission denoting categories, e.g. must, do not occur
in contexts like antecedent clauses of subordinating conjunctions (like ¢ f), and restrictors of
determiners. Handling these cases requires an extension to CTL which is beyond the scope
of this paper.
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Fig. 4. AST and its interpretation for (2)

diseases), and a distributive reading (where there are separate tests for each
disease). However, (2) gives an exemption to a test for one of the diseases, and
this suggests that a distributive reading may be more appropriate in the spec-
ifications extracted, and that the distributivity has scope over the exception.
Hence C'opy dominates except in Figure 3.

The interpretation of the C'opy meta-predicate is given in Figure 2. It is
called a meta-predicate because it is a function from an AST to another AST,
by simple variable substitution. For the AST for (1) shown in Figure 3, this
results in an AST rooted with and with subtrees corresponding to each of the
tests. The interpretation of and in this context is given by:

o0\ (2h)  [Nimadh
and [ Oy | .. [O% | = [ UL, 0%
Pa Pi Uit Ph
The RHS of the equation corresponds to the denotation of the node labeled
and in the AST (shaded in gray in Figure 3).
Universally Quantified NPs correponding to inputs: As mentioned
in Section 3, the universal quantification over inputs (donations) is achieved

by associating states with unique inputs. The interpretation of the determiner
each is designed with idea that the obligations will be evaluated at each state.

$a B PANPB
each | {} O | =({9a— ¢8j|¢8_j € Op}
{} Ps {¢AA¢g]|¢g] EPB}

The interpretation of the determiner no is similar to that of each/every,
except that a negation needs to be applied to the nuclear scope. We discuss
the interpretation of negation in what follows.

Conditional and Exceptive constructions: There are several predi-
cates that denote conditions and exceptions. For example, the subordinat-
ing conjunctions if, unless, and except as, coordinating conjunctions like
except that or but. The interpretation of i f is the same as that for every. The
interpretation of predicates like except as, and unless are similar, the only
difference being that —¢,4 is used instead of ¢, in the RHS.

Modals and Negation: The semantics of modals and negation are given

elow:
A dA dA appi N\ $a
must [ {} | = | {¢a} ]| may | {} | = {
{} { {} {appi N da}



da P A — A
not ((’)A = {_‘¢é_]"¢%j € Pa} , where ¢/, = {appj (/; P4 Pa ;hi?difEOA
Pa {appj A =04 ;165 ;€ Oa} A

must(A) results in the interpretation that ¢4 is an obligation. may(A)
results in the interpretation that app; A ¢4 is a permission, where app; is
a variable introduced which the implementation must set to true when the
permission is applied (we discuss its use in Section 4.2). And intuitively, the
interpretation of negation captures the idea that may(—=A) = not(must(A)).

4.2 Discussion

There are two obligations obtained at the root of the AST for (1): ¢4 —
(mf)12 — dyrs) = d — (=) — thiv') and ¢uy21 — (TPay22 — ¢ay.23) =
d — (—el, — thepd) , where d’ is true iff the donation is one of blood or blood
component, €] and e}, are the exceptions to the required test for each disease,
and thiv’ and thepb’ are true iff tests for HIV and Hepatitis B respectively
have been performed. The computation of the second obligation is not shown
in Figure 3, and is obtained from the second child of and (in the AST shaded
in gray). Note that the individual propositions like d’ need to be specified by
the requirements engineer at the leaf nodes of the AST.

Figure 4 shows the AST and its interpretation for (2). The permission
obtained at the root node is : ¢(2).1 Aappi A—d2).o = sp’ Aappi A—thepl! where sp’
is true iff a donation of source plasma is being processed, and thepb’ is true iff
a test for the Hepatitis B virus has been carried out.

The use of the app, proposition is as follows. It is possible for the regula-
tion to cancel the permission given in (2), but there may be several cases in
which permission not to test a donation of source plasma for Hepatitis B is
given. Suppose the case under consideration is one where the permission in
(2) is cancelled, but the organization doesn’t test a donation of source plasma
for Hepatitis B because a different permission can be applied. Since the per-
mission being applied sets thepb’ to false, and sp’ is true, the only way for the
implementation to indicate that the permission in (2) is not being applied is
by setting app; to false. Setting e} = false, and e = sp’ A appy A —thepl':

po1=d — (—false — thiv'), and ¢p.o =d — (=(sp’ A app1 A —thepb’) — thepb’)

Considering just these obligations, the denotation of the regulatory doc-
ument would be: AM. M E AG(deo — (¢o.1 A do.2)) . Therefore, a bloodbank
could decide not to test a donation of source plasma for Hepatitis B, but they
would always have to test a donation for HIV.

5 Conclusions and Future Work

We have described a framework to assist a requirements engineer in extracting
CTL specifications from regulatory documents. An account of obligations and
permissions turns out to be essential in composing the specifications. The
composition procedure (defined in Section Hl) was applied to a large part of



the FDA CFR 610.40. While it does seem to scale well, providing tool support
to extract and interact with the ASTs is vital. To this end, we plan to conduct
a small scale annotation of ASTs which will let us determine the accuracy with
which these representations can be computed. On the user interface side, we
are working on ways of presenting the ASTs to the requirements engineer.
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