
Inference in Computational Semantics ICoS-5

Buxton, England

April 20–21, 2006

Workshop Proceedings

Johan Bos and Alexander Koller (Eds.)

About ICoS

Natural Language Processing has reached a stage where the exploration and development of
inference is one of its most pressing tasks. On the theoretical side, it is clear that inference
plays a key role in such areas as semantic construction and the management of discourse
and dialogue. On the practical side, the use of sophisticated inference methods is expected
to play a crucial role in such application areas as natural language generation, automatic
question answering, and spoken dialogue systems. At the same time, inference tools and
resources have matured to the point that they can become useful for actual applications.
Automated theorem provers and other inference tools are becoming increasingly robust and
efficient. And the world knowledge bottleneck is being addressed from different angles, by
the manual development of knowledge resources, the merging of existing such resources,
and the automated extraction of world knowledge from corpora.

The Inference in Computational Semantics (ICoS) workshops are intended to bring
together researchers from areas such as Computational Linguistics, Artificial Intelligence,
Computer Science, Formal Semantics, and Logic, to discuss approaches to, and applica-
tions of, inference in natural language semantics. ICoS-1 took place in Amsterdam, the
Netherlands, on August 15, 1999. ICoS-2 was organised in Dagstuhl Castle, Germany, on
July 29–30, 2000. ICoS-3 was co-located with the International Joint Conference on Au-
tomated Reasoning (IJCAR 2001), which took place on June 18–23, 2001 at Siena, Italy.
ICoS-4 took place in Nancy, France, on September 25–26, 2003.

Welcome to ICoS-5

ICoS-5 is organised as a two-day event at the University of Derby College, Buxton, Eng-
land, taking place on April 20–21. The programme features three invited presentations
(by Christian Ebert, Patrick Pantel, and Stephen Pulman). In addition, we have selected
twelve regular papers from 24 submissions, which span topics ranging from the use of infer-
ence techniques for formal and computational semantics, over new methods for knowledge
extraction from corpora, to NLP applications that use inference tools.

We have accepted six of the remaining submissions as “short papers”. These papers
will be presented as posters and demos at the workshop, and we believe that this new
format will be a worthwhile experience both for authors and for participants.

We would like to thank the members of the programme committee, who produced highly
informative reviews and made it possible to set up the broad and strong program for ICoS-
5. Finally, we are very grateful to the local organisers, Ian Pratt-Hartmann and Allan
Ramsay, who did a flawless job of preparing what promises to be a wonderful workshop
location for us.

Rome and Saarbrücken, March 2006
Johan Bos & Alexander Koller (co-chairs)

iii

iv

Workshop Organization

Programme Committee

Carlos Areces INRIA Lorraine
Peter Baumgartner National ICT Australia
Christoph Benzmueller University of the Saarland
Raffaella Bernardi Free University of Bozen-Bolzano
Patrick Blackburn INRIA Lorraine
Johan Bos (co-chair) University of Roma “La Sapienza”
Harry Bunt Tilburg University
Ann Copestake University of Cambridge
Dick Crouch PARC
Ido Dagan Bar Ilan University
Kees van Deemter University of Aberdeen
Nissim Francez Technion
Claire Gardent CNRS/LORIA
Alexander Koller (co-chair) University of the Saarland
Shalom Lappin King’s College London
Alex Lascarides University of Edinburgh
Bernardo Magnini ITC-Irst
Katja Markert University of Leeds
Dan Moldovan University of Texas at Dallas
Jeff Pelletier Simon Fraser University
Maarten de Rijke University of Amsterdam
Michael Schiehlen University of Stuttgart
Matthew Stone Rutgers
Bonnie Webber University of Edinburgh

Local Organizers

Ian Pratt-Hartmann School of Computer Science, University of Manchester
Allan Ramsay School of Informatics, University of Manchester

v

vi

Table of Contents

Abstracts of Invited Talks

Expressive Power and Complexity of Underspecified Representations 1
Christian Ebert

Knowledge Harvesting and Fusion from Small and Large Corpora . 3
Patrick Pantel

Bridging the gap between formal and computational semantics . 5
Stephen Pulman

Regular Papers

Anaphora Resolution and Minimal Models . 7
Ariel Cohen

Extracting Formal Specifications from Natural Language Regulatory Documents 17
Nikhil Dinesh, Aravind Joshi, Insup Lee and Bonnie Webber

How to change a person’s mind: Understanding the difference between the effects
and consequences of speech acts . 27
Debora Field and Allan Ramsay

Towards a redundancy elimination algorithm for underspecified descriptions 37
Alexander Koller and Stefan Thater

Quantifiers in Dependency Tree Semantics . 47
Leonardo Lesmo, Livio Robaldo, and Jelle Gerbrandy

Controlled Language for Geographical Information System Queries 57
Sela Mador-Haim, Yoad Winter and Anthony Braun

Computing relative polarity for textual inference . 67
Rowan Nairn, Cleo Condoravdi, and Lauri Karttunen

Using Answer Set Programming in an inference-based approach to
Natural Language Semantics . 77
Farid Nouioua and Pascal Nicolas

A Bootstrapping Algorithm for Automatically Harvesting Semantic Relations 87
Marco Pennacchiotti and Patrick Pantel

Concepts across categories . 97
Hilke Reckman and Crit Cremers

Multi-dimensional Temporal Logic for Events and States . 107
Satoshi Tojo

Considerations on the nature of metaphorical meaning arising from a computational
treatment of metaphor interpretation . 117
A.M. Wallington, R. Agerri, J.A. Barnden, S.R. Glasbey, and M.G. Lee

vii

Short Papers

Supporting temporal question answering: strategies for offline data collection 127
David Ahn, Steven Schockaert, Martine De Cock, and Etienne Kerre

Formal semantics of verbs for knowledge inference .133
Igor Boyko

Ingredients of a first-order account of bridging . 139
Philipp Cimiano

A Computational Theory of Inference for Arithmetic Explanation 145
Albert Goldfain

Towards a Logical Foundation of Semantic Networks - A Typology of
Descriptive Means for Semantic Inference . 151
Hermann Helbig and Ingo Glöckner

The Alligator theorem prover for dependent type systems:
Description and proof samples . 157
Paul Piwek

viii

Expressive Power and Complexity
of Underspecified Representations

Christian Ebert
Fakultät für Linguistik und Literaturwissenschaft

Universität Bielefeld

My talk will be about two requirements on Underspecified Representation Formalisms in
the context of underspecification of scope. The requirement on partial disambiguation,
stating that partially disambiguated ambiguities need to be represented, does not carry
much content unless it has become clear, exactly what those ambiguities are. In line with
König and Reyle [1999], I will argue that all theoretically possible patterns of ambiguity,
i.e. subsets of readings, can occur in natural language, in particular when underspeci-
fied representations are assumed to represent patterns of ambiguity that arise through
disambiguation by discourse or even by world knowledge. Therefore an underspecified
representation formalism can only be regarded as expressively complete, if it provides rep-
resentations for all potential subsets of readings. Taking a closer look at recent prominent
approaches to scope underspecification, namely Hole Semantics [Bos, 2002], Minimal Re-
cursion Semantics [Copestake et al., 1999], and Normal Dominance Constraints [Koller,
2004], it turns out that none of these formalisms is expressively complete. Furthermore,
these incompleteness results allow for a straightforward comparison of the discussed ap-
proaches with respect to expressive power.

The second requirement is the avoidance of combinatorial explosion. I will argue that
the decisive process that determines the efficiency of an underspecification approach is
the construction phase of the representations and not so much the check for satisfiability
or enumeration of readings. Thus the desired avoidance of combinatorial explosion comes
down to a requirement on a feasible construction procedure and hence to a requirement on
the maximal ’size’ of the representations, which can only be fulfilled if the involved repre-
sentations are in some sense more compact than the mere listing of the available readings.
Unfortunately it turns out that due to the rapid growth of the number of potential patterns
of ambiguity, the two requirements of compactness and expressive completeness cannot be
fulfilled at the same time. In other words, I will show that any underspecified representa-
tion formalism must necessarily miss out on some of the potential patterns of ambiguity
or run into the combinatorial explosion problem [Ebert, 2005].

References

Johan Bos. Underspecification and Resolution in Discourse Semantics. PhD thesis, Uni-
versität des Saarlandes, 2002.

Ann Copestake, Dan Flickinger, and Ivan A. Sag. Minimal Recursion Semantics – An
Introduction. Technical report, CSLI, Stanford University, 1999. (Draft).

Christian Ebert. Formal Investigations of Underspecified Representations. PhD thesis,
King’s College London, 2005.

Alexander Koller. Constrained-Based And Graph-Based Resolution of Ambiguities in Nat-
ural Language. PhD thesis, Universität des Saarlandes, July 2004.

Esther König and Uwe Reyle. A General Reasoning Scheme for Underspecified Represen-
tations. In Logic, Language and Reasoning. Essays in Honour of Dov Gabbay., pages
251–277. Kluwer, 1999.

1

2

Knowledge Harvesting and Fusion from Small and Large Corpora

Patrick Pantel
ISI, University of Southern California

Inferencing requires large collections of axioms and knowledge bases of interrelated
concepts and instances. In the past decade, researchers have explored many approaches to
automatically learn such knowledge from textual corpora. In this two-part talk, we will
discuss the challenges of harvesting knowledge from various corpus sizes and we will
look at some recent attempts at fusing the knowledge into a single semantic repository.
On the harvesting front, we will focus on the challenges posed by three types of corpora:
i) the Web (order of 1012 words) – pattern learning algorithms, models of reliability, and
scalable computing; ii) large corpora such as newswire collections (order of 109 words) –
amenable to complex natural language processing and clustering; and iii) small corpora
such as college textbooks (order of 105 words) – in which low redundancy requires
leveraging external resources such as the Web and ontologies.

This multitude of harvested knowledge inevitably overlaps and is partially inconsistent
and incompatible since information can be expressed across data sources in so many
ways. However, little effort has been spent on fusing such harvested knowledge into an
overarching consistent semantic repository. We will present a recent algorithm for linking
semantic resources using grammatical templates. We will also present an algorithm to
automatically induce conceptual relations between mid-level ontological concepts and
then disambiguate instances with regard to the most appropriate senses in the ontology,
using the induced conceptual relations.

3

4

Bridging the gap between formal and computational semantics

Stephen Pulman
Computational Linguistics Group, Oxford University.

The literature in formal linguistic semantics contains a wealth of fine grained
and detailed analyses of many linguistic phenomena. But very little of this work
has found its way into implementations, despite a widespread feeling (among
linguists at least) that this can’t be very difficult in principle: you just fix a
grammar to produce the right logical forms and hook them up to a theorem
prover, don’t you? In this talk I take a representative analysis of adjectival
comparatives and ask what steps one might actually have to go through so as to
use this analysis in a realistic question-answering setting. I then try to identify
some general conclusions that can be drawn from this exercise.

5

6

Anaphora Resolution and Minimal Models

Ariel Cohen

Ben-Gurion University, Israel
arikc@ bgu. ac. il

Abstract

Some anaphora resolution algorithms are based on model builders, and use the
fact that they generate minimal models: only those elements that are necessary
are postulated to exist in the model. In this way, such systems have the desirable
property that if anaphora can be resolved to a linguistically available antecedent,
this resolution applies, and only if there is no suitable antecedent, a deictic reading
is generated.

In this paper I formalize the entailments that follow from such anaphora reso-
lution algorithms. In particular, I will suggest a simple, linguistically motivated,
underspecified representation for anaphora—DRT, and place the burden of the res-
olution of anaphora and its consequences on an independently motivated logic for
default reasoning—Default Logic.

1 Introduction

Consider a simple case of ambiguous anaphoric reference:

(1) I had gone to see John before I visited Bill and Mary. He doesn’t want
to speak with her.

What can we say about the resolution of the anaphora? The pronoun her
probably refers to Mary; the pronoun he is ambiguous between John and Bill,
but most likely refers to John. And either pronoun (or both) may be used
deictically, referring to some other individual that is not denoted by a linguistic
antecedent. What we would like is a system that allows us to represent all
these options, pick those we consider plausible, and draw some inferences even
in the absence of a clear resolution.

Intuitively, the deictic interpretation is dispreferred; we will assume it only
if there is no suitable linguistic antecedent. An elegant explanation of this fact
can be provided by anaphora resolution algorithms that use domain building
techniques (e.g., [1,10,11]). Model builders receive as input a set of proposi-
tions, and produce a model for them if such exists. Typically, the models so
generated are minimal, i.e. models whose domain is only as large as it needs to

7

arikc@bgu.ac.il

be. Thus, if the referent of the pronoun can be identified with a linguistic an-
tecedent, no additional elements need to be postulated. Only if this turns out
to be impossible, will an additional element be added to the model, resulting
in the deictic reading.

The goal of this paper is not to propose new algorithms, but to formalize
the idea of using minimal models to resolve (pronominal) anaphora, and the
conclusions that can be drawn by such a system in case the anaphora is not
resolved. 1

2 An Underspecified Representation for Anaphora

As the discourse in (1) exemplifies, anaphora is often ambiguous. Moreover,
the deictic possibility always exists, so it is always possible, in principle, that
what we had identified as the antecedent of a pronoun actually is not, and the
pronoun is used deictically. In the case of (1), since we have two pronouns,
one with three possible interpretations (John, Bill, or the deictic use) and the
other with two (Mary or deictic), we will have six potential interpretations.
We need to be able to represent the ambiguity, but still draw inferences as best
we can on the basis of what we know. This calls for some sort of underspecified
representation, and some inference mechanism to derive conclusions from it.

Many special formalisms have been proposed, whose sole purpose is to
allow efficient representation of and reasoning with underspecification. I will
not, however, go down this road, for several reasons. A formalism that is not
independently motivated on linguistic grounds, and whose sole justification
is to represent underspecification, may work in a practical system, but its
explanatory adequacy from a linguistic point of view would be dubious. To
give one example, recall that deictic readings of a pronoun are always possible,
and this is the case across languages. Why is this? Why don’t we have
languages where pronouns are restricted to linguistic antecedents only, and
deictic readings are indicated only by, say, demonstratives? A formalism that
is only geared toward underspecification would be quite adequate if pronouns
could only refer to linguistic antecedents, and it is hard to see why it would
necessitate the availability of deictic readings. It is, of course, preferable to
have the possibility of deictic readings follow directly from the representation,
thus explaining the puzzle.

Furthermore, a nonstandard representation will typically require nonstan-
dard inference methods, especially tailored for the representation. 2 Again,
these inference methods would not be independently justified, unlike rules of
common-sense inference that must, in one way or another, be used in order to
understand natural language.

1 While this paper only deals with pronominal anaphora, the approach may be extended
to handle definite descriptions—see [6,7]) for an account based on model building.
2 Though see [15], who uses a nonstandard representation of anaphora, but applies Default
Logic to generate its perceived readings.

8

An additional reason for keeping the representation as simple and as close
to standard linguistic representations as possible is the fact that it is not likely
to be replaced by a fully specified representation during the interpretation
process. Normally, one uses an underspecified representation in the hope
that, in the fullness of time, or as the need arises, it will be fully specified. In
this sense, an underspecified representation is only a “temporary measure.”
However, because it is always possible to interpret pronouns deictically, we can
never fully specify the representation. The possibility always exists that we
will receive later some information that will force us to interpret the pronoun
deictically and undo our previous resolution. Hence, the representation of
anaphora cannot be treated as a temporary measure, and must be as close as
possible to the fully motivated representation.

In this paper I am going to suggest that we don’t need to look far for a
representation and its associated inference method. A standard, linguistically
motivated representation, without special machinery for underspecification,
will do. 3 For concreteness, I choose Discourse Representation Theory ([9]).
Thus, for example, the discourse in (1) will be represented by the following
DRS (here and elsewhere, ignoring tense and the possibility of a collective
reading of the conjunction):

(2)

x y z u v

John(x)

Bill(y)

Mary(z)

go-to-see(I,x)

visit(I,y)

visit(I,z)

male(u)

female(v)

¬want-to-speak(u,v)

Note that this DRS does not resolve the anaphora. In this representation,
u and v are subject to existential closure, and all we know is that some an-
tecedent exists. So, in effect, the DRS (2) is an underspecified representation,
containing all the possible ways of resolving the anaphora. Any specific res-
olution of the anaphora results in the addition of equalities identifying the
referents of the pronouns. For example:

3 Of course, it may be the case that some sort of special underspecified representation is
needed for other reasons, e.g., to represent scope ambiguities. All I claim is that such special
representations are not necessitated by the need to represent anaphora.

9

(3)

x y z u v

John(x)

Bill(y)

Mary(z)

go-to-see(I,x)

visit(I,y)

visit(I,z)

male(u)

female(v)

¬want-to-speak(u,v)

u=x

v=z

The problem of anaphora resolution now becomes the problem of inferring
the necessary equalities from the representation. Of course, DRT places some
constraints on acceptable antecedents—they have to be accessible. Accessibil-
ity constraints can be modeled simply as inequalities between all inaccessible
pairs of discourse referents. Additional constraints come from our world knowl-
edge. For example, if we know that her must refer to a female individual, and
that John is not female, we know that John cannot be a suitable antecedent.

3 Default Logic

Inferring the equalities identifying pronoun with antecedent must be nonmono-
tonic: we may later find that our anaphora resolution was wrong, and revise it.
Some form of nonmonotonic reasoning, attempting to derive consistent conclu-
sions from an incomplete description of the world, is independently necessary
for any kind of system that attempts to draw inferences from natural lan-
guage texts. Thus, instead of devising a special form of inference mechanism
for our underspecified representation, I will use well studied and independently
motivated mechanisms for nonmonotonic reasoning (cf. [12,15]).

Specifically, I choose Default Logic ([17]). Default Logic is one of the most
widely used nonmonotonic formalisms and may be the only one that has a
clearly useful contribution to the wider field of computer science through logic
programming and database theory.

A default theory is a pair (D,A), where D is a set of defaults and A is a set
of first-order sentences (axioms). Defaults are expressions of the form

10

(4)
α(x) : β1(x), . . . , βm(x)

γ(x)
,

where α(x), β1(x), . . . , βm(x), m ≥ 1, and γ(x) are formulas of first-order logic
whose free variables are among x = x1, . . . , xn. A default is closed if none of
α, β1, . . . , βm, and γ contains a free variable. Otherwise it is open.

Roughly speaking, the intuitive meaning of a default is as follows. For
every n-tuple of objects t = t1, . . . , tn, if α(t) is believed, and the βi(t)s are
consistent with one’s beliefs, then one is permitted to deduce γ(t).

Crucial to the interpretation of Default Logic is the notion of an extension.
Roughly speaking, an extension of a default theory is a set of statements
containing all the logical entailments of the theory, plus as many of the default
inferences as can be consistently believed. Sometimes a default theory has
more than one extension, as in the well known Nixon diamond. Suppose we
have the following set of defaults:

(5)

{
Quaker(x) : pacifist(x)

pacifist(x)
,
Republican(x) : ¬pacifist(x)

¬pacifist(x)

}
.

If Nixon is both a Quaker and a Republican, in one extension he will be
pacifist, and in another he won’t be. So, is Nixon a pacifist or isn’t he?

When faced with multiple extensions, there are two general strategies we
can use to decide which conclusions to accept: skeptical or credulous reason-
ing. Skeptical reasoning means taking only what is true in all extensions. In
the case of the Nixon diamond, we will believe neither that Nixon is a pacifist,
nor that he is not a pacifist. Credulous reasoning means picking one exten-
sion, based on whatever principles one deems appropriate, and accepting its
conclusions. This means we will pick one extension, perhaps using our knowl-
edge of Nixon’s statements and actions, and based on this extension, conclude
whether he is a pacifist or not.

4 Equality by Default

4.1 A default rule for equality

Resolving anaphora means generating an equality between two discourse ref-
erents. I suggest that we will generate such an equality by default: we assume
that two elements are equal if they cannot be proved to be different. The idea
underlying this notion has been proposed, though not formalized, in [2]. Char-
niak’s approach is further explored in [5], and formalized more fully in [3,4].

The idea of equality by default can be implemented in Default Logic very
simply, by adding the following default:

(6)
: x = y

x = y

This default rule means that whenever it is consistent to assume that two

11

elements are the same, conclude that they are. 4 What does it mean to say
that it is consistent to assume x = y? It means that it not known that x 6= y.
From the axioms of equality it follows that this is equivalent to saying that
there is no property φ s.t. we know φ(x) but we also know ¬φ(y).

4.2 Minimality of models

In order to explain what it means for the models of our theory to be mini-
mal, we will need some definitions. In particular, since (6) is an open default,
we need to provide a semantic definition of extensions of open default theo-
ries. Since model builders generate what are, in essence, Herbrand models,
it seems natural to assume that the theory domain is a Herbrand universe
(cf. [14, Chapter 1, §3]). Fortunately, such a definition has already been pro-
posed ([13,8]), and I will follow it here.

Suppose we have a first order language L, and we augment it with a set of
new constants, b, calling the resulting language Lb. The set of all closed terms
of the language Lb is called the Herbrand universe of Lb and is denoted T Lb

.

A Herbrand b-interpretation is a set of closed atomic formulas of Lb.

Let w be a Herbrand b-interpretation and let ϕ be a closed formula over
Lb. We say that w satisfies ϕ, denoted w |= ϕ, if the following holds:

(i) If ϕ is an atomic formula, then w |= ϕ if and only if ϕ ∈ w;

(ii) w |= ϕ→ ψ if and only if w 6|= ϕ or w |= ψ;

(iii) w |= ¬ϕ if and only if w 6|= ϕ; and

(iv) w |= ∀xϕ(x) if and only if for each t ∈ T Lb
, w |= ϕ(t).

For a Herbrand b-interpretation w, the Lb-theory of w, denoted ThLb
(w),

is the set of all closed formulas of Lb satisfied by w. For a set of Herbrand
b-interpretations W , the Lb-theory of W , denoted ThLb

(W), is the set of all
closed formulas of Lb satisfied by all elements of W .

Let E be a set of closed formulas over Lb. We say that w is a Herbrand
b-model of E, denoted by w |= E, if E ⊆ ThLb

(w).

Extensions of open default theories are then defined as follows:

Definition 1 (cf. [8, Definition 27]) Let b be a set of new constant symbols
and let (D,A) be a default theory. For any set of Herbrand b-interpretations
W let ∆b

(D,A)(W) be the largest set V of Herbrand b-models of A that satisfies
the following condition.

For any default
α(x) : β1(x), β2(x), . . . , βm(x)

γ(x)
∈ D and any tuple t of ele-

ments of T Lb
if V |= α(t) and W 6|= ¬βi(t), i = 1, 2, . . . ,m, then V |= γ(t).

A set of sentences E is called a b-extension for (D,A) if E = ThLb
(W)

4 Note that this is, in a sense, the opposite of the Unique Name Assumption ([16]). The
uniqueness of names can still be ensured, by following standard DRT practice and defining
appropriate external anchors.

12

for some fixpoint W of ∆b
(D,A).

It has been shown ([4]) that if E is a b-extension for the default theory({
:x=y
x=y

}
, A

)
, and w is a Herbrand b-model of E, then w is minimal. That is

to say, there is no Herbrand b-model w′ of E such that

(7) {〈t1, t2〉 : w |= t1 = t2} ⊂ {〈t1, t2〉 : w′ |= t1 = t2}.
In other words, the proposed default theory minimizes the number of different
elements in the models, as desired.

4.3 Deictic interpretations

It turns out that using Herbrand models has a consequence that is particularly
important for our purposes. Note that the new elements introduced in b, by
being new, are equal by default to any term. In particular, they are are equal
by default to any pronoun; this is the reason why deictic interpretations of
pronouns are always possible. Hence, we have a logical explanation for a
linguistic phenomenon—the universal availability of deictic readings.

Note that this theory allows deictic readings, but only as a last resort,
when no other readings are possible. Given the discourse in (1), we have a
good reason to believe that her refers to Mary, i.e. v = z. It is true that we
have in the Herbrand model additional new terms, but this does not negate
the minimality of the model. Since these terms are new, nothing is known
about them and consequently it is consistent to assume that, for any such
new term ni, v = ni. It is also consistent to hold the conjunction of all
these beliefs, namely the belief that n1 = n2 = n3 = · · · = v. So, the model is,
indeed, minimal; the addition of new constants does not mean that they denote
additional entities. Thus, we capture the intuition that deictic readings are
dispreferred, and are only available when no suitable antecedent is available.
Note that if we didn’t have this requirement of minimality, deictic readings
would be on an equal footing with anaphoric readings.

If necessary, however, we can get a deictic interpretation, i.e. equate the
pronoun with an element that is different from all other discourse referents.
This happens when no possible antecedent is available, i.e. for every discourse
referent t other than v, we know, or can deduce v 6= t. Then, we will have an
extension where for some new term ni, v = ni. By the axioms of equality, ni

will not be equal to any of the other discourse referents, hence the domain will
not be minimal. Of course, we may have an extension where the new terms
are be equal to other terms, but none will be equal to v; but this extension
will not constitute resolution of the anaphora, and will therefore be ruled out.

5 Inference

Let us see the kinds of inferences that this theory gives rise to. First, note that,
although we are quite liberal in our assumption of equality, we can still rule

13

out inappropriate antecedents. Recall that antecedents that are not accessible,
in the DRT sense, will be explicitly stated to be different from the pronoun.
Hence, obviously, it will not be consistent to assume that they are, so such
equalities will arise in any extension.

We can also rule out antecedents that are semantically incompatible. For
example, if we know that male(u) but ¬male(z), we cannot assume u = z;
this is because if u is male and z is female, they have to be different, by the
axioms of equality.

But suppose we have two acceptable antecedents for a pronoun u: in our
example, it is possible that u = x (John), but it is also possible that u = y
(Bill). If we know that they are different people, we know x 6= y, so it is
impossible to believe both u = x and u = y. We will therefore have two
extensions: in one of them, the pronoun is equated with John, and in the
other, with Bill.

How do we deal with these extensions? If we prefer one antecedent over
the other, for reasons of pragmatic plausibility or salience, we apply credulous
reasoning and pick the appropriate extension. In this extension, the pronoun
will be equated with the chosen antecedent; hence, by the nature of equality,
all properties of the antecedent will also hold of the pronoun.

At other times, however, the anaphora may be genuinely ambiguous, and
we may have no reason to prefer one reading over the other. In this case, it
makes sense to apply skeptical reasoning, and accept only what is true in all
candidate extensions.

Consider, for example, the following discourse:

(8) John met Bill at the ice cream parlor. He was upset.

In this case, the pronoun may be equated with either John or Bill, and there
are no good grounds, without further context, to decide between them. Yet,
we do know something about the antecedent of the pronoun: he was at the
ice cream parlor. We know this because we know that both John and Bill
were there, and the pronoun refers to one of them. Skeptical reasoning will,
indeed, give us precisely this result, since in both extensions, the pronoun has
the properties that its antecedent has.

But now suppose that one possible antecedent has a property than the
other one lacks:

(9) John walked along the sidewalk and saw Bill inside the ice cream
parlor. He was upset.

In this case, Bill has the property of being inside the ice cream parlor, but
John does not. Thus, in one extension, the pronoun will have this property,
and in another—its negation. If we have no reason to prefer one extension
over the other, we will apply skeptical reasoning, and will not conclude of the
referent either that he is or that he is not inside the ice cream parlor. This
appears intuitively correct.

14

Now suppose we know that some property holds of one potential an-
tecedent, but we don’t know whether it holds of another:

(10) While eating ice cream, John saw Bill at the ice cream parlor. He was
upset.

We know that John was eating ice cream, but we do not know whether Bill
was eating ice cream too or not. In this case, intuitively, we cannot conclude
about the antecedent of the pronoun that he was eating ice cream, although
this is consistent with him being either John or Bill. Indeed ,the proposed
system conforms with this judgment. This is because in one extension, the
one where the pronoun is associated with John, the property of eating ice
cream is predicated of the discourse referent corresponding to the pronoun.
But in the other extension, neither this property nor its negation will be so
predicated. So, in this extension it will not be true that “he” is eating ice
cream, hence skeptical reasoning will not license this inference.

Note that I have ignored here the addition of the new terms. The reason
is simple: since they are new, they do not make a difference to the inference
patterns discussed above. Consider, for example, the inference associated
with (8) again. Suppose we have a new term ni. So long as it is possible to
find at least one antecedent to the pronoun, a model for the deictic reading,
i.e. where the pronoun is equated with ni but with no other element, will
not be minimal, hence it will not be the model of any extension. In every
extension, then, the pronoun u will be equated with some discourse referent
x. Now, suppose ni = x. In this case, by the axioms of equality, ni will also
have the property of being at the ice cream parlor, hence skeptical reasoning
will still conclude that the pronoun has this property. Alternatively, suppose
ni 6= x (perhaps because it is associated deictically with another pronoun).
Now, it follows that ni 6= u, so whether or not ni was at the ice cream parlor
should have no effect on whether “he” was.

6 Conclusion

I have proposed a theory of the representation of anaphora, based on the as-
sumption that if two elements cannot be proved to be different, then they
can be assumed to be equal. This assumption is implemented using a stan-
dard linguistic representation (DRT) and a standard default reasoning system
(Default Logic), and this requires no special mechanisms for representation or
inference. Yet this conceptually simple theory appears to produce exactly the
sort of inferences regarding anaphora that are intuitively desirable.

References

[1] Baumgartner, P. and M. Kühn, Abducing coreference by model construction,
Journal of Language and Computation 1 (2000), pp. 175–190.

15

[2] Charniak, E., Motivation analysis, abductive unification and nonmonotonic
equality, Artificial Intelligence 34 (1988), pp. 275–295.

[3] Cohen, A., M. Kaminski and J. A. Makowsky, Indistinguishability by default,
in: S. Artemov, H. Barringer, A. S. d’Avila Garcez, L. C. Lamb and J. Woods,
editors, We Will Show Them: Essays in Honour of Dov Gabbay, College
Publications, 2005 pp. 415–428.

[4] Cohen, A., M. Kaminski and J. A. Makowsky, Applying default logic to
anaphora, vagueness, and uncertain reasoning (in preparation).

[5] Cohen, A. and J. A. Makowsky, Two approaches to nonmonotonic equality,
Technical Report CIS-9317, Technion—Israel Institute of Technology (1993).

[6] Gardent, C. and K. Konrad, Definites and the proper treatment of rabbits, in:
C. Monz and M. de Rijke, editors, Proceedings of the 1st Workshop on Inference
in Computational Semantics, ICOS-1, 1999, pp. 53–69.

[7] Gardent, C. and K. Konrad, Interpreting definites using model generation,
Journal of Logic, Language and Information 1 (2000), pp. 193–209.

[8] Kaminski, M., A comparative study of open default theories, Artificial
Intelligence 77 (1995), pp. 285–319.

[9] Kamp, H. and U. Reyle, “From Discourse to Logic,” Kluwer Academic
Publishers, Dordrecht, 1993.

[10] Kohlhase, M., Model generation for discourse representation theory, in:
W. Horn, editor, Proceedings of the 14th European Conference on Artifical
Intelligence, 2000, pp. 441–445.

[11] Konrad, K., “Model Generation for Natural Language Interpretation and
Analysis,” Ph.D. thesis, University of Saarlandes, Saarbrücken (2000).

[12] Lascarides, A. and N. Asher, Temporal interpretation, discourse relations and
common sense entailments, Linguistics and Philosophy 16 (1993), pp. 437–493.

[13] Lifschitz, V., On open defaults, in: J. Lloyd, editor, Computational Logic:
Symposium Proceedings (1990), pp. 80–95.

[14] Lloyd, J., “Foundation of logic programming, second extended edition,”
Springer–Verlag, Berlin, 1993.

[15] Poesio, M., Semantic ambiguity and perceived ambiguity, in: K. van Deemter and
S. Peters, editors, Semantic Ambiguity and Underspecification, CSLI, Stanford,
1996 pp. 159–201.

[16] Reiter, R., Equality and domain closure in first order databases, Journal of the
ACM 27 (1980), pp. 235–249.

[17] Reiter, R., A logic for default reasoning, Artificial Intelligence 13 (1980), pp. 81–
132.

16

Extracting Formal Specifications from Natural
Language Regulatory Documents

Nikhil Dinesh, Aravind Joshi, and Insup Lee

Department of Computer Science, Univeristy of Pennsylvania,
Philadelphia, PA - 19104 USA

nikhild,joshi,lee@cis. upenn.edu

Bonnie Webber

University of Edinburgh, Edinburgh, EH8 9LW Scotland
bonnie@inf.ed. ac. uk

Abstract

Formal verification techniques provide a way to determine whether regulatory doc-
uments are consistent and whether implementations conform to them. To apply
these techniques a formal description of the regulation needs to be extracted. We
present a framework, under which NLP techniques can be brought to bear, to aid
a requirements engineer in extracting the formal description.

1 Introduction

Regulatory documents, which include the vast bodies of legislation, operating
procedures and organizational policy, are meant to be accessible to the people
affected by them. Hence, they have to be in natural language (NL). On
the other hand, regulations are expected to be consistent, and the governed
entities/events are expected to conform to the regulation.

For example, the Food and Drug Administration’s Code of Federal Reg-
ulations (FDA CFR) governs the bloodbanks in America. 1 The bloodbanks
perform safety-critical functions like the testing of blood for communicable
disease agents (like HIV). It is highly desirable to determine whether (a) the
CFR is consistent, and (b) a bloodbank’s implementation of such a function
conforms to the CFR.

? This research was supported in part by NSF CCF-0429948 and ARO 911NF-05-1-0158
1 http://www.gpoaccess.gov/cfr/index.html

17

nikhild, joshi, lee@cis.upenn.edu
bonnie@inf.ed.ac.uk

The problem of creating descriptions of regulation which can be checked
for consistency has been explored by several authors [1,8], but the challenge of
checking an implementation for conformance has not been addressed, and this
is the main goal of our work. The conformance guarantees can be obtained
if formal descriptions of regulation and implementations are available, and if
verification techniques [4] can be applied to these descriptions. But extracting
a formal description of regulation is expensive, as regulatory bases like the
CFR are large (about a million words) and complex.

Formal descriptions of regulation are usually extracted by an individual
who has a background in logic, e.g., [1,8]. We will call this individual the
requirements engineer. In this paper, we describe a framework to assist a
requirements engineer in extracting a formal description of regulation for use
in conformance checking.

An overview of the framework, the theoretical background and the various
constraints that apply is given in Section 2. This lets us determine the nature
of the description that needs to be extracted from the regulation. We then
turn to the question of how these descriptions might be composed. In Section
3, we attempt to map the denotations of sentences assigned by Kratzer [12]
to a form that can be used for the task at hand. Some difficulties arise in
this mapping, mainly because notions of obligation (that which is required)
and permission (that which is allowed) are not captured in the denotations.
We argue that an account of these notions is essential to the task at hand.
Section 4 describes a semantic representation, and composition procedure to
assist the requirements engineer in extracting the required description. By
treating obligations and permissions as different dimensions of the description
computed, the difficulties encountered in Section 3 are addressed.

The approach is motivated by our case study of the FDA CFR, and we
use (1) and (2) as examples through the course of this paper. 2 (1) conveys
an obligation to perform a test for HIV and Hepatitis B, and (2) conveys a
permission not to test source plasma (a blood component) for Hepatitis B.

(1) Except as specified in (2), you must test each donation of human blood or blood
component, for evidence of infection due to the Human immunodeficiency virus,
and the Hepatitis B virus.

(2) You are not required to test donations of Source Plasma for evidence of infection
due to the Hepatitis B virus.

2 A Framework

To determine whether an implementation (bloodbank) conforms to the regu-
lation (CFR), we extract specifications in the Computation Tree Logic (CTL)
from the CFR. Then, given a description of a bloodbank’s procedure (as a
finite transition system, or model) there is an efficient search procedure to

2 (1) and (2) are modified versions of sentences that appear in the FDA CFR 610.40. The
actual sentences are very long, and the modifications are made in the interests of space.

18

determine if the model conforms to the CTL specification [3]. This is known
as temporal model checking [2,13]. The problem of conformance checking is
thus split into three steps:

(1) Extract CTL specifications from the regulation - This is done by a
requirements engineer, and our goal is to assist her. We use CTL as the
specification language, because it allows for efficient model checking [3].

(2) Obtain a model of an implementation - We assume the availability of
models. There are tools that aid in extracting models from software [5], and
in creating models if they cannot be extracted directly [11].

(3) Apply model checking to determine if the model conforms to the CTL
specification.

Formally, a model can be defined as follows:

Definition 2.1 A model M is the five-tuple (S, I, δ, π,Π), where:

(a) S is a set of states, I ⊆ S is a non-empty set of initial states,

(b) δ ⊆ S × S is a total transition relation (that is, ∀s ∈ S : [∃t ∈ S : (s, t) ∈ δ]),

(c) π is a set of propositions (with power set 2π), and

(d) Π : S → 2π is a function from states to sets of propositions. Π(s) for s ∈ S can be

thought of as the propositions true at s.

Figure 1(a) and 1(b) show models of two different bloodbanks. The left-
most state is the initial state. Each state is labeled with Π(s). The propo-
sitions have the following interpretation: d′ is true (d′ ∈ Π(s)) iff a donation
of blood or blood component is being processed, sp′ is true iff a donation of
source plasma is being processed, thiv′ is true iff a test for HIV has been per-
formed, and thepb′ is true iff a test for Hepatitis B has been performed. The
use of the propositions deo (denoting deontic accessibility) and app1 (denoting
the application of a permission) is explained in later sections.

deo, d′,
sp′,

thiv′,
thepb′

deo, d′,
thiv′,
thepb′

(a) A model of a bloodbank

which tests all donations

deo, d′,
sp′,

thiv′,
app1

deo, d′,
thiv′ ,
thepb′

(b) A model of a bloodbank

which does not test dona-

tions of source plasma for

Hepatitis B

Fig. 1. Two models of bloodbanks

Definition 2.2 Given a finite set of propositions π, CTL formulas are defined induc-
tively as follows:

(a) p ∈ π is a formula,

(b) Boolean combinations and negations of formulas are formulas,

(c) if φ, and ψ are formulas, then AG(φ) (on all paths, globally φ), AX(φ) (on all
paths, at the next state φ), and φAUψ) (on all paths, φ until ψ) are formulas.

19

The only temporal operator in CTL that we use is AG (for reasons that
we describe below), and hence rather than define the interpretation formally,
we will give some examples. Let M1 be the model in Figure 1(a), and M2 be
the model in Figure 1(b). The CTL specification AG(deo → (d′ → thiv′)) holds
of both models, since on all paths (from the initial state, the leftmost one in
Figures 1(a), and 1(b)), globally, in all deontically accessible states deo, if a
donation of blood or blood component is being processed d′, it is tested for HIV
thiv′. Hence, we write M1 � AG(deo → (d′ → thiv′)), and M2 � AG(deo → (d′ →

thiv′)). Also, M1 � AG(deo → (sp′ → thepb′)). But, M2 6� AG(deo → (sp′ → thepb′))

(since there is a state s with sp′ ∈ Π(s), and thepb′ 6∈ Π(s)).

2.1 Approaches to extracting specifications

The central problem we face is that CTL and other temporal logics that lend
themselves to model checking are not expressive enough for a compositional
semantic procedure to be defined for natural language. One reason is that
CTL, like propositional logic, cannot express relations between entities.

There are several routes one might take to address this problem, i.e., design
more expressive logics that allow for tractable model checking, focus on a
subset of NL from which an automatic translation is guaranteed, or make
the procedure machine-assisted. While the design of more expressive logics
makes the composition of specifications easier, using them for model checking
needs the creation of more expressive models (which requires more effort).
As a result, there is a trade-off between amount of effort spent in obtaining
models, and that in obtaining the specifications. Our decision to work with
less expressive models is motivated by the extensive tool support available
for creating and extracting such models [5,11]. Further, subsets of NL for
which automatic translation is guaranteed, such as the one derived by Holt
and Klein [10], assume (among other things) that references are resolved and
hence cannot be directly applied to regulatory documents. We are thus left
with the choice of making the procedure machine-assisted.

There have been two kinds of machine-assisted approaches to extracting
temporal logic specifications: (a) composing the semantics in a general seman-
tic framework which is then mapped to temporal logic [7], and (b) attempting
to compose the semantics in the temporal logic directly [6]. In the latter ap-
proach, a human specifies denotations for a portion of the sentence, and the
rest of the composition happens automatically. We attempt to compose the
semantics in a temporal logic directly like [6], as it lends itself to defining
semantic representations with which a requirements engineer can interact in
well-defined ways.

2.2 Constraints on the CTL specifications

We apply two constraints to the CTL specifications:

(i) The specifications extracted should hold of all and only the valid mod-

20

els. There may be several implementations that aim to conform to a single
base of regulation. Given (1) and (2), the models in Figures 1(a) and 1(b) are
both valid. This is an important difference from the NL sentences considered
in previous approaches, which were elicited from appropriate users by pre-
senting them with a single model. For example, Holt and Klein [10] obtained
specifications by asking users to describe a particular timing diagram.

(ii) To account for the variation between models, all temporal information
about the governed entities/events is modelled through propositions. The only
use of the temporal operators in CTL is to obtain a quantification over paths
and states. A mapping will need to be performed so that the propositions
used in the specifications can be evaluated at a states in different models, and
the critical assumption is that this mapping will be very easy to specify.

3 From Sets of Worlds to Sets of Models

Several approaches in formal semantics take sentences to denote sets of worlds.
For normative statements, we assume (following Kratzer [12]) that worlds are
connected by an accessibility relation. Consider (1) in Section 1 which among
other things requires a test for Hepatitis B if no exceptions apply. A denotation
of this requirement is given in (3), and is the set of worlds w0, such that for
every deontically accessible world w, for every entity x such that x is a donation
in that world d′(x,w), if no exception holds of that donation ¬e′(x,w), a test
for Hepatitis B is carried out for that donation thepb′(x,w). We will assume
that negation has the highest precedence. Therefore ¬a → b ≡ (¬a) → b, and
brackets are used to resolve other ambiguities.

(3) λw0.∀w : (w ∈ deo(w0)→ (∀x : (d′(x,w) → (¬e′(x,w)→ thepb′(x,w)))))

A difference between worlds in Kratzer’s denotations and states in a model
is that: in a state there is no notion of entities and relations between them.
All that is available at a state s is the set of propositions which are true at
that state Π(s). To map (3) to a form that is useful for checking conformance,
we need two assumptions.

First, we assume that regulation denotes the set of models that conform to
it. Intuitively speaking, w0 in (3) can be thought of as a model in its entirety,
and w ∈ deo(w0) correspond to special states in the model. A universal quan-
tification over accessible worlds can be replaced with the CTL AG operator.
We then obtain the denotation in (4), read as : on every path in M, if a state is
deontically accessible, for each donation x at that state, if no exception holds,
a test is carried out. In a model, only special states (like when the bloodbank
has finished processing all the donations it has received) need to conform to
the regulation, and deo can be thought of as marking those states.

(4) λM. M � AG(deo→ (∀x : (d′(x)→ (¬e′(x)→ thepb′(x)))))

(4) is still not in CTL because of the universal quantification over enti-
ties x at a state. The universal quantifier can be eliminated by assuming a

21

serial processing model. This has the effect that at the deontically accessible
states, exactly one donation is under consideration (e.g. the models in Fig-
ures 1(a) and 1(b)). In the sections of the CFR that we examined, a universal
quantification over entities is absolutely essential when these entities corre-
spond to inputs of an implemenation. This assumption lets us tie the inputs
to states, and use the quantification over states to achieve the quantification
over entities. Thus (4) can be reduced to (5).

(5) λM. M � AG(deo→ (d′ → (¬e′ → thepb′)))

A problem that is encountered in taking this approach is that there is no
distinction between obligations, and permissions (both of which stem from the
Hohfeldian legal conceptions of right, duty, privilege, and no right [9]). While
this did not cause a problem for the obligation in (1), if one were to follow the
same procedure for the permission in (2), we would get the denotation in (6).

(6) λM. M � ¬(AG(deo → (sp′ → thepb′)))

A model satisfies (6) only if there is some path in which there is a state that
is deontically accessible, and if a donation of source plasma is being processed
it is not tested. This is too strong a requirement, because an organization may
choose not to do what it is permitted to do. The model in Figure 1(a) is a
valid model, which would be declared invalid if (6) were required of it.

Another problem is that it is not clear how one would use (6) in interpreting
the exemption e′ in (5). A reasonable candidate is e′ ≡ deo → (sp′ → ¬thepb′).
But this is not the exemption because it is true in every deontically accessible
state in which a donation of source plasma is not being processed. Consider a
state s at which sp′ = false (sp′ 6∈ Π(s)). At s, e′ ≡ (deo → (false → ¬thepb′)) ≡

(deo→ true) ≡ true. The specification in (5), at s is: AG(deo→ (¬e→ ¬thepb′)) ≡

AG(deo → (¬true → ¬thepb′)) ≡ AG(deo → true) ≡ AG(true) ≡ true . Therefore, a
model that doesn’t test any donation for Hepatitis B would conform to (5).
We now turn to the task of addressing these problems by revising how the
specifications are composed.

4 Extracting the specifications

To aid the requirements engineer in extracting the specifications, the idea
is to present her with intermediate semantic representations of the sentence
with which she interacts. The intermediate representations that we use fall
into the category of abstract syntax trees (ASTs). ASTs are generally used as
intermediate representations in compiling code in a high-level programming
language to machine dependant code. The internal nodes in ASTs are oper-
ators (predicates/meta-predicates), the subtrees they dominate are operands
(arguments), and leaf nodes correspond to variables or constants (the require-
ments engineer specifies the denotation of the leaves). An AST encodes the
resolution of scope ambiguities, i.e., if p1 dominates p2 in the AST, then p1

outscopes p2.

22

Section 4.1 describes some phenomena in natural language that can be
used in the construction of the ASTs, and how these ASTs can be interpreted.
In Section 4.2, we describe how the ASTs and their interpretation for (1) and
(2) (in Figures 3 and 4) address the problems described in Section 3. 3

4.1 Abstract Syntax Trees (ASTs) and their interpretation

To capture the distinction between obligations and permissions, the denotation

of each node N in an AST is given by the 3-tuple: [[N]] =

0

@

φN

ON

PN

1

A , where ON

is a set of propositional logic formulas which correspond to the obligations
that have been satisified, and PN is a set of propositional logic formulas that
correspond to the permissions that have been taken, and φN is a propositional
logic formula which can be thought of as indicating whether N is true at a
state. The set of obligations O obtained from the policy base is the union
of the obligations obtained at the root of the AST for each sentence. The

denotation of the policy base is then given by: λM. M � AG

0

@deo →
^

φ∈O

φ

1

A . We

now identify various linguistic constructions that can be used to obtain ASTs.

Copy

p i z T l1, l2....ln

p

T :
[

z ← l1, i ← 1
]

... T :
[

z ← ln, i ← n
]

Fig. 2. Semantics of the Copy meta-predicate

Copy

and i z each

x is a donation of hu-
man blood or blood com-
ponent φ

(1). i .1

except as

specified in (2) -
φ

(1). i .2
must

you, test x , for evi-
dence of infection due
to z - φ

(1). i .3

the Human immuno-
deficiency vius
the Hepatitis B virus

and





φ(1).1.1 ∧ (¬φ(1).1.2 ∧ φ(1).1.3)
{φ(1).1.1 → (¬φ(1).1.2 → φ(1).1.3)}

{}









φ(1).1.1

{}
{}









¬φ(1).1.2 ∧ φ(1).1.3

{¬φ(1).1.2 → φ(1).1.3}
{}









φ(1).1.2

{}
{}









φ(1).1.3

{φ(1).1.3}
{}









φ(1).1.3

{}
{}





...

Fig. 3. AST and its interpretation for (1)

Distributive readings and the Copy meta-predicate: (1) is ambigu-
ous between a collective reading (where there is a single test for both the

3 We assume that obligation and permission denoting categories, e.g. must, do not occur
in contexts like antecedent clauses of subordinating conjunctions (like if), and restrictors of
determiners. Handling these cases requires an extension to CTL which is beyond the scope
of this paper.

23

every

x is a donation of Source
Plasma - φ2.1

not

are required

you to test x for evidence of
infection due to the Hepatitis B
virus z of this section - φ2.2





φ(2).1 ∧ app1 ∧ ¬φ(2).2

{}
{φ(2).1 ∧ app1 ∧ ¬φ(2).2}









φ(2).1

{}
{}









app1 ∧ ¬φ(2).2

{}
{app1 ∧ ¬φ(2).2}









φ(2).2

{φ(2).2}
{}









φ(2).2

{}
{}





Fig. 4. AST and its interpretation for (2)

diseases), and a distributive reading (where there are separate tests for each
disease). However, (2) gives an exemption to a test for one of the diseases, and
this suggests that a distributive reading may be more appropriate in the spec-
ifications extracted, and that the distributivity has scope over the exception.
Hence Copy dominates except in Figure 3.

The interpretation of the Copy meta-predicate is given in Figure 2. It is
called a meta-predicate because it is a function from an AST to another AST,
by simple variable substitution. For the AST for (1) shown in Figure 3, this
results in an AST rooted with and with subtrees corresponding to each of the
tests. The interpretation of and in this context is given by:

and

0

@

φ1

A
O1

A
P1

A

1

A ...

0

@

φn
A

On
A

Pn
A

1

A =

0

@

∧n
i=1

φi
A

∪n
i=1

Oi
A

∪n
i=1

Pi
A

1

A

The RHS of the equation corresponds to the denotation of the node labeled
and in the AST (shaded in gray in Figure 3).

Universally Quantified NPs correponding to inputs: As mentioned
in Section 3, the universal quantification over inputs (donations) is achieved
by associating states with unique inputs. The interpretation of the determiner
each is designed with idea that the obligations will be evaluated at each state.

each

0

@

φA

{}
{}

1

A

0

@

φB

OB

PB

1

A =

0

@

φA ∧ φB

{φA → φB
O.j

|φB
O.j

∈ OB}

{φA ∧ φB
P.j

|φB
P.j

∈ PB}

1

A

The interpretation of the determiner no is similar to that of each/every,
except that a negation needs to be applied to the nuclear scope. We discuss
the interpretation of negation in what follows.

Conditional and Exceptive constructions: There are several predi-
cates that denote conditions and exceptions. For example, the subordinat-
ing conjunctions if , unless, and except as, coordinating conjunctions like
except that or but. The interpretation of if is the same as that for every. The
interpretation of predicates like except as, and unless are similar, the only
difference being that ¬φA is used instead of φA in the RHS.

Modals and Negation: The semantics of modals and negation are given
below:

must

0

@

φA

{}
{}

1

A =

0

@

φA

{φA}
{}

1

A may

0

@

φA

{}
{}

1

A =

0

@

appi ∧ φA

{}
{appi ∧ φA}

1

A

24

not

0

@

φA

OA

PA

1

A =

0

@

φ′
A

{¬φA
P.j

|φA
P.j

∈ PA}

{appj ∧ ¬φA
O.j

|φA
O.j

∈ OA}

1

A , where φ′
A =



appj ∧ ¬φA φA ≡ φA
O.j

∈ OA

¬φA otherwise

must(A) results in the interpretation that φA is an obligation. may(A)
results in the interpretation that appi ∧ φA is a permission, where appi is
a variable introduced which the implementation must set to true when the
permission is applied (we discuss its use in Section 4.2). And intuitively, the
interpretation of negation captures the idea that may(¬A) ≡ not(must(A)).

4.2 Discussion

There are two obligations obtained at the root of the AST for (1): φ(1).1.1 →

(¬φ(1).1.2 → φ(1).1.3) ≡ d′ → (¬e′1 → thiv′) and φ(1).2.1 → (¬φ(1).2.2 → φ(1).2.3) ≡

d′ → (¬e′2 → thepb′) , where d′ is true iff the donation is one of blood or blood
component, e′1 and e′2 are the exceptions to the required test for each disease,
and thiv′ and thepb′ are true iff tests for HIV and Hepatitis B respectively
have been performed. The computation of the second obligation is not shown
in Figure 3, and is obtained from the second child of and (in the AST shaded
in gray). Note that the individual propositions like d′ need to be specified by
the requirements engineer at the leaf nodes of the AST.

Figure 4 shows the AST and its interpretation for (2). The permission
obtained at the root node is : φ(2).1∧app1∧¬φ(2).2 ≡ sp

′∧app1∧¬thepb
′ where sp′

is true iff a donation of source plasma is being processed, and thepb′ is true iff
a test for the Hepatitis B virus has been carried out.

The use of the app1 proposition is as follows. It is possible for the regula-
tion to cancel the permission given in (2), but there may be several cases in
which permission not to test a donation of source plasma for Hepatitis B is
given. Suppose the case under consideration is one where the permission in
(2) is cancelled, but the organization doesn’t test a donation of source plasma
for Hepatitis B because a different permission can be applied. Since the per-
mission being applied sets thepb′ to false, and sp′ is true, the only way for the
implementation to indicate that the permission in (2) is not being applied is
by setting app1 to false. Setting e′1 ≡ false, and e′2 ≡ sp

′ ∧ app1 ∧ ¬thepb
′:

φO.1 ≡ d
′ → (¬false→ thiv′), and φO.2 ≡ d

′ → (¬(sp′ ∧ app1 ∧ ¬thepb
′)→ thepb′)

Considering just these obligations, the denotation of the regulatory doc-
ument would be: λM. M � AG(deo → (φO.1 ∧ φO.2)) . Therefore, a bloodbank
could decide not to test a donation of source plasma for Hepatitis B, but they
would always have to test a donation for HIV.

5 Conclusions and Future Work

We have described a framework to assist a requirements engineer in extracting
CTL specifications from regulatory documents. An account of obligations and
permissions turns out to be essential in composing the specifications. The
composition procedure (defined in Section 4) was applied to a large part of

25

the FDA CFR 610.40. While it does seem to scale well, providing tool support
to extract and interact with the ASTs is vital. To this end, we plan to conduct
a small scale annotation of ASTs which will let us determine the accuracy with
which these representations can be computed. On the user interface side, we
are working on ways of presenting the ASTs to the requirements engineer.

References

[1] Breuker, J. and N. den Haan, Separating world and regulation knowledge: where is the
logic?, in: M. Sergot, editor, Proceedings of the third international conference on AI
and Law (1991), pp. 41–51.

[2] Clarke, E. M. and E. A. Emerson, Synthesis of synchronization skeletons for branching
time temporal logic, in: Logic of Programs: Workshop, 1981.

[3] Clarke, E. M., E. A. Emerson and A. P. Sistla, Automatic verification of finite-
state concurrent systems using temporal logic specifications, ACM Transactions on
Programming Languages and Systems 8 (1986), pp. 244–263.

[4] Clarke, E. M. and J. M. Wing, Formal methods: State of the art and future directions,
ACM Computing Surveys 28 (1996), pp. 626–643.

[5] Corbett, J. C., M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby and
H. Zheng, Bandera: Extracting finite-state models from java source code, in: Proceedings
of the International Conference on Software Engineering (ICSE), 2000.

[6] Fantechi, A., S. Gnesi, G. Ristori, M. Carenini, M. Marino and M. Moreschini, Assisting
requirements formalization by means of natural language translation, Formal Methods
in System Design 4 (1994), pp. 243–263.

[7] Fuchs, N. and R. Schwitter, Attempto controlled english (ace), in: First International
Workshop on Controlled Language Applications, 1996.

[8] Glasse, E., T. V. Engers and A. Jacobs, Power: An integrated method for legislation and
regulations from their design to their use in e-government services and law enforcement,
in: M.-F. Moens, editor, Digitale Wetgeving, Digital Legislation, Die Keure Brugge, 2003
pp. 175–204, iSBN 90 5958 039 7.

[9] Hohfeld, W. N., Fundamental legal conceptions as applied in judicial reasoning, Yale
Law Journal 23 (1913), pp. 16–59.

[10] Holt, A. and E. Klein, A semantically-derived subset of English for hardware
verification, in: 37th Annual Meeting of the ACL, 1999.

[11] Holzmann, G., The Spin model checker, IEEE Trans. on Software Engineering 23
(1997), pp. 279–295.

[12] Kratzer, A., The notational category of modality, in: H.-J. Eikmeyer and H. Rieser,
editors, Words, Worlds, and Contexts. New approaches to Word Semantics, deGruyter,
Berlin, 1981 .

[13] Queille, J. P. and J. Sifakis, Specification and verification of concurrent systems in
CAESAR, in: Proceeding of the Fifth ISP, 1981.

26

How to change a person’s mind:
Understanding the difference between

the effects and consequences of speech acts

Debora Field and Allan Ramsay

Computer Science, Univ. of Liverpool, L69 3BX, UK
Informatics, Univ. of Manchester, PO Box 88, M60 1QD, UK
debora@ csc. liv. ac. uk,allan. ramsay@ manchester. ac. uk

Abstract

This paper discusses a planner of the semantics of utterances, whose essential
design is an epistemic theorem prover. The planner was designed for the purpose
of planning communicative actions, whose effects are famously unknowable and
unobservable by the doer/speaker, and depend on the beliefs of and inferences made
by the recipient/hearer. The fully implemented model can achieve goals that do
not match action effects, but that are rather entailed by them, which it does by
reasoning about how to act: state-space planning is interwoven with theorem proving
in such a way that a theorem prover uses the effects of actions as hypotheses. The
planner is able to model problematic conversational situations, including felicitous
and infelicitous instances of bluffing, lying, sarcasm, and stating the obvious. 1

1 Introduction

The motivation for this research was the problem of planning the semantics
of communicative actions: given that I want you to believe P, how do I choose
what meaning to express to you? The well-documented, considerable difficul-
ties involved in this problem include this: a key player in the ensuing evolution
of the post-utterance environment is the hearer of the utterance.

First, consider an imaginary robot Rob, designed not for communication,
but for making tea. Whenever he is in use, Rob’s top-level goal is to attain a
state in which there is a certain configuration of cups, saucers, hot tea, cold
milk, etc. Rob’s plans for making tea are made on the strong assumption that
at plan execution time, the cups (and other items) will have no desires and
opinions of their own concerning which positions they should take up—Rob
expects to be the author of the effects of his actions. 2

1 Initially funded by the EPSRC. Recent partial funding under EU-grant FP6/IST No.
507019 (PIPS: Personalised Information Platform for Health and Life Services).
2 notwithstanding impeding concurrent events, sensor failures, motor failures, etc.

27

debora@csc.liv.ac.uk,allan.ramsay@manchester.ac.uk�

In contrast, consider the human John, designed for doing all sorts of
things besides making tea, including communicating messages to other hu-
mans. Imagine John’s current goal is to get human Sally to believe the propo-
sition John is kind. In some respects, John has a harder problem than Rob.
Unlike Rob, John has no direct access to the environment he wishes to affect—
he cannot simply implant John is kind into Sally’s belief state. John knows
that Sally has desires and opinions of her own, and that he will have to plan
something that he considers might well lead Sally to infer John is kind. This
means that when John is planning his action—whether to give her some choco-
late, pay her a compliment, tell her he is kind, lend her his credit card—he
has to consider the many different messages Sally might infer from the one
thing John chooses to say or do. Unfortunately, there is no STRIPS operator
[13] John can choose that will have his desired effect; he has to plan an action
that he expects will entail the state he desires.

We considered ‘reasoning-centred’ planning of actions that entailed goals
to be an approach that would enable this difficult predicament to be managed,
and implemented a model accordingly. Our planner is, in essence, an epistemic
theorem prover that hypothesises desirable actions, and is able to plan to
achieve goals that do not match action effects, but that are entailed by the
final state. Like John, the planner can have particular communicative goals in
mind, and knows that the execution of any single plan could have a myriad
different effects on H ’s belief state, depending on what H chooses to infer.

1.1 Bucking the trend

The main focus of current research in AI planning is on how to reduce the
search space required for making plans, and thus, for example, to get Rob the
tea-making robot to be able to make his plans fast enough to be of practical
use in the real world. Many planners use heuristics, either to constrain the
generation of a search space, or to prune and guide the search through the state
space for a solution, or both [4,5,18,25]. All such planners succeed by relying
on the static effects of actions—on the fact that you can tell by inspection
what the effects of an action will be in any situation—which limits their scope
in a particular way [4, p. 299]:

“. . . if one of the actions allows the planner to dig a hole of an arbitrary inte-
gral depth, then there are potentially infinitely many objects that can be cre-
ated. . . The effect of this action cannot be determined statically . . . ”

The class of problems that these planners do not attempt to solve—the ability
to plan actions whose effects are not determined statically—was the class that
particularly interested us.

2 Planning the semantics of utterances

With our attention firmly fixed on the myriad different effects a single commu-
nicative act can have on a hearer’s belief state, we concentrated on a (logically)

28

very simple utterance:

“There’s a/an [some object]!”

We devised situations culminating in this utterance which illustrate sarcasm,
stating the obvious, bluffing, and lying, and developed a planner which
could use these tactics. Here is a much-shortened example of a scenario from
the model, which leads to the planning of an instance of sarcasm: 3 4

Initial state John has been bird-watching with Sally for hours, and so far,
they have only seen pigeons. John thinks Sally is feeling bored
and fed up. John has some chocolate in his bag. John thinks
Sally likes chocolate. John knows lots of rules about how con-
versation works, and what one can expect a hearer to infer
under given conditions.

Goal condition John wants to cheer Sally up.

Solutions John is just thinking about getting out some chocolate to give
her, when yet another pigeon lands in a nearby tree. John sees
an opportunity to make Sally laugh by means of a bit of sar-
casm, and so plans to say to her,

“There’s an albatross!”

John plans (the semantics of) his utterance, expecting that the utterance
will have particular ‘effects’ on Sally’s belief state; if John were to perform
the utterance, he would not be certain that it had achieved his intention, but
he would expect that it probably had. Whether John’s intention would be
achieved by this utterance depends on Sally having the ‘right’ set of beliefs
(the ones John thinks she has) and making the ‘right’ inferences (the ones
John expects her to make).

For example, if John’s utterance “There’s an albatross!” is to be felicitous,
the following must happen. Sally must first believe that John has said some-
thing that Sally thinks John and Sally mutually believe is false. From this, she
must infer that John has flouted a conversational maxim, and consequently
that John has attempted to implicate a meaning which is not expressed by the
semantics of “There’s an albatross!”. Sally must then infer that the implica-
ture John intends is of humour. Whether or not any of this happens depends
on Sally’s beliefs, which John cannot observe, but about which he has beliefs.
The formal version of this example contains all the necessary information
about the beliefs of John and Sally in this situation for the planner: (i) to be
able to plan John’s utterance; and (ii) to additionally deduce whether John’s
utterance would be felicitous or infelicitous, if he performed it.

3 The example is an English paraphrase of a task, written in the model in Prolog code.
4 An albatross (Diomedea exulans) is a huge sea-faring bird, rarely seen from the land.

29

2.1 Linguistic motivations

Our approach to planning the semantics of utterances was to build on seminal
work in speech acts [3,28] and pragmatics [29,15,21]. In contrast to the ‘speech
acts with STRIPS’ approach [6,11,1,2], which is fraught with well-documented
difficulties [9,16,26,7,27], we aimed to develop a small set of linguistic acts that
were unambiguously identifiable purely by surface linguistic form (after [7]),
including ‘declare’, ‘request’, and perhaps others—a set of acts with negligible
effects (after [27]), and minimal preconditions. We in fact developed a single
linguistic act for all contexts.

2.2 Planner design

The planner is essentially an epistemic theorem prover which employs some
planning search. The development process we undertook is helpful in under-
standing the planner’s design:

• A state-space search was implemented that searches backwards in hypothetical
time from the goal via STRIPS operators (based on foundational work in classical
planning [23,24,14,22,13]);

• A theorem prover for FOL was implemented that constructively proves conjunc-
tions, disjunctions, implications, and negations, and employs modus ponens and
unit resolution;

• State-space search and theorem proving were interwoven in such a way that:
· not only can disjunctions, implications and negations be proved true, they can

also be achieved;
· not only can a goal Q be proved true by proving (P ⇒ Q) ∧ P, but Q can

also be achieved by proving P ⇒ Q and achieving P ;
· a goal can be achieved by reasoning with recursive domain-specific rules—thus

the planner is able to plan to ‘dig holes of arbitrary depths’.
• The theorem prover was transformed into an epistemic theorem prover by incor-

porating a theory of knowledge and belief suitable for human reasoning about
action, so agents make plans according to their beliefs about the world, including
their beliefs about others’ beliefs.

A goal is proved by assuming the effect of some action is true, on the
grounds that the goal would be true in the situation that resulted from per-
forming that action. Hence, a set of actions is computed that might be useful
for achieving a goal by carrying out hypothetical proofs, where the hypotheses
are the actions whose effects have been exploited.

Here is a simple, non-dialogue example to aid explanation. Consider the
achievement of the goal above(e,f) and on(e,d), where above is the transitive
closure of on. First, it is not possible to judge whether the first goal above(e,f)
is true by inspecting the current state (which contains on(,) facts but no
above(,) facts), so reasoning is carried out to find out whether it is false.
Secondly, in order to achieve above(e,f), something different from an action
with an above(,) expression in its add list is needed. Placing e onto f, for

30

example, will make above(e,f) proveable, but it will also make the achievement
of on(e,d) impossible. By reasoning with rules that describe the meaning of
above as the transitive closure of on, the planner hypothesises that on(d,f)
might enable the proof of above(e,f) to be completed, and also knows that
on(d,f) is an effect of action stack(d,f). A proof of the preconditions of action
stack(d,f) is carried out, and the process continues (with backtracking), until
a solution is found.

The preference for a backwards planning search was motivated by a defin-
ing quality of the communication problem, as epitomised by utterance plan-
ning: there are too many applicable actions to make a forwards search feasible.
People generally have the physical and mental capabilities to say whatever
they want at any moment. This means that the answer to the question ‘What
can I say in the current state?’ is something like ‘Anything, I just have to
decide what I want to say’. A backwards search is far more suitable than a
forwards search under conditions like these.

With this ‘reasoning-centred’ design, the planner is able to plan an utter-
ance to achieve a goal, ‘knowing’ that the utterance may or may not achieve
the desired effects on H, and that the same utterance can have many different
effects, depending on H ’s belief state.

3 Modelling problematic conversations

In the model, utterances are planned according to Grice’s Cooperative Prin-
ciple [15]. Here is an extract from the CP (ibid p. 308):

“[Quantity]
(i) Make your contribution as informative as is required (for the current purposes

of the exchange).
(ii) Do not make your contribution more informative than is required. . .
[Quality]
(i) Do not say what you believe to be false.
(ii) Do not say that for which you lack adequate evidence.”

Grice’s maxims prescribe a standard for speaker behaviour which S can bla-
tantly contravene (‘flout’), thus signalling to H that there is an implicature
to be recovered. For instance, in our ‘sarcasm’ scenario, John’s utterance is
planned using the following maxim, derived from Grice’s first Quality maxim. 5

The first line means, ‘If S addresses H by putting Q into the conversational
minutes’:

(1) minute([S], [H], Q)
and believes(S, believes(H, mutuallybelieve(([H, S]), not(Q))))

==> believes(S, believes(H, griceuncoop(S, [H], Q)))

5 The model embodies a ‘deduction’ model of belief [19], rather than a ‘possible worlds’
model [17,20]. Thus agents are not required to draw all logically possible inferences, and
are therefore not required to infer an infinite number of propositions from a mutual belief.

31

Using this maxim, John reasons that he can get Sally to realise he is flouting
a maxim in order to generate an implicature (that he is being ‘Grice uncoop-
erative with respect to Q ’). But what is the nature of the implicature? This
is dealt with by two additional rules: (2), which describes what John thinks
Sally believes about the meaning of this kind of maxim-flouting; and (3), a
‘general knowledge’ rule:

(2) believes(john,
believes(sally,

(griceuncoop(PERSON2, _PERSON1, Q)
and mutuallybelieve(([sally,john]), not(Q)))

==> funny(PERSON2, re(Q))))

(3) believes(john,
believes(sally,

(funny(PERSON2, re(Q))
==> happy(sally))))

With these three rules, John can reason that saying something he thinks
he and Sally mutually disbelieve will make her laugh, and thus cheer her up,
thus achieving his goal. Here is a second maxim from the model, also derived
from Grice’s CP:

(4) minute([S], [H], Q)
and believes(S, believes(H, mutuallybelieve(([H, S]), Q)))

==> believes(S, believes(H, griceuncoop(S, [H], Q)))

Using this maxim, and some additional rules, John can plan to flout Quan-
tity maxim 2, and generate an implicature by ‘stating the obvious’.

3.1 Modelling deception

Grice’s CP seems an excellent formalism for planning and understanding ut-
terances, so long as everyone is committed to obeying it. We know, however,
that people violate the CP maxims—S contravenes maxims without wanting
H to know. For example, lying violates Quality maxim (1) , bluffing violates
Quality maxim (2) , and being economical with the truth violates Quantity
maxim (1) . However, there is nothing in Grice’s maxims to help H deal with
the possibility that S may be trying to deceive her. Our solution is to give S
and H some further maxims which legislate for the fact that speakers do not
necessarily always adhere to the CP, and which enable S to plan to deceive,
and H to detect intended deceptions.

3.1.1 Hearer violation maxims

Given that H admits the possibility that S might be trying to deceive her
with his utterance, we consider that there are three strong predictors of how
H ’s belief state will change in response to S ’s utterance of the proposition P :

(5) i What is H ’s view of the proposition P?
ii What is H ’s view concerning the goodwill of S?
iii What is H ’s view of the reliability of S ’s testimony?

32

Consider, for example, an attempt at bluffing: 6

Initial state John has gone bird-watching with Sally. John is wearing a warm
coat, and he thinks that Sally looks cold. John thinks Sally will be
impressed by a chivalrous gesture. John thinks Sally is new to bird-
watching, and that she is keen to learn about birds. John knows lots
of rules about how conversation works, and what one can expect a
hearer to infer under given conditions.

Goal condition John wants Sally to be impressed by him.

Solutions John is just thinking of offering Sally his coat to wear, when a huge
bird lands in a nearby tree. John isn’t quite sure what species the
bird is, nevertheless, he decides to try and impress Sally with his
bird expertise, and plans to say to her,

“There’s a dodo!”

Let us imagine that Sally’s answers to three above questions are as follows.
Before John performed his utterance:

(6) i Sally believed that the proposition P (“There’s a dodo!”) was false (because
she knew the bird was a buzzard).
Additionally, she did not believe that John thought that they mutually be-
lieved P was false.

ii She believed that John was well-disposed towards her.
iii She didn’t know whether John was a reliable source of information or not.

After John has said “There’s a dodo!”, Sally derives the following new set of
beliefs from the above set:

(7) i′ Sally still believes that the proposition P (“There’s a dodo!”) is false.
She now believes that John thinks that they mutually believe P is true.

ii′ She still believes that John is well-disposed towards her.
iii′ She now believes John is an unreliable source of information.

The mapping of belief set (6) into belief set (7) is determined in the model
by a ‘hearer violation (HV) maxim’. We call this maxim the ‘infelicitous bluff’
HV maxim. We have so far implemented eight HV maxims, however, there is
clearly scope for many more permutations of all the different possible answers
to (6). There are obvious additional refinements that should be made, for
example, people do not normally consider others to be reliable sources of
information on all subjects.

3.1.2 Speaker violation maxims

If S is to succeed in his attempt to deceive H, he will have to take into account
how H is going to try and detect his deception. To represent this in the model,
S has his own ‘speaker violation (SV) maxims’, which concern the same issues
as the HV maxims, but from the other side of the table, as it were. What S
plans to say will depend on which answer he selects from each of these four
categories:

6 A dodo is a large flightless bird that is famously extinct.

33

(8) i What is S ’s view of H ’s view of various different propositions?
ii What is S ’s own view of the same propositions?
iii What is S ’s view of H ’s view of the goodwill of S?
iv What is S ’s view of H ’s view of the reliability of S as a source?

Here is an example of an SV maxim from the model:

(9) minute([S], [H], Q)
and believes(S, believes(H, reliable(S)))
and believes(S, believes(H, well_disposed_towards(S, [H])))
and believes(S, believes(H, Q or not(Q)))

==> believes(S, believes(H, gricecoop(S, [H], Q)))

Using this maxim, John can reason that Sally will believe he is being Grice-
cooperative, which means Sally will believe that what he is saying is true, even
if John does not believe it himself. Thus John is able to plan to lie to Sally by
using tactics he hopes will prevent Sally from detecting his attempt to deceive.

4 Epistemic theorem prover

The planner’s theorem prover embodies a constructive/intuitionist logic and
it proves theorems by natural deduction, chosen in preference to classical logic
and its inferencing methods. The way humans do every-day inferencing is, we
consider, quite different from the way inferencing is handled under classical
logic. In classical logic, for example, and using our general knowledge, we judge
the following formulae to be true:

(10) Earth has one moon ⇒ Elvis is dead
(11) Earth has two moons ⇒ Elvis is alive
(12) Earth has two moons ⇒ Elvis is dead

(10) is true simply because antecedent and consequent are both true formulae.
We find this truth odd, however, because of the absence of any discernible
relationship between antecedent and consequent. (11) and (12) are true sim-
ply because the antecedent is false, which seems very counter-intuitive. Even
more peculiarly, the following formula is provable in classical logic in all cir-
cumstances:

(13) (Earth has one moon ⇒ Elvis is dead) or
(Elvis is dead ⇒ Earth has one moon)

but it feels very uncomfortable to say that it must be the case that one of
these implies the other.

In order to avoid having to admit proofs like this, and to be able to do
reasoning in a more human-like way, we opted for constructive logic and natu-
ral deduction. In order to prove P ⇒ Q by natural deduction, one must show
that Q is true when P is true; if P is not true, constructive logic does not
infer P ⇒ Q. This treatment of implication hints at a relationship between P
and Q which is absent from material implication.

34

4.1 Constructive logic and belief

Taking a constructive view allows us to simplify our reasoning about when the
hearer believes something of the form P ⇒ Q, and hence (because of the con-
structive interpretation of ¬P as P ⇒ ⊥) about whether she believes ¬P . We
will assume that believes(H, P) means that H could infer P on the basis of
her belief set, not that she already does believe P , and we will examine the rela-
tionship between believes(H, P ⇒ Q) and believes(H, P) ⇒ believes(H, Q).

Consider first believes(H, P) ⇒ believes(H, Q). Under what circumstances
could you convince yourself that this held?

For a constructive proof, you would have to assume that believes(H, P)
held, and try to prove believes(H,Q). So you would say to yourself ‘Suppose
I were H, and I believed P . Would I believe Q?’ The obvious way to answer
this would be to try to prove Q, using what you believe to be H’s rules of
inference. If you could do this, you could assume that H could construct a proof
of P ⇒ Q, and hence it would be reasonable to conclude believes(H, P ⇒ Q).

Suppose, on the other hand, that you believed believes(H, P ⇒ Q), and
that you also believed believes(H,P). This would mean that you thought that
H had both P ⇒ Q and P available to her. But if you had these two available
to you, you would be able to infer Q, so since H is very similar to you she
should also be able to infer Q. So from believes(H,P ⇒ Q) and believes(H, P)
we can infer believes(H,Q), or in other words (believes(H,P ⇒ Q)) ⇒
(believes(H, P) ⇒ believes(H, Q)).

We thus see that if we take believes(H, P) to mean ‘If I were H I would
be able to prove P ’, then (believes(H, P ⇒ Q)) and (believes(H,P) ⇒
believes(H, Q)) are equivalent. This has considerable advantages in terms of
theorem proving, since it means that much of the time we can do our reasoning
by switching to the believer’s point of view and doing perfectly ordinary first-
order reasoning. If, in addition, we treat ¬P as a shorthand for P ⇒ ⊥, we
see that believes(H,¬P) is equivalent to believes(H,P) ⇒ believes(H,⊥). If
we take the further step of assuming that nobody believes ⊥, we can see
that believes(H,¬P) ⇒ ¬believes(H,P) (though not ¬believes(H, P) ⇒
believes(H,¬P)). We cannot, however, always assume that everyone’s beliefs
are consistent, so we may not always want to take this further step (note
that in possible worlds treatments, we are forced to assume that everyone’s
beliefs are consistent), but it is useful to be able to use it as a default rule,
particularly once we understand the assumptions that lie behind it.

References

[1] Allen, J. F. and C. R. Perrault, Analyzing intention in utterances (1980), AI
15: 143–78.

[2] Appelt, D. E., Planning English referring expressions (1985), AI 26: 1–33.
[3] Austin, J. L., How to do things with words (1962), Oxford: OUP, 2nd edition.
[4] Blum, A. L. and M. L. Furst, Fast planning through planning graph analysis

(1995), in Proc. 14th IJCAI, pp. 1636–1642.

35

[5] Bonet, B. and H. Geffner, Heuristic Search Planner (2000), AI Magazine 21(2).
[6] Bruce, B. C., Generation as a social action (1975), in B. L. Nash-Webber and

R. C. Schank (eds), Theoretical issues in natural language processing, pp. 74–7.
Cambridge, Massachusetts: ACL.

[7] Bunt, H., Dialogue pragmatics and context specification (2000), [8], pp. 81–150.
[8] Bunt, H. and W. Black, (eds), Abduction, belief and context in dialogue: studies

in computational pragmatics (2000), Philadelphia: John Benjamins.
[9] Cohen, P. R. and H. J. Levesque, Rational interaction as the basis for

communication (1990), [10], pp. 221–55.
[10] Cohen, P. R., J. Morgan and M. E. Pollack, (eds), Intentions in communication

(1990), Cambridge, Massachusetts: MIT.
[11] Cohen, P. R. and C. R. Perrault, Elements of a plan-based theory of speech

acts (1979), Cognitive Science 3: 177–212.
[12] Feigenbaum, E. A. and J. Feldman, Editors, Computers and thought (1995),

Cambridge, Massachusetts: MIT Press. First published 1963 by McGraw-Hill.
[13] Fikes, R. E. and N. J. Nilsson, STRIPS: A new approach to the application of

theorem proving to problem solving (1971), AI 2: 189–208.
[14] Green, C., Application of theorem proving to problem solving (1969), in Proc.

1st IJCAI, pp. 219–39.
[15] Grice, H. P., Logic and conversation (1975), in P. Cole and J. Morgan, (eds),

Syntax and semantics 3: Speech acts, pp. 41–58. New York: Academic Press.
[16] Grosz, B. J. and C. L. Sidner, Plans for discourse (1990), [10], pp. 416–44.
[17] Hintikka, J., Knowledge and belief: An introduction to the two notions (1962),

New York: Cornell University Press.
[18] Hoffmann, J. and B. Nebel, The FF planning system: Fast plan generation

through heuristic search (2001), Journal of AI Research 14: 253–302.
[19] Konolige, K., A deduction model of belief (1986), London: Pitman.
[20] Kripke, S., Semantical considerations on modal logic (1963), in Acta

Philosophica Fennica 16: 83–94.
[21] Lewis, D., Scorekeeping in a language game (1979), J. Phil. Logic 8: 339–59.
[22] McCarthy, J. and P. J. Hayes, Some philosophical problems from the standpoint

of artificial intelligence (1969), Machine Intelligence 4: 463–502.
[23] Newell, A., J. C. Shaw and H. A. Simon, Empirical explorations with the logic

theory machine (1957), Proc. Western Joint Computer Conference, 15: 218–239.
[24] Newell, A. and H. A. Simon, GPS, a program that simulates human thought

(1963), [12], pp. 279–93.
[25] Nguyen, X. and S. Kambhampati, Reviving partial order planning (2001), in

Proc. IJCAI, pp. 459–66.
[26] Pollack, M. E., Plans as complex mental attitudes (1990), [10], pp. 77–103.
[27] Ramsay, A., Speech act theory and epistemic planning (2000), [8], pp. 293–310.
[28] Searle, J. R., What is a speech act? (1965), in M. Black, (ed), Philosophy in

America, pp. 221–39. Allen and Unwin.
[29] Stalnaker, R., Pragmatics (1972), in D. Davidson and G. Harman, (eds),

Semantics of natural language (Synthese Library, Vol. 40), pp. 380–97.
Dordrecht, Holland: D. Reidel.

36

Towards a redundancy elimination algorithm
for underspecified descriptions

Alexander Koller and Stefan Thater

Department of Computational Linguistics
Universität des Saarlandes, Saarbrücken, Germany

{koller,stth}@coli.uni-sb.de

Abstract
This paper proposes an efficient algorithm for the redundancy elimination problem: Given
an underspecified semantic representation (USR), compute an USR which has fewer read-
ings, but still describes at least one representative of each semantic equivalence class of the
original readings. The algorithm operates on underspecified chart representations which
are derived from dominance graphs; it can be applied to the USRs computed by large-
scale grammars. To our knowledge, it is the first redundancy elimination algorithm which
maintains underspecification, rather than just enumerating non-redundant readings.

1 Introduction

Underspecification is the standard approach to dealing with scope ambiguities in
computational semantics [12,6,7,2]. The basic idea is to not enumerate all possible
semantic representations for each syntactic analysis, but to derive a single compact
underspecified representation (USR). This simplifies semantics construction, and
current algorithms support the efficient enumeration of readings from an USR [10].

In addition, underspecification has the potential for eliminating incorrect or re-
dundant readings by inferences based on context or world knowledge, without even
enumerating them. For instance, sentences with scope ambiguities often have read-
ings which are semantically equivalent. In this case, we typically need to retain
only one reading from each equivalence class. This situation is illustrated by the
following two sentences from the Rondane treebank, which is distributed with the
English Resource Grammar (ERG; [5]), a broad-coverage HPSG grammar.

(1) For travellers going to Finnmark there is a bus service from Oslo to Alta
through Sweden. (Rondane 1262)

(2) We quickly put up the tents in the lee of a small hillside and cook for the first
time in the open. (Rondane 892)

For the two example sentences, the ERG (Version 01-2006) derives USRs with
seven and six quantifiers, respectively, that correspond to various types of noun

37

{koller,stth}@coli.uni-sb.de

phrases (including proper names and pronouns). The USR for (1) describes 3960
readings, which are all semantically equivalent to each other. On the other hand, the
USR for (2) has 480 readings, which fall into two classes of mutually equivalent
readings, characterised by the relative scope of “the lee of” and “a small hillside.”

This paper presents an algorithm for the redundancy elimination problem: Given
an USR, compute an USR which has fewer readings, but still describes at least one
representative of each equivalence class – without enumerating any readings. This
algorithm computes the one or two representatives of the semantic equivalence
classes in the above examples, so subsequent modules don’t have to deal with all
the other equivalent readings. It also closes the gap between the large number of
readings predicted by the grammar and the intuitively perceived much lower degree
of ambiguity of these sentences. Finally, it can be helpful for a grammar designer
because it is much more feasible to check whether two readings are linguistically
reasonable than 480.

We model equivalence in terms of rewrite rules that permute quantifiers without
changing the semantics of the readings. The particular USRs we work with are un-
derspecified chart representations, which can be computed from dominance graphs
(or USRs in some other underspecification formalisms) efficiently [10]. The algo-
rithm can deal with many interesting cases, but is incomplete in the sense that the
resulting USR may still describe multiple equivalent readings.

To our knowledge, this is the first algorithm in the literature for redundancy
elimination on the level of USRs. There has been previous research on enumerating
only some representatives of each equivalence class [13,4], but these approaches
don’t maintain underspecification: After running their algorithms, we have a set of
readings rather than an underspecified representation.

Plan of the paper. We will first define dominance graphs and review the necessary
background theory in Section 2. We will then give a formal definition of equiva-
lence and derive some first results in Section 3. Section 4 presents the redundancy
elimination algorithm. Finally, Section 5 concludes and points to further work.

2 Dominance Graphs

The basic underspecification formalism we assume here are labelled dominance
graphs [1]. Dominance graphs are equivalent to leaf-labelled normal dominance
constraints [7], which have been discussed extensively in previous literature.

Definition 2.1 A (compact) dominance graph is a directed graph (V,E]D) with
two kinds of edges, tree edges E and dominance edges D, such that:

(i) the graph (V,E) defines a collection of node disjoint trees of height 0 or 1. We
call the trees in (V,E) the fragments of the graph.

(ii) if (v,v′) is a dominance edge in D, then v is a hole and v′ is a root in G. A node
v is a root (in G) if v does not have incoming tree edges; otherwise, v is a hole.

A labelled dominance graph over a ranked signature Σ is a triple G = (V,E]D,L)

38

ay

sampley

seex,y

ax

repr-ofx,z

az

compz

1 2 3

4 5 6

7

ay
ax

az
1

2

3

sampley seex,yrepr-ofx,zcompz

ay

ax

sampley seex,y

repr-ofx,z

az

compz

1

2

3

Fig. 1. A dominance graph that represents the five readings of the sentence “a representative
of a company saw a sample” (left) and two (of five) configurations.

1 2 3

4 5 6

7

h2h1 h4h3 h6h5

1 3

4 5 6

7

h2h1 h6h5

→ →
h2h1

h4h3

h6h5

2

1 3

4 5 6 7

Fig. 2. An example computation of a solved form.

such that (V,E]D) is a dominance graph and L : V Σ is a partial labelling
function which assigns a node v a label with arity n iff v is a root with n outgoing
tree edges. Nodes without labels (i.e., holes) must have outgoing dominance edges.

We will write v: f (v1, . . . ,vk) for a fragment whose root v is labelled with f and
whose holes are v1, . . . ,vk. We will write R(F) for the root of the fragment F , and
we will typically just say graph instead of labelled dominance graph.

An example of a labelled dominance graph is shown to the left of Fig. 1. Tree
edges are drawn as solid lines, and dominance edges are drawn as dotted lines, di-
rected from top to bottom. This graph can serve as an USR for the sentence “a repre-
sentative of a company saw a sample” if we demand that the holes are “plugged” by
roots while realising the dominance edges as dominance, as in the two (of five) con-
figurations shown to the right [7]. Configurations encode semantic representations
of the sentence, and we freely read configurations as ground terms over Σ.

2.1 Solving dominance graphs

Algorithms for solving a dominance graph in order to compute the readings it de-
scribes typically compute its minimal solved forms [1,3]. In this paper, we restrict
ourselves to hypernormally connected graphs (defined below), for which one can
show that all solved forms are minimal and bijectively correspond to configurations.

Let G,G′ be dominance graphs. We say that G is in solved form iff it is a forest,
and G is a solved form of G′ if G is in solved form and more specific than G′ i.e., G
and G′ have the same labels and tree fragments, and the reachability relation of G
extends that of G′. G′ is solvable if it has a solved form G. If G′ is hypernormally
connected, then each hole in G has exactly one outgoing dominance edge, and G
can be mapped to a configuration by identifying the two ends of each dominance
edge; conversely, we can find a unique solved form for each configuration. The
graph to the left of Fig. 2 shows one of the (minimal) solved forms of the example
graph, which corresponds to the configuration in the middle of Fig. 1.

39

Compute-Chart(G)
1 if there is an entry for G in the chart
2 then return true
3 free← Free-Fragments(G)
4 if free = /0

5 then return false
6 if G contains only one fragment
7 then return true
8 for each F ∈ free
9 do split← Split(G,F)

10 for each S ∈Wccs(G−F)
11 do if Compute-Chart(S) = false
12 then return false
13 add (G,split) to the chart
14 return true

{1,2,3,4,5,6,7} :〈1,h1 7→ {4},h2 7→ {2,3,5,6,7}〉
〈2,h3 7→ {1,4,5},h4 7→ {3,6,7}〉
〈3,h5 7→ {5},h6 7→ {1,2,4,5,7}〉

{2,3,5,6,7} :〈2,h3 7→ {5},h4 7→ {3,6,7}〉
〈3,h5 7→ {6},h6 7→ {2,5,7}〉

{3,6,7} :〈3,h5 7→ {6},h6 7→ {7}〉
{2,5,7} :〈2,h3 7→ {5},h4 7→ {7}〉
{1,4,5} :〈1,h1 7→ {4},h2 7→ {5}〉

{1,2,4,5,7} :〈1,h1 7→ {4},h2 7→ {2,5,7}〉
〈2,h3 7→ {1,4,5},h4 7→ {7}〉

Fig. 3. The chart solver and an example chart computed for the dominance graph in Fig. 2.

The key concept of the solver we build upon is that of a free fragment [3]. A
fragment F in a solvable graph G is free iff there is a solved form in which F is at
the root. It can be shown that a fragment is free iff it has no incoming dominance
edges and its holes are in different biconnected components of the graph i.e., they
are disconnected if the root of the fragment is removed from the graph [3]. Remov-
ing a free fragment from a graph splits the graph into different weakly connected
components (wccs) – one for each hole. Thus each free fragment F induces a split
of G, which consists of a reference to F and a mapping of the other fragments to the
hole to which they are connected. For instance, the example graph has three free
fragments: 1, 2, and 3. By removing fragment 2, the graph is decomposed into two
wccs, which are connected to the holes h3 and h4, respectively (see Fig. 2).

The solver [10] is shown in Fig. 3. It computes a chart-like data structure which
assigns sets of splits to subgraphs. For each subgraph it is called on, the solver
computes the free fragments, the splits they induce, and calls itself recursively on
the wccs of each split. It records subgraphs and splits in the chart, and will not
repeat work for a subgraph it has encountered before. The algorithm returns true iff
the original graph was solvable. The chart tells us how to build the minimal solved
forms of the graph: For each subgraphs, pick any split, compute a solved form for
each wcc recursively, and plug them into the given hole of the split’s root fragment.
As an example, the chart for the graph in Fig. 1 is shown to the right of Fig. 3.

Notice that the chart which the solver computes, while possibly exponentially
larger than the original graph, is still exponentially smaller than the entire set of
readings because common subgraphs (such as {2,5,7} in the example) are repre-
sented only once. Thus the chart can still serve as an underspecified representation.

2.2 Hypernormally connected dominance graphs

A hypernormal path [1] in a graph G is a path in the undirected version Gu of G that
does not use two dominance edges that are incident to the same hole. We say that
G is hypernormally connected (hnc) iff each pair of nodes is connected by a simple

40

hypernormal path in G. Hnc graphs are equivalent to chain-connected dominance
constraints [9], and are closely related to dominance nets [11]. The results in this
paper are restricted to hnc graphs, but this does not limit the applicability of our
results: an empirical study suggests that all dominance graphs that are generated by
current large-scale grammars are (or should be) hnc [8].

The key property of hnc dominance graphs is that their solved forms correspond
to configurations, and we will freely switch between solved forms and their corre-
sponding configurations. Another important property of hnc graphs which we will
use extensively in the proofs below is that it is possible to predict which holes of
fragments can dominate other fragments in a solved form.

Lemma 2.2 Let G be a hnc graph with free fragment F. Then all weakly connected
components of G−F are hnc.

Proposition 2.3 Let F1,F2 be fragments in a hnc dominance graph G. If there is a
solved form S of G in which R(F1) dominates R(F2), then there is exactly one hole
h of F1 which is connected to R(F2) by a simple hypernormal path which doesn’t
use R(F1). In particular, h dominates R(F2) in S.

Proof. Let’s say that F1 dominates F2 in some solved form S. There is a run of
the solver which computes S. This run chooses F1 as a free fragment before it
chooses F2. Let’s call the subgraph in which the split for F1 is chosen, G′. G′ is hnc
(Lemma 2.2), so in particular there is a simple hypernormal path from the hole h
of F1 which is in the same wcc as F2 to R(F2); this path doesn’t use R(F1). On the
other hand, assume there were another hole h′ of F1 which is connected to R(F2) by
a path that doesn’t use R(F1). Then the path via R(F2) would connect h and h′ even
if R(F1) were removed, so h and h′ would be in the same biconnected component
of G, in contradiction to the assumption that F1 is free in G′.

For the second result, note that F2 is assigned to the hole h in the split for F1.2

The following definition captures the complex condition in Prop. 2.3:

Definition 2.4 Let G be a hnc dominance graph. A fragment F1 in G is called a
possible dominator of another fragment F2 in G iff it has exactly one hole h which
is connected to R(F2) by a simple hypernormal path which doesn’t use R(F1). We
write ch(F1,F2) for this unique h.

3 Equivalence

Equivalence is traditionally defined as the relation between formulas which have
the same interpretation. However, even first-order equivalence is an undecidable
problem, thus an algorithm which checks for semantic equivalence of different con-
figurations of a graph can’t possibly be efficient. On the other hand, we do not need
to solve the full semantic equivalence problem, as we only want to compare formu-
las that are readings of the same sentence i.e., different configurations of the same
USR. Such formulas only differ in the way that the fragments are combined. We

41

can therefore approximate equivalence by using a rewrite system that permutes frag-
ments and defining equivalence of configurations as mutual rewritability as usual.

By way of example, consider again the two (equivalent) configurations shown
in Fig. 1. We can obtain the second configuration from the first one by applying the
following rewrite rule, which rotates the nodes 1 and 2:

ax(az(P,Q),R)→ az(P,ax(Q,R)) (3)

The formulas on both sides of the arrow are semantically equivalent in first-order
logic for any choice of the subformulas P, Q, and R. Thus the equivalence of the
two configurations with respect to our one-rule rewrite system implies that they are
also semantically equivalent.

While we will require that the rewriting approximation is sound i.e., rewrites
formulas into equivalent formulas, we cannot usually hope to achieve completeness
i.e., there will be semantic equivalences that are not modelled by the rewriting
equivalence. However, we believe that the rewriting-based system will still prove
to be useful in practical applications, as the permutation of quantifiers is exactly the
kind of variability that an underspecified description allows.

We formalise this rewriting-based notion of equivalence as follows. The defini-
tion uses the abbreviation x[1,k) for x1, . . . ,xk−1, and x(k,n] for xk+1, . . . ,xn.

Definition 3.1 A permutation system R is a system of rewrite rules over a signature
Σ of the following form:

f1(x[1,i), f2(y[1,k),z,y(k,m]),x(i,n]) → f2(y[1,k), f1(x[1,i),z,x(i,n]),y(k,m])

The permutability relation P(R) is the binary relation P(R)⊆ (Σ×N)2 which con-
tains exactly the pairs ((f1, i),(f2,k)) and ((f2,k),(f1, i)) for each such rewrite rule.

As usual, we say that two terms are equivalent with respect to R, s≈R t, iff there
is a sequence of rewrite steps and inverse rewrite steps that rewrite s into t. We say
that R is sound with respect to a semantic notion of equivalence ≡ if ≈R ⊆≡. If G
is a graph over Σ and R a permutation system, then we write SCR(G) for the set of
equivalence classes Conf(G)/≈R, where Conf(G) is the set of configurations of G.

A rewrite system (let’s call it Rfol) which is sound for the standard equivalence
relation of first-order logic could use rule (3) and the three other permutations of
two existential quantifiers, plus the following rule for universal quantifiers:

everyx(X ,everyy(Y,Z))→ everyy(Y,everyx(X ,Z))

The other three permutations of universal quantifiers, as well as the permutations
of universal and existential quantifiers, are not sound.

It is possible to compute SCR(G) by solving G and using a theorem prover for
equational reasoning to compute the equivalence classes of the configurations, but
this is very inefficient. To replace this by a computation on the USR, we must be
able to recognise whether two fragments of a graph can be permuted in all config-
urations of the graph. This is not possible in general: If we don’t know in advance

42

xi+1 xnx1 xi-1 y1 yk-1 yk+1 ym

y1 yk-1 yk+1 ymz

F2

F1

… …

… …vk

v = ui

u

F2

F1

x1 xi-1 xi+1 xn

… …

… …

z

v

ui

vk = u

(a)

F2

W

F1
ui

?

vj vk

w

πr
πu

v (b)

Fig. 4. Diagrams for the proof of Lemma 3.3

which hole of one fragment the other fragment can plug, we can’t know whether the
two fragments can be permuted. However, in a hnc graph, the hole of a fragment
which another fragment can plug is determined uniquely (because of Lemma 2.3),
and can be recognised without solving the graph.

Definition 3.2 Let R be a permutation system. Two fragments F1 and F2 with root
labels f1 and f2 in a graph G are called R-permutable iff they are possible domina-
tors of each other and ((f1,ch(F1,F2)),(f2,ch(F2,F1))) ∈ P(R).

Lemma 3.3 Let R be a permutation system, let F1 = u: f1(u1, . . . ,un) and F2 =
v: f2(v1, . . . ,vm) be R-permutable fragments in the hnc graph G, such that F2 is free,
and let C1 be a configuration of G in which u is the father of v. Then:

(a) It is possible to apply a R-rewrite step or an inverse R-rewrite step to C1 at u;
call the resulting tree C2.

(b) C2 is also a configuration of G.

(c) C2 ≈R C1.

Proof. Let i = ch(F1,F2) and k = ch(F2,F1); we know that ((f1, i),(f2,k)) ∈ P(R).
(a) F1 is a possible dominator of F2, so ui is plugged with v in C1 (Lemma 2.3).

Thus the (possibly inverse) rule which justified the tuple ((f1, i),(f2,k)) is applica-
ble at u.

(b) We must verify that every dominance edge in G is realised by C2. As Fig. 4a
shows, all dominance edges that do not go out of a hole of F1 are still trivially
realised by C2. Now let’s consider dominances out of the holes of F1.
• Dominance edges out of any u j with j 6= i are still satisfied (see the figure).
• Dominance edges from ui to a node in z are still satisfied (see the figure).
• Dominance edges from ui to v: Such edges cannot exist in G as F2 is free.
• Dominance edges from ui to a node w in some y j with j 6= k: Such edges cannot

exist either. F2 is a possible dominator of the fragment W whose root w is, so
there is a simple hypernormal path πw from ch(F2,W) to w which doesn’t use v;
ch(F2,W) = v j because v j dominates w in C1 (Lemma 2.3). On the other hand,
F2 is a possible dominator of F1, so there is a simple hypernormal path πu from
vk to ui which doesn’t use v. Now if there were a dominance edge from ui to w
in G, then v j and vk would be in the same biconnected component (they would
be connected via πu ◦ (ui,w) ◦ π−1

w if v were removed), which contradicts the
freeness of F2 (see Fig. 4b).

43

4 Underspecified redundancy elimination

Now we can finally consider the problem of strengthening an USR in order to
remove redundant readings which are equivalent to other readings. We will define
an algorithm which gets as its input a graph G, a chart as computed by COMPUTE-
CHART, and a permutability relation P(R). It will then remove splits from the chart,
to the effect that the chart represents fewer solved forms of the original graph, but at
least one representative from each class in SCR(G) remains. The subgraph sharing
of the original chart will be retained, so the computed chart is still an USR.

The key concept in the redundancy elimination algorithm is that of a permutable
split. Intuitively, a split of G is called permutable if its root fragment F is per-
mutable with all other fragments in G which could end up above F . Because of
Lemma 3.3, we can then always pull F to the root by a sequence of rewrite steps.
This means that for any configuration of G, there is an equivalent configuration
whose root is F – i.e., by choosing the split for F , we lose no equivalence classes.

Definition 4.1 Let R be a permutation system. A split S of a graph G is called R-
permutable iff the root fragment F of S is R-permutable with all other fragments in
G which are possible dominators of F in G.

In the graph of Fig. 1, all three splits are Rfol-permutable: For each of the upper
fragments, the other two upper fragments are possible dominators, but as all three
fragments are labelled with existential quantifiers and Rfol contains all permutations
of existential quantifiers, the fragments are permutable with each other. And indeed,
we can pick any of the three fragments as the root fragment, and the resulting split
will describe a representative of the single equivalence class of the graph.

Proposition 4.2 Let G be a hnc graph, and let S be a permutable split of G. Then
SC(S) = SC(G).

Proof. If G is unsolvable, the claim is trivially true. Otherwise, let C be an arbi-
trary configuration of G; we must show that S = (F,h1 7→ G1, . . . ,hn 7→ Gn) has a
configuration C′ which is equivalent to C.

Let’s say that the fragments which properly dominate F in C are F1, . . . ,Fn
(n ≥ 0), ordered in such a way that Fi dominates Fj in C for all i < j. Each Fi is
a possible dominator of F , by Prop. 2.3. Because S is permutable, this means that
each Fi is permutable with F in G. By applying Lemma 3.3 n times (first to F and
Fn, then to F and Fn−1, and so on), we can compute a configuration C′ of G in
which F is at the root and such that C′ ≈R C. But C is a configuration of S, which
proves the theorem. 2

This suggests the following redundancy elimination algorithm:

Redundancy-Elimination(Ch,G,R)
1 for each subgraph G′ in Ch
2 do if G′ has an R-permutable split S
3 then remove all splits for G′ except for S from Ch

44

Because of Prop. 4.2, the algorithm is correct in that for each configuration C of
G, the reduced chart still has a configuration C′ with C≈R C′. The particular choice
of S doesn’t affect the correctness of the algorithm (but may change the number
of remaining configurations). However, the algorithm is not complete in the sense
that the reduced chart can have no two equivalent configurations. We will illustrate
this below. We can further optimize the algorithm by deleting subgraphs (and their
splits) that are not referenced anymore by using reference counters. This doesn’t
change the set of solved forms of the chart, but may further reduce the chart size.

In the running example, we would run REDUNDANCY-ELIMINATION on the
chart in Fig. 3. As we have seen, all three splits of the entire graph are permutable,
so we can pick any of them e.g., the split with root fragment 2, and delete the splits
with root fragments 1 and 3. This reduces the reference count of some subgraphs
(e.g. {2,3,5,6,7}) to 0, so we can remove these subgraphs too. The resulting chart
is shown below, which represents a single solved form (the one shown in Fig. 2).

{1,2,3,4,5,6,7} : 〈2,h2 7→ {1,4},h4 7→ {3,6,7}〉
{1,4} : 〈1,h1 7→ {4}〉
{3,6,7} : 〈3,h5 7→ {6},h6 7→ {7}〉

Now consider variations of the graph in Fig. 1 in which the quantifier labels are
different; these variant graphs have exactly the same chart, but fewer fragment pairs
will be permutable. If all three quantifiers are universal, then the configurations fall
into two equivalence classes which are distinguished by the relative scope of the
fragments 1 and 2. The algorithm will recognise that the split with root fragment 3
is permutable and delete the splits for 1 and 2. The resulting chart has two solved
forms. Thus the algorithm is still complete in this case. If, however, the fragments
1 and 2 are existential quantifiers and the fragment 3 is universal, there are three
equivalence classes, but the chart computed by the algorithm will have four solved
forms. The problem stems from the fact that neither of the existential quantifiers is
permutable as long as the universal quantifier is still in the same subgraph; but the
two configurations in which 2 dominates 3 are equivalent.

Runtime analysis. Given a graph G with n nodes and m edges, we can compute a
table which specifies for each pair u,v of root nodes whether there is a unique hole
of u from which v can be reached via a simple hypernormal path which doesn’t use
u, and which hole this is. A naive algorithm for doing this iterates over all u and v
and then performs a depth-first search through G, which takes time O(n2(n + m)),
which is a negligible runtime in practice.

Given this table, we can determine the possible dominators of each fragment
in time O(n) (because there are at most O(n) possible dominators). Thus it takes
time O(n) to decide whether a split is permutable, and time O(n ·S), where S is the
number of splits in the chart, to run the entire elimination algorithm. The reference
counting optimisation adds nothing to this asymptotic runtime, as each split may
trigger at most one reference count update for each hole of the split’s root fragment.

45

5 Conclusion

We have presented an algorithm for redundancy elimination on underspecified chart
representations. It checks for each subgraph in the chart whether it has a permutable
split; if yes, it removes all other splits for this subgraph. This reduces the set of
described readings, while making sure that at least one representative of each orig-
inal equivalence class remains while maintaining underspecification. Equivalence
is defined with respect to a certain class of rewriting systems which approximates
semantic equivalence of the described formulas and fits well with the underspecifi-
cation setting. The algorithm runs in polynomial time in the size of the chart.

The algorithm is useful in practice: it reduces the USRs for (1) and (2) from the
introduction to one and two solved forms, respectively. In fact, initial experiments
with the Rondane treebank suggest that it reduces the number of readings of a
typical sentence by an order of magnitude. It does this efficiently: Even on USRs
with billions of readings, for which the enumeration of readings would take about
a year, it finishes after a few seconds. However, the algorithm is not complete in
the sense that the computed chart has no more equivalent readings. We have some
ideas for achieving this kind of completeness, which we will explore in future work.
Another line in which the present work could be extended is to allow equivalence
with respect to arbitrary rewrite systems.

References

[1] Althaus, E., D. Duchier, A. Koller, K. Mehlhorn, J. Niehren and S. Thiel, An efficient graph
algorithm for dominance constraints, Journal of Algorithms 48 (2003), pp. 194–219.

[2] Blackburn, P. and J. Bos, “Representation and Inference for Natural Language. A First Course
in Computational Semantics,” CSLI Publications, 2005.

[3] Bodirsky, M., D. Duchier, J. Niehren and S. Miele, An efficient algorithm for weakly normal
dominance constraints, in: ACM-SIAM Symposium on Discrete Algorithms (2004).

[4] Chaves, R. P., Non-redundant scope disambiguation in underspecified semantics, in:
Proceedings of the 8th ESSLLI Student Session, Vienna, 2003, pp. 47–58.

[5] Copestake, A. and D. Flickinger, An open-source grammar development environment and
broad-coverage english grammar using HPSG, in: Proc. of LREC, 2000.

[6] Copestake, A., D. Flickinger, C. Pollard and I. Sag, Minimal recursion semantics: An
introduction., Journal of Language and Computation (2004), to appear.

[7] Egg, M., A. Koller and J. Niehren, The Constraint Language for Lambda Structures, Logic,
Language, and Information 10 (2001), pp. 457–485.

[8] Fuchss, R., A. Koller, J. Niehren and S. Thater, Minimal recursion semantics as dominance
constraints: Translation, evaluation, and analysis, in: Proc. of ACL, Barcelona, 2004.

[9] Koller, A., J. Niehren and S. Thater, Bridging the gap between underspecification formalisms:
Hole semantics as dominance constraints, in: Proc. of EACL-03, 2003.

[10] Koller, A. and S. Thater, The evolution of dominance constraint solvers, in: Proc. of ACL-05
Workshop on Software, Ann Arbor, 2005.

[11] Niehren, J. and S. Thater, Bridging the gap between underspecification formalisms: Minimal
recursion semantics as dominance constraints, in: Proc. of ACL-03, 2003.

[12] van Deemter, K. and S. Peters, “Semantic Ambiguity and Underspecification,” CSLI, 1996.
[13] Vestre, E., An algorithm for generating non-redundant quantifier scopings, in: Proc. of EACL,

Berlin, 1991, pp. 251–256.

46

Quantifiers in Dependency Tree Semantics

Leonardo Lesmo, Livio Robaldo, Jelle Gerbrandy

Dipartimento di Informatica - Universitá di Torino
{lesmo,robaldo,gerbrand }@di. unito. it

Abstract

Dependency Tree Semantics (DTS) is an underspecified formalism for representing
quantifier scope ambiguities in natural language. DTS features a direct interface
with a Dependency grammar and an incremental, constraint-based disambiguation
mechanism. In this paper, we discuss the meaning of quantifier dependency in DTS
by translating its well formed structures into formulae of a Second Order Logic
augmented with Mostowskian generalized quantifiers.

1 Introduction

Dependency Tree Semantics (DTS) is an underspecified formalism for deal-
ing with quantifier scope ambiguity. DTS tries to keep the advantages of
most common underspecification techniques: it has a straightforward syntax-
semantics interface with a Dependency Grammar, just as QLF has [1], and
it allows for monotonically adding constraints to take partial disambiguations
into account, just as in UDRT [12], MRS [3] or CLLS [4]. These features
have been presented in [7] and [8], whereas in [9] DTS is proposed as a
possible underspecified semantic structure of Meaning⇔Text Theory [10].
This paper discusses a third property of DTS in further depth: the possibility
to represent branching quantifier (BQ) readings. Branching quantification in
DTS has partially been discussed in [7] and [8], in which we compared DTS
with First Order Logic (FOL). However, FOL is limited in that it allows to
represent only standard quantifiers (∃ and ∀); in this paper we compare DTS
with the logic developed in [13] and [14], which is a fragment of Second Or-
der Logic which allows for a representation of branching quantification with
Generalized Quantifiers.

1.1 Intuitions behind Dependency Tree Semantics

The key idea of DTS is to specify quantifier scope by explicitly showing the
dependencies between involved (quantified) groups of entities, i.e. by imple-
menting a sort of ”Skolemization” in the underspecified representation. Well-
formed structures in DTS are based on a simple graph G that represents the

47

predicate-arguments relations, without any quantification. The nodes of G
are either predicates or discourse referents; each arc connects a predicate with
a discourse referent and is labelled with the number of the predicate argument
position. With each discourse referent we associate a quantifier (given by a
function QUANT from discourse referents to quantifiers) and its restriction,
which is given by a function RESTR that associates a subgraph of G to each
discourse referent. In (1), we show a first simple example

(1) Two students study three theorems

study’

stud’

x y

theor’

1 2

1 1

stud’

x y

theor’

1 1Restr(x)= Restr(y)=

Quant(x)= two Quant(y)= tree

The representation in (1) is still ambiguous; to disambiguate, we need to
specify how the quantifiers depend on each other. This is done by inserting
dotted arcs between discourse referents, named semdep arc. In figure 1.a and
fig 1.b two fully-specified representations of sentence (1) are given. Fig.1.a
shows the reading in which the quantifier ‘three’ depends on (has scope inside)
the quantifier ‘two’. In figure 1.b, the arc linking x to y specifies that the two
students depend on the theorems. In both interpretations, the wide-scope
quantifier is linked to a new node called Ctx – the context.
But DTS allows for very natural representation of a third reading of sentence
(1): in figure 1.c, both discourse referents are linked to the context. This is
the branching quantifier (BQ) reading. As we will see, the BQ reading is true
only in those models in which we can find a set of two students and a set of
three theorems, for which it holds that each student in the first set studies each
theorem in the second one. In NL, there are many cases in which the correct

study’

stud’

x y

theor’

1 2

1 1

Ctx

study’

stud’

x y

theor’

1 2

1 1

Ctx

study’

stud’

x y

theor’

1 2

1 1

Ctxa) b) c)

Fig. 1. The three readings of sentence (1)

truth conditions can be captured only via a BQ reading; in fact, it is easy to
add some context elements in the sentence in order to force the two involved
sets to be constant; for instance, in (2.i), the involved students and theorems
are explicitly mentioned in two appositions, while in (2.ii) the prepositional
modifier with my sister favours an interpretation in which three persons, two
friends of mine and my sister, went together to three same concerts.

48

Finally, even if there are not explicit syntactic elements forcing a BQ reading,
in many cases this is done by world knowledge; for example, in (2.iii), world
knowledge seems to render the reading in which two students have seen the
same three drug dealers the most salient; in fact, the presence of drug-dealers
in front of a school is (fortunately) a rare event and this induces to prefer the
reading minimizing the number of involved drug dealers.

(2) (i) Two students, John and Jack, study three theorems: the first three

of the book.

(ii) Two friends of mine went to three concerts with my sister.
(iii) Two students of mine have seen three drug dealers in front of the

school.

Not all possible configurations of semdep arcs are allowed. For instance, a
well-formed DTS cannot contain cycling paths, which would correspond to a
reading in which two sets of entities depend on each other, which is clearly
absurd. Furthermore, there are constraints to reduce the available readings
to those admitted in NL. In this paper, we will focus on the expressivity of
the general formalism, and provide a precise definition of the meaning of all
configurations that respect a minimal set of syntactic constraints, and abstract
from the question whether they correspond to an actual reading in NL. In other
words, in DTS the set of logical admitted readings is kept separate from the
subset of readings admitted in NL, and this paper focus on the former.

1.2 Formalisation: Syntax of DTS

A well-formed structure (wfs) in DTS is a Scoped Dependency Graph (SDG)
as defined below. We take as given a set of predicates pred and a set of
discourse referents D.

Definition 1.1 [Flat Dependency Graphs (FDG)]
A Flat Dependency Graph is a tuple 〈N,L,A,Dom, f〉 s.t.:

- N is a set of nodes {n1, n2, . . . , nk}.
- L is a set of labels {l1, l2, . . ., lm}; in fig.1, L≡{1, 2}.
- Dom ≡ pred∪D is a set domain objects: predicates and discourse referents
- f is a function f : N 7→ Dom, specifying the node referent, i.e. the domain

object with which the node is associated. In the following, whenever f(n) ∈
X, we will say that node n is of type X.

- A is a set of arcs. An arc is a triple (ns, nd, l), where ns, nd ∈ N , ns is of
type pred, nd is of type D and l ∈ L.

Without going into further details, we stipulate that Gf is a connected acyclic
graph such that each node of type pred has one node of type D for each of its
places. Note that there can be two different nodes u and v s.t. f(u)=f(v),
i.e. the nodes in N can be seen as occurrences of symbols from Dom.

Definition 1.2 [Scoped Dependency Graph (SDG)]
A Scoped Dependency Graph is a tuple 〈Gf , ctx, Q, quant, restr, SemDep〉 s.t.:

49

- Gf = 〈N,L,A,Dom, f〉 is an FDG.
- ctx is a special element called the context.
- Q is a set of 2-place Mostowskian quantifiers {every, most, two, . . .} 1

- quant is a total function ND 7→ Q, where ND ⊆ N are the nodes of type D

- restr is a function assigning to each d ∈ ND its restriction, which is a sub-
graph of Gf .

- SemDep is a relation ND × (ND ∪ {{ctx}}).

When SemDep(d, d′), we say that d depends on d′. Note that a discourse ref-
erent can depend on more than one other discourse referent. The dependence
relation needs to satisfy the following constraints:

• The transitive closure of SemDep is a partial order on all discourse referents
and ctx, with ctx as its maximal element.

• Let d be a discourse referent, and let R(d) be the smallest set that contains
d, and for which it holds that if d′ is in R(d) and d′′ occurs in the restriction
of d′, then also d′′ ∈ D. It must hold that:
· If d1 ∈ R(d), d2 6∈ R(d), and d1 depends on d2, then also d depends on d2

· If d1 ∈ R(d), d2 6∈ R(d), and d2 depends on d1, then also d depends on d1

These last two constraints serve to exclude certain dependency relations that
are ‘logically impossible’, and make sure that, for example, a sentence like
“Most representatives of a company took every sample” does not get a reading
in which ‘a’ depends on (only) ‘every’ and ‘every’ depends (only) on ‘most’.

2 Branching quantification

Branching quantification was introduced by Henkin [5] in the context of FOL;
Hintikka [6] showed that it can occur also in NL. A great step toward the
definition of a model-theoretic schema for BQ was made by Barwise [2] who
merged Hintikka’s BQ account with the theory of Generalized Quantifiers.
Barwise’s idea was that the truth-conditions of BQ readings are connected
with the monotonicity of the involved quantifiers. He claimed that there is
no uniform schema for BQ: the formulae associated to sentences featuring all
monotone increasing (M↑) quantifiers are different from those associated to
sentences featuring all monotone decreasing (M↓) quantifiers. According to
Barwise, sentences with mixed quantifiers (some M↑ and some M↓) make no

1 A 2-place Mostowskian Quantifier [11] (see also [13]) is a symbol Q such that, if x is an
individual variable and Ψ, Φ are formulae then Qx(Ψ,Φ) is also a formula. Semantically, Q

denotes, in every model M with universe A, a function q which takes in input two subsets B

and C of A and returns a truth-value. Mostowskian Quantifiers are cardinality quantifiers,
in the sense that q(B,C) depends only on the cardinalities of the sets (B ∩ C), (B \ C),
(C \ B) and (A \ (B ∪ C)). Some examples are
· ‖Allx(P1(x), P2(x))‖M = true iff |(‖P1(x) ∧ ¬P2(x)‖M)| = 0

· ‖Fewx(P1(x), P2(x))‖M = true iff |(‖P1(x) ∧ P2(x)‖M)| > η

50

sense from a linguistic point of view.
On the other hand, Sher [13], [14] observed that since the semantics of
linearly ordered quantification is provided regardless to monotonicity, there
seems to be no methodological reason for imposing further constraints in case
of partially ordered quantification. In other words, even if readings from NL
are not available, this should not exclude their logical interpretation.
Sher specified the semantics of BQ on the basis of a precise definition of
the involved groups, according to so-called maximality conditions; roughly,
her claim is that the interpretation of a BQ reading with quantifiers of any
type corresponds to the one of Barwise for M↑ quantifiers augmented with
a maximality condition requiring that the involved sets are maximal with
respect to the body of the formula. Consider the two following sentences:

(3) (i) Most of the dots and most of the stars are all connected by lines.
(ii) Few of the dots and few of the stars are all connected by lines.

In Sher’s logic (let us name it L0) sentences in (3) are associated with formulas
of the following form:

(4) ∃P1, P2[C1 : Q1x(dot(x), P1(x))∧
C2 : Q2y(star(y), P2(y))∧
IN : ∀xy[(P1(x) ∧ P2(y)) → conn(x, y)]∧
Max(〈P1, P2〉, IN)]

where Q1 and Q2 are the Mostowskian quantifiers corresponding to the deter-
miners in our example: Q1=Q2=Most for (3.i); and Q1=Q2=Few for (3.ii).
The symbols C1, C2, IN are labels on the subformulae and Max(〈P1, P2〉, IN)
is an abbreviation for a maximality condition that states that two sets P1 and
P2 are maximal with respect to the formula with label IN , in the sense that
there are no strict supersets of P1 and P2 that satisfy IN . Formally, the max-
imality condition in (4) is the following formula:

Max(〈P1, P2〉, IN) ⇔
∀P ′

1, P
′

2[∀xy[(P1(x) ∧ P2(y)) → (P ′

1(x) ∧ P ′

2(y))∧
(P ′

1(x) ∧ P ′

2(y)) → conn(x, y)] →
∀xy[(P ′

1(x) ∧ P ′

2(y)) → (P1(x) ∧ P2(y))]]

Sher generalizes the schema of (4), so that it applies to any partially ordered
set of arbitrary quantifiers. To achieve this, it is necessary to existentially
quantify n-ary generalized Skolem functions Hi rather than simple sets Pi,
and to assert maximality conditions also on the subformulae with label Ci.
Here, an n-ary Skolem function is just an n + 1-ary relation H – we will
write H(x1, . . . xn+1) if x1 . . . xn+1 stand in the relation H, but also write
H(x1 . . . xn) for the set of objects xn+1 s.t. H(x1, . . . xn+1). Consider now a
branching reading such as in the following sentence:

(5) Few men inserted a coin in three coffee machines.

51

Fewx(man’(x))
@

@

¡
¡

Threey(CoffeeMach’(y))

Az(Coin’(z)) Inserted’(x, z, y)

=df ∃Hx, Hy, Hz[Cx: Fewx(man’(x), Hx(x)) &

Cy: Threey(CoffeeMach’(y), Hy(y)) &

Cz: ∀xy[(Hx(x)∧Hy(y))→ Az(coin’(z), Hz(x, y))] &

IN: ∀xyz[Hz(x, y, z)→ inserted’(x, y, z)] &

Max(〈Hx, Hy〉, Cz) & Max(〈Hz〉, IN)]

In this reading, the quantifier A depends on both Three and Few: there can be
a different coin for every pair of a man and a coffee machine. This is reflected
by the fact that Hz, the Skolem function associated with the quantifier A, is a
2-ary function, while Hx, Hy are 0-ary Skolem functions (that is, predicates).
The formula states that we have to find witnesses Hx, Hy and Hz such that
Hz corresponds to the extension of inserted’, and Hx and Hy are maximal
sets of individuals x and y such that the set of objects z inserted by x in
y, Hz(x, y, z), includes at least one coin; Hx is a set of a ”few men” and Hy

contains ”three coffee machines”. See [14] for the formal details.

3 Nested Quantification

A limitation of Sher’s logic is that it does not handle the case in which one
quantifier occurs in the syntactical restriction of another quantifier. Consider:

(6) Two representatives of three African countries arrive.

rep’

x

af−c’

1

2

1

arrive

y

1

1

of’

y

Restr(x)=

Restr(y)=
Quant(x)= two

Quant(y)= tree

af−c’

rep’

x

1

2

1

y

of’

1 1

1

In this example, the quantifier Three occurs in the syntactic restriction of
Two. This corresponds to the fact that the discourse referent y occurs in the
graph RESTR(x). This type of reading cannot be directly represented in
Sher’s logic. Therefore, we propose to extend her definitions to accommodate
for these cases as well. Lack of space does not permit us to state the precise
definitions; we will give two examples instead which should illustrate how the
definitions work. Before discussing the three possible disambiguations of (6),

52

we introduce a new abbreviation to increase readability.

If Φ is a well formed formula, x1 . . . xn a sequence of discourse referents, and
S1, . . . , Sn a sequence of predicates, we define:

〈S1, . . . , Sn〉 ⊆
max

Φ[x1 . . . xn] ⇔

Max(〈S1, . . . , Sn〉,∀x1 . . . xn[(S1(x1) ∧ . . . ∧ Sn(xn)) → Φ])

We will omit the reference to the variables x1 . . . xn in the notation when this
does not lead to confusion. By using ⊆

max

, the formula in (5) can be replaced
by the following equivalent

∃Hx, Hy, Hz[Fewx(man’(x), Hx(x)) & Everyy(CoffeeMach’(y), Hy(y)) &

〈Hx, Hy〉⊆
max

[Az(coin’(z), Hz(x, y, z))&

〈Hz(x, y)〉⊆
max

inserted’(x, y, z)]]

For representing the restriction of quantifiers in the logic, in addition to the
Skolem functions Hx that represent the body of the quantifiers, we introduce
restriction sets Ψx. The three readings of (6) can now be represented as:

x

y

Ctx

∃Hx, Hy, Ψx, Ψy[Twox(Ψx(x), Hx(x))& 〈Hx〉⊆
max

(arrive’(x)) &

〈Ψx〉⊆
max

[Threey(Ψy(x, y), Hy(x, y)) &

〈Ψy(x)〉⊆
max

(af−c’(y)) &

〈Hy(x)〉⊆
max

(repr of’(x,y))]]

x

y

Ctx

∃Hx, Hy, Ψx, Ψy[Threey(Ψy(y), Hy(y)) & 〈Ψy〉⊆
max

(af−c’(y)) &

〈Hy〉⊆
max

[Twox(Ψx(y, x), Hx(y, x)) &

〈Ψx(y)〉⊆
max

(repr of’(x,y)) &

〈Hx(y)〉⊆
max

(arrive’(x))]]

x

y

Ctx
∃Hx, Hy, Ψx, Ψy[Twox(Ψx(x), Hx(x)) & Threey(Ψy(y), Hy(y)) &

〈Ψx, Hy〉⊆
max

(repr of’(x,y)) & 〈Ψy〉⊆
max

(af−c’(y)) &

〈Hx〉⊆
max

(arrive’(x))]

Let us shortly discuss each of these readings.
In the first reading, y depends on x, which is reflected in the fact that Ψy and

53

Hy are unary Skolem functions whose values depend on the value for x. The
restriction set of ’three’, Ψy(x), is (for each x) the set of all African countries,
while Hy(x) is the set of objects represented by x. Therefore, the restriction
set of ‘two’, Ψx, is a maximal set of individuals x that represent three African
countries. Two of these individuals must be in Hx – the set of those that
arrive.
In the second reading, x depends on y. The set Ψy consists of all African
countries. The set Hy must contain three of these, and it is required that for
each element y in Hy there are two individuals in the set of all its representa-
tives Ψx(y) that are in Hx(y), which consists of all individuals that arrive.
The third formula represents the branching reading of the sentence, in which
the two discourse referents do not depend on each other. This formula states
that there are sets Ψx and Hy such that each individual in Ψx represents all
elements from Hy (this is expressed by the maximality condition on the pair
(Ψx, Hy)), and for which it holds that Hy contains three African countries,
and that two of the representatives from Ψx must arrive. In the following, we
report a last complex example:

(7) Everyx teacher failed twoy students that studied less than halfz of the
topics in thew program.

The following DTS represents a reading of (7) in which the discourse referent
w depends on both y and z, and y and z depend on x.

x

1 2

failed

y

Restr(x)=
Quant(y)= ∃

Quant(x)= ∀

2

zof’

stud

1

study

topic

1

1

w

teacher

1

progr

1

12 x

teacher

1 Restr(w)=

w

progr

1

Restr(z)=

1

2

1

of’

1 1

Restr(y)=

1

2

1

y

1 1

topic

w

z

stud study

z

Quant(z)= <
1

2

Quant(w)= the

x

y

Ctx

w

z

This DTS gets the translation reported below; in this interpretation, the two
students and the program depend on a teacher, while the set of topics depends
both on a program and on a student. In the formula, the pair of students
associated to a teacher x ∈ Hx has to belong to the set Ψy, i.e. the set of
students y such that the set of things studied by y, i.e. Hz(x, y, w), contains
less than half elements of Ψz, i.e. the set of topic in Hw(x), i.e. the program
of x.

54

∃Hx, Hy, Hz, Hw, Ψx, Ψy, Ψz, Ψw[

Everyx(Ψx(x), Hx(x)) & {Ψx}⊆
max

(teacher’(x)) &

{Hx}⊆
max

[Thew(Ψw(x,w), Hw(x,w)) & {Ψw(x)}⊆
max

(progr’(w)) &

Twoy(Ψy(x, y), Hy(x, y))] & {Hy(x)}⊆
max

(failed’(x, y)) &

{Ψy(x), Hw(x)}⊆
max

[Lthz(Ψz(x, y, w, z), Hz(x, y, w, z)) &

{Ψz(x, y, w)}⊆
max

(topic’(z)∧of’(z, w)) &

{Hz(x, y, w)}⊆
max

(stud’(y)∧study’(y, z))]]]

4 Conclusions and further works

In this paper, a comparison between Dependency Tree Semantics and Sher’s
work on Branching Quantification and Generalized Quantifiers has been pre-
sented. In particular, we have shown how disambiguated DTS structures can
be related to formulae of an extension of the formalism from [14] to represent
branching quantification. This provides a way to model-theoretically inter-
pret disambiguated DTS structures. Concerning further work, one of the next
steps in research on DTS will be extending its expressivity in order to deal
with cumulativity, which is a topic that has received very little attention in re-
cent studies on underspecification. Cumulative readings arise from a different
kind of branching quantification, as argued in [13], so the step for including
them is more natural in DTS than in other underspecified logics that do not
take BQ into account.

References

[1] Alshawi, H., editor, “The Core Language Engine,” Mit Press, Cambridge, MA,
1992.

[2] Barwise, J., On branching quantifiers in english, The Journal of Philosophical
Logic (1979), pp. 47–80.

[3] Copestake, A., D. Flickinger and I. Sag, Minimal recursion semantics. an
introduction, Technical report, Manuscript, Stanford University (1999).

[4] Egg, M., A. Koller and J. Niehren, The constraint language for lambda
structures, J. of Logic, Language and Information 10 (2001), pp. 457–485.

[5] Henkin, L., Some remarks on infinitely long formulas, in: Finitistic methods,
Proc. Symphosium of Foundations Math, Warsaw, 1961, pp. 167–183.

55

[6] Hintikka, J., Quantifiers vs quantification theory, Dialectica (1973), pp. 329–
358.

[7] Lesmo, L. and L. Robaldo, Dependency tree semantics and underspecification,
in: Proc. Int. Conf. On Natural language processing (ICON2004), Hyderabad,
India, 2004.

[8] Lesmo, L. and L. Robaldo, From dependency tree semantics to fol, in: Proc. 6th
Workshop on Computational Semantics (IWCS-6), Tilburg, 2005, pp. 384–386.

[9] Lesmo, L. and L. Robaldo, Underspecification of quantifier scope in mtt, in:
Proc. 2th Int.Conf. on Meaning Text Theory, Moscow, 2005.

[10] Melcuk, I., Semantics and the lexicon in modern linguistics., in: A. Gelbukh,
editor, In Proc. of the 1st International Conference on Intelligent Text
Processing and Computational Linguistics (CICLing), 2000, pp. 6–18.
URL www.CICLing.com

[11] Mostowski, A., On a generalization of quantifiers., Fundamenta Mathematicae
44 (1957), pp. 12–36.

[12] Reyle, U., Dealing with ambiguities by underspecification: Construction,
representation and deduction, Journal of Semantics (1993), pp. 123–179.

[13] Sher, G., Ways of branching quantifiers, Linguistics and Philosophy (1990),
pp. 393–422.

[14] Sher, G., Partially-ordered (branching) generalized quantifiers: a general
definition, The Journal of Philosophical Logic (1997), pp. 1–43.

56

Controlled Language for Geographical
Information System Queries

Sela Mador-Haim, Yoad Winter, and Anthony Braun

Technion I.I.T
selam@ cs. technion. ac. il,winter@ cs. technion. ac. il ,

tonyb@ geofocus. co. il

Abstract

Natural language interfaces to spatial databases have not received a lot of attention
in computational linguistics, in spite of the potential value of such systems for
users of Geographical Information Systems (GISs). This paper presents a controlled
language for GIS queries, solves some of the semantic problems for spatial inference
in this language, and introduces a system that implements this controlled language
as a novel interface for GIS.

1 Introduction

Geographical Information Systems (GISs) are information systems for pro-
cessing of data that pertain to spatial or geographic coordinates [14]. Even
though GISs are enjoying a rapidly growing users community, the current
systems are often difficult to use or require a long learning process [13]. In
the GIS literature [15,16,5,8], it has been well-acknowledged that natural lan-
guage interfaces (NLIs) would significantly enhance the exploitation of the
more complex features of GISs, yet despite the potential value of NLIs for
GISs, the work on this subject has so far been rather limited [16]. To the best
of our knowledge, existing NLIs for GISs are limited in scope and expressive
power and lack the ability to express complex relationships over spatial en-
tities. Some works ([9,17,12]) have demonstrated NLIs using databases that
contain geographically related data. Those databases, however, lack any ac-
tual spatial information (e.g. geometric polygons representing buildings), and
therefore do not deal with the problem of inferring spatial relations from such
representations.

In general, the design of NLIs to databases is regarded as a difficult problem
since human interaction is often vague, ambiguous or highly contextualized
[15,1]. The approach we take in this paper is to avoid many of these problems
by designing a system that uses a controlled language for GIS queries. Such
controlled languages [10,11], which are based on fragments of English, can be

57

selam@cs.technion.ac.il,winter@cs.technion.ac.il
tonyb@geofocus.co.il

designed in a way that minimizes the use of vague, ambiguous and context-
dependent expressions, while maintaining the ability to express very complex
queries in a language that is a subset of English. We benefit from the fact
that GISs are a closed, well-defined domain, which enables us to focus on
data independent parts of the language. We show that the addition of data
dependent portions can be done semi-automatically and requires very low
effort.

Our implementation of an NLI for GISs involves four major tasks: first,
defining the data independent lexicon, which was done using simple applicative
categorial grammar (Ajdukiewicz-Bar-Hillel calculus). Second, we develop a
suitable semantic representation for GIS queries, which we call λSQL, and a
method to translate natural-language queries via λSQL into spatially-enabled
SQL. The third task is defining of the semantics of spatial relations (esp.
prepositions) in the lexicon in accordance with the intuitive understanding of
such relations, which involves tackling certain aspects of spatial prepositions
that where never dealt with before. The fourth task is the development of
methods to add the data dependent portion of the lexicon with minimal effort,
including an automatic tool that generates lexical entries from the actual
geographical database in use.

The paper is organized as follows: Section 2 introduces λSQL and de-
scribes the translation scheme from natural language into SQL queries. Sec-
tion 3 reviews the architecture of the lexicon. Section 4 discusses semantic
issues concerning spatial relations in natural languages. Section 5 presents
our implementation, and section 6 concludes.

2 A compositional approach for building SQL queries

SQL is a recursive language in the sense that it allows using one query as part
of an expression within another query. However, due to its complex syntax,
the construction of an SQL query in a compositional way from a query in
natural language is far from being a straightforward task. One way to tackle
this problem is by using an intermediate representation [4,10]. While such
an intermediate language avoids the complications of composing SQL queries
directly, its downsides are the additional translation phase it requires and the
fact that such intermediate languages are usually not as expressive as the
target language.

We introduce an intermediate representation language, which we call λSQL.
This language only adds the necessary “compositional glue” to SQL. As a re-
sult, only a simple translation process is necessary to convert λSQL queries
into normal SQL syntax. λSQL expressions are basically expressions in the
simply typed λ Calculus with the addition of syntactic sugar for SQL-like
syntax.

The typical syntax of a select SQL-command for querying a database is:

58

SELECT < selectlist > FROM < tablelist > WHERE < whereclause >;

The selectlist parameter is usually a list of fields to be displayed, but it also
allows other expressions such as aggregate functions (e.g. field summation).
The tablelist parameter is a list of tables to query and whereclause is a
boolean expression that restricts the rows in the query.

The syntax of λSQL is very close to that of an SQL whereclause, with
the addition of λ operators. The atoms of λSQL are real numbers, strings
and typed identifiers. The base types in λSQL are: t - Boolean, r - real
numbers, str - strings, g - spatial data and e - entries in the database. These
base types correspond to the base types that are found in GIS databases, with
the addition of one additional type, e, for database entries (tuples). Complex
expressions are built from atomic ones using function application exp1(exp2),
infix operators exp1 op exp2, and the operators λv.exp and ∃v.exp. The
infix operators in λSQL correspond to SQL operators, and include Boolean
AND/OR, arithmetic operators (+,−, ∗, /) and comparators (>,<, =, <=
, >=, ! =). One additional important operator in λSQL is the dot operator,
as in var.fieldname, where var is of type e and fieldname is a function from
entries in the database to entities of a basic type (i.e. it is of type et, er or es).
A dot expression is equivalent to fieldname(var), a function that returns the
value of a field of a given entry.

In general, the only two syntactic elements in λSQL that do not corre-
spond directly to SQL syntax are the λ and ∃ operators. Translation from
λSQL expressions to SQL queries is done by recursive traversal over the ex-
pression. During traversal, whenever certain patterns are recognized, these
patterns are replaced by a corresponding SQL select statement. Each λ op-
erator corresponds to a select statement, which can be nested inside another
select. In addition to λ operators, three different synthetic elements may affect
the translation pattern:

P1 A function over a λ expressions, as in f(λv.exp), is treated as an aggregate
function.

P2 In the simplest pattern, the type of the variable x in λx is e, and it
corresponds to a query that returns a set of entries. When the variable that
the λ operator binds is of any other base type, the pattern: λx.∃y.(x = exp1
AND y.layer =′′ layer1′′ AND exp2) is expected, which is translated into
SELECT exp1 FROM layer1 WHERE exp2.

P3 Any additional ∃ operator which is not part of the pattern above is trans-
lated as a table join (where tablelist parameter contains more than one
query). For example, the expression λxe.∃ye.(x.layer = “layer1′′ AND
y.layer = “layer2′′ AND exp) is translated into: SELECT x.* FROM
layer1 AS x, layer2 AS y WHERE exp. Each additional ∃ adds an addi-
tional table to the list.

59

The translation process is guaranteed to be successful due to constraints
over the λSQL expressions in the lexicon that enforce conformity to the above
patterns. As an example for λSQL, consider the following fragment from our
lexicon:

Word Category Semantics

buildings N λxe.(x.layeres = ”building”)

with N\N/N λn1et.λn2et.λxe.(n1(x) AND n2(x))

more than Rs/R λnr.λxr.(x > n)

two R 2

floors N\Rs λprt.λxe.p(x.floorser)

highest N/N λnet.λxe.(n(x) AND (x.heighter =

max(rt)r(λrr.∃ye.(n(y) AND r = y.heighter))))

Category R in the above table corresponds to type r and Rs corresponds
to the type (rt).

The natural language expression “buildings with more than two floors”
will be parsed into the λSQL expression: λxe.(x.layeres = ”building” AND
x.floorser > 5). Note that while functional applications during parsing elimi-
nated most λ operators, the λ operator that is introduced by the lexical entry
for buildings is not eliminated. This remaining λxe is used to describe a
query over a variable x. In order to generate an SQL query, however, one
additional piece of information is required: the name of a table to query. This
information is provided via the layer keyword (layers, or feature sets in GIS
terminology, are equivalent to tables in general databases). While usually
the fieldname following the dot operator is a name for an actual field in the
database (such as floors in the above example), layer is a virtual attribute
in λSQL, used to associate a layer with a variable. Whenever an expression
such as x.layeres = ”building” is found, the parser associates x with the table
“building”, and hence the above expression is translated into the SQL query:

SELECT x.* FROM building AS x WHERE x.floors>5;

A bit more complex example is the query “highest buildings”, which is
translated into: λxe.(x.layeres = “building′′ AND x.heighter = max(rt)r(λrr.
∃ye.(y.layeres =′′ building′′ AND r = y.heighter)))). This expression demon-
strates several features of λSQL. Note that max is a free identifier, which is
expected to be a name of an SQL function. The function max receives a λ
expression, and is therefore interpreted as an aggregate function. Finally, the
expression in the argument of max fits pattern P2 above, and the result is:

60

SELECT x.* FROM building AS x WHERE x.floors=(SELECT max(y.floors)
FROM building);

3 Lexicon architecture

The data independent part of the lexicon is the core of our controlled lan-
guage. This is the part of the lexicon that involves general logical and spatial
operators that do not depend on the actual GIS. By carefully selecting the
data-independent lexical items, we are able to express very complex queries
while avoiding vagueness and ambiguity problems that often undermine the
usability of NLIs. An important part of our work is the ability to express
spatial relations between GIS objects. However, non-spatial lexical items are
an important part of the lexicon as well. In the first part of this section we de-
scribe the non-spatial items in the lexicon. In the following part we review the
spatially-related lexical items. Finally we present classes of data-dependent
lexical items.

3.1 Non-spatial lexical items

Non-spatial lexical items can be partitioned into the following groups:

• Measure units, such as meters, kilometers, miles, acres. The lexical def-
inition for these items converts any unit into standard units (e.g. metric
units).

• Numerical predicates, such as less than n, at least n, between n and m.
Numerical predicates represent sets of real numbers.

• Superlatives: biggest, smallest, most, least. The words most and least can
be used to refer to the maximal or minimal value of any numerical field in the
database. Other words such as largest and longest are used as abbreviation
for “most area” and “most length”.

• Boolean connectives: and, or, not.

• Other lexical entries: that, which, is, are, with, without, have.

3.2 Spatial lexical items

As mentioned before, we aim to design a controlled language that would avoid
the pitfalls of vagueness and context-dependent ambiguity. In order to satisfy
this requirement, we need to avoid vague qualitative relations such as near, far
and almost. Another type of relations that need to be avoided are projective
relations such as in front of, behind, left and right. The meaning of these
prepositions involves context-dependent[6] elements that are hard to handle
within a controlled language.

The following spatial relations are included in the lexicon:

61

• Intersectional relations, following Egenhofer’s 9-intersection model [3]: in,
outside of, borders, overlaps, crosses, contains and intersects. Note that
only the first two expressions are prepositions, while the others are verbs.

• Distance: the word from is used to specify exact distance, as in “200m from
a lake”.

• Constructors: intersection of, border of and center of. These words are
used to refer to spatial entities that do not exist in the database, but can
be derived from existing objects. For example, assuming “42nd Street” and
“Broadway” are objects in the database, “the intersection of 42nd street
and Broadway” can be constructed by intersecting the geometrical repre-
sentations of the two streets.

• Relative orientation: north of, south east of and the 3-place relation between
are all used to describe the orientation of one object relative to another
object (or objects, as in the case of between).

• Superlatives: closest and furthest are spatially-related superlatives.

3.3 Data-dependent lexical items

Data dependent lexical items are lexical items that refer to specific data inside
the database and may therefore change from one data set to another. GIS
data are divided into separate thematic feature classes or layers, whereby each
layer consists of one type of geometrical entity such as a building, street or
utility pole. For each layer there is usually an associated set of attributes that
represent non-spatial data attached to real world geometric objects. These
may be boolean data, numeric data or strings. Examples for such attributes
are the number of floors in a building or the name of a street. String values
such as street names should be part of the lexicon as well.

Data-dependent items are represented in the lexicon in the form of tem-
plates, which are lexical items with parametrized values for layer name, at-
tribute name and attribute value. An example for such a template is:

”#strval” N/N{l = #layer} λn.λx.(n(x) AND (x.#attr like #strval))

The ”#strval” template defines lexical items that refer to strings inside the
database. The lexical analyzer searches the database for strings that match
lexical tokens that are not present in the lexicon. For each such string the
above template is instantiated with the relevant layer name, attribute name
and string value. Similar templates are used for layer names and attributes of
various types. In case the lexical entries need to be different than the actual
names in the database, a definition file is used to add those lexical items and
instantiate the relevant templates for those items. No knowledge in λSQL is
required in order to edit the definition file.

62

4 Semantics of spatial prepositions

While some progress was made in semantic theories of prepositional phrases
in recent years [18,7], certain aspects of spatial linguistic phenomena have
not been extensively treated in the semantic literature, but are nevertheless
crucial for interfaces to spatial databases. Two such aspects that are treated
in our system and are discussed below.

4.1 Eigenspace vs. Existential semantics

While previous work on prepositional semantics mainly dealt with relation-
ships between two distinct objects, GIS queries often correspond to relation-
ships between sets of objects. Consider the query “buildings that are up to
200m from a lake”. In case there is more than one lake, we expect the system
to return any building such that there is at least one lake up to 200m from it.
In other words, it appears like the query existentially quantifies over lakes. On
the other hand, if we change the query to “buildings that are at least 200m
from a lake”, we would expect the system to return buildings that are over
200m away from all the lakes. The query “buildings that are between 200m
and 500m from a lake” has a yet more complex semantics, and should result
in any building such that there is at least one lake less than 500m from it and
there is no lake less than 200m from it.

The semantics of the above three queries becomes much clearer, however,
when instead of interpreting the indefinite “a lake” as a quantifier (existential,
universal or other) over the lakes in the database, “a lake” is interpreted as the
set of all lakes, and distance is measured with respect to the space taken by
the union of all lakes. We refer to this kind of interpretation for indefinites as
eigenspace semantics. In SQL, the eigenspace of a set of objects is evaluated
by using the aggregate function GeomUnion over a set of objects, as in:

SELECT geomunion(x.the geom) FROM lake AS x;

In our framework, eigenspace semantics is treated by enabling a type-
shifting from an indefinite noun-phrase into a special category G used for
representing the eigenspace. The λSQL expression for G/N type-shifting is:
λn.geomunion(λg.∃x.(n(x) AND g = x.the geom)) where the geom is the
attribute for the geometrical data of an object in GIS database. The λSQL
expression for the preposition from, of category (((N\N)\RS)/G), is then
defined by: λg.λp.λn.λx. (n(x) AND p(distance(x.the geom, g))).

It is important to note that while eigenspace semantics are used for spatial
prepositions, in the case of other spatial relations that are not expressed using
prepositions, such as the verbs contains and intersects, an indefinite is treated
in the usual way, as an existential quantifier. For example, if we ask about
“towns that contain a building with more than 10 floors”, the eigenspace se-
mantics would mean finding a town than contains all buildings with more than
one floor, whereas we expect to get any town that contains at least one building

63

Fig 1. Example for between Fig 2. Query result in QGIS

with more than 10 floors. We achieve the correct semantics in this case by pro-
viding a λSQL expression for verbs such as contains that existentially quanti-
fies over the set of contained objects: λn1.λn2.λx.∃y.(n1(y) AND n2(y) AND
contains(x.the geom, y.the geom)).

4.2 Semantics of between

An additional aspect of spatial relations that has so far been ignored in the se-
mantic literature concerns the relations between non-convex objects. A funda-
mental spatial relation which is quite problematic in the context of non-convex
objects is the 3-place relation between.

Zwarts and Winter [18] suggest the following definition for between: X is
between Y and Z if X ⊆ convexHull(Y ∪Z)\Y \Z, for convex objects in X, Y
and Z. The problem is that many objects we deal with in the context of GISs
are not convex. For example, it could be quite handy to talk about objects
between two streets. However, streets are often non-convex shapes. As can
be seen in figure 1, the convex hull for two streets represented by the solid
lines includes areas that do not agree with our understanding of the expression
between the two streets. In order to overcome this problem, we suggest the
following definition:

Definition 4.1 Let X, Y and Z be sets of points. We say that X is between
Y and Z iff either there is a point x on the border of Y such that the shortest
line connecting x to Z crosses X, but does not cross Y, or there is a point y on
the border of Z such that the shortest line connecting y to Y crosses X, but
does not cross Z.

The areas between the streets according to Definition 1 are marked by
stripes. As can be seen from the illustration, the new definition is more
in agreement with our intuitive understanding of between. Note that while
the above is a strictly spatial definition of between, in some contexts people
may use between in sloppier ways (e.g., Buxton is between Manchester and
Sheffield). In our system, however, we wish to avoid the vagueness of such

64

sloppy usages.

5 Implementation

The NLI presented in this paper was implemented in C++. The parser reads
the lexicon from a text file that includes the syntactic categories, and the se-
mantics is represented using λSQL expressions for all data-independent lexical
items. Data-dependent items are represented using templates, as explained in
section 3.3. When the user enters a natural-language query, the query is parsed
using a bottom-up right-to-left tabular Combinatorial Categorial Grammar
(CCG) parser that was developed as part of the NLI prototype. The resulting
λSQL expression is then converted into an SQL query as explained in section
2, which is sent to a spatially enabled database engine.

The system presented here uses PostGIS (http://postgis.refractions.net/)
as a back-end. PostGIS is an open-source GIS extension to the PostgreSQL
database engine, which implements the OpenGIS “Simple features specifica-
tion for SQL” standard [2]. PostGIS basically supplies a set of functions that
operate on vector representations, such as a function that calculates distance
between polygons. The SQL queries are sent to PostGIS, which generates the
result in a form of a table which is loaded into a GIS front-end that supports
PostGIS, such as QGIS (http://www.qgis.org).

For example, the query “Buildings that are up to 500m from the intersec-
tion of Elm street and Oak street” are converted into the SQL query, which
generates the result in figure 2:

(SELECT x.* FROM building AS x WHERE distance(x.the geom, intersection((
SELECT GeomUnion(x2.the geom) FROM street AS x2 WHERE x2.street nam
LIKE ’elm’),(SELECT GeomUnion(x3.the geom) FROM street AS x3 WHERE
x3.street nam LIKE ’oak’)))<=500)

6 Conclusions and future work

This work has presented an interface to GISs that is based on a controlled
fragment of English. We believe to have demonstrated that it is possible to
build such usable interfaces and express quite complex queries using a simple
fragment of English. Future work on this subject can be done at several dif-
ferent levels: expanding the lexicon further by adding quantifiers, comparison
between attributes of different objects and possibly anaphoric expressions.
More thorough theoretical study is required regarding semantic issues such
as eigenspace and between presented here, and finally, an empirical study is
necessary to evaluate how usable such interfaces are for actual GIS users of
varying skills and needs. We believe, however, that the general architecture
and prototype demo interface that we suggest can be developed into a useful
tool for planners and other professional users of GISs.

65

References

[1] I. Androutsopoulos and G. Ritchie. Database interfaces. In R. Dale, H. Moisl,
and H. Somers, editors, Handbook of Natural Language Processing, chapter 9,
pages 209–240. Marcel Dekker Inc., 2000.

[2] Open Geospatial Consortium. Simple Features Specification for SQL. http:
//www.opengis.org/docs/99-049.pdf.

[3] M. Egenhofer and J. Herring. Categorizing binary topological relations between
regions, lines and points in geographic databases. Technical report, Department
of Surveying Engineering, University of Maine, Orono, ME, 1991.

[4] P.P. Filipe and N.J. Mamede. Databases and natural language interfaces. In
JISBD 2000, pages 321–332, 2000.

[5] A.U. Frank and D.M. Mark. Language issues for GIS. In D. MacGuire,
M.F. Goodchild, and D. Rhind, editors, Geographical Information Systems:
Principles and Applications, pages 147–163. Wiley, New York, 1991.

[6] A. Hershkovits. Language and Spatial Cognition: an interdisciplinary study of
the prepositions in English. Cambridge University Press, Cambridge, 1986.

[7] M. Kracht. On the semantics of locatives. Linguistics and Philosophy, 25:157–
232, 2002.

[8] D.M Mark, S. Svorou, and D. Zubin. Spatial terms and spatial concepts:
Geographic, cognitive and linguistic perspectives. In International Geographic
Information Systems (IGIS), pages 101–112, Arlington, VA, 1987.

[9] M. Minock. A phrasal approach to natural language interfaces over databases.
In NLDB-2005, Alicante, Spain, June 2005.

[10] R. Nelken and N. Francez. Querying temporal databases using controlled
natural language. In COLING 2000 - Volume 2, pages 1076–1080, 2000.

[11] I. Pratt. Temporal prepositions and their logic. Artificial Intelligence, 166(1–
2):1–36, 2005.

[12] Mukesh Kumar Rohil. Natural language processing to query a geographic
information system(india) knowledgebase. In Map India, India, 2000.

[13] I. Schlaisich and M. Egenhofer. Multimodal spatial querying: What people
sketch and talk about. In C. Stephanidis, editor, 1st International Conference
on Universal Access in Human-Computer Interaction, pages 732–736, New
Orleans, LA, August 2001.

[14] J. Star and J. Estes. Geographic Information System, An Introduction. Prentice
Hall, Englewood Cliffs, NJ, 1990.

[15] Fangju Wang. Handling grammatical errors, ambiguity and impreciseness in
GIS natural language queries. Transactions in GIS, 7(1):103–121, 2003.

[16] H. Wang, A.M MacEachren, and G. Cai. Design of human-GIS dialogue
for communication of vague spatial concepts based on human communication
framework. In GIScience 2004, Adelphi, MD, 2004.

[17] J.M. Zelle and R.J. Mooney. Learning to parse database queries using
inductive logic programming. In Thirteenth National Conference on Aritificial
Intelligence, pages 1050–1055, Portland, OR, August 1996.

[18] J. Zwarts and Y. Winter. Vector space semantics: a modeltheoretic analysis of
locative prepositions. Journal of Logic, Language and Information, 9:171–213,
2000.

66

http://www.opengis.org/docs/99-049.pdf
http://www.opengis.org/docs/99-049.pdf

Computing relative polarity
for textual inference

Rowan Nairn, Cleo Condoravdi, Lauri Karttunen

Palo Alto Research Center
rnairn@gmail.com , condorav@parc.com , Lauri.Karttunen@parc.com

Abstract

Semantic relations between main and complement sentences are of great signifi-
cance in any system of automatic data processing that depends on natural lan-
guage. In this paper we present a strategy for detecting author commitment to
the truth/falsity of complement clauses based on their syntactic type and on the
meaning of their embedding predicate. We show that the implications of a predi-
cate at an arbitrary depth of embedding about its complement clause depend on a
globally determined notion of relative polarity. We, moreover, observe that different
classes of complement-taking verbs have a different effect on the polarity of their
complement clauses and that this effect depends recursively on their own embed-
ding. A polarity propagation algorithm is presented as part of a general strategy of
canonicalization of linguistically-based representations, with a view to minimizing
the demands on the entailment and contradiction detection process.

1 Introduction

In a 1971 article titled “The Logic of English Predicate Complement Con-
structions” [9] Lauri Karttunen, 29, wrote:

It is evident that logical relations between main sentences and their comple-
ments are of great significance in any system of automatic data processing
that depends on natural language. For this reason, the systematic study of
such relations, of which this paper is an example, will certainly have a great
practical value, in addition to what it may contribute to the theory of the
semantics of natural languages.

It is only now that this 35-year old prediction is becoming a reality in the
context of automated question answering and reasoning initiatives such as the
pascal Textual Entailment Challenge (see [7]) and the arda-sponsored aquaint

project (see [10], [12], [4]).

Recognizing whether a given piece of text can be strictly or plausibly in-
ferred from, or is contradicted by, another piece of text is, arguably, a minimal

67

criterion for Natural Language Understanding (see [2]). We call this task lo-

cal textual inference. Textual inferences may be based on purely linguistic
knowledge, assumptions about language use by collaborative rational agents,
knowledge about the world, or any combination thereof. The semantics of
complement constructions is an important part of local textual inference. It
has the added advantage of carving out a well-circumscribed domain of infer-
ences based primarily on linguistic knowledge.

A system that computes textual inferences should be able to deduce, for
example, that (1b) and (1c) follow from (1a).

(1) a. Ed forgot to close the door.
b. Ed intended to close the door.
c. Ed did not close the door.

There is a clear difference between the two embedding predicates forget to and
intend to. (1c) does not follow from (1b). A speaker or author of (1b) may well
believe in the truth of (1c) but he is not committed to it by virtue of having
said (1b). In the following we focus on cases where the author’s commitment
to the truth of a complement clause arises solely from the larger sentence it
belongs to, leaving aside other sources of information about the beliefs of the
author. The author of (1a) is committed to both (1b) and (1c) but due to
different aspects of the meaning of forget to, as we will show shortly.

The fact that forgetting to do something entails not doing it does not arise
solely from the meaning of the verb forget but depends also on the type of its
complement. Consider the difference between forget to and forget that.

(2) a. Ed forgot that the door was closed.
b. The door was closed.

(2a) commits the author to the view that the complement (2b) is true rather
than false. Furthermore, with forget that this commitment is preserved under
negation and in questions.

(3) a. Ed did not forget that the door was closed.
b. Did Ed forget that the door was closed?

(2a), (3a) and (3b) are alike in committing the speaker to (2b). The difference
between forget that and forget to is striking.

(4) a. Ed did not forget to close the door.
b. Did Ed forget to close the door?

In contrast to (1a), in a narrative text (4a) commits the author to the view
that Ed closed the door, the opposite of (1b). 1 (4b) is noncommittal either
way.

The different semantic behaviors of forget that and forget to have been
known for a long time. There is a large body of linguistic literature, start-

1 In a spoken dialogue it is of course possible, typically with a special intonation, to use
(4a) to contradict (1a): Ed didn’t “forget” to close the door. He never intended to do it.

68

ing with Kiparsky & Kiparsky 1971 [11] and Karttunen 1971 [8], about fac-

tive constructions such as forget/remember/know/. . . that and implicative con-
structions such as forget/remember/manage/bother/. . . to. A common view is
that factive constructions presuppose rather than entail that the complement
sentence is true. 2 Implicative constructions have entailments and some of
them also carry presuppositions. For example, (1a) entails (1c) and presup-
poses (1b). (4a) carries the same presupposition as (1a) but the opposite
entailment. While the entailments of implicative constructions are generally
quite clear, it is often difficult to pin down exactly what is being presupposed.
It may be argued, for example, that (1b) is too specific. Maybe the presuppo-
sition is more vague: Ed ought to have closed the door or Ed was expected to
close the door. All the examples in (5) entail that Ed did not open the door
but presuppose a different reason for this fact.

(5) Ed didn’t manage/bother/dare/happen to open the door.

In this paper we focus on building a partial computational semantics for
implicative constructions ignoring for the time being the presuppositional as-
pects of their meaning. However, we handle simple factive constructions and
the interaction between implicative and factive verbs. The work was carried
out in the context of the aquaint project using the xle engine for parsing and
semantic analysis. 3 The aquaint project conducted a pascal-like experiment
on local textual inferences based on a more nuanced task. Given a sentence A,
we may conclude either that B is true or that B is false or that the answer
is unknown, that is, B or its negation cannot be inferred from A alone. In
contrast, the pascal test collapses false and unknown into false. 4

We faced two initial challenges. The first is that there are several types of
implicative verbs. Some yield an entailment in both affirmative and negative
environments but there are others, “one-way implicatives”, that yield entail-
ments only in one or the other environment. Furthermore, the entailment may
be either positive or negative depending on the polarity of the environment.
For example, forget to yields a negative entailment in a positive environment,
(1a), and a positive entailment in a negative environment, (4a). But man-
age to works in the opposite way. This type of semantic information is not
available in or deducible from any public lexical database such as WordNet,
VerbNet or FrameNet. We had to compile ourselves a table of “implication
signatures” for a large class of complement-taking constructions.

The second challenge is that implicative and factive constructions may be
stacked together. The polarity of the environment of an embedding predicate
is determined relatively to the chain of predicates or sentential operators it
is in the scope of. Although it may not be obvious at the first glance, (6)

2 This is not to say that there is a common view on how the notion of presupposition should
be construed theoretically.
3 http://www2.parc.com/istl/groups/nltt/xle/
4 For a critical look at the pascal task, see Zaenen, Karttunen and Crouch [12].

69

commits the author to the view that Ed did not open the door.

(6) Ed didn’t manage to remember to open the door.

In 6 remember is in a positive clause but the relative polarity of that clause
is negative. The computation of relative polarity must be a recursive process.

2 Implication signatures

We focused on complement-taking verbs, especially those that take infinitival
or that complements. Taking the verbs in order of decreasing frequency in the
British National Corpus (BNC), 5 we determined their natural implications
(if any). Judgments were based on agreement by multiple annotators using
resources such as Google search and the Linguist’s Search Engine to sample
the relevant constructions in the wild. In particular cases it can be difficult to
decide between entailments, that is, what the author is actually committed
to, and conversational implicatures, that is, what a reader/hearer may feel
entitled to infer. For example, Ed did not refuse to participate might lead the
hearer to conclude that Ed participated. But the speaker could continue with
He was not even eligible indicating the opposite. For this reason we classify
refuse to as a one-way implicative. Of the 1250 relevant verbs in our lexicon
we classified 400 on a first pass. Roughly a third of those carried some kind
of implication: a positive or negative entailment, a factive or a counterfactive
presupposition. Conversational implicatures were flagged for later attention.
Figure 1 shows the classifications of the resulting lookup table.

Word in Relative Polarity

subcat frame (+) positive (-) negative

Entailment

Two-way manage to (+) positive (-) negative
implicatives forget to (-) negative (+) positive

One-way force to (+) positive none
+implicatives refuse to (-) negative none

One-way attempt to none (-) negative
-implicatives hesitate to none (+) positive

Presupposition

Factives forget that (+) positive (+) positive
Counterfactives pretend that (-) negative (-) negative

Entailment/Presupposition

Neutral want to none none

Fig. 1. Some examples from our verb markup table

5 http://www.natcorp.ox.ac.uk/

70

3 Theoretical and technical prerequisites

Our approach to textual inference relies on parsed text that is further trans-
formed by a process of canonicalization. The mechanism for entailment and
contradiction detection (ecd) combines structural matching and inference-
based techniques. It operates on packed representations, encoding ambigui-
ties, without the need for disambiguation. We will not discuss ecd any further
here. Instead we will focus on describing in more detail some of the relevant
features of the representations on which it operates.

Input text is syntactically analyzed by the xle parser, based on a broad cov-
erage, hand-coded grammar of English. Linguistic semantic representations
are constructed from the parse output, using skolemization and flattening em-
bedded structures to clausal form. These logical forms are in turn canonical-
ized to more uniform representations via packed term rewriting as described in
Crouch [3]. The implication projection algorithm to be described in the next
section forms part of this component of canonicalization and is implemented
as a set of recursive rewrite rules that operate on packed representations. 6

The canonicalized representations that are input to ecd are essentially a
kind of description logic with contexts. 7 Roughly, each verbal predication
corresponds to a constructed concept, an event type with role restrictions.
The main concept is provided by a mapping of the verbal predicate to a
concept in some background ontology. The role restrictions come from various
arguments and modifiers. The constructed concept is named by the skolem
introduced by the verbal predicate. Flattening replaces embedded expressions
with complex internal structure, such as clausal complements, with atomic
first order terms, contexts. The information about the level of embedding of
an expression is preserved by associating its content with the corresponding
context. Negation and intensional operators also trigger the introduction of
new contexts. Contexts thus serve as scope markers since their use enables
globally represented information, such as the scope of operators, to be made
locally accessible.

The content of the top level context, designated as t, represents what the
author of the sentence is taken to be committed to. In general, we tie truth
of a sentence to the instantiability of the skolem corresponding to its head
predicate. This, in effect, amounts to the familiar existential closure over
events: if the skolem corresponding to a clause’s head predicate denotes an
event description, an instantiability declaration for that skolem means that the
event description is instantiated. Therefore, an implication that a complement
clause is true/false can be construed as an existential/negative existential
implication, which in our terms is an implication about the instantiation/non-
instantiation of the event type described by the embedded clause.

6 Packing is xle’s mechanism for ambiguity management and operates independently of
canonicalization and inference.
7 For more details see Bobrow et al. [1], Crouch [3] and Condoravdi et al. [2].

71

Instantiability is always relative to a context, in the simplest case the
context of origin of the skolem. In order to become author commitment, an
instantiability declaration has to be associated with the top level context t.
When two contexts stand in certain relations to one another, in particular
the relations of veridicality and antiveridicality, information can be inherited
from one to another. Lifting rules lift assertions from a lower context to a
higher context, either as they are, when the two contexts are veridical to one
another, or by switching the polarity of instantiability assertions, when the two
contexts stand in an antiveridical relation. Negation introduces a context that
is antiveridical with respect to the immediately higher context. To illustrate,
(7) gives the contextual structure for a negative sentence like Ed didn’t leave
Paris and (8) the corresponding instantiability assertions (leave ev57 is the
name for the constructed event type of Ed leaving Paris). One important thing
to note is that the assertion instantiable(leave ev57) in not58 is lifted as
uninstantiable(leave ev57) to the top level context t, thus capturing the
intuitive meaning that the event type of Ed leaving Paris was not instantiated.

(7) context(t)

context(not58) new context triggered by negation

context relation(not t not58)

antiveridical(not58 t) interpretation of negation

(8) not58: instantiable(leave ev57)

t: uninstantiable (leave ev57) entailment of negation

Lexical entailments and presuppositions are similarly overtly spelled out in
the representations operated on by ecd. This way the process of canonicaliza-
tion prepackages some of the local textual inferences. The challenge of course
is to figure out which context the relevant instantiability assertions ought to
be lifted to, which is what the implication projection algorithm determines.

4 The implication projection algorithm

Aside from the onerous task of classifying hundreds of verbs, the complica-
tions of this problem stem from the interaction of multiple embedded clauses.
As mentioned previously, the entailment yielded by a complement-taking con-
struction is dependent on the polarity of the context it appears in. This
polarity in turn is not locally determined but dependent on the embedding
structure of contexts. Therefore, a verb in a negative clause is not necessarily
in a negative environment since the negativity of a not may be neutralized by
another negative, as for example in (9).

(9) Ed refused not to attempt to leave.

Here the normal negative entailment licensed by not attempt is neutralized by
the negative polarity setting due to the higher-level predicate refuse. Notice

72

that refuse does not simply negate the entailment. It cancels it entirely. Em-
bedding within a verb such as refuse can also license entailments that were not
available previously. Consider (10a), which is compatible with either (10b) or
(10c).

(10) a. Ed attempted to leave.
b. Ed left.
c. Ed didn’t leave.

(11), on the other hand, implies (10c).

(11) Ed refused to attempt to leave.

Evidently, it is not enough to look at the immediate outer context of a
complement construction. The polarity of any context depends on the se-
quence of potential polarity switches stretching back to the top context. Each
complement-taking verb, operating on its parent context’s polarity, either
switches, preserves or simply sets the polarity for its embedded context, as
specified by an entry in the lookup table.

Furthermore, this means that polarity is a relative notion. If the sequence
of polarity switches was started at a level below the top context then the final
polarity value might turn out different. Thus when we talk about the polarity
of a context we mean polarity relative to some ancestor context. Normally, it
is the top context which interests us the most, but it may be useful to infer
the implications of a clause for other contexts. For example, it is probably
useful to infer (12b) from (12a). The algorithm provides for this generality.

(12) a. John believes that Ed managed to leave.
b. John believes that Ed left.

Every context C then has associated with it a set of ancestor contexts
relative to which its polarity is positive (denoted ⊕C) and a set of contexts
relative to which its polarity is negative (denoted 	C). Every context, includ-
ing the top one, is positive relative to itself. The polarity sets of a context
are computed in terms of its parent’s sets (⊕p(C) and 	p(C)) with reference to
the verb (Vp(C),C) which links the two contexts and its signature in the lookup
table (sige(Vp(C),C)) where the environment superscript e is either positive +
or negative −.

⊕C =def {C} ∪



















⊕p(C) if sig+(Vp(C),C) = +

	p(C) if sig−(Vp(C),C) = +

∅ otherwise

	C =def



















⊕p(C) if sig+(Vp(C),C) = −

	p(C) if sig−(Vp(C),C) = −

∅ otherwise

73

Figure 2 shows the example sentence Ed did not forget to force Dave to leave
parsed and with relative polarities assigned to each context. To get to this

Fig. 2. After the polarity propagation pass

situation the algorithm first assigns the top context the polarity sets {#Top}
and ∅. It then recursively computes the polarity sets for each embedded
context using the context-linking verb as an index to the lookup table. Not
is treated in the same way as forget to – they both invert the polarity sets.
Force is a one-way implicative that disregards the negative polarity set of its
parent.

Recall that we needed to work out which concepts should be instantiated in
which contexts and, now that we have marked the contexts appropriately with
relative polarities, we can extract that information. The head event skolem
of a context, and presumably all its role fillers, should be made instantiable
not only in the context it arises in but also in all contexts relative to which
its originating context has positive polarity. Similarly, an event should be
made uninstantiable in all contexts relative to which its originating context
has negative polarity.

instantiables(C) =def {head(C ′) | C ∈ ⊕C′}

uninstantiables(C) =def {head(C ′) | C ∈ 	C′}

From the polarity marking in Figure 2 we can conclude that the event concept
corresponding to the sentence Dave left is in fact instantiable at the top level
(as well as in the #Force and #Forget contexts) and thus we can attribute
it as a commitment of the speaker.

74

5 Conclusion and Further Work

The present study is, as far as we know, the first systematic implementation
of textual inferences arising from the six types of implicative verbs presented
in Figure 1 and their interaction with factive verbs.

In this work we have focused on cases where the judgement of whether the
author is committed to the truth or the falsity of a complement clause can be
made reliably from the sentence in question. Further work is needed at least
in the following three areas.

Lexicographic gaps. In our classification we only considered simple ver-
bal and adjectival complements. We have yet to study and determine the
semantics of complement constructions associated with nominals in colloca-
tions such as take the trouble to, have the foresight to, take time to, for which
there is virtually no literature.

Conversational implicatures. It is well known that constructions such
as be able to yield a negative entailment in a negative environment. Ed was not
able to open the door entails Ed did not open the door. There is no entailment
in the corresponding affirmative sentence. Yet, if the author writes Ed was
able to open the door and says nothing to indicate that the door was not
opened, the reader is likely to infer, and justifiably so, that Ed opened the
door. This kind of conversational implicature is cancelable (Grice [6]). It is
not a contradiction to say Ed was able to open the door but he kept it closed. If
a student asks his professor Did you have the time to read my paper? and the
professor answers Yes but has not read the paper, the answer can be literally
true and very misleading at the same time. 8

Degrees of “factivity”. Factive verbs and constructions do not consti-
tute a uniform class. Looking at the pattern of usage of verbs such as mention
that, report that, say that, etc. on Google, we observed that in cases such as
He did not mention that Coalition allies now plan to leave it was virtually
always clear from the context that the author believed the complement to be
true. The verb report is similar to mention but there are also cases where
...did not report that X was meant to suggest that X is false. On the other
hand, ...did not deny that X suggests that X is true, whereas ...denied that X
is noncommittal with respect to X.

Acknowledgements

This material is based in part on work funded by the U.S. Government, and
any opinions, findings, conclusions, or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect the views of the
U.S. Government.

8 For a seminal paper on invited inferences, see [5].

75

References

[1] Bobrow, D., C. Condoravdi, R. Crouch, R. Kaplan, L. Karttunen, T. King,
V. de Paiva and A. Zaenen, A basic logic for textual inference, in: Proceedings
of the AAAI Workshop on Inference for Textual Question Answering,
Pittsburgh, PA, 2005, http://www2.parc.com/istl/groups/nltt/papers/

textual-inference.pdf.

[2] Condoravdi, C., R. Crouch, R. Stolle, V. de Paiva and D. Bobrow, Entailment,
intensionality and text understanding, in: Proceedings of the Workshop on
Text Meaning, Human Language Technology Conference (HLT-NAACL-2003),
Edmonton, Canada, 2003, http://www2.parc.com/spl/members/stolle/

Papers/condoravdi-textmeaning.pdf.

[3] Crouch, R., Packed rewriting for mapping semantics to KR, in: Proceedings
of the Sixth International Workshop on Computational Semantics, Tilburg,
the Netherlands, 2005, http://www2.parc.com/istl/groups/nltt/papers/

iwcs05_crouch.pdf.

[4] Crouch, R., R. Sauri and A. Fowler, AQUAINT pilot knowledge-based
evaluation: Annotation guidelines (2005), http://www2.parc.com/istl/

groups/nltt/papers/aquaint_kb_pilot_evaluation_guide.pdf.

[5] Geis, M. and A. Zwicky, On invited inferences, Linguistic Inquiry 2 (1971),
pp. 561–565.

[6] Grice, H. P., Logic and conversation, in: P. Cole and J. L. Morgan, editors,
Speech Acts, Academic Press, New York, NY, 1989 pp. 41–58.

[7] Ido Dagan, O. G. and B. Magnini, The PASCAL recognising textual entailment
challenge, in: Proceedings of the PASCAL Challenges Workshop on Recognising
Textual Entailment, Southampton, U.K., 2005, http://www.cs.biu.ac.il/

~glikmao/rte05/dagan_et_al.pdf.

[8] Karttunen, L., Implicative verbs, Language 47 (1971), pp. 340–358.

[9] Karttunen, L., The logic of English predicate complement constructions (1971),
distributed by the Indiana University Linguistics Club. http://www2.parc.
com/istl/members/karttune/publications/english_predicate.pdf.

[10] Karttunen, L. and A. Zaenen, Veridicity, in: G. Katz, J. Pustejovsky and
F. Schilder, editors, Annotating, Extracting and Reasoning about Time and
Events, number 05151 in Dagstuhl Seminar Proceedings (2005), http://drops.
dagstuhl.de/opus/volltexte/2005/314.

[11] Kiparsky, P. and C. Kiparsky, Fact, in: D. Steinberg and L. Jakobovits,
editors, Semantics. An Inderdisciplinary Reader, Cambridge University Press,
Cambridge, England, 1971 .

[12] Zaenen, A., L. Karttunen and R. Crouch, Local textual inference: can it be
defined or circumscribed?, in: Workshop on the Empirical Modeling of Semantic
Equivalence and Entailment, Ann Arbor, MI, 2005, http://www2.parc.com/
istl/members/karttune/publications/acl2005workshop.pdf.

76

Using Answer Set Programming in an Inference-Based approach to Natural
Language Semantics

Farid Nouioua

LIPN UMR 7030 du C.N.R.S.
Institut Galilée – Univ. Paris-Nord

93430 Villetaneuse – FRANCE
nouiouaf@lipn.univ-paris13.fr

Pascal Nicolas

LERIA
University of Angers

2, bd Lavoisier F-49045 Angers cedex
pascal.nicolas@univ-angers.fr

1. Motivation

The traditional tri-partition syntax/semantics/pragmatics is commonly used in most of the computer
systems that aim at the simulation of the human understanding of Natural Language (NL). This
conception does not reflect the flexible and creative manner that humans use in reality to interpret
texts. Generally speaking, formal NL semantics is referential i.e. it assumes that it is possible to
create a static discourse universe and to equate the objects of this universe to the (static) meanings
of words. The meaning of a sentence is then built from the meanings of the words in a
compositional process and the semantic interpretation of a sentence is reduced to its logical
interpretation based on the truth conditions. The very difficult task of adapting the meaning of a
sentence to its context is often left to the pragmatic level, and this task requires to use a huge
amount of common sense knowledge about the domain. This approach is seriously challenged (see
for example [4][14]). It has been showed that the above tri-partition is very artificial because
linguistic as well as extra-linguistic knowledge interact in the same global process to provide the
necessary elements for understanding. Linguistic phenomena such as polysemy, plurals, metaphors
and shifts in meaning create real difficulties to the referential approach of the NL semantics
discussed above. As an alternative solution to these problems, [4] proposes an inferential approach
to the NL semantics in which words trigger inferences depending on the context of their apparition.
In the same spirit we claim that understanding a NL text is a reasoning process based on our
knowledge about the norms1 of its domain i.e. what we generally expect to happen in normal
situations. But what kind of reasoning is needed for natural language semantics?

The answer to this question is based on the remark that texts seldom provide normal details that are
assumed to be known to the reader. Instead, they focus on abnormal situations or at least on events
that cannot be inferred by default from the text by an ordinary reader. A central issue in the human
understanding of NL is the ability to infer systematically and easily an amount of implicit
information necessary to answer indirect questions about the text. The consequences resulting from
truth-based entailments are logically valid but they are poor and quite limited. Those obtained by a
norm-based approach are defeasible: they are admitted as long as the text does not mention explicit
elements that contradict them. However they provide richer information and enable a deeper
understanding of the text. That is why the norm-based reasoning must be non-monotonic. In
addition to this central question, the representation language must take into account a number of
modalities (including the temporal aspect) that are very useful to answer different questions on NL
texts.

The next section gives a general logical framework to represent in a first order language the
necessary knowledge about a domain and allows non-monotonic reasoning. Section 3 shows how to
implement our representation language fragment in the formalism of Answer Set Programming by
transforming them into extended logic programs. In section 4, we discuss the use of our language in
the car crash domain to find automatically the cause of an accident from its textual description. The

1 In A.I, the word norm is commonly used in the « normative » sens. Here, it is rather used in the « normal » sens.

77

kind of inference rules required in this application is showed through a detailed presentation of the
analysis of a text from the corpus we are using. Finally, we conclude and give some perspectives for
future work in section 5.

2. Knowledge representation language

The explicit information evoked in a given text provides the starting point for the reasoning process
that aims to understand it. Thus, the first task to do is to extract from the text this explicit
information and to represent it in an adequate language. The richness and flexibility of NL
constrains the representation language to take into account a number of aspects whose necessity and
importance may vary from an application to another. In what follows, we describe a logical
language which enhances within the first order framework some aspects that we believe to be useful
in an inferential approach to NL semantics. Namely, the proposed language allows the
representation of time, modalities and non-monotonic inferences (see [7] for more details).

2.1 Reification

The first idea that comes to mind when representing knowledge about NL statements is to use first
order predicates to express properties of objects, agents …etc. However we need often to treat
further aspects. For example, we need to represent modalities on the considered properties and to
reason about them i.e. to use the predicate names themselves as variables over which one can
quantify in order to avoid the use of ad hoc inference rules, i.e. to factorise the rules at an adequate
level of abstraction. To solve this problem within the framework of first order logic, we use the
reification technique, commonly used in Artificial Intelligence (AI). Instead of writing P(X, Y) to
express the fact that property P applies to arguments X and Y, we write Holds(P, X, Y). The property
name P becomes then an argument in the new predicate Holds. i.e. P will be a variable over
properties and it can be quantified in inference rules.
The use of the reification technique yields to two main drawbacks: first, it forces a fixed arity for
the predicate Holds whereas properties in general may have a different number of arguments. The
second problem is the necessity to redefine ad hoc axioms about the properties (negation,
conjunction, disjunction… of properties). One possible solution to the first problem is to consider a
special binary function combine which constructs a new “complex” argument from two other
arguments. For example, as the predicate Holds has three arguments then, the predicate Q(X, Y, Z)
can be reified as : Holds(combine(Q, X), Y, Z)2. In general, this corresponds well to linguistic
practice: for example the application of a transitive verb to its complement can be considered as a
unique “complex” property comparable to an intransitive verb. Concerning the second problem, it
turns out that in practice we often do not need all the axioms but only some particular ones. So we
have to represent only those axioms that we really need in the application considered.

2.2 Representing time
Generally, narrative texts describe events that take place in a time perceived as continuous. The
temporal aspect is crucial in their understanding. Two representation approaches are possible for
time: either we represent the continuous time which reflects the physical reality and use the elegant
mathematical tools developed for mechanics, or we represent the discrete time which reflects the
text structure and which corresponds rather to a naive physics. We chose the second approach,
because generally, texts are written by persons who ignore the mathematical details of motion, and
they can be understood without having such knowledge. Two approaches are still possible for a
discrete model of time. Either we use a linear model in which only the events that happened in
reality are represented, or we take into account the unrealized futures as part of the temporal

2 As a concrete example, the ternary predicate bump(A, B, T) (vehicle A bumps vehicle B at time T) is written after
reification and by using the combine function as : Holds(combine(bump, B), A, T). The term combine(bump, B)
expresses then the complex property of « bumping the vehicle B ».

78

information. In this case, we use a branching time model [5][10]. This last model is richer than the
former and can be very useful in some cases. In this paper we are interested only on the linear
model. What is important for us in time modelling is to establish an order between the events
evoked in the text. Of course, this choice limits the use of our language to applications which do not
need deeper structure of time but it remains useful in practice (see section 4 for a possible
application). Indeed, the unrealized futures are not completely excluded in our model, as they can
be represented implicitly by modalities (see the modality able in section 4.2.2).
The semantics used for time in our model is situated somehow between an interval-based and a
point-based semantics: the scene of the accident described in the text is decomposed as a succession
of ordered time elements. Each time element is denoted by an integer representing its order number.
This integer is used as an argument in the predicates. The meaning of the element depends on the
nature of the property. If it is a persistent property, the time parameter denotes the entire time
interval during which this property remains true (interval based semantics). If the property is not
persistent (corresponds to an action or a punctual event) then the temporal argument denotes the
starting point of the interval on which the property occurs and causes at least one persistent property
to change its truth value.

2.3 Modalities
Modalities express properties of the predicates other than their truth value, which can be considered
as a null modality. Different types of modal logics have been developed to formalize the reasoning
about modalities. Even though the reasoning we want to apply on texts makes use of modalities, it
can be carried out without developing new modal logics with ‘complete’ axiomatizations. What we
really need is to represent the modalities as first order predicates using the reification technique
discussed in section 2.1., and to define only useful axioms as inference rules. For example, to
represent the fact that the modality Mod is applied to the predicate P having X1, …, Xn as arguments
we write : Mod(P, X1, …, Xn) instead of the classical notation : Mod P(X1, …, Xn).

2.4 Non-monotonicity
Non-monotonicity is an essential characteristic of the nature of the reasoning used by humans to
understand texts. Among the different approaches proposed in the literature to formalise this variant
of commonsense reasoning, we have used Reiter’s default logic [11] to represent our inference
rules. The fixed point semantics used to compute the default theories extensions seems to be
adequate to the nature of the NL understanding process. Indeed, as discussed in section 1, the NL
understanding process cannot be decomposed in a sequence of separate steps but it consists in the
simultaneous satisfaction of several linguistic as well extra-linguistic constraints in a manner that
can be approached by the search of some fixed point of the meaning of the given text.
Two kinds of inference rules are considered: the strict inferences represented by material
implications and the defeasible ones represented by Reiter’s defaults. To facilitate the
implementation of our rules on the answer set programming paradigm (see section 3) we limit their
forms as follows:

Let A1,…, An, B, C1, …, Ck be first order literals.
The Expression (1) is a material implication. It means that B is inferred whenever A1, …, An are
verified. Two kinds of default rules are considered. The first form (2) corresponds to a “normal”
default. It means that if we have A1, …, An then, we can infer B as long as this is consistent. The
second one (3) corresponds to a semi-normal default and its meaning is that in general, when we
have A1, …, An then, we can infer B as long as this is consistent and none of ¬Ci (i=1..k)
belongs to the extension3. Semi normal defaults are particularly useful to establish a priority order
between inference rules which can not be done using only normal defaults[12].

3 We use a notation in which A : B stands for A : B and A : B[C] stands for A : B, C
 B B

79

A1  … An → B (1)
A1  … An : B (2)
A1  … An : B[C1, …, Ck] (3)

3. Implementation by Answer Set Programming

3.1. Theoretical backgrounds
Answer Set Programming (ASP) is a recent paradigm covering different kinds of logic programs,
and associated semantics. It allows representing and solving various problems in Artificial
Intelligence. On one hand, we can cite combinatorial problems as k-coloring graph, path finding,
timetabling, ... On another hand, ASP is also concerned by problems arising when available
information is incomplete as non-monotonic reasoning, planning, diagnosis, ... The non familiar
reader will find additional information about ASP on the web site of the working group WASP
(http://wasp.unime.it/).

In the present work we are particularly interested in using ASP as a framework for default
reasoning. For this we use Extended Logic Programs (ELP) to represent knowledge by means of
rules containing positive information and strong or default negative information and we interpret
them by answer set semantics [3]. Formally, an ELP is a set of rules of the form

c  a1, ..., an, not b1, ..., not bm. n 0 and m 0
where c, ai and bj are literals.
For a given rule r, we denote

head(r) = c body+(r)={a1, ..., an} body-(r)={b1, ..., bm} r+=c a1, ..., an

Definition Let R be a set of rules without default negation ( r  R, body-(r) = ), R is called a
Definite Logic Program. A literal set X is closed wrt R when  r  R, body+(r)  X head(r)  X.
The set of consequences of R is Cn(R) the minimal literal set that is closed wrt R consistent or equal
to the whole set of literals of the language

For a given literal set A and an ELP P, the reduct of P by A is the definite Logic Program
PA={r+ | r  P and body-(r)  A = 

Definition Let P be an ELP and A a literal set. A is an answer set of P if and only if A=Cn(PA)

Examples
P1={a  not b., b  not a., c b.} has two answer sets {a} and {b, c}
P2={a  not a.} has no answer set at all.

We have recalled the basic notions of answer set semantics only in the case of propositional rules.
But, obviously, for a more flexible knowledge representation, rules may contain variables. In this
case, a rule is considered as a global schema for the set of fully instanciated rules that can be
obtained by replacing every variable by every constant in the language.

Example
P={bird(1)., bird(2)., penguin(2)., fly(X)  bird(X), not penguin(X)., fly(X)  penguin(X).} is
equivalent to the program P'={bird(1)., bird(2)., penguin(2)., fly(1)  bird(1), not penguin(1).,
fly(1)  penguin(1)., fly(2)  bird(2), not penguin(2)., fly(2) : penguin(2).}
Then, P (formally P') has one answer set {bird(1), bird(2), penguin(2), fly(1), fly(2)}.
Let us mention an important point for our work that is answer set semantics for ELP can be viewed
as a subcase of default logic [2][3]. By translating every rule r = c  a1, ..., an, not b1, ..., not bm.
into the default rule : T(r) = a1  ... an : c [b1, ..., bm]

80

http://wasp.unime.it/

By this way :
If S is an answer set of an ELP P, then Th(S) is an extension of the default theory (T(P))
every extension of (T(P)) is the deductive closure of one answer set of P.

Obviously, in whole generality every default theory cannot be translated into an ELP. But as we
explain it later, it is possible to encode some restricted default theories in an ELP. By this way it is
possible to envisage realistic applications of default reasoning since several software packages for
ASP are available today, e.g. the following ones:

DLV[8] http://www.dbai.tuwien.ac.at/proj/dlv,
Smodels [13] http://www.tcs.hut.fi/Software/smodels
Cmodels [9] http://www.cs.utexas.edu/users/tag/cmodels.html
Nomore++[1] http://www.cs.uni­potsdam.de/wv/nom ore ++

3.2. From Default Logic to ASP
Here, we explain how we have encoded our knowledge base that is originally a default theory, into
an extended logic program. A very important point to note is that our original knowledge base does
not contain disjunctions. Since a default theory is a pair consisting in a set of classical formulas and
a set of default rules, we distinguish two major translations.

classical formulas ELP

one fact : a one rule with an empty body : a.

a conjunction of n facts : a1  ... an n rules with empty bodies: a1. ... an.

a material implication a1  ... an  b one direct rule b  a1, ... ,an.
and n contrapositive rules :
a1 b, a2, ... ,an.
...
an b a1 ... ,an-1.

default rules ELP

A1, …, An : B
A1, …, An : B[C1, …, Ck]

b ← a1, ..., an, not ¬b.
b ← a1, ..., an, not ¬b, not ¬c1,..., not ¬cm.

We have preferred to encode firstly our rules in default logic instead using directly ASP because
default logic is more compact than ASP, which needs more rules, especially for contrapositives. The
translation of default logic into ASP can be easily auomated.

4. From the description of an accident to its cause

4.1. The corpus
We are working on a sample of 60 representative texts of a larger corpus. These texts are short
descriptions of car accident circumstances. They are written (in French) by persons implied in the
accidents to be sent to their insurance company4. The length of our texts varies between 9 and 167
words. They contain 129 sentences whose length varies between 4 and 55 words; the longest report
has 7 sentences and there are 24 reports that contain only one sentence. The total number of word
occurrences is 2256. But there are only 500 distinct words corresponding to 391 dictionary entries.

4 We are grateful to the MAIF insurance company for having given us access to the reports that constitute our corpus.

81

http://www.dbai.tuwien.ac.at/proj/dlv
http://www.cs.uni-potsdam.de/wv/nomore
http://www.cs.uni-potsdam.de/wv/nomore
http://www.cs.utexas.edu/users/tag/cmodels.html
http://www.tcs.hut.fi/Software/smodels

4.2. Our task
4.2.1. Finding the cause of the accident
The objective of the system we are developing is to find automatically the cause of an accident from
its textual description. Because of the very controversial nature of causality we must define more
precisely our objective. We are interested in our study by the interventionist conception of causality
in which voluntary actions are privileged as potential causes of events. This is in correspondence
with the practical use of causality in AI. Moreover, we claim that the most plausible causes for
abnormal situations like accidents are those that reflect violation of norms (anomalies)[6]. We
consider that the system has understood a text if it finds the same cause as the one given by an
ordinary human reader. We have then determined manually the cause of each text and we have used
this information to validate the results of the system.

Two essential steps are considered in the overall architecture of the system. The first one “the
linguistic step” applies a tagger and syntactical analyser to extract a set of surface relations between
words. These relations are then progressively transformed by an adequate “ linguistic reasoning”
into the so-called “semantic predicates” which express the explicit information provided by the text.
The semantic predicates are represented in a “semantic language” as the one discussed in section 2.
This part of the system, which is under construction, tries to adapt existing methods to deal with the
problems of anaphora resolution and time ordering of the events described in a text. We will not
discuss the details of the linguistic step in this paper. The second step: “the semantic step” applies a
set of strict and default inference rules based on norms of the road domain to enrich the semantic
predicates initially extracted from the text by further semantic predicates enhancing implicit
information. The inference rules are designed manually and reflect rudimentary reasoning that any
reader of the text makes systematically. This semantic reasoning process stops as soon as the system
infers the necessary information that characterizes an anomaly. Section 5 gives further details about
the semantic reasoning through an example taken from the corpus.

4.2.2. Some specificities
The majority of the semantic predicates used in our system have the form: Holds(P, A, T) where P
is a simple or a complex property (expressed by the binary function combine), A is an agent
(generally a vehicle involved in the accident) and T is the order number of a time interval during
which (or at the beginning of which) the property P holds (to simplify, we will say henceforth that
property P holds at time T). For example Holds(stop, ag, 3) means that the agent ‘ag’ is stopped at
time 3 and Holds(combine(follows, ag1), ag2, 2) means that at time 2, agent ‘ag2’ follows agent ‘ag1’
(in a file of vehicles). When needed a function neg is applied to a property to have its negation. We
introduce the rule (4)

Holds(neg(P), A, T) ↔ ¬Holds(P, A, T) (4)

The main modalities that we use in our system cope respectively with duties and capacities :

must(P, A, T) means that at time T, agent A has the duty to achieve the property P.
able(P, A, T) means that at time T, agent A is able to achieve the property P. In terms of branching
time, this means that there is some possible future in which P holds.

The semantic reasoning is designed so that it converges to a “kernel” containing a limited number
of semantic predicates5 in terms of which all possible anomalies can be expressed. In a given text, it
is possible that several anomalies coexist. In this case, the system distinguishes between the primary
anomaly which can be considered as the most plausible cause of the accident and the other
anomalies called “derived anomalies”. A primary anomaly has two forms: either an agent A has the
duty and the capacity to achieve a property P at a time T and at time T+1 a property P' incompatible

5 The predicates of the kernel are : Holds(control, A, T) [A has the control of his/her vehicle], Holds(moves_back, A, T) [A moves
back], Holds(starts, A, T) [A moves off], Holds(drives_slowly, A, T) [A drives fairly slowly], Holds(stops, A, T) [A is stopped],
Holds(comb(disruptive_factor, X), A, T) [X is a disruptive factor for A]

82

with P holds (5) or some disruptive and inevitable factor occurs and causes the accident (6). The
form of a derived anomaly (7) differs from that of a primary one only on the agent's capacity.

primary_an(P, A, T)  property(P), vehicle(A), time(T), must(P, A, T), able(P, A, T),
holds(P', A, T+1), incompatible(P, P') (5)

primary_an(combine(disruptive_factor, X), A, T)  object(X), vehicle(A), time(T),
holds(combine(disruptive_factor, X), A, T) (6)

derived_an(P, A, T)  property(P), vehicle(A), time(T), must(P, A, T), ¬ able(P, A, T), holds(P',
A, T+1), incompatible(P, P') (7)

4.3. An example
To illustrate our methodology, let us consider the following text of the corpus (translated into
english) and explain the inference rules involved in its analysis :

« Whereas vehicle B was overtaking me, the driver lost the control of its vehicle. It bumped on the
central guardrail , and crossed the ways. It then cut my way. My vehicle A initially bumped on
vehicle B on its right side, before being crushed on the guardrail. »

The set of the semantic predicates extracted from the text are :

holds(overtake, veh_b, 1), ¬ holds(control, veh_b, 2),
holds(combine(bump, guardrail), veh_b, 3), ¬ holds(stop, veh_b, 4),

holds(combine(bump, veh_b),veh_a, 5), holds(combine(bump, guardrail), veh_a, 6)
vehicle(veh_a), vehicle(veh_b), object(veh_a), object(veh_b), object(guardrail).

In what follows, we show how the application of inference rules leads to the determination of the
primary and the derived anomalies:

Rule(8) states that “at the starting state 0, each vehicle has the control”.
holds(control, A, 0)  agent(A), vehicle(A) (8)

It allows to infer : holds(control, veh_a, 0), holds(control, veh_b, 0)

Rule(9) states that “if B is a vehicle that bumps on A at time T, then B is not stopped at this time”.
¬ holds(stop, A, T)  vehicle(A), object(B), time(T), holds(combine(bump, B), A, T) (9)

It allows to infer: ¬ holds(stop, veh_b, 3), ¬ holds(stop, veh_a, 5), ¬ holds(stop, veh_a, 6)

Rules(10) and (11) state that “if A is a vehicle that bumps on B at time T, then there is at this time a
shock (symmetric) between A and B”.

holds(combine(shock, B), A, T)  vehicle(A), object(B), time(T), holds(combine(bump, B), A, T) (10)
holds(combine(shock, A), B, T)  object(A), object(B), time(T), holds(combine(shock, B), A, T) (11)

The set of predicates inferred by these rules are :
holds(combine(shock, guardrail), veh_b, 3), holds(combine(shock, veh_b), guardrail, 3),

holds(combine(shock, veh_b), veh_a, T), holds(combine(shock, veh_a), veh_b, T),
holds(combine(shock, veh_a), guardrail, T), holds(combine(shock, guardrail), veh_a, T)

Rule(12) states that “if A is implied in two successive shocks at times T and T+1, then we deduce
that it lost the control after the first shock (during the time interval T)”.
¬ holds(control, A, T)  agent(A), object(B), object(C), time(T), holds(combine(shock, A), B, T),

holds(combine(shock, A), C, T+1) (12)
It allows to infer: ¬ holds(control, veh_a, 5)
The remainder of information about the control of vehicles A and B during the other time intervals are
deduced using appropriate rules that handle the persistence of some particular properties. The complete set of

83

conclusions concerning control is as follows :
holds(control, veh_b, T) (for 0≤ T ≤ 1), ¬ holds(control, veh_b, T) (for 2≤ T ≤ 6),
holds(control, veh_a, T) (for 0≤ T ≤ 4), ¬ holds(control, veh_a, T) (for 5≤ T ≤ 6)

Rule(13) states that “in general if there is a collision between a vehicle A and an object B at time T,
then B represents an obstacle for A at time T-1”.

holds(combine(obstacle, A), B, T-1)  object(A), vehicle(B), time(T),
holds(combine(shock, A), B, T), not ¬ holds(combine(obstacle, A), B, T-1) (13)

We obtain from this rule :

holds(combine(obstacle, guardrail), veh_b, 1), holds(combine(obstacle, veh_a), veh_b, 4),
holds(combine(obstacle, veh_b), veh_a, 4), holds(combine(obstacle, guardrail), veh_a, 5)

Rules (14) and (15) allows to infer that some obstacles are not predictable. The rule (14) states that
“if a vehicle B not controlled represents at time T an obstacle to vehicle A, then this obstacle is not
predictable for A at this time T”. Whereas rule (15) states that “in general, if a vehicle B bumps a
vehicle A at time T, then B is considered as an umpredictable obstacle for A at time T”.

¬ predictable(combine(obstacle, B), A, T)  vehicle(B), vehicle(A), time(T),
holds(combine(obstacle, B), A, T), ¬ holds(control, B, T) (14)

¬ predictable(combine(obstacle, B), A, T)  vehicle(A), vehicle(B), instant(T),
vrai(combine(bump, A), B, T), not predictable(combine(obstacle, B), A, T) (15)

By these two rules we can infer : ¬ predictable(combine(obstacle, veh_a),veh_b, 4),
¬ predictable(combine(obstacle, veh_b), veh_a, 4)

Rule(16) states that “in general, one must keep the control of one's vehicle ”
must(control,A,T)  vehicle(A), time(T), not ¬ must(control,A,T),

not ¬ holds(control,A,T) (16)

This rule infers : must(control, veh_b, 1), must(control, veh_a, 4)

The meaning of rule(17) is that “one must avoid any obstacle”.
must(combine(avoid, X), A, T)  vehicle(A), object(X), time(T),

holds(combine(obstacle, X), A, T) (17)

This rule infers : must(combine(avoid, guardrail), veh_b, 1), must(combine(avoid, veh_a), veh_b, 4)
 must(combine(avoid, veh_b), veh_a, 4), must(combine(avoid, guardrail), veh_a, 5)

Rule(18) states that “in general the duty to avoid an obstacle turns out to the duty to stop (this
default is inhibited by a number of situations illustrated in the rule)”

must(stop, A, T)  vehicle(A), object(B), time(T), must(combine(avoid, B), A, T),
holds(combine(shock, B), A, T+1), not ¬ must(stop, A, T), not must(drive_slowly, A, T),

not holds(stop, A, T), not holds(combine(follow, A), B, T), not must(not(backwards), A, T-1),
not must(not(move_off), A, T-1), not ¬ predictable(combine(obstacle, B), A, T) (18)

We can infer from this rule : must(stop, veh_b, 1), must(stop, veh_a, 5)
Rules (19) and (20) are the main rules that allow to infer agent's capacities :

able(P, A, T)  vehicle(A), object(B), time(T), action(Act), property(P), pcb(Act, P),
available(Act, P, A, T) (19)

¬able(P, A, T)  vehicle(A), object(B), time(T), action(Act), property(P), pcb(Act, P),
¬available(Act, P, A, T) (20)

84

they mean that “vehicle A is able to reach property P at time Tn if and only if there is some action
Act which is a “potential cause” for P and which is available for A to reach P at time T (the
contrapositives are omitted)”.

The occurrences of the relation pcb (which abreviates: potentially caused by) are statically
determined and stored in a static database. In our case we have : pcb(brake, stop),
pcb(combine(keep_state, control)6, control).

By default, actions are available for agents to reach the corresponding properties. This default
inference is inhibited by a number of strict rules. In our case, we obtain :

available(combine(keep_state, control), control, veh_b, 1) (the default is applied)
¬available(combine(keep_state, control), control, veh_a, 4)7

¬available(brake, stop, veh_a, 5)8

From these results it follows :

able(control, veh_b, 1), ¬ able(stop, veh_a, 4), ¬ able(stop, veh_a, 5).

The application of rules (5) and (7) we can detect the primary and the derived anomalies :
primary_an(control, veh_b, 1), derived_an(control, veh_a, 4), derived_an(stop, veh_a, 5)

Finally, the cause of the accident is expressed by: "the loss of control of vehicle B at time 1"

5. Conclusion and perspectives

This paper defends the idea that inferences are at the heart of the problematic of NL semantics. We
have showed that the inferences we need to understand natural language are based on our
knowledge about the norms of the domain and are non-monotonic since the conclusions of this kind
of reasoning are in general defeasible. We proposed a general representation language which takes
into account within a first order framework modalities, time and non-monotonicity that are essential
aspects in an inferential approach of NL understanding. We presented also how to transform our
inference rules into extended logic programs. To illustrate our approach in a practical domain we
have used a corpus of 60 short texts describing the circumstances of road accidents. We have used
Smodels to implement our reasoning system. With about 200 inference rules, the system succeeds to
find for each text only one stable model containing the necessary literals which express the primary
and the derived anomalies. We have determined manually for each text the answer that we hope to
obtain. Thus, the validation criterion is that the system gives for each text the same answer as the
predetermined one. The running time varies from a text to another but it does not exceed 30 seconds
which is rather encouraging. Many other perspectives of future work are open, among them:

• Analyzing more texts of the same domain in order to verify :

- The validity of our hypotheses, especially those concerning the relationship
between norms and causes and the sufficiency of a linear model of time;

- that the inference rules have a sufficient degree of generality to be adapted
easily to new situations by giving the expected answers for new reports.

- the adequacy of the proposed representation language to deal with new texts.

• Generalizing the approach to other domains

6 we consider as action the fact of keeping holded some persistent property.
7 the lost of control because of a shock at time T makes unavailable the action of keeping the control at time T-1.
8 if a vehicle is not under control, then, any action is unavailable for its driver.

85

Acknowledgment. The authors are indebted to Daniel Kayser for very helpful remarks on previous
versions of this text.

References

[1] C. Anger, M. Gebser, T. Linke, A. Neumann and T. Schaub. The nomore++ system. In C. Baral,
G. Greco, N. Leone, and G. Terracina, editors, 8th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR'05), 3662 : 422-426. LNAI, Springer-Verlag, Diamante,
Cosenza, Italy. 2005.

[2] N. Bidoit and C. Froidevaux. General logical databases and programs: Default logic, semantics
and stratification. Information and Computation, 91(1):1554. 1991.

[3] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9(3-4):363385. 1991.

[4] D. Kayser. Abstraction and natural language semantics. Philosophical Transactions. R. Soc.
Lond. B 358 : 1261-1268. 2003.

[5] D. Kayser, A. Mokhtari. Time in a Causal Theory. Annals of Mathematics and Artificial
Intelligence. 22(1-2): 117-138. 1998.

[6] D. Kayser, F. Nouioua. About Norms and Causes. International Journal on Artificial Intelligence
Tools. Special Issue on FLAIRS 2004, 14(1-2): 7-23. 2005.

[7] D. Kayser, F. Nouioua. Representing Knowledge about Norms. Proc of the 16th European
Conference on Artificial Intelligence (ECAI'04), pp. 363-367, Valencia, Spain. 2004.

[8] N.Leone, G. Pfeifer , W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The dlv system
for knowledge representation and reasoning. ACM Transactions on Computational Logic, (to
appear). 2006.

[9] Y. Lierler and M. Maratea. Cmodels-2: Sat-based answer set solver enhanced to non-tight
programs. 7th International Conference on Logic Programming and NonMonotonic Reasoning
(LPNMR'04), 2923: 346-350. LNCS, Springer-Verlag, Florida, USA. 2004.

[10] D.V. McDermott. A Temporal Logic for Reasoning about Processes and Plans. Cognitive
Science 6: 101-155. 1982.

[11] R. Reiter. A Logic for Default Reasoning, Artificial Intelligence, Special Issue on
Nonmonotonic Logic, 13(1-2): 81-132. 1980.

[12] R. Reiter, G. Criscuolo : On Interacting Defaults. Proc. of the 7th International Joint
Conference on Artificial Intelligence. pp. 270­276, Vancouver, Canada. 1981

[13] T. Syrjaänen and I.Niemelä. The Smodels systems. Proc. of the 6th International Conference on
Logic Programming and NonMonotonic Reasoning (LPNMR'01), pp 434-438, Springer-Verlag,
Vienna, Austria. 2001.

[14] t.a.l . Special issue “Compositionnalité”. Traiteent automatique des langues 39(1). 1998.

86

http://www.sigmod.org/sigmod/dblp/db/indices/a-tree/m/Mokhtari:A=iuml=cha.html

A Bootstrapping Algorithm for
Automatically Harvesting Semantic Relations

Marco Pennacchiotti
Department of Computer Science

University of Rome “Tor Vergata”
Viale del Politecnico 1

Rome, Italy
pennacchiotti@info.uniroma2.it

Patrick Pantel
Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292
pantel@isi.edu

Abstract
In this paper, we present Espresso, a weakly-supervised iterative algorithm combined with a
web-based knowledge expansion technique, for extracting binary semantic relations. Given a
small set of seed instances for a particular relation, the system learns lexical patterns, applies
them to extract new instances, and then uses the Web to filter and expand the instances.
Preliminary experiments show that Espresso extracts highly precise lists of a wide variety of
semantic relations when compared with two state of the art systems.

1. Introduction
Recent attention to knowledge-rich problems such as question answering [18] and textual
entailment [10] has encouraged Natural Language Processing (NLP) researchers to develop
algorithms for automatically harvesting shallow semantic resources. With seemingly endless
amounts of textual data at our disposal, we have a tremendous opportunity to automatically
grow semantic term banks and ontological resources. Methods must be accurate, adaptable
and scalable to the varying sizes of domain corpora (e.g., textbooks vs. World Wide Web),
and independent or weakly dependent on human supervision.

In this paper we present Espresso, a novel bootstrapping algorithm for automatically
harvesting semantic relations, aiming at effectively supporting NLP applications,
emphasizing two major points that have been partially neglected by previous systems:
generality and weak supervision.

From the one side, Espresso is intended as a general-purpose system able to extract a wide
variety of binary semantic relations, from the classical is-a and part-of relations, to more
specific and domain oriented ones like chemical reactants in a chemistry domain and position
succession in political texts. The system architecture is designed with generality in mind,
avoiding any relation-specific inference technique. Indeed, for each semantic relation, the
system builds specific lexical patterns inferred from textual corpora.

From the other side, Espresso requires only weak human supervision. In order to start the
extraction process, a user provides only a small set of seed instances of a target relation (e.g.
Italy-country and Canada-country for the is-a relation.) In our experience, a handful of seed
instances, in general, is sufficient for large corpora while for smaller corpora, a slightly larger
set is required. To guarantee weakest supervision, Espresso combines its bootstrapping
approach with a web-based knowledge expansion technique and linguistic analysis,
exploiting the seeds as much as possible.

87

2. Relevant Work
To date, most research on lexical relation harvesting has focused on is-a and part-of relations.
Approaches fall into two main categories: pattern- and clustering-based.

Most common are pattern-based approaches. Hearst [12] pioneered using patterns to extract
hyponym (is-a) relations. Manually building three lexico-syntactic patterns, Hearst sketched a
bootstrapping algorithm to learn more patterns from instances, which has served as the model
for most subsequent pattern-based algorithms.

Berland and Charniak [1] propose a system for part-of relation extraction, based on the
Hearst approach [12]. Seed instances are used to infer linguistic patterns that, in turn, are used
to extract new instances, ranked according to various statistical measures. While this study
introduces statistical measures to evaluate instance reliability, it remains vulnerable to data
sparseness and has the limitation of taking into consideration only one-word terms.

Improving upon Berland and Charniak [1], Girju et al. [11] employ machine learning
algorithms and WordNet [8] to disambiguate part-of generic patterns, like [whole-NP’s part-
NP]. This study is the first extensive attempt to solve the problem of generic relational
patterns, that is, those expressive patterns that have high recall while suffering low precision,
as they subsume a large set of instances. In order to discard incorrect instances, Girju et al.
learn WordNet-based selectional restrictions, like [whole-NP(scene#4)’s part-NP(movie#1)].
While making huge grounds on improving precision/recall, the system requires heavy
supervision through manual semantic annotations.

Ravichandran and Hovy [20] focus on efficiency issues for scaling relation extraction to
terabytes of data. A simple and effective algorithm is proposed to infer surface patterns from
a small set of instance seeds by extracting all substrings relating seeds in corpus sentences.
The frequencies of the substrings in the corpus are then used to retain the best patterns. The
approach gives good results on specific relations such as birthdates, however it has low
precision on generic ones like is-a and part-of. Pantel et al. [17] proposed a similar, highly
scalable approach, based on an edit-distance technique, to learn lexico-POS patterns, showing
both good performances and efficiency. Espresso uses a similar approach to infer patterns,
but we then apply refining techniques to deal with various types of relations.

Other pattern-based algorithms include Riloff and Shepherd [21], who used a semi-automatic
method for discovering similar words using a few seed examples by using pattern-based
techniques and human supervision, KnowItAll [7] that performs large-scale extraction of
facts from the Web, Mann [15] and Fleischman et al. [9] who used part of speech patterns to
extract a subset of is-a relations involving proper nouns, and Downey et al. [6] who
formalized the problem of relation extraction in a coherent and effective combinatorial model
that is shown to outperform previous probabilistic frameworks.

Clustering approaches to relation extraction are less common and have insofar been applied
only to is-a extraction. These methods employ clustering algorithms to group words
according to their meanings in text, label the clusters using its members’ lexical or syntactic
dependencies, and then extract an is-a relation between each cluster member and the cluster
label. Caraballo [3] proposed the first attempt, which used conjunction and apposition
features to build noun clusters. Recently, Pantel and Ravichandran [16] extended this
approach by making use of all syntactic dependency features for each noun. The advantage of
clustering approaches is that they permit algorithms to identify is-a relations that do not
explicitly appear in text, however they generally fail to produce coherent clusters from fewer
than 100 million words; hence they are unreliable for small corpora.

88

3. The Espresso Algorithm
The Espresso algorithm is based on a similar framework to the one adopted in [12]. For a
specific semantic binary relation (e.g., is-a), the algorithm requires as input a small set of
seed instances Is and a corpus C. An instance is a pair of terms x and y governed by the
relation at hand (e.g., Pablo Picasso is-a artist). Starting from these seeds, the algorithm
begins a four-phase loop. In the first phase, the algorithm infers a set of patterns P that
captures as many of the seed instances as possible in C. In the second phase, we define a
reliability measure to select the best set of patterns P'⊆P. In phase three, the patterns in P' are
used to extract a set of instances I. Finally, in phase four, Espresso scores each instance and
then selects the best instances I' as input seeds for the next iteration. The algorithm terminates
when a predefined stopping condition is met (for our preliminary experiments, the stopping
condition is set according to the size of the corpus). For each induced pattern p and instance i,
the information theoretic scores, rπ(p) and rι(i) respectively, aim to express their reliability.

Below, Sections 3.2–3.5 describe in detail these different phases of Espresso.

3.1. Term definition
Before one can extract relation instances from a corpus, it is necessary to define a
tokenization procedure for extracting terms. Terms are commonly defined as surface
representations of stable and key domain concepts [19]. Defining regular expressions over
POS-tagged corpora is the most commonly used technique to both define and extract terms.
We adopt a slightly modified version of the term definition given in [13], as it is one of the
most commonly used in the literature:

 ((Adj|Noun)+|((Adj|Noun)*(NounPrep)?)(Adj|Noun)*)Noun

We operationally extend the definition of Adj to include present and past participles as most
noun phrases composed of them are usually intended as terms (e.g., boiling point). Thus,
unlike many approaches for automatic relation extraction, we allow complex multi-word
terms as anchor points. Hence, we can capture relations between complex terms, such as
“record of a criminal conviction” part-of “FBI report”.

3.2. Phase 1: Pattern discovery
The pattern discovery phase takes as input a set of instances I' and produces as output a set of
lexical patterns P. For the first iteration I' = Is, the set of initial seeds. In order to induce P, we
apply a slight modification to the approach presented in [20]. For each input instance i = {x,
y}, we first retrieve all sentences Sx,y containing the two terms x and y. Sentences are then
generalized into a set of new sentences SGx,y by replacing all terminological expressions by a
terminological label (TR). For example:

 “Because/IN HF/NNP is/VBZ a/DT weak/JJ acid/NN and/CC x is/VBZ a/DT y”

is generalized as:

 “Because/IN TR is/VBZ a/DT TR and/CC x is/VBZ a/DT y”

All substrings linking terms x and y are then extracted from the set SGx,y, and overall
frequencies are computed. The most frequent substrings then represent the set of new patterns
P, where the frequency cutoff is experimentally set. Term generalization is particularly useful
for small corpora, where generalization is vital to ease the data sparseness. However, the
generalized patterns are naturally less precise. Hence, when dealing with bigger corpora, the

89

system allows the use of Sx,y∪SGx,y in order to extract substrings. For our experiments, we
used the set SGx,y .

3.3. Phase 2: Pattern filtering
In this phase, Espresso selects among the patterns P those that are most reliable. Intuitively, a
reliable pattern is one that is both highly precise and one that extracts many instances. The
recall of a pattern p can be approximated by the fraction of input instances in I' that are
extracted by p. Since it is difficult at run-time to estimate the precision of a pattern, we are
weary of keeping patterns that generate many instances (i.e., patterns that generate high recall
but potentially disastrous precision). We thus prefer patterns that are highly associated with
the input patterns I'. Pointwise mutual information [4] is a commonly used metric for
measuring the strength of association between two events x and y:

 () ()
() ()yPxP

yxPyxpmi ,log, =

We define the reliability of a pattern p, rπ(p), as its average strength of association across
each input instance i in I', weighted by the reliability of each instance i:

 ()
()

I

irpipmi

pr Ii pmi

′

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∗

=
∑

′∈
ι

π

max
),(

where rι(i) is the reliability of instance i (defined in Section 3.5) and maxpmi is the maximum
pointwise mutual information between all patterns and all instances. rπ(p) ranges from [0,1].
The reliability of the manually supplied seed instances are rι(i) = 1. The pointwise mutual in-
formation between instance i = {x, y} and pattern p is estimated using the following formula:

 ()
,**,,*,

,,
log,

pyx
ypx

pipmi =

where |x, p, y| is the frequency of pattern p instantiated with terms x and y and where the
asterisk (*) represents a wildcard. A well-known problem is that pointwise mutual
information is biased towards infrequent events. To address this, we multiply pmi(i, p) with
the discounting factor suggested in [16].

The set of highest n scoring patterns P', according to rπ(p), are then selected and retained for
the next phase, where n is the number of patterns of the previous iteration incremented by 1.
In general, we expect that the set of patterns is formed by those of the previous iteration plus
a new one. Yet, new statistical evidence can lead the algorithm to discard a pattern that was
previously discovered.

Moreover, to further discourage too generic patterns that might have low precision, a
threshold t is set for the number of instances that a pattern retrieves. Patterns firing more than
t instances are then discarded, no matter what their score is. In this paper, we experimentally
set t to a value dependent on the size of the corpus. In future work, this parameter can be
learned using a development corpus.

Our reliability measure ensures that overly generic patterns, which may potentially have very
low precision, are discarded. However, we are currently exploring a web-expansion algorithm
that could both help detect generic patterns and also filter out their incorrect instances. We
estimate the precision of the instance set generated by a new pattern p by looking at the
number of these instances that are instantiated on the Web by previously accepted patterns.

90

Generic patterns will generate instances with higher Web counts than incorrect patterns.
Then, the Web counts can also be used to filter out incorrect instances from the generic
patterns’ instantiations. More details are discussed in Section 4.3.

3.4. Phase 3: Instance discovery
In this phase, Espresso retrieves from the corpus the set of instances I that match any of the
lexical patterns in P'.

In small corpora, the number of extracted instances can be too low to guarantee sufficient
statistical evidence for the pattern discovery phase of the next iteration. In such cases, the
system enters a web expansion phase, in which new instances for the given patterns are
retrieved from the Web, using the Google search engine. Specifically, for each instance i∈ I,
the system creates a set of queries, using each pattern in P' with its y term instantiated with i’s
y term. For example, given the instance “Italy ; country” and the pattern [Y such as X] , the
resulting Google query will be “country such as *”. New instances are then created from the
retrieved Web results (e.g. “Canada ; country”) and added to I. We are currently exploring
filtering mechanisms to avoid retrieving too much noise.

Moreover, to cope with data sparsity, a syntactic expansion phase is also carried out. A set of
new instances is created for each instance i∈ I by extracting sub-terminological expressions
from x corresponding to the syntactic head of terms. For example, expanding the relation
“new record of a criminal conviction” part-of “FBI report”, the following new instances are
obtained: “new record” part-of “FBI report”, and “record” part-of “FBI report”.

3.5. Phase 4: Instance filtering
Estimating the reliability of an instance is similar to estimating the reliability of a pattern.
Intuitively, a reliable instance is one that is highly associated with as many reliable patterns
as possible (i.e., we have more confidence in an instance when multiple reliable patterns
instantiate it.) Hence, analogous to our pattern reliability measure in Section 3.3, we define
the reliability of an instance i, rι(i), as:

 ()
()

P

prpipmi

ir Pp pmi

′

∗

=
∑

′∈
π

ι

max
),(

where rπ(p) is the reliability of pattern p (defined in Section 3.3) and maxpmi is the maximum
pointwise mutual information between all patterns and all instances, as in Section 3.3.

Espresso finally selects the highest scoring m instances, I', and retains them as input for the
subsequent iteration. In this paper, we experimentally set m = 200.

4. Experimental Results

4.1. Experimental Setup
In this section, we present a preliminary comparison of Espresso with two state of the art
systems on the task of extracting various semantic relations.

4.1.1. Datasets
We perform our experiments using the following two datasets:

91

 TREC-9: This dataset consists of a sample of articles from the Aquaint (TREC-9)
newswire text collection. The sample consists of 5,951,432 words extracted from the
following data files: AP890101 – AP890131, AP890201 – AP890228, and AP890310
– AP890319.

 CHEM: This small dataset of 313,590 words consists of a college level textbook of
introductory chemistry [2].

We preprocess the corpora using the Alembic Workbench POS-tagger [5].

4.1.2. Systems
We compare the results of Espresso with the following two state of the art extraction
systems:

 RH02: This algorithm by Ravichandran and Hovy [20] learns lexical extraction
patterns from a set of seed instances of a particular relation (see Section 2.)

 PR04: This is-a extraction algorithm from Pantel and Ravichandran [16] first
automatically induces concepts (clusters) from a raw corpus, names the concepts, and
then extracts an is-a relation between each cluster member and its cluster label. For
each cluster member, the system may generate multiple possible is-a relations, but in
this evaluation we only keep the highest scoring one. To apply this algorithm, both
datasets were first analyzed using the Minipar parser [14].

 ESP: This is the algorithm described in this paper (details in Section 3).

4.1.3. Semantic Relations
Espresso is designed to extract various semantic relations exemplified by a given small set of
seed instances. For our preliminary evaluation, we consider the standard is-a and part-of
relations as well as three novel relations:

 succession: This relation indicates that one proper noun succeeds another in a position
or title. For example, George Bush succeeded Bill Clinton and Pope Benedict XVI
succeeded Pope John Paul II. We evaluate this relation on the TREC-9 corpus.

 reaction: This relation occurs between chemical elements/molecules that can be
combined in a chemical reaction. For example, hydrogen gas reacts-with oxygen gas
and zinc reacts-with hydrochloric acid. We evaluate this relation on the CHEM
corpus.

 production: This relation occurs when a process or element/object produces a result.
For example, ammonia produces nitric oxide. We evaluate this relation on the CHEM
corpus.

For each semantic relation, we manually extracted a set of seed examples. The seeds were
used for both Espresso as well as RH021. Table 1 lists a sample of the seeds as well as sample
outputs from Espresso.

4.2. Precision and Recall
We implemented each of the three systems outlined in Section 4.1.2 and applied them to the
TREC and CHEM datasets. For each output set, per relation, we evaluate the precision of the
system by extracting a random sample of instances (50 for the TREC corpus and 20 for the

1 PR04 does not require any seeds.

92

CHEM corpus) and evaluating their quality manually using one human judge2. For each
instance, the judge may assign a score of 1 for correct, 0 for incorrect, and ½ for partially
correct. Example instances that were judged partially correct include “analyst is-a manager”
and “pilot is-a teacher”. The precision for a given set of relation instances is the sum of the
judge’s scores divided by the number of instances.

Although knowing the total number of instances of a particular relation in any non-trivial
corpus is impossible, it is possible to compute the recall of a system relative to another
system’s recall. The recall of a system A, RA, is given by the following formula:

 C
C

R A
A =

where CA is the number of correct instances of a particular relation extracted by A and C is
the total number of correct instances in the corpus. Following [17], we define the relative
recall of system A given system B, RA|B, as:

BP
AP

C
C

R
RR

B

A

B

A

B

A
BA ×

×
===|

Using the precision estimates, PA, from our precision experiments, we can estimate CA ≈ PA ×
|A|, where A is the total number of instances of a particular relation discovered by system A.

2 In future work, we will perform this evaluation using multiple judges in order to obtain confidence bounds and
agreement scores.

Table 1. Sample seeds used for each semantic relation and sample outputs from Espresso. The
number in the parentheses for each relation denotes the total number of seeds.

 SEEDS ESP

Is-a (12)

wheat :: crop
George Wendt :: star
Miami :: city
shark :: predator

Picasso :: artist
tax :: charge
drug dealers :: felons
Italy :: country

Part-Of (12)

leader :: panel
city :: region
plastic :: explosive
United States :: alliance

shield :: nuclear missile
biblical quotations :: book
trees :: land
material :: FBI report

T
R
E
C
9

Succession (12)

Khrushchev :: Stalin
Carla Hills :: Yeutter
George Bush :: Ronald Reagan
Julio Barbosa de Aquino :: Mendes

Ford :: Nixon
Setrakian :: John Griesemer
Camero Cardiel :: Camacho
Susan Weiss :: editor

Is-a (12)

NaCl :: ionic compounds
diborane :: substance
nitrogen :: element
gold :: precious metal

Na :: element
protein :: biopolymer
HCl :: strong acid
electromagnetic radiation :: energy

Part-Of (12)

ion :: matter
oxygen :: water
light particle :: gas
element :: substance

oxygen :: air
powdered zinc metal :: battery
atom :: molecule
ethylene glycol :: automotive antifreeze

Reaction (13)

magnesium :: oxygen
hydrazine :: water
aluminum metal :: oxygen
lithium metal :: fluorine gas

hydrogen :: oxygen
Ni :: HCl
carbon dioxide :: methane
boron :: fluorine

C
H
E
M

Production (14)

bright flame :: flares
hydrogen :: solid metal hydrides
ammonia :: nitric oxide
copper :: brown gas

electron :: ions
glycerin :: nitroglycerin
kidneys :: kidney stones
ions :: charge

93

Table 8. System performance on the production
relation on the CHEM dataset.

SYSTEM INSTANCES PRECISION* REL RECALL†

RH02 197 57.5% 0.80

ESP 196 72.5% 1.00
* Precision estimated from 20 randomly sampled instances.
† Relative recall is given in relation to ESP.

Tables 2 – 8 reports the total number of
instances, precision, and relative recall of
each system on the TREC-9 and CHEM
corpora. The relative recall is always given in
relation to the Espresso system. For example,
in Table 2, RH02 has a relative recall of 5.31
with Espresso, which means that the RH02
system output 5.31 times more correct
relations than Espresso (at a cost of much
lower precision). Similarly, PR04 has a relative recall of 0.23 with Espresso, which means
that PR04 outputs 4.35 fewer correct relations than Espresso (also with a smaller precision).

4.3. Discussion
Experimental results, for all relations and the two different corpus sizes, show that Espresso
greatly outperforms the other two methods on precision. However, Espresso fails to match
the recall level of RH02 in all but the experiment on the production relation. Indeed, the
filtering of unreliable patterns and instances during the bootstrapping algorithm not only
discards the patterns that are unrelated to the actual relation, but also patterns that are too
generic and ambiguous – hence resulting in a loss of recall.

As underlined in Section 3.2, the ambiguity of generic patterns often introduces much noise
in the system (e.g, the pattern [X of Y] can ambiguously refer to a part-of, is-a or possession

Table 2. System performance on the is-a
relation on the TREC-9 dataset.

SYSTEM INSTANCES PRECISION* REL RECALL†

RH02 57,525 28.0% 5.31

PR04 1,504 47.0% 0.23

ESP 4,154 73.0% 1.00
* Precision estimated from 50 randomly sampled instances.
† Relative recall is given in relation to ESP.

Table 3. System performance on the is-a
relation on the CHEM dataset.

SYSTEM INSTANCES PRECISION* REL RECALL†

RH02 2556 25.0% 3.76

PR04 108 40.0% 0.25

ESP 200 85.0% 1.00
* Precision estimated from 20 randomly sampled instances.
† Relative recall is given in relation to ESP.

Table 4. System performance on the part-of
relation on the TREC-9 dataset.

SYSTEM INSTANCES PRECISION* REL RECALL†

RH02 12,828 35.0% 42.52

ESP 132 80.0% 1.00
* Precision estimated from 50 randomly sampled instances.
† Relative recall is given in relation to ESP.

Table 5. System performance on the part-of
relation on the CHEM dataset.

SYSTEM INSTANCES PRECISION* REL RECALL†

RH02 11,582 33.8% 58.78

ESP 111 60.0% 1.00
* Precision estimated from 20 randomly sampled instances.
† Relative recall is given in relation to ESP.

Table 6. System performance on the succession
relation on the TREC-9 dataset.

SYSTEM INSTANCES PRECISION* REL RECALL†

RH02 49,798 2.0% 36.96

ESP 55 49.0% 1.00
* Precision estimated from 50 randomly sampled instances.
† Relative recall is given in relation to ESP.

Table 7. System performance on the reaction
relation on the CHEM dataset.

SYSTEM INSTANCES PRECISION* REL RECALL†

RH02 6,083 30% 53.67

ESP 40 85% 1.00
* Precision estimated from 20 randomly sampled instances.
† Relative recall is given in relation to ESP.

94

relation). However, generic patterns, while having low precision, yield a high recall, as also
reported by [11]. We ran an experiment on the reaction relation, retaining the generic patterns
produced during Espresso’s selection process. As expected, we obtained 1923 instances
instead of the 40 reported in Table 7, but precision dropped from 85% to 30%.

The challenge, then, is to harness the expressive power of the generic patterns whilst
maintaining the precision of Espresso. We propose the following solution that helps both in
distinguishing generic patterns from incorrect patterns and also in filtering incorrect instances
produced by generic patterns. Unlike Girju et al. [11] that propose a highly supervised
machine learning approach based on selectional restriction, ours is an unsupervised method
based on statistical evidence obtained from the Web. At a given iteration in Espresso, the
intuition behind our solution is that the Web is large enough that correct instances will be
instantiated by many of the currently accepted patterns P. Hence, we can distinguish between
generic patterns and incorrect patterns by inspecting the relative frequency distribution of
their instances using the patterns in P. More formally, given an instance i produced by a
generic or incorrect pattern, we count how many times i instantiates on the Web with every
pattern in P, using Google. The instance i is then considered correct if its web count surpasses
a given threshold. The pattern in question is accepted as a generic pattern if a sufficient
number of its instances are considered correct, otherwise it is rejected as an incorrect pattern.

Although our results in Section 4.2 do not include this algorithm, we performed a small
experiment by adding an a-posteriori generic pattern recovery phase to Espresso. We tested
the 7,634 instances extracted by the generic pattern [X of Y] on the CHEM corpus for the
part-of relation. We randomly sample 200 of these instances and then queried Google for
these instances using the pattern [X consists of Y]. Manual evaluation of the 25 instances that
occurred at least once on Google showed 50% precision. Adding these instances to the results
from Table 5 decreases the system precision from 60% to 51%, but dramatically increases
Espresso’s recall by a factor of 8.16. Furthermore, it is important to note that there are several
other generic patterns, like [X’s Y], from which we expect a similar precision of 50% with a
continual increase of recall. This is a very exciting avenue of further investigation.

5. Conclusions
We proposed a weakly supervised bootstrapping algorithm, called Espresso, for
automatically extracting a wide variety of binary semantic relations from raw text. Given a
small set of seed instances for a particular relation, the system learns reliable lexical patterns,
applies them to extract new instances ranked by an information theoretic definition of
reliability, and then uses the Web to filter and expand the instances.

There are many avenues of future work. Preliminary results show that Espresso generates
highly precise relations, but at the expense of lower recall. As mentioned above in Section
4.3, we are working on improving system recall with a web-based method to identify generic
patterns and filter their instances. Early results appear very promising. We also plan to
investigate the use of WordNet selectional constraints, as proposed by [11]. We expect here
that negative instances will play a key role in determining the selectional restriction on
generic patterns.

Espresso is the first system, to our knowledge, to emphasize both minimal supervision and
generality, both in identification of a wide variety of relations and in extensibility to various
corpus sizes. It remains to be seen whether one could enrich existing ontologies with relations
harvested by Espresso, and if these relations can benefit NLP applications such as QA.

95

Acknowledgements
The authors wish to thank the reviewers for their helpful comments and Andrew Philpot for
evaluating the outputs of the systems.

References
[1] Berland, M. and E. Charniak, 1999. Finding parts in very large corpora. In Proceedings of ACL-1999. pp.

57-64. College Park, MD.

[2] Brown, T.L.; LeMay, H.E.; Bursten, B.E.; and Burdge, J.R. 2003. Chemistry: The Central Science, Ninth
Edition. Prentice Hall.

[3] Caraballo, S. 1999. Automatic acquisition of a hypernym-labeled noun hierarchy from text. In Proceedings
of ACL-99. pp 120-126, Baltimore, MD.

[4] Cover, T.M. and Thomas, J.A. 1991. Elements of Information Theory. John Wiley & Sons.

[5] Day, D.; Aberdeen, J.; Hirschman, L.; Kozierok, R.; Robinson, P.; and Vilain, M. 1997. Mixed-initiative
development of language processing systems. In Proceedings of ANLP-1997. Washington D.C.

[6] Downey, D.; Etzioni, O.; and Soderland, S. 2005. A Probabilistic model of redundancy in information
extraction. In Proceedings of IJCAI-2005. pp. 1034-1041. Edinburgh, Scotland.

[7] Etzioni, O.; Cafarella, M.J.; Downey, D.; Popescu, A.-M.; Shaked, T.; Soderland, S.; Weld, D.S.; and
Yates, A. 2005. Unsupervised named-entity extraction from the Web: An experimental study. Artificial
Intelligence, 165(1): 91-134.

[8] Fellbaum, C. 1998. WordNet: An Electronic Lexical Database. MIT Press.

[9] Fleischman, M.; Hovy, E.; and Echihabi, A. 2003. Offline strategies for online question answering:
Answering questions before they are asked. In Proceedings of ACL-03. pp. 1-7. Sapporo, Japan.

[10] Geffet, M. and Dagan, I. 2005. The Distributional Inclusion Hypotheses and Lexical Entailment. In
Proceedings of ACL-2005. Ann Arbor, MI.

[11] Girju, R.; Badulescu, A.; and Moldovan, D. 2003. Learning semantic constraints for the automatic
discovery of part-whole relations. In Proceedings of HLT/NAACL-03. pp. 80-87. Edmonton, Canada.

[12] Hearst, M. 1992. Automatic acquisition of hyponyms from large text corpora. In COLING-92. pp. 539-545.
Nantes, France.

[13] Justeson J.S. and Katz S.M. 1995. Technical Terminology: some linguistic properties and algorithms for
identification in text. In Proceedings of ICCL-1995. pp.539-545. Nantes, France.

[14] Lin, D. 1994. Principar - an efficient, broad-coverage, principle-based parser. In Proceedings of COLING-
94. pp. 42-48. Kyoto, Japan.

[15] Mann, G. S. 2002. Fine-Grained Proper Noun Ontologies for Question Answering. In Proceedings of
SemaNet’ 02: Building and Using Semantic Networks, Taipei, Taiwan.

[16] Pantel, P. and Ravichandran, D. 2004. Automatically labeling semantic classes. In Proceedings of
HLT/NAACL-04. pp. 321-328. Boston, MA.

[17] Pantel, P.; Ravichandran, D.; Hovy, E.H. 2004. Towards terascale knowledge acquisition. In Proceedings of
COLING-04. pp. 771-777. Geneva, Switzerland.

[18] Pasca, M. and Harabagiu, S. 2001. The informative role of WordNet in Open-Domain Question Answering.
In Proceedings of NAACL-01 Workshop on WordNet and Other Lexical Resources. pp. 138-143. Pittsburgh,
PA.

[19] Pazienza M.T. 2000. A domain-specific terminology-extraction system. In Terminology, 5:2.

[20] Ravichandran, D. and Hovy, E.H. 2002. Learning surface text patterns for a question answering system. In
Proceedings of ACL-2002. pp. 41-47. Philadelphia, PA.

[21] Riloff, E. and Shepherd, J. 1997. A corpus-based approach for building semantic lexicons. In Proceedings
of EMNLP-1997.

96

Concepts across categories

Hilke Reckman and Crit Cremers

Leiden University Centre for Linguistics (LUCL)
Leiden, Netherlands

{h. g. b. reckman,c. l. j. m. cremers }@let. leidenuniv. nl

Abstract

Verbs or adjectives and their nominalizations and certain adverb adjective pairs
can be argued to introduce the same concept. This can be shown through inference
patterns, which can be explained if we assume Davidsonian eventualities underlying
all predicates. We make a contribution to the underlying state discussion by inves-
tigating the advantages and disadvantages of Davidsonian versus Kimian states for
statives such as copular predicates. Findings are implemented in our parser Delilah.

1 Introduction

Several computational semantics systems have by now implemented a form of
event analysis for verbs [1,3]. There has been much debate on whether it is
desirable to assume underlying states, parallel to underlying events. Katz [9]
argues against an underlying state analysis, even for stative verbs, whereas
Parsons [12] is ready to accept an underlying state analysis, even for simple
nouns. It is clear that states are more problematic than events.

We discuss some cases where words of different categories can be argued
to introduce the same concept: verbs and their nominalizations and adjec-
tives and their corresponding abstract nouns. We show that underlying states
give us the same advantages as underlying events, with respect to recognizing
concepts across categories for the purpose of inference, as they reify the pred-
icates. We then discuss an alternative representation for copular expressions,
based on the conviction that the states in these expressions are ontologically
different from eventualities, and show that it has unfavorable consequences for
inference. We end with a short note on related adjective-adverb pairs.

The present research was carried out in the context of the Narrator project,
which aims at the development of a system for storage and retrieval of personal
illness relating narratives [13,14]. In this project we use and further develop
a semantic parser/generator for Dutch, Delilah [5,4]. Delilah is driven by a
Combinatory Categorial Grammar and has a semantic output in first order
logic with neo-Davidsonian event structures.

97

{h.g.b.reckman, c.l.j.m.cremers}@let.leidenuniv.nl�

2 Verbs and their nominalizations

In this section we use nominalizations of verbs to illustrate our main consider-
ations. Sentence (1a) uses the noun operatie ‘operation, surgery’ and (1b) uses
the verb opereren ‘operate’. The intuition is that (1a) and (1b) are equivalent.
They can be inferred from each other.

(1) a. Marie
Mary

onderging
underwent

een
an

operatie.
operation

‘Mary went though/ had surgery.’

b. Marie
Mary

werd
was

geopereerd.
operated

‘Mary was operated on.’

The same goes for (2a) and (2b), containing negation.

(2) a. Marie
Mary

onderging
underwent

geen
no

operatie.
operation

‘Mary went though/ had surgery.’

b. Marie
Mary

werd
was

niet
not

geopereerd.
operated

‘Mary was not operated on.’

Since the narratives in Narrator are about experiences of patients (in the
prototype being currently developed, on breast cancer), this kind of informa-
tion is rather relevant and should preferably not be missed or misinterpreted.
If one of the search criteria is, for example, that the narrative should tell about
a patient who had surgery, then each of these sentences above, if occurring in
a narrative, provides the relevant information to determine wether it meets
this search criterion or not. And of each pair, both variants provide the same
information.

Opereren en operatie introduce the same concept. Also the relation be-
tween opereren/operatie and Marie is the same in both (1a) and (1b). Ar-
guably it can also be inferred in both cases that there is yet someone else
involved who is not mentioned, a filler for the agent-slot of opereren/operatie.

A form of neo-Davidsonian event analysis can be used to give both sen-
tences the same semantic representation. The basic event representation for
both (1a) and (1b) is illustrated below. The representation is based on Parsons
[11]. (The “concept of” relation is comparable to Jurafsky and Martin’s “is-a”
[8].). The verb form is taken to name the concept. The verb can be consid-
ered as basic in a situation like this, because underived nouns do not usually
introduce events. As it does not lie within the scope of this paper to discuss
what is the best way to represent time/tense, we keep the representations very
simple in that respect.

(3) ∃e.event(e) & concept of(e, operate) & agent of(e, x) & theme of(e,
Mary) & at-time(e, past)

98

For (1b) this kind of representation is quite standard, and event repre-
sentations for event-denoting nominalizations have also been suggested before
[11,7]. The verb ondergaan in (1a) plays a special role. It places the event in
time (makes it extensional) and it lets its subject be the theme of the surgery
event.

3 Adjectives and nouns

In the previous section we have looked at nominalizations of verbs, and seen
that event semantics helps us getting the right entailments. Now we will look
at adjectives and their nominalizations. The pair below is at least close to
equivalent. Who has an illness, is ill. Who is ill, has at least one illness.

(4) a. Marie
Mary

had
had

een
an

ziekte.
illness

‘Mary had an illness.’

b. Marie
Mary

was
was

ziek.
ill

‘Mary was ill.’

One could try to treat ’have an illness’ as a kind of collocation and this
way have (4a) interpreted as ill(Mary). This, however leaves no space in the
representation for the determiner, which may vary in form and accordingly in
interpretation.

For the pair boos/boosheid, it is more difficult to come up with two equiva-
lent sentences, for lack of a suitable “support verb”. Still we can observe that
(5a) entails (5b).

(5) a. Jan
Jan

probeerde
tried

zijn
his

boosheid
anger

te
to

verbergen.
hide

‘Jan tried to hide his anger.’

b. Jan
Jan

was
was

boos.
angry

‘Jan was angry’

For Katz, however, stative nominalizations denote either a fact or an ex-
tent/degree, but never a state. So (5a) could mean that Jan tried to hide (the
fact) that he was angry, or how angry he was, but not the state of his being
angry. At least the factive reading seems very intuitive here. It is not clear
whether there is also a stative reading. In some other contexts, though, a
factive reading is not possible. In (6a) boosheid is combined with a durational

99

predicate. (A fact does not have a duration; once a fact, always a fact.) An
extent or degree reading doesn’t seem to make a lot of sense either.

(6) a. Hun
their

boosheid
anger

duurt
lasts

nooit
never

lang.
long

‘Their anger never lasts long.’

b. Ze
they

zijn
are

nooit
never

lang
long

boos.
angry

‘They never are angry for a long time’

Besides, even if zijn boosheid in (5a) does only have a factive reading, how
should we represent the content of this fact in such a way that (5b) follows from
it and that we faithfully represent the quantifier? (His anger is deninite.) We
can’t choose a representation like angry(Jan), because of the quantifier. But
if we represent it as a noun (with a possessive kind of relation to Jan), while
still using a traditional representation for (5b), then we lose the entailment.
So even when embedded in a fact, reification of the predicate still yields better
representations.

These considerations lead us to the following type of representation for
sentences like (4b) and (5b).

(7) ∃e.state(e) & concept of(e, ill/anger) & theme of(e, Marie/Jan) & at-
time(e, past)

Interestingly, for the adjective-noun pairs it is not always that clear and
systematic which is the basic form. For the verb - noun pairs above the verb
was always basic and the noun was its nominalization. There are also verbs
derived from nouns, but they follow a different pattern. Adjective - noun pairs
behave less systematically. In the pair verdrietig ‘sad’ - verdriet ‘sadness’, the
adjective seems to be the derived form in Dutch, whereas in English the noun
has a nominalizing suffix. And for boos ‘angry’ - boosheid ‘anger’ it is the
other way around.

4 An alternative representation

We have seen that adjectives and their “nominalizations” display the same
kind of inference patterns as verbs and their nominalizations, and that reifi-
cation of the predicate, through postulating an eventuality argument, makes
these patterns follow naturally. This reification seems to be the crucial point,
though. And since independent evidence for a Davidsonian analysis for sta-
tives is kind of shaky, we should investigate whether we really need the full
structure. Maienborn [10] proposes a representation for statives which does
involve reification of the predicate, but is different from the Davidsonian event
structure representation. In this section we discuss this alternative.

100

4.1 Kimian states

Maienborn argues for a distinction between Davidsonian states (D-states) and
Kimian states (K-states). Examples of verbs introducing D-states are stand,
sit and sleep. Examples of verbs introducing K-states are know, hate, resemble
and copular expressions. In the latter it is the copula that introduces the K-
state.

D-states introduce a normal Davidsonian argument, just like other eventu-
alities. For the K-states Maienborn shows that, like D-states, they are avail-
able to anaphoric reference and time modification, and therefore they need
a referential argument. This referential argument, she argues though, is of a
different ontological kind than Davidsonian eventuality arguments. It is of a
more abstract nature, similar to facts and propositions. The main argument
is their deviant combinatorial behavior. K-state verbs can not serve as the
infinitival complement of a verb of perception (see also examples (12b) and
(14a) later in this section), they cannot combine with most adverbials, such as
manner adverbs and instrumentals, and neither do they combine with locative
modifiers, all of this in contrast with D-states and other eventualities. This
brings her to the following (tentative) definition of K-states.

(8) Kimian states:
K-states are abstract objects for the exemplification of a property P
at a holder x at a time t.

Here are some of Maienborn’s (German) examples: (9a), with a D-state,
is represented as (9b), and (10a), with a K-state, is represented as (10b). The
representations are in a flat DRT notation.

(9) a. Carol
Carol

schläft.
sleeps

‘Carol is sleeping.’

b. [se , v | sleep(s), theme(s, v), carol(v)]

(10) a. Carol
Carol

ist
is

müde.
tired

‘Carol is tired.’

b. [sz , v | s ≈ [tired(v)], carol(v)]

The embedded box in (10b) contains the property that is the K-state, and
the discourse referent s reifies this property.

4.2 Some modifications

Engelberg [6] proposes a few modifications to this view on K-states. He argues
the K-state should not be introduced by the copula, but rather by the post-

101

copula predicate (e.g. an adjective), because attributively used adjectives also
show the relevant behavior, without being accompanied by a copula.

Also, he shows that it is problematic to put individuals introduced by an
NP under the copula in the box that is introduced by “≈” and presents the
‘content’ of the state. Because in that case the state in (11a) (being related
to Opus) would be a different one then the state in (11b) (being related to
George). And while the states in (11b) and (11d) are the same, if Opus is
the tuba player of the Deathtöngue, since the subject is in the outer box and
therefore extensionalized over, this is not the case for the states in (11a) and
(11c).

(11) a. George is related to Opus.

b. Opus is related to George.

c. George is related to the tuba player of the Deathtöngue

d. The tuba player of the Deathtöngue is related to George.

Identity relations between states get more coherent and intuitive if the
content of the box embedded under “≈” is restricted to only the core predicate
(e.g. related(x, y)).

Now if Engelberg is right that K-states are not more fine grained than
events and D-states, and the content of the embedded K-state box is in all
cases only a core predicate, one can wonder what the advantage of the Kimian
style representation still is. For facts and propositions this kind of represen-
tation is useful, exactly because the content of a proposition is more than a
single predicate; it is a full-fledged proposition, and it makes sense to assign
a referential argument to the proposition as a whole. Individuals introduced
by NPs in embedded propositions are not extensionalized over. If George said
that he is related to Opus and if Opus is the tuba player of the Deathtöngue,
it is not entailed that George said that he is related to the tuba player of the
Deathtöngue. The main remaining difference between the D-state and K-state
representations seems to be that the K-state predicate directly predicates over
its argument(s), whereas in D-states this relation is mediated through theta
roles. It is not clear why this should be the case.

4.3 Entailments between K-state and D-state verbs

Representing K-states in a different format than D-states, also causes another
complication in the domain of inference. German liegen ‘to lie’ is a D-state
verb, hence the grammaticality of (12a). Sein ‘to be’ and also sich befinden
‘to be located’ are K-state verbs, as shown by the ungrammaticality of (12b).

(12) a. Ich
I

sah
saw

das
the

Buch
book

auf
on

dem
the

Tisch
table

liegen.
lie

‘I saw the book lie on the table.’

102

b. *Ich
I

sah
saw

das
the

Buch
book

sich
refl

auf
on

dem
the

Tisch
table

befinden.
be-located

‘I saw the book be located on the table’

But (13a) entails (13b). 1 (Not all German speakers seem to like the version
with the copula, but with befinden (13b) is certainly good.) If these two
predicates introduce two very different types of states that require different
styles of representation, this entailment is problematic.

(13) a. Das
the

Buch
book

liegt
lies

auf
on

dem
the

Tisch.
table

‘The book is lying on the table.’

b. Das
the

Buch
book

befindet
located

sich/ist
refl/ is

auf
on

dem
the

Tisch.
table

‘The book is (located) on the table’

It is of course conceivable that the verb liegen actually introduces two
substates, one of which is Kimian. Intuitively positional location verbs (with
their complements) such as liegen refer two different pieces of information.
One of these is the location of the subject (expressed by the complement)
and the other one is in what kind of position the subject is (upright or lying
flat...). The locational information will have to be the K-state that gets us
the entailment. That means that the positional information has to constitute
the D-state that saves the construction in (12a).

So far the problem seems fixable, be it at the cost of losing the clear-cut
distinction between D-state verbs and K-state verbs. (The positional location
verbs stand, sit and lie are actually quite a substantial group within the D-
state verb class). But it gets worse. The verb to sleep is a D-state verb and
to be asleep, being a copula construction, behaves like a K-state expression,
as is illustrated below.

(14) a. *Ik
I

zag
saw

Carol
Carol

diep
deep(ly)

in
in

slaap
sleep

zijn.
be

‘I saw Carol be fast asleep.’

b. Ik
I

zag
saw

Carol
Carol

slapen.
sleep

‘I saw Carol sleep.’

1 These examples can be reproduced in Dutch, but there the copula version of (13b) is
somewhat marginal.

103

But we can observe that (15a) entails (15b).

(15) a. Carol
Carol

was
was

diep
deep(ly)

in
in

slaap.
sleep

‘Carol was fast asleep.’

b. Carol
Carol

sliep.
slept

‘Carol was sleeping’

Here it is not plausible that (15a) contains a D-state as well as a K-state,
because the presence of this D-state should save (14a). 2

Although the distinction between two groups of statives with different
behavior is very convincing, we conclude that in a semantic representation for
inference purposes, it does not seem to be a good idea to treat to sleep and
to be asleep as fundamentally different kinds of entities. We therefore stick to
Davidsonian style representations for all states. The differences between the
two classes that Maienborn shows are of course real. But as they mainly seem
relevant for selectional restrictions, they can probably best be captured as
part of the feature structure of the predicates, in a computational system like
ours. In Delilah the decision of whether two constituents can combine to form
a new one depends on the unifiability of their graphs of features. Here one can
include a feature that says for example that a predicate is “abstract”. Verbs of
perception, all kinds of adverbials and locative modifiers can then be specified
for combining only with concrete predicates. The semantic representation
then only needs to contain information that is relevant for inference.

5 Adjectives and adverbs

Adjectives and adverbs are closely related categories [2]. (The main group of
adverbs that also occur as adjectives are the manner adverbs.) If we assume

2 An anonymous reviewer proposed the representation (1a) for ‘Carol was asleep’. Made
consistent with the view that a K-state is the exemplification of a property that would be
(1b). (Where the property is ‘being the theme of a sleep event’)

(1) a. [s | s ≈ [s′, v | [sleep(s′), theme(s′, v), carol(v)]]

b. [sz , v | s ≈ [s′e | [sleep(s′), theme(s′, v)], carol(v)]

With a D-state embedded in a K-state, this looks like an interesting compromise. The main
problem with it, is that Maienborn introduces K-states next to D-states in order to derive
the different combinatory properties of K-states and D-states from their different ontological
status. Now if a K-states embeds a D-state, with the same ontological status as any other
D-state, one would expect the embedded D-state to also have the same properties as other
D-states, such as being able to have a location. This would make the positing of K-states
loose its main advantage.

104

underlying states for adjectives, we should do so for their adverbial counter-
parts as well. (This is one of the reasons Katz [9] does not want underlying
states for adjectives.) This is not necessarily problematic, because the Ger-
man dabei -construction which Maienborn uses as a diagnostic for whether a
predicate has a referential argument, also seems to work for adverbs. In (16)
the da in dabei refers to schnell. This means that schnell should introduce a
referential argument.

(16) Erstaunlich
amazing

ist,
is

wie
how

schnell
fast

und
and

dabei
thereat

zuverlässig
reliably

der
the

neue
new

Mozilla
Mozilla

Firebird
Firebird

Seiten
web sites

darstellt.
displays

‘Amazing is, how quickly and reliably the new Mozilla Firebird dis-
plays web sites.’

This suggests that our representation for these kinds of adverbs can be similar
to the one that we have proposed for adjectives.

6 Conclusions and further research

We have shown that a nice side effect of (neo-)Davidsonian event representa-
tions, is that entailment relations between verbs and their nominalizations and
between adjectives and their corresponding nouns follow naturally, without
any extra machinery. We have defended the use of a Davidsonian represen-
tation for adjectives, by showing that assuming states of different ontological
sorts obscures certain inferential relations. Our point of view is that semantic
representations should only contain information that is needed for inference.
Information that is relevant for selectional restrictions should be accommo-
dated elsewhere, where it does not interfere with inference.

In our parser Delilah we have implemented event structures for verbs and
nominalizations of verbs. We will proceed with implementing the proposed
structures for adjectives along the same lines. We believe that in general
semantic parsers that aim at producing structures that support inference can
benefit from such an approach. Further research will have to show how much
we need to further refine our event structures, for example by systematically
including subevents.

Acknowledgements

This research was funded by Netherlands Organisation for Scientific Research
(NWO). Our participation in the workshop was funded by LUF (Leids Uni-
versiteits Fonds) and LUCL.

We also thank the reviewers for their comments.

105

References

[1] Bos, J., S. Clark, M. Steedman, J. R. Curran and J. Hockenmaier, Wide-
coverage semantic representations from a ccg parser, Proceedings of COLING-
04 (2004).

[2] Broekhuis, H., Adjectives and adjective phrases, Working Paper 2, University of
Tilburg (1999).

[3] Copestake, A., D. Flickinger, I. A. Sag and C. Pollard, Minimal recursion
semantics: An introduction (1999).

[4] Cremers, C., Formalizing the syntax (1999).

[5] Cremers, C., (’n) betekenis berekend, Nederlandse Taalkunde 7 (2002), pp. 375–
395.

[6] Engelberg, S., Kimian states and the grammar of predicative adjectives,
Theoretical Linguistics 31 (2005), pp. 331–347.

[7] Higginbotham, J., On events in linguistic semantics, in: J. Higginbotham,
F. Pianesi and A. Varzi, editors, Speaking of Events, Oxford University Press.,
Oxford, New York, 2000 pp. 49–79.

[8] Jurafsky, D. and J. H. Martin, “Speech and Language Processing: An
Introduction to Natural Language Processing,” Computational Linguistics and
Speech Recognition, Prentice-Hall, Upper Saddle River, NJ, 2000.

[9] Katz, G., Anti neo-davidsonianism: Against a davidsonian semantics for state
sentences, in: C. Tenny and J. Pustejovsky, editors, Events as Grammatical
Objects, CSLI Publications, Stanford, CA, 2000 pp. 393–416.

[10] Maienborn, C., On the limits of the davidsonian approach: The case of copula
sentences, Theoretical Linguistics 31 (2005), pp. 275–316.

[11] Parsons, T., “Events in the semantics of English: a study in subatomic
semantics,” MIT press, Massachusetts, 1990.

[12] Parsons, T., Underlying states and time travel., in: J. Higginbotham, F. Pianesi
and A. Varzi, editors, Speaking of Events, Oxford University Press, Oxford, New
York, 2000 pp. 81–93.

[13] Toussaint, P. and L. Wolf, Design of the narrator system: processing, storing
and retrieving medical narrative data, Proceedings of ISoLA-2004 (2004).

[14] Wolf, L., E. Hoenkamp, R. Overberg, H. Reckman and P. Toussaint, Design of
the narrator system: processing, storing and retrieving medical narrative data,
Society for Design and Process Science (Submitted).

106

����������	
��	��
������� ����� ��� ���	�

�	� �����

������� ����

�����

�����	��
�
�
���� �������� ����
���� �����

������� ���������������	

��������

��� �������	�
�����	� �� ��
�	
�� ������� ��� ��
���
��� �� � �
�
�
�������� �	

��� ��
�	
�� ���
����	�� �� �
	�	�� �
�������
����	��� ��
�	
�� �	���� �	
������
��� �������	�
�����	� ���� ��� �	������	��� �
��������
�����	�� ��
�� �� ����� ���
������ ��� ��� ��
������ 	� ��� ����� �	���� ��� ���� �� ����� ��� �	��� �	 ���
�����������	� 	� 	���

����� �	 ������ ��� ������� ����� 	� ����
 ����
���	����
�
��
�������� ���
�����
� �� �	�����
 ���
�����
�����	� ������� ��� �
�������� ���
��� �������	�
�����	�� ��� ������� � �
	��
 ��� 	� ���	
� �	
 ���
�������� ��
��

� ���������	��

�� ���� ����	
 �� ���	�
��� � ������
���������� ��
�� ����� �� 	��	����� ���
�����	�� ��	����	� �� ������ ��
 ������� ��� �����	 �����	�� ����� �� ���
�	��� �����
 �� 	��	���������� �� ���� �� ����	�� �������� ���������� ���
����	 ������������ ���	����
 ��� ����	��������
 ����
 ��� ���� ����	�����
 ��
��� �������� �� ���� �� ����� ��� ����	���� �	� 	�����
 �� ���� ���� ���� ���
���	���� ��� ����	
 ��� �����
�� ��� ����	
 ��
 �� �� ��
��
��� ����� ����
	��������
 ��� ������ ��!� 	���	
�
 ��� ��������� 	������� �� ����	����
 ��

�"��
 ��� ��
������� �� ��
 ��
 ���� �� ����� 	��	������ #��� ��� ����	���
��	����$ ��
 ��� �����	 #��� ��� �������	����
$ 	������������ � �� ���� ����	
 ��
��	���	
������ ��� �
�� ��

������ ��� ����� �� ��� ��������� 	������� �������	
���� ��� ������������ �	���
�����

%�	�
 ��
� ��� �����
�	 ��� ����	��� ��	����	� �� ���� ����	���
 ��
 �
������
� ���� ����� ���� � ���	��	 ����	���& ��	 ���	 ���� ��� ��	� #����	���$ �����
�� �����
�	����
 �� � ��'����� �� ���� ������
 �� ������ ��� ��	
 ��������

����	�
 ���� �� � ��	���� �����������
�	����� �� ����
 �� ���� ���
��

��� �����	�� ����� �� ��	����(�
 �� ���� ��
�� ���	���	� �� ���� �
 ��

�
 ���� �� ����� 	��	������ #���� ����	�
$ #��� ��� ����	�
$ #���� ����
$ ��
 #���

� �� ��� ������	

����	���� �
��� ���� 	�� ������� 	� ��� 	�� ������

107

�

�
�

�
�

�

�

�

��
��

�

�
�

�
�

�

�

�

��
��

���� �� ����
��	����
� ��
�����
�

��� ����
$ 	������������)� �

 �� ��
 �� �� �����
 ��
 �	����� � ������
��
����� ���� 	���	
 �� ��� �	
���	� �����	�� �	
�	 ��
 ��� ��������� 	��������
)��� ���� �����
 �� �*�	��� ���
���������� �� ������ ��
 �������

�� ��� ��������� +������ ,
 �� �*����� ��� ���	�����
���������� �� ������
��� ������ �� ��	�� �� �����	�� ��	�
���� �� +������ - �� ���� ��� �����* ��

��������� �� ��� ������)� ����� ��� ����� �� ������ ��
 ������ �� +������ �

��
 ���	�����	
 ��
������ � �	���	 ��� �� �*���� ��	 ��� ����� �� +������ !� ��
+������ � �� �����	�(� ��	 ����	��������

 ��
������
�
��� �����	��

.�� �� �����
�	 �� �*����� �� � ������
�������� ���	�� �� � ��	
�	 ������� ���
�� ����� ������� ,/00�� ��
 �/00��
 ���� 1�2�� ��� ��� ���� ������� ,/-0��
��
 -/-0��� ������ #���� �� �����$ �� ���� ����
 �� ��� ��� �������	����
 ����
��������� �� ���
 �� ��
��	���
 ����

����� 3� ��� ����	�	�
 �� ��� �	�����

���� �� ���
���� �� ������� -/00�� ��
 �/00��
 ���� �� �� ���� �	�� ���� ���
������
��
 ������� ,/00�� ��
 !/00��� �� #�	�����

���� ����$ ���� ���
�
�� ��� ��� ����	����	����
 ��� ��������� �� ���
 �� �� �����
 ����

���� �����

����
���������� ��� �� 	�
���
 �� ��� ��������� �����& �� �� ���	� ����	� ��
� ���������� �������
 �� ������� ����	
 ��	�
���	��)��	���
 �� � ����� ��	�����
���� � ��	����
�	����� �� ����
 �� ����	���� �������
�����	
 ��	�
���	��

��� ��������� �� �*������
 �� 4��� �� �� ����� �� ��� ��	������� � ����

�� ����� ����� ��� ����� ��	����	� �����
��� ��� ��������� ����� ��
 ���
����������� ����� �� ���5�
 �� � ���� ���� ������ �� �� ��� ��������
 ��
�
�� 4��� �
 �� � �����	�� �*���� � �����
�� ���� ����		����
 ��
��� �� 1� �2�
3� ��� ����	�	�
 �� ���� ����� ��	����� ��	 � ����� �����	�� �*���� �� �� ��
��� 	��������
 ��
� �� ��� "��	�
 ���� ��
��� � 1� ��2� %�	�����	
 �� ����
� � ��
 �� �� �����
 �� �� � ����	��*���� �� �
 ��
 � �� � �����*���� �� ��� �� ����
����	
 �� ������ ���� ����� ����� �	� ����	
 ��	�
���	� ���	��
 ��
 �����
����� �	�
�����	
 ��	�
���	� ������
 ����� �� ���� ���� �� ���� ����	������
�������	���� �� �� ����� ���� �� ����		���� � �� �� �����

� � � ������� �� � � 1� � ��2� 1�2

��
 �� �� ����		���� � �� � �����

�� � � ������� � � � 1� � ��2� 1,2

� ���� ��	� ��� ���������� ���� �� 	� ���������� ������	��� ��� ������	
 ��������� 	�� �������
��� ���
� 	� ��� ����	��� ����� �� �������� ���� ��� ������� 	����� �
��

108

�

�

�� ��

���� � ��	���
����	��� ��
�

�� ��� ��������� �������
 �� ���	�
��� ��� ����
���������� ����� 3��
��
������� �� ��� ������������ �	���
���� 1�2
 ��
 ��� ����	 �� ��� ���������
	������� 1�2& ���� �� ����� �	� ����� ������� ��� �����	�� �*����� �� ����
���� �	� �		����
 �� ��� �����	 ����� �� �� 4��� ,�

� ������ ��� ������	�� �� ���

�� ���� �������
 �� "	�� ���� ��� �����* �� ��� �����
 ��
 ����	
 �� ���� ���
6	��5� ����������

��� ��	���

��� �������� �������� �� �	����������� ��	������ �� �� � � �
 ������� �����������
�
 �
 �
 �
 ��
 ��
�� ���	���	� �
 �
 ��
 �� ���	� ��	�������� ��
 �����
������� ��	5� �	� �

�
 �� �������	��

7�
�� ���	���	� �	� ����	�	���
 �� ��� ��������� ����

�� �� ��� ��� ����	� ����
 �

�� �� ��� ��� ���� ����
 �

��� �� ��� ��� ����	��*�����
 �

��� �� ��� ��� �����*�����
 �

7�
�� ���	���	� �
 �
 ��
 ��
 �� �	� ���	��������� �� ���
 ���
 ��
��

��
 ����
 	������������

8��� ���� ��� ��� �����	�� �*����� �� ��� �	���
���� 	�������
� ��� ���	�
� ������ ���� 1	 �� 	2� ���� ��
 ���� �	�
�9�	����� �������
& ��� ��	��	
	���	� �� ���� ����	� �� � ����	��*���� �� ��� ��		��� ���� ����� ��� �����	
���
�� � ����	��*���� �� ���� ����	�� ��� ��	��	
��� ��� �����
� ��� ��		��� ����
������ ��� �����	 ��� �����
� ��� ����
 ��� �	��� ������ ��� ��
�9�	��� �� ���
��� ���������� :���	���� ����5���
 ��� ����� ���	���	� �	� ��� ������������

� ��
�� ����� ���� ��� ��
����� � �� 	����� �� 1�2 ��� ����� �����
�� ��� ���
�����������
 1��2 �� �����
 ��
�	 7�
�� ;�����
 ��
 1���2 �����"�� ��� ���������
�	���	��/

1
2 �1�� �2� 1��� ��2�

��
 1��2 �� � �� � �������� �� ��� ����� �� �� ��� ������ ��� ��� ���������

������� ��� ����� ���
������
 ��� �������
 ����� �� 	������

109

4�	��
 �� ���	�
��� ��� ��� �� �*���� ��	 � ��
 � ��
 ���� �� �� ��

�� ��
����
������ ��� �����
�
 ��� ������� ����� �����
 ��� ��� ���������
�*�����

1��2 ��� ��� 1��2 ��� ���

1��2 �� ��� 1��2 �� ���

����� ��� �����
� �����
��/

1��2 ���� ����� 1��2 ���� �����

1��2 �� ����� 1��2 �� ���
��

1��2 ���� � 1��2 ���� �

��� �����
� <
� �� ��� ���
�	 ��
� ��

�

� ��
 ��
����� �� ��
��

��	�����	�

��� ��
��� ����	�
��

)� ���	�
��� 6	��5� ��������� ��	
��� � 6	��5� ��
�� ��	 ��� ����� �� �
����� 	
���
�������
 ���	�
 �� � ��������� ��� �� �������� ��	�
�
 ��

� ��
 � �	� ����	� 	�������� ��
 � ����
 ���� �����	�� �*���� �� 	���	
�

�� � �������� ��	�

 ��
 ���� �� ��� �	���
���� ��
 ��� ��������� �	� ���

�9�	��� ��������������� ������� ��� �������� ��	�
�� ��� ���������
 ����
 � ��

�"��
 ��
�������� �� ��������

� � � � �
� � � � ��
 � � ��

� � � � �
� � � � �	 � � ��

� � �� �
� � � � ������� � � ��

� � ��
� � �� ��

� � ��
� ��

�� � � ������� � � ��

� � ��
� ��

��
 � ������� � � ��

� � ���
� ��

�� � � ������� � � ��

� � ���
� ��

�� � � ������� � � ��

�� 6	��5� ���������
 1����2 ��
 1���2 	��	����� ��� �	����������
 1����2 ��

1���2 ��� �����	����
 ��
 1���2 ��� 	�=�*�����
 	������������ � ��	���� � ��
����
	 ��
�� �

�����
 �� � �> �
 �� � � � ��	 ���	� �

 � 8��
 ��

� ��� �� 	�� �� �� ��� ���	

������ �� �� �� 	����	�� �� �� ��� ��� �� 	����� �� 	�� ��

�� 	����	�� �� �� ��� ���� ��� ������ �� ! �� �� 	����	�� �� �� ��� ����� �� � �� ���"��

110

�"�� ��� ��	�
������� �� ��������

� �> ��� ���
� ��� �� ��� � � � � � �� � � ���

� �> ��� ���
� ��� �� ���
 � � �
 �� �
 ���

� �> �� ���
� ��� ��� � � � �
 ���

� �> �� ���
� ��� ���
 � � � � ���

� �> ���� �����
� ��� �� ��� � � � � � �� � � ���

� �> ���� �����
� ��� �� ��� � � � � � �� � � ���

� �> �� �����
� ��� ��� � � � � � ���

� �> �� ���
��
� ��� ��� � � � � � ���

� �> ���� �
� ���� � ���

� �> ���� �
� ���� � ���

�� � ��
 � ������� ��� �� ��� ����� ���
������ ��	�
� �� �����
 �� �� �

�����
��� 8��
 �� ��� �����	��� ��� ��������� ��
�� �-�& ����
 ��
 � �

��

� ���	� �*����
�����
��� ���� ����� ��> � 1������������2�

� ������ ��� ������

��� ���	���
 ����

��

� �	��������� �� ������� �� �� ����	 ���
� ���	 ��� �����	�� �*����� ��� ��
����� �	���	�� �������� ��� ����	 ����� ���� ��
 ��� ������� �� �� ����		����
����� ��� �*��� �����	�� �*���� ���	� ��� ����		���� ��5�� ����� �� ��� ����
�*���

�� ��
�	����� �	������� ��� �����	� �� � �����
 1,2
 ���� � ��	����

1,2� �� ����

8�� ��� �� �����
�	 ��� ����������� ���� ���	� �*���� � ����	��*���� 1��2
 �� ���
��� �����*����� �� ����� � ����� ���
� 1���2� �� 4��� -
 �� �� 	���
� �� 	� ��

� �� � ����� 1�� ���2
 �� ��� ������ �� ����	��
 �����	�� �*���� 	� 1� 	�2
���	� 	� � ���� �� ���� �
��� ��� ���
 ����	� ��
 ����	 ��� ����	��
 �*����
	�
 ����

	� � ��� ���� �����

���� ��� ����	��
 �*���� �����"�
 �� 	� ��� �� 	���	
�
 �� ������
��� �*����

����
 ��� ������� �� ��� ������

������� � �� !�
�� ��� �����
	� "�����	 ��� �	
 ���# ���	 �� ��	
	���

���� ��� ��� �����
	 �	� ��"$����	� �� ����� ����% ��&

��&�'��� ���� �		� ���������

111

�

�� ��
������ ���

�����

	�

	�

���� !� "���
�� ��
���	�

�

�

	�

	�

	�

���� #� $���
� ��
�����

����� � ���	
� ��� (!�
���) �	 ��
� ����% �� ��	 ����
	��� ���� ����� ���� "�

� ���
��� ����	�%
	���

	� ����� ����%
	 �	� ��"$����	�� �� ��
�� ��� �������

����� ���� � ����		� ���������

�� ��� �������� ���� � �
���� "�����	 ��&�'�� �	
 ���%

���&�'��� ���� � ��		� �������� ���		� �������� ���		� ���������

%�	�
 		 �� �� �� �
������� ����� ����� ������� ���� ��
 ��	 ���
 ��
 �� ��� �
��������� �����

��� *����
 ����

��

3� ��� ����	�	�
 �� �� ����		���� �� �� ����� �� ����	
 ��	�
���	�

1�2� �� ����

��
 �� ���� ����
 � �����
 ��� �����	 ���� �� ��� ���� ��
 �� ��� ����	�� ����
��������� ��
������
 �� 4��� �� ��� ����5 ���� �� ��� ������� �� ��� ����� ��

�� ����	���
 �� ��� �����	�� �*����� .�� 	� �� ��� �	������ �����	�� �*���� ��
� ��
 	� 1� 	�2 � �& �� 	� � 	�
 �������	��� 	� �� � ���� ������ 	� ��� ��
�����
�
 �� 	��

%�����	
 �� ��� ������	 ��� �� ���
�����	
 ��	�
���
 �� ��� ������ ���
������� �*���� �� ����� ��� ����� ����		�

 ��/

��1��� ��
�� ����2�

������� � �� +���� ���� �� "�����	 ,&�'�� �	
 -��# ���	 �� ��	
	��� ����

����� ���� "� ��� �
	
��� ����	�
	 �,&�'��� -���% ���� ����
 "� ���� �
�.������

�����
 �	
	���	�% ���	 ��� ��� ��� /�� � "� ���� � ����� ����	�% ���	&

� � ��		� ����� ���� ���		� ����� ���� ���		� ����� �����

112

	�

	� 	�

	�

	� 	�

��

��

���� %� �
�������
 �	���
�����

� ��	������� �������	���

��� ��� ��������������� �� +������ - ������ �� ��
����
��� �� ���� ����	 ��	
� 	�������� ��
�� �� ����� %�	�
 � ��
�� �� ���� ����� �� ����	������ �����
����� ����
 �	 �� ����	 ��	
�
 ��� ��� ����� �����	�� �*����� ��� �� �����

������������ ���� ��� �������� ���� �*��
 ���� �� �����	 ��
 ������
�
�

�� �� ��� ��������
 ��
� �� 4��� !
 ����� ��	�� �����	�� �*����� 	�� 	� ��

	�
 �� 	� �� �����
�
 �� 	� ��
 	� �	���
�� 	�
 ���� 	� �����
 ���� �	���
� 	�� ���
"��	� �������� ��� ��������� ��	�� �����	������ 4�	��
 ���� �	�� 	�

����� ��� 1-2

���� ��
 �� 	� � ���� ���� 	� � ���
 ��
 ���� 	� � �� 8�*�
 �� �� ��� �	�� 	�

����/

��� ����� 1�2

8�����
 �� 	� � �� ���� 	� � ����
 ����
 ��	 ��� 	� � 	�
 	� � ��� 4������
 ��
�� ��� �	�� 	�
 ����/

����� ��� 1!2

���� ����� ���� �� 	� � �
��� ���� 	� � �� ��
 ���� 	� � ��

 ������ ��� �*���� 1-2
 1�2
 ��
 1!2 �����	�� ��� ���� �		�������� ��
��	�� �����	�� �*�����
 ��� �������� �����
 �� �'��������� ��������
 �� ���
���� ���� ��� ��	�� �*���� �	� ��� �
������� ��� 1��� �����
�*2�)� ����
��� �*��� 1��2� ���
����

� �� ���� ������/

1-2� ��� �����

1�2� ����� ���

1!2� ��� �����

�� ��� ��	� ������	 ���
 ��	 ��� 	��������
 ��
� �� 4��� ! �� ��� ����
���� ��� ��������� ���
������ 	��	����� ��� ���� �*���� �� 	� � ����
 ����
	� � �� ��
 	� � ��

����� ��� 1�2

�� 	� � ��
 ���� 	� � �����

��� ����� 1?2

� #�� ��	
 �� ��� �����	�������� �� ��� ������	
 �����
	� ��� �����������	
 �����
� �� �����
	�� ���
	��� ��� ��� ���	������ 	�� �� ������� �� $�%�

113

�� 	� � ����
 ���� 	� � ��� ��
 	� � ��

����� ��� 1@2

��� ���������� �	� ��� ������	 ������ �� �*�����)� ���� �� 1��2� ���

��� �� ���� ������/

1�2� ��� �����

1?2� ����� ���

1@2� ��� �����

A�������� 1���2 ���� ��� ����� ��	�����
 �� ������ ��� ��������� �'���
����� �� ��
��������

� � ��� � ���

� � ��� � ���

� � ��� � ���

� � ��� � ���

�� ���� �����
 ��� ��������� ��� �� �*����/

��� >
�� < ���� ���

��� �� �����
�	�
 �� � �	���	 ���
�
��� �� ��� ����
���������� �����	��
��	����	��

 !	�����	��

)� ���� �	�����
 � ������
���������� �����	�� �����
 ��������� ��� �����
�

�� ��� ��������� 	������� 1�2 �� �����	�� �*����� �������	 ���� ��� �����
�

�� ��� ������������ �	���
���� 	������� 1�2
 ��
 �����
 ��� �����* ��
 ���
��������� �� ��� ������ �� ���� ��
���)��� ���� �����
 �� ���� �*����������
��	 ��� ������� �� ����		����� �� ��	�� �� �����	�� �*�����
 �� ���� �� ���
�	��	������ ��
 ��� ��	���� �������� ���	�����	
 �� ���� �

�
 ����	�� �*����
�� �����	��� ��� 	����������� ������� ���
�9�	��� ���������������
 � ��
 �
 ��
�*�	��� ��� 	�������� �����

������ �� ���� ������
�������
 ���
���������� �� ����	
B
�����	

��	�
��� �� ���� ����	
 �� ��� �*���
 ��� ������ �� ��� ������"������ �� ��������
�� ��!�
 ��� �	��	������ ��
 ��� ��	������� ������� ��	� 	��	������
 �� ��

��
 �
 	������������ �������� ����� ��� ���5 	����	 ���	������"�

 �� ���
�����	� ��� �
�� �� ���� ���� �� ��� �	��	������ ��	� ��� ��
 ��� ��	���� ��	�
�� �	�
�����	
 ��	�
���	� 1��2
 ��/ �

�� ����� ���
���� ������ ���

��

��
 ��� ���� 1+�� 1�2 �� +������ !2�

�� ��� ������	 ��� �� ��� ������������ �����	�� �����
 � ��� �� �*���� ������
"�� � 5��
 �� ������
���������� �����	�� ������ 8�����
 �

��� �	 ����	������

114

���� �*����
 �� ��� 	��	�����
�9�	��� �����	�� ��	����	��� �� ��� ��		���
�����

� <�1���2� 1���2�
 ����

����1���2� ��� �	���
 �� ��
��

�"�� �� ��
��?�� ��� ��'���� 	���� ��	
� ��	� ����� �� �C� ��
 ����� ��	 �1�2� 1� 2� ����
162 ������� +�� ��������
�<+� ������ ������� ��� ��� ����������� �	���	��
�?�
 �� ��� ������ ��� 	���	����
 ��� ����������� ��	 ��� �����	����� ��,
�-��
 ������ ��� 	���	����
 ��'���� ������ �����"�� ��� �����	���� �	���	��
 ��
��� ���� ���� ��� ����� ��'���� ������ ���� �����"�� ��� �� � ������ ��� ���
�����	���� �	���	��
 �� ��� � "���� ��
��� ����	
��� �� %�		��$� ����	�� �-�

�� � ������ ��� � "���� ��
�� ���� � "���� ��� �� �*����
 �� ��
���
�����

3� ��� ����	�	�
 ������� ��� ������ �1���2� 1����� �� ���� ��
�

�� �
�1���2� �� ��� ������ �� ���
� $� ��
 ����� �������
���
�����

�������� �� ��� ����� ����
��� ����� ��� �	���	 	����������� �� ��� ���
������� ��
 ��� �	���
����
 ��� ��'���� ������ ��
 ��� �	��� �����
 �� �����
����
 ������ ��	� ����������
� ��� ������� �����	�� ���� ��
���
������� ��
��� �*���
�
 ������
���������� ��
�� �����
 �� ���� �� ��� �	��� ������
 �	�
��
�	 ��������������

"���������

&�' (�)	

��� �������)�
�
���� $����
���� *
���� �+,-�

& ' .� "� /������ 0� 1�
��2� �� �	���
� ��� "� 3�4��
�������� �����	����������
��	�� ������� ������ ��	 ������������� 5������ �� �	��� ��� ��� �	������	�� 	�

����
������ �	�� �#6� 7������
� 88!�

&!' 9� /	�������� ����� �! ���� ��	 "���#������� 5��	�� 7����	��)5:; :����
�
<	�� <	�,�)����
 �	
 ��� 5���� 	� :������� ��� ;��	

���	�� 5����	
�
$����
����� �++ �

&#' =� 1�
� ��� $� 9����� $��� %����#��� �� ����� 1����
 0����
�� *�������
>��
�++!�

&%' "� 1
����� ��� �� �	���
� *
	��
���� 	� ������������� ���	
���2���� ��
	���
�	����� ��#���� �! ���&���� ���� '(� ��� �#-+��#6%� �++��

&-' �� :���
��� ���#��#��� !�� ���������� 1����
 0����
�� *�������
>�� �++��

&,' 0� "�
���
�� 5� �	?	 ��� =� @�	� .����������� 	� ��
�	
�� ������
�� �	���� �	

����������
	�����)�����	���� �! ��� �")*+
 ,������� �� "���#��������

 ���� �� �#��������� ������� -" ����+
.� ���!��#8� 88��

&6' "� "	��� ��� "� 5����
��� ��
�	
�� 	��	�	�� ��� ��
�	
��
���
�����
"���#�������� ���#������� �#A B� ����%C 6� �+66�

&+' =� <����
�
�� � ��#	� �! ���� ����� ������ &� /���0��*� ��1#������ �����	�
*��������	�� 	� ��� 9����
�� ;�������� �	
 "����
������ 5�������� 1�	�	
$����
���� �-� ���!#!�!%!� �++8�

&�8' �� *�
�	��� D 23���� �� ��� ��������� �! 2������� ";� �
���� �++8�

115

&��' E� 5�	��
� 4�������� �&�#� "������ ��� ";� *
���� �+66�

&� ' "� ��4��	� 5���	

��� �
	��
�� �� � ���������� �	
 �������
�����	� ��
	���
�
	�	����	��� �	����� ����������� 5������� 6��7�8� ����� +���#%� �++ �

&�!' "� ��4��	� 0
	����� ����	

��� �
	��
�� �	
 ���
	��� �	���� 1% ��� 1%.�
�������� 	� 5����	� 	� :	���� F	�� !8� ���-,�,8� 88��

&�#' G� ��� (�����
� ��� ���� �! ���� � �����	 �	������ 1����
 0����
�� *
����
�++��

&�%' G� ��� (�����
� 2�������� ��	 �������� ���������� ������ �� .	� "� /������
)�G� =	���
 ��� G�0� 9	����	�� @��	
��)��
���	� *
���� =����		4 	� �	��� ��
�
������� ������������ ��� �	��� �
	�
�

���� �	�� #� ��� + � +-� �++%�

&�-' 3� F�����
� :���������� �� *���	�	����)	
���� $����
���� *
���� �+-,�

&�,' 5� E	���	4� ��� 5� �	?	� "������
����	��� "	��� :	��� 	� ����� ��� ��
�	
��
;���
��� ��� ��� .������������ �7) 88%�

#�����	�

)� ��	� �	��� ��� �'������ �� 1-2 � 1�2 � 1!2�

� 1-2 � 1�2/ � 1��2 ��� � �� 1���2
 ��
 �� 1-2 ��� � ���� ���
���
������� ��� � ���
 ��
 ����
 ��1��2 � ����� 4	�� 1��2
 �� �
����& �����
 ��� ���� 1�2�

� 1�2 � 1-2/ � 1��2
 �� � �� 1��2� 4	�� 1�2 � 1��2 � ��� 1��2
 ��

�� 1��

�2
 ���� ������ ���� ���	���	�
 ����� ����� A��������
����
 �� ������ ��� ����� ���
��� ������� ����� ���

� 1!2 � 1�2/ � 1��2
 ��� ���
���� :���� ����� �� 1!2
 ��� 	��������

��
� �� ��� ����� �� 	�
���
 �� �����

� 1�2 � 1!2/ � 1��2
 �� � ������� ������ ���
��� �� 1�2 �������
����� ��
 �� ������ ��� ����� ���
��� ������� ����� ���

)� ��� ���� ��� �'������ �� 1�2 � 1?2 � 1@2 ������	��
 	�������� ��� ��
��
���	���	� ������	�������

116

Considerations on the nature of metaphorical
meaning arising from a computational
treatment of metaphor interpetation

A.M.Wallington, R.Agerri, J.A.Barnden, S.R.Glasbey and M.G.Lee

School of Computer Science,
University of Birmingham, UK)

A. M. Wallington@ cs. bham. ac. uk

Abstract

This paper argues that there need not be a full correspondence between source and
target domains when interpreting metaphors. Instead, inference is performed in
the source domain, and conclusions transferred to the target. A description of a
computer system, ATT-Meta, that partially implements these ideas is provided.

1 Introduction

It is now generally accepted, especially since the work of Lakoff and associates
(e.g. [14,13,15]) that much of everyday discourse shows evidence of metaphor.
Consequently, the question of how metaphor should be interpreted and what
the semantic consequences are of using a metaphor is of major importance in
determining how discourse should be interpreted.

Like Stern [19], we take the position that much of the interpretation of
metaphor is highly context dependent and involves pragmatics. However, we
believe that, for metaphor, pragmatics must be informed by theories of Artifi-
cial Intelligence and psychology. Thus we have some sympathy for Levinson’s
([16] p.161) claim that:

“the interpretation of metaphor must rely on features of our general ability
to reason analogically. ... It could be claimed that linguistic pragmatics alone
should not be expected to provide such a general theory of analogy, without
considerable help from psychological theory 1 .”

We depart from Levinson with respect to analogy, and in this paper, we
shall challenge current theories of analogy (e.g. [7,8,11] and what might

1 Levinson makes it clear that psychological theory includes Artificial Intelligence.

117

A.M.Wallington@cs.bham.ac.uk�

be termed correspondence theories of metaphor (e.g, Lakoff’s Conceptual
Metaphor Theory) in which a source domain is put in correspondence with
a target domain. We shall attempt to show that there is far less parallelism
between source and target than is often assumed and that the process of inter-
preting a metaphor often requires heavy use of inferencing in order to associate
source domain entities for which there is no parallel target equivalent, what
we term “Map-Transcending Entities” (MTEs), with information that is in-
volved in source to target transfer. Now other AI approaches to metaphor also
emphasise the role of source domain inference, Hobbs [10] and Narayanan [18]
for example. And, Martin’s MIDAS system includes a process of extending
conventional source to target mappings [17]. However, apart from important
technical differences between these systems and our own, we would wish to
stress the implications extensive inferencing has for source-target parallelism
and the repercussions this has for the semantics and pragmatics.

We do not yet have a fully developed semantics and pragmatics of metaphor
(although see [9] for some preliminary suggestions based on Stern). However,
what we do provide is an extensively developed (though informal) inference-
based model of metaphor understanding that employs an event-based formal-
ism similar to that of Hobbs [10], combined with a realization of this approach
in a fully implemented system (ATT-Meta) that effects the type of reasoning
that we claim is at the heart of much metaphor understanding (See [1,4,21]).

2 Correspondence approaches to interpreting metaphor

The work of Lakoff and Johnson e.g. [14,15] not only stressed the ubiquity of
metaphor in everyday discourse, but also noted that many metaphorical utter-
ances could be systematically related to each other, all appealing to different
aspects of the same source domain and being used to describe the same target
domain. In other words, what is involved in metaphor is the mapping of one
cognitive domain into another. For example, Lakoff [13] notes that the follow-
ing metaphors all involve a source domain of journeys being used to describe
a target domain of the progress of a love affair: Look how far we’ve come.
It’s been a long, bumpy road. We can’t turn back now. We’re at a crossroads.
The relationship isn’t going anywhere. We may have to go our separate ways.
We’re spinning our wheels. Our relationship is off the track. The marriage is
on the rocks. We may have to bail out of this relationship. To account for this
generalization, Lakoff assumes a “LOVE-AS-JOURNEY” mapping, i.e. “a set
of ontological correspondences that characterize epistemic correspondences by
mapping knowledge about journeys onto knowledge about love” ([13] p207).
Specifically, he assumes the following ontological correspondences:

THE LOVE-AS-JOURNEY MAPPING

i. The lovers correspond to travellers.

ii. The love relationship corresponds to the vehicle.

118

iii. The lovers’ common goals correspond to their common destination.

iv. Difficulties in the relationship correspond to impediments to travel.

Lakoff does not spell out in any detail exactly how the epistemic corre-
spondences function, and how inferences made in the source transfer to the
target. He does however, claim that mappings “project source domain infer-
ence patterns onto target domain inference patterns” ([13] p245, emphasis
added). However, we might turn to more formal work in analogy for a pos-
sible mechanism. Gentner (e.g. [7]) argues that complex systematic relations
between source domain entities such as causal relations also transfer, whilst
non-systematic relations such as attributes do not.

3 Map Transcending Entities

Let us return to Lakoff’s list above of travel metaphors. Consider the state-
ment that we’re spinning our wheels. How might we infer from this that the
love relationship is not progressing as it might? Plausibly, the following chain
of inferences might be entertained. If wheels are referred to, then, defeasibly 2 ,
a vehicle is involved. The spinning wheels are causing the vehicle not to move
as it should. If the vehicle is not moving as it should then it is not moving
towards its destination.

What can we make of this pattern of inferences? Both the vehicle and
the destination have correspondents in the target domain of the love affair,
namely the love relationship and the lovers’ common goals. With these cor-
respondences, we might assume that the source domain conclusion can be
transferred to become a target domain conclusion. But, this is the transfer of
it conclusion. It could never have been reached without the premise that some-
thing -the spinning wheels- was causing the vehicle not to proceed. So what
is the target correspondent of the spinning wheels whose presence is needed
in order to allow the entire inference pattern as opposed to just the conclu-
sion to transfer from source to target? Nothing in the list of four ontological
correspondences would seem to be appropriate.

If we look at the other examples listed, we find similar cases where the
lack of a target domain correspondent would prevent crucial aspects of the
inference pattern mapping from source to target. For example, what is the
target domain correspondent of the rocks in the utterance our marriage is on
the rocks? A similar point can be made about the location off the track in
our relationship is off the track. It is not that these statements are uninter-
pretable. Both would seem to permit the same conclusion that was reached
about the spinning wheels, namely that the relationship/vehicle is not pro-
gressing towards the destination and hence not towards the lovers’ goal.

Note that it does not seem quite right to assume that the spinning wheels,
rocks or lack of tracks are “impediments” in the sense of the third of Lakoff’s

2 We shall henceforth assume that inferences are defeasible unless otherwise stated.

119

correspondences. There may be an interpretation under which the bumps in
the statement its been a long bumpy road refer to specific, listable, difficulties
in the love relationship, and similarly, the rocks may refer, for some, to a par-
ticular event, but both could be used more generally. Whatever, if anything,
wheels might refer to it is a vague and very unspecific target domain entity.

Let us now consider the utterance: We’re at a crossroads. Stating that we
are at some location on a road might be taken to implicate that we are going
somewhere along the road and hence have a destination. This would map to
a target domain “common goal” However, there is no specific correspondent
given for crossroads. The source domain inference that if one is at a crossroads,
then there is a choice of possible destinations cannot transfer to the target
domain inference that there is a choice of possible relationship goals, if, as is
stated, inference patterns are mapped from one domain to another.

Now, a lack of target correspondents for source domain entities is not pe-
culiar to the LOVE AS A JOURNEY conceptual metaphor, but is generally
the case. In section 3, we shall give a description of our approach to metaphor-
ical reasoning and our computational system ATT-Meta that performs such
reasoning. A sentence that we shall analyse in some detail is the following:

1 In the far reaches of her mind, Mary believed Kyle was having an affair.

We assume that there is a mapping between ideas such as the idea that
Kyle was having an affair and physical, manipulable, objects. This reification
of ideas has a wide currency. We shall also assume here that the mind is often
viewed as a physical space. However, what does the far reaches refer to?

So what are we to make of these lacunae which prevent the step by step
transfer of inferences about the source becoming inferences about the tar-
get? Note that the absence of target domain correspondents of source domain
entities is not a mere technical problem in determining how source domain
implications transfer and become target domain implications, nor should we
assume that Lakoff’s claim that entire inference patterns as opposed to
certain conclusions transfer is just an imprecise form of words. If there are
no target domain correspondents of source domain entities, then we must as-
sume that there are entities in texts have no reference even indirectly via a
target domain equivalent to anything in the real world. There are entities
that can only be made sense of in terms of their literal meaning in the source
domain; a somewhat similar conclusion to Davidson’s [5] well known claim
that metaphors have only a literal meaning.

One possibility is that the four correspondences given in the LOVE AS A
JOURNEY mapping in section 2 are not intended to be exhaustive and the
mapping would if properly specified include correspondences for the entities we
have discussed. For example, the crossroads example might motivate adding
the following correspondence to the mapping.

v. A choice of goals corresponds to a choice of destinations.

However, a number of objections can be made to this view. Many concep-

120

tual metaphors are open-ended allowing almost any entity associated with the
source domain to be used when speaking of the target. Now, not all of these
might be conventional. They might make use of what Lakoff and Johnson
([14] p 53) call “the unused part” of the source domain. For example, Lakoff
[13] gives an example of a creative use of the conceptual metaphor LOVE IS
A JOURNEY, the song lyric we’re riding in the fast lane on the freeway of
love. There is no correspondent listed for fast lane nor for a freeway of love.
It would seem that no finite list of correspondents would ever be enough. This
criticism would also defeat lexically based treatments of metaphor.

The last example contained very little that could plausibly correspond to
target-domain entities; perhaps just the inference that a journey and thus
a destination is involved. However, it might be conceded that whilst many
modifier phrases often do not correspond, overall statement-like constituents
of the source will correspond to statements in the target. However, consider
the following example from real discourse of a particular metaphorical view
running through several consecutive statement-like utterances:

“She was too confused to judge anything. If he’d done nothing else, he’d
at least invaded her thoughts and tossed them around until there was only
chaos in her head.”

We shall assume that the clauses he’d at least invaded her thoughts, [he
had] tossed them around and there was only chaos in her head all rely on
the metaphorical views of IDEAS AS PHYSICAL OBJECTS and MIND AS
PHYSICAL SPACE, and taken together partially convey, in target-domain
terms, that the man, “he”, had done something that had resulted in the
thoughts of the woman, “her”, not functioning as they ought. But is
there any need to assume a specific target-domain parallel for tossing physical
objects around? A similar point can be made about the statement he’d ...
invaded her thoughts : the invading is just mentioned as a way of emphasizing
that he had done something that had had a strong effect on her thoughts.

Now, it is possible that the mention of invading may have been used if
the man had introduced thoughts into the woman’s mind by saying things
to her; the invading corresponding to introducing. It is then these thoughts
that caused the tossing of the woman’s pre-existing thoughts. However, it is
possible to imagine the above discourse segment occurring in a context where
it is clear that the man had not communicated anything to her.

In short, even a sentence, the traditional unit of analysis of truth, might
have no meaning other than in terms of the source domain. In the rest of this
paper we shall describe our approach and implemented computational model,
ATT-Meta, for reasoning with metaphorical utterances that contain MTEs.

4 Inferencing and ATT-Meta

Recall that our proposed fifth correspondence in the previous section had a
‘choice’ in the target corresponding to a ‘choice’ in the source. If we look at the

121

fourth correspondence, we find something similar. A target domain ‘difficulty’
corresponds to a type of difficulty or ‘impediment’ in the source. Note also
that Lakoff argues a-propos the ‘fast lane’ song lyric that driving in the fast
lane is exciting and that the excitement transfers to the target. And we could
give examples in which other emotional states transfer from the source to the
target. In the ‘invasion’ passage, the conclusion that the woman’s mind was
not functioning properly was likewise transferred. What all these cases have in
common is that they involve essentially ‘invariant’ transfers from the source
to the target. These are of a very different nature from the cross-domain
correspondences between say journeys and love affairs. We argue that such
transfers are affected by what we term “View-Neutral Mapping Adjuncts”
and argue that they apply universally, at least by default, regardless of what
cross-domain mappings are in play and our system has made a start both
at investigating what VNMAs are required and at formalising some of them.
(See [2,3,21] for more details.)

In order to sketch our approach let us return to the Anne/Kyle example:

1 In the far reaches of her mind, Anne believed Kyle was having an affair[.]

and compare it to the following variant:

2 Anne had in her mind the belief that Kyle was having an affair.

We assume that both sentences utilize the conceptual metaphors (a term
which we replace with the more neutral “metaphorical view” in our work):
(A) IDEAS AS PHYSICAL OBJECTS (B) MIND AS PHYSICAL SPACE.

We assume that one correspondence included under view (A) is the fol-
lowing: “Conscious mental processing corresponds to physical manipulation.”
(See [12] for motivation). We also assume that with activities such as pro-
cessing/manipulating, which one can have the ability to perform to a greater
or lesser degree, DEGREE is a VNMA and maps over from source to target
in an invariant manner. Thus a very low ability to mentally process an idea
corresponds to a very low ability to physically manipulate an object.

We assume that accompanying metaphorical view (B) are two ancillary as-
sumptions. Firstly, that the conscious self of the mind’s possessor is metaphor-
ically cast as a person physically located in (a central part of) the mind-region.
Secondly, that when a cognitive state (such as believing) is cast as located in
a physical sub-region of a mind, then the idea or whatever that is the object
of the state is also to be thought of as physically located in that sub-region.
As we suggested in the previous section, we assume that there is no known
correspondent for the far reaches; it is a map-transcending entity.

So how does the informational contribution of (1) and (2) differ? Plausibly,
what (2) principally conveys to the reader is that Anne has the ability to
operate in a conscious mental way on the idea that Kyle was having an affair.
In brief: Anne is aware of the affair. By contrast, what (1) seems to convey
is that the ability to operate holds only to a very low degree. In brief: Anne
had very little conscious awareness of the affair.

122

Thus, the situation described by the ‘far reaches’ utterance is cast as being
one where Anne’s conscious self is a person in a central part of Anne’s mind-
region, and the idea that Kyle was having an affair is in the far reaches of
the mind-region. Now, let us assume that the understander’s common sense
knowledge of physical space and physical objects includes the following:

* things in the far reaches of a region are usually distant from things in a
central part (distance being relative to the scale of the whole region).

* if a person is physically distant from a physical object then the person usually
has only a very low degree of ability to manipulate that object physically.

Thus, the understander can reason, within the terms of the source domains
of the metaphorical views (PHYSICAL SPACE and PHYSICAL OBJECTS),
that, probably, Anne’s conscious self has only 3 a very low degree of ability to
physically manipulate the idea that Kyle was having an affair.

This conclusion can become the target-domain conclusion that Anne has
only a very low degree of ability to operate in a conscious mental way on the
idea that Kyle was having an affair, by virtue of the correspondence between
physical manipulation and conscious mental processing that was assumed as
an aspect of the IDEAS AS PHYSICAL OBJECTS mapping, and by virtue
of the VNMA invariantly mapping the very low degree from source to target.

In our approach source-target correspondences are implicit in transfer
rules. In the case of the correspondences just mentioned, English glosses of
the relevant rules include:

* IF in reality X is a person and K is an idea

* AND K is being viewed as a physical object

* AND person X’s conscious self is being viewed as being able to

operate physically on K to at least degree D

* THEN presumably in reality X can mentally operate consciously

on K to degree at least D.

This rule allows one aspect of the source-domain conclusion to lead to the
target-domain conclusion that Anne can mentally operate consciously on the
Kyle-affair idea to degree at least “very low”.

In sum, our approach involves the following main types of processing:

* Construction of a representation of the direct, source-domain meaning of
the utterance, i.e. the meaning it has by taking only the source-domain senses
of the metaphorically-used words/phrases in the utterance. This meaning
consists of one or more propositions.

* In some cases, application of ancillary assumptions associated with the rele-
vant metaphorical views to create further propositions in source-domain terms.

* Usually, performance of source-domain reasoning on the basis of the direct

3 A very low degree of ability might implicate that Anne does not have a higher degree,
but does not entail it. Hence our addition of ’only’.

123

source-domain meaning, the products of ancillary assumptions, and general
knowledge relevant to the source domain meaning.

* Source-to-target transfer acts by application of transfer rules (and VNMAs).

This listing does not imply any particular temporal ordering of the types
of processing. Indeed in ATT-Meta the reasoning actually works backwards
from reasoning queries posed internally within the system and can involve any
intertwining and ordering of instances of the above types of reasoning.

An important feature of our approach that we have not yet mentioned is
that it encapsulates the source-domain reasoning based on the literal meaning
of the utterance within a special computational context we call a pretence
cocoon. Metaphorical transfer acts based on rules such as those above oper-
ate between the inside of the pretence cocoon and the reality-context outside.
Thus, for the Anne/Kyle example, the understander pretends, within the co-
coon, that Anne’s mind really is a physical space and that the believing really
does occur in the far reaches of this space. Consequences of this are inferred
in the pretence cocoon, possibly by substantial amounts of reasoning, using
ancillary assumptions and knowledge about physical objects and space. The
conclusions reached may then be able to be transmuted, via transfer rules
forming part of the relevant metaphorical views, into propositions in the re-
ality environment. However, we ought to stress that many different lines of
reasoning will be explored, many ultimately proving unsuccessful.

We should also stress that when a pretence cocoon is created, it is not
tagged as having to do with any particular metaphorical view. Only by hav-
ing the utterance’s direct source-domain meaning placed within it, such as the
mind having far-reaches, can an inference be made that that the particular
metaphorical view MIND AS PHYSICAL SPACE with its associated corre-
spondences is being used. Thus, even the question of the metaphorical views
involved in an utterance results from a possibly extensive web of inferences.

Finally note that although Anne’s mind is categorized in the pretence
as a physical region, this is in addition to its being categorized there as a
mind. (Thus, a pretence cocoon is reminiscent of a blend space in Blending
Theory: [6].) Given the existence of suitable knowledge rules, such as that
a mind is not a physical region, we can get conflicting propositions arising
within the pretence, because in general it is wrong to prevent rules about the
target domain operating within the pretence. In the present case we would
get both strong support for the mind being a physical region and for its not
being a physical region. The ATT-Meta system implements conflict-resolution
mechanisms that deal with reasoning conflicts in general, and that embody
a small number of general principles about conflict resolution in metaphor
[1,20]. In the present case, the mechanisms ensure that the proposition that
Anne’s mind is a physical region wins over the proposition that it is not.

124

5 Conclusion

We have provided a brief outline of some of the ideas in our implemented,
inference-based approach to metaphor. Much more detail, including the ap-
plication to other examples, can be found elsewhere [1,2,4].

The main point has been the use of inference to connect source-domain as-
pects that are raised by an utterance but not handled by known metaphorical
mappings to source-domain aspects in mappings that the understander does
know, and particularly to knowledge of what invariant aspects of metaphorical
utterances are likely to transfer. By this means, the approach can deal with
open-ended extensions of metaphorical beyond what can be readily dealt with
by known mappings by themselves, without the need for creating mappings
for the unmapped source-domain aspects.

We thus radically downplay source/target parallelism in metaphor in favour
of inference, and place great weight on the thesis that metaphors often intro-
duce source-domain aspects that do not need any correspondents in the target
domain (let alone already have any): their only purpose is to support useful
lines of source-domain inference that connect to known mappings. One of
the interesting semantic issues raised is that these unmapped aspects do not
by themselves have any meaning in target-domain terms, and it would be a
mistake to try to specify such meaning.

6 acknowledgements

This work has been supported by current and past grants: EP/C538943/1 and
GR/M64208, from the Engineering and Physical Sciences Research Council.

References

[1] Barnden, J.A. (2001) Uncertainty and conflict handling in the ATT-Meta
context-based system for metaphorical reasoning. In, V. Akman, P. Bouquet,
R. Thomason and R.A. Young (Eds), Procs. Third International Conference on
Modeling and Using Context. Lecture Notes in Artificial Intelligence, Vol. 2116.
Berlin: Springer, 15-29.

[2] Barnden, J.A. and Lee, M.G., (2001). Understanding open-ended usages of
familiar conceptual metaphors: An approach and artificial intelligence system.
Technical Report CSRP-01-05, School of Computer Science, University of
Birmingham.

[3] Barnden, J.A., Glasbey, S.R., Lee M.G. and Wallington, A.M. (2003). Domain-
transcending mappings in a system for metaphorical reasoning. In Proceedings
of the Research Note Sessions of the 10th Conference of EACL.

[4] Barnden, J.A., Glasbey, S.R., Lee, M.G. and Wallington, A.M. (2004), Varieties
and directions of inter-domain influence in metaphor. Metaphor and Symbol

125

19(1), 1–30.

[5] Davidson, D. (1979). What metaphors mean. In, S. Sacks (Ed.), On Metaphor.
U. Chicago Press, 29-45.

[6] Fauconnier, G and Turner, M. (2002). The Way We Think: Conceptual Blending
and the Minds Hidden Complexities. NY: Basic Books.

[7] Gentner, G. (1983). Structure-mapping: A theoretical framework for analogy.
Cognitive Science, 7(2), 155–170.

[8] Gentner, D., Falkenhainer, B. and Skorstad, J. (1988). Viewing metaphor as
analogy. In D.H. Helman (Ed.), Analogical reasoning. Dordrecht. Kluwer.

[9] Glasbey, S.R and Barnden, J.A. (submitted). Towards a situation-based
discourse semantics for metaphor. Submitted to the journal Research on
Language and Computation.

[10] Hobbs, J.R. (1990) Literature and Cognition CSLI Lecture Notes, Center for
the Study of Language and Information, Stanford University.

[11] Holyoak, K J. and Thagard, P. (1989). Analogical mapping by constraint
satisfaction. Cognitive Science, 13(3), 295-355.

[12] Jaekel, O. (1995). The Metaphorical Concept of Mind, in J.R. Taylor and R.E.
MacLaury (eds), Language and the Cognitive Construal of the World. Berlin New
York, Mouton de Gruyter. 197–229.

[13] Lakoff, G. (1993). The contemporary theory of metaphor. In A Ortony (Ed.),
Metaphor and Thought, 2nd ed. Cambridge, UK: Cambridge University Press.

[14] Lakoff, G. and Johnson, M. (1980). Metaphors We Live By. University of
Chicago Press.

[15] Lakoff, G. and Johnson, M. (1999). Philosophy in the Flesh. NY: Basic Books.

[16] Levinson, S. (1983). Pragmatics. Cambridge: Cambridge University Press.

[17] Martin, J. H. (1990). A Computational Model of Metaphor Interpretation. NY:
Academic Press.

[18] Narayanan, S. (1999). ‘Moving right along: A computational model of
metaphoric reasoning about events,’ Procs. National Conference on Artificial
Intelligence, pp.121–128. AAAI Press.

[19] Stern, J. (2000). Metaphor in Context. Cambridge, MA and London, UK:
Bradford Books, MIT Press.

[20] Wallington, A.M and Barnden, J.A. (2004). Uncertainty in Metaphorical
Reasoning. In Procs of the Workshop on Computational Models of Natural
Argument (CMNA) at ECAI 2004. August 2004, Valencia, Spain.

[21] Wallington, A.M., Barnden, J.A. Glasbey S.R. and Lee M. G. (2006).
Metaphorical reasoning with an economical set of mappings. Delta, 22:1.

126

Supporting temporal question answering:
strategies for offline data collection

David Ahn

ISLA, University of Amsterdam
ahn@ science. uva. nl

Steven Schockaert, Martine De Cock, and Etienne Kerre

Ghent University
Steven. Schockaert,Martine. DeCock,Etienne. Kerre@ UGent. be

Abstract

We pursue two strategies for offline data collection for a temporal question answering
system that uses both quantitative methods and fuzzy methods to reason about time
and events. The first strategy extracts event descriptions from the structured year
entries in the online encyclopedia Wikipedia, yielding clean quantitative temporal
information about a range of events. The second strategy mines the web using
patterns indicating temporal relations between events and times and between events.
Web mining leverages the volume of data available on the web to find qualitative
temporal relations between known events and new, related events and to build fuzzy
time spans for events for which we lack crisp metric temporal information.

1 Introduction

Time structures our world, and the questions we ask reflect that. Not only
do we want to know quantitative information—when did some event happen
or how long did some state of affairs persist—but we also want qualitative
information—what was going on before or during major events, or what hap-
pened afterwards. While the amount of information available to answer such
questions continues to increase, the temporal information needed is not always
fully specified. No information source is obliged to timestamp every referenced
event, so while evidence for qualitative temporal relations abounds, there is
often no quantitative information to verify it. Furthermore, many events, such
as the Cold War or the Great Depression, are inherently vague—with gradual
beginnings or endings—or ill-defined aggregations of smaller events.

In order for a temporal QA system to be able to make use of such limited,
incomplete temporal information, careful consideration must be given both to

127

ahn@science.uva.nl
Steven.Schockaert,Martine.DeCock,Etienne.Kerre@UGent.be

the extraction of temporal information it needs and to the temporal reasoning
mechanisms it employs. We are presently at work on a temporal QA system
that provides access to events extracted from Wikipedia and satellite events
mined from the web and that models the time span of vague events as fuzzy sets
and qualitative temporal relations as fuzzy relations. In this paper, we focus
on the creation of the knowledge base of events and temporal information,
which takes place offline, prior to any user interaction. A separate paper [10]
describes the fuzzy reasoning mechanisms the system uses.

In §2 and §3, we introduce temporal questions and sketch the architec-
ture of our temporal QA system. In §4, we describe event extraction from
Wikipedia, an online encyclopedia. In §5, we describe web mining for fuzzy
and qualitative temporal information. Note that the work described here is
still in progress, so while our extraction methods are in use, we are still ex-
perimenting with them, and the QA system is not yet complete.

2 Temporal questions

There are a variety of question types that fall under the umbrella of temporal
questions, including questions that ask for times as answers, those that ask for
temporal relations, and those that ask for information restricted to a certain
time period [6]. The degree of explicitness of temporal reference in a temporal
question also varies significantly: some temporal questions refer explicitly to a
date or time, while others refer to times only implicitly, by reference to events
or states. Here, we focus on temporally restricted questions, and in particular,
those restricted by events, such as these (from the CLEF 2005 QA track):

(1) Who played the role of Superman before he was paralyzed?

(2) What disease did many American soldiers get after the Gulf War?

The data collection we describe, though, can be used to support the answering
of other types of temporal questions, as well.

Temporally restricted questions consist of two parts: the main clause,
which indicates the information request, and the temporal restriction, which
is a subordinate clause or PP headed by a temporal preposition or connective,
such as before, after, during, etc., which we refer to as temporal signals [7]. The
temporal signal that connects the two parts of a temporally restricted ques-
tion indicates the temporal relation that must hold between the time spans
of the restricting event and the requested events. Since much of the tempo-
ral information we have access to regarding events is vague and incomplete,
we explore the use of fuzzy temporal reasoning for temporal QA, instead of
the standard Allen algebra of temporal interval relations [1]. The model we
use is a generalization of Allen’s algebra that is suitable for vague events and
relations. For crisp events, our reasoning algorithm is equivalent to Allen’s
path-consistency algorithm. For vague events, fuzzy relations can express that
a given qualitative relation is only satisfied to a certain degree [11].

128

3 Architecture of a temporal QA system

Our temporal QA system follows a strategy of extracting information likely to
be useful in answering questions—in our case, a knowledge base of events and
temporal relations—in a pre-processing stage, before any questions are asked
[3,4]. The system consists of several components: a question analysis module,
the knowledge base, and an answer selection module.

Question analysis: Since we are focusing on temporal questions in which
a temporal relation restricts the information being queried, our question anal-
ysis module must separate the non-temporal part of the question—the actual
information request—from the temporal restriction. Our question analysis
module parses the question and extracts phrases headed by temporal signals
as potential temporal restrictions. It then uses standard pattern-based tech-
niques to extract keyword queries and the expected answer type.

Knowledge base: The knowledge base (KB) consists of two parts: an
XML database containing descriptions of individual events and a temporal
relation network containing inclusion and before/after relations for events in
the KB. Quantitative temporal information about events (i.e., starting and
ending dates for crisp events and fuzzy sets for vague ones) is contained in the
XML database. The rest of this paper describes the construction of the KB.

Answer selection: To answer a temporally restricted question, we must
find events that match the non-temporal part of the question and filter out
those that do not satisfy the restriction. We treat the problem of finding the
events as a retrieval problem, using the keyword queries from question analy-
sis, with event descriptions as target documents. Checking whether an event
satisfies the restriction is a matter of inferring whether an appropriate qualita-
tive temporal relation holds between the event and a time or event matching
the restriction. We use IR techniques to find events matching the restriction,
and we use both quantitative and fuzzy temporal reasoning to make the infer-
ence [10]. From the remaining event descriptions, we use standard techniques
to extract an answer. Typically, the information request is mapped to a named
entity type by the question analysis module, so appropriate named entities are
harvested and scored and the top-scoring entity is returned.

4 Extracting events from Wikipedia

Wikipedia is a free, open-domain, web-based encyclopedia [12]. In addition
to traditional encyclopedia entries, it also has entries for a variety of time
periods, which contain lists of historical and/or current events. We extract
events from the entries for years. The standardized formatting of year entries
in Wikipedia, together with the wiki markup used for this formatting, makes
extracting event descriptions straightforward. A typical year entry contains
sections delimited by the second-level headings ==Events==, ==Births==, and
==Deaths==. Each of these sections is optionally split into subsections de-

129

limited by third-level headings indicating months (e.g., ===May===) or the
lack of a date (===Unknown date===). Within these subsections are asterisk-
delimited lists, each item of which corresponds to an event (or a date with a
list of events). Event descriptions begin with a date or a date range, if known,
and then continue with one or two sentences describing the event. This text
contains phrases marked up as wiki links (pointers to Wikipedia entries):

(3) [[March 10]] - The [[New Hampshire]] primary is won by [[Henry Cabot
Lodge]], Ambassador to [[South Vietnam]].

Sometimes, an event description begins with a wiki link, set off with a colon,
indicating a larger event (which we call a super-event) of which it is a part:

(4) [[August 8]] - [[Watergate scandal]]: US President [[Richard Nixon]]
announces his resignation (effective [[August 9]])

Given the structured nature of year entries, simple hand-built patterns
can be used to perform what amounts to shallow semantic interpretation,
extracting event descriptions from the entries, including temporal location
information and limited participant and mereological information (via wiki
links and super-events, when present). For each extracted event description,
the date(s) and any embedded wiki links are extracted, using simple pattern-
matching, and the text of the description is parsed. This information is added
to our XML database as an event element with the following sub-elements:
date/start date/end date (normalized dates; which one(s) depends on what
is given in the entry), super event (wiki link to super event, if present),
description (text of the description), and parse (converted to XML).

From the entries for the years from 1600 to 2005, we have extracted about
33,000 events, somewhat over half (about 19,000) birth and death events.

5 Web mining for fuzzy and qualitative information

The basic idea behind web mining is that there is enough information on the
web that if there is a significant connection between two events, we should be
able to find this connection by searching for patterns that typically express it.
We use web mining to build representations of the time span of vague events
and to find both additional events related to events already in the KB and for
qualitative temporal relations between events in the KB.

While most of the smaller-scale events extracted from Wikipedia come
with quantitative temporal information, it is not always fully specified. Fur-
thermore, many of the super-events from Wikipedia, as well as the new events
we mine from the web, lack such information. We cope with this by search-
ing the web for beginning and ending dates using a simple pattern-based
approach—sending patterns to Google and extracting information from the
returned snippets. The patterns we use include, e.g., 〈event〉 began on 〈date〉
and 〈event〉 lasted until 〈date〉. If there is sufficient agreement among different
web pages about the beginning and ending date of an event, we represent the

130

time span of this event as an interval. If not, we use the techniques described
in [9] to construct a suitable fuzzy set [13] to represent the time span, which
is stored in the XML database as part of the event representation. Of course,
for some events, we may fail to find sufficient information about beginning or
ending dates, in which case they remain undated, or ungrounded, events.

We also use a pattern-based approach to mine the web both for new events
and for temporal relations relating ungrounded events to grounded events. Be-
cause new events are only usable if they can be temporally connected to events
already in the KB, we can use a uniform set of hand-crafted patterns that in-
dicate a temporal relation between events. The patterns we use include, e.g.,
〈NP1〉 gave way to 〈NP2〉 and 〈NP2〉 took place after 〈NP1〉, for before/after
relations, and 〈NP1〉 and other events during 〈NP2〉 and 〈NP1〉 took place
during 〈NP2〉, for inclusion relations. All our patterns relate NP descriptions
of events, which means that they can only be used with known events that
have NP descriptions. Fortunately, this includes all super-events and newly
mined events, which make up most of the ungrounded events in the KB.

Since we can use the same patterns to mine for new events and for tempo-
ral relations for ungrounded events, we combine the tasks. Our basic proce-
dure for mining with these patterns is as follows. Substitute either 〈NP1〉 or
〈NP2〉 with the NP description of a known event, send the resulting pattern to
Google, and parse and tag the returned snippets with named entities. Extract
NPs in the other NP position, discarding those tagged as person, location,
or organization. For each remaining NP, if it refers to a known event in the
KB, add to the temporal relation network a link between the original known
event and the event referred to by the mined NP. Otherwise, add a new event
for the mined NP and a link between the original event and the new event.

The hardest step is determining whether a mined NP refers to an event
already in the KB. Coreference resolution is clearly necessary to temporal
constraints on coreferring event descriptions, but to maintain consistency in
the KB, we must be careful in asserting coreference. We do not try to solve
the cross-document coreference task completely but instead split mined NPs
into two groups. The first group, which includes all indefinite, demonstrative,
quantificational, and pronominal NPs, is added to the temporal network but is
never considered for coreference. The second group contains NPs that we are
confident refer to a unique event and that are thus candidates for coreference.

To find these NPs, we are experimenting with heuristics to determine
unique reference. Some heuristics are capitalization-based, while others are
based on collocation measures using web hit counts [5,8], such as the ratio
between the number of hits for the entire NP and the product of the hits
for each of the individual words in the NP (similar to pointwise mutual in-
formation [2]). When an NP is determined to be uniquely referring, we use
string matching to determine whether it is coreferent with an existing event
description. If it is, the temporal relation mined is added to the KB for this
existing event. Otherwise, a new event and relation are added to the KB.

131

6 Conclusion

We have described the construction of a knowledge base of events and temporal
relations for a temporal QA system. We take advantage of a freely available,
structured resource—Wikipedia—to obtain relatively accurate quantitative in-
formation about events. We also mine the web to build fuzzy sets for vague
events and to find events for which we can only get qualitative information.

Acknowledgements The first author was supported by the Netherlands
Organization for Scientific Research (NWO), under project number 612.066.302.
The second author was supported by a PhD grant from the Research Foun-
dation – Flanders.

References

[1] Allen, J., Maintaining knowledge about temporal intervals, Communications of
the ACM 26 (1983), pp. 832–843.

[2] Church, K. et al., Using statistics in lexical analysis, in: Lexical Acquisition:
Exploiting On-Line Resources to Build a Lexicon, Lawrence Erlbaum, 1991 .

[3] Fleischman, M., E. Hovy and A. Echihabi, Offline strategies for online question
answering: Answering questions before they are asked, in: ACL 2003, 2003.

[4] Jijkoun, V., G. Mishne and M. de Rijke, Preprocessing documents to answer
Dutch questions, in: BNAIC’03, 2003.

[5] Magnini, B., M. Negri, R. Prevete and H. Tanev, Is it the right answer?
Exploiting web redundancy for answer validation, in: ACL-02, 2002.

[6] Pustejovsky, J. et al., TERQAS final report, http://www.cs.brandeis.edu/
∼jamesp/arda/time/readings/TERQAS-FINAL-REPORT.pdf (2002).

[7] Sauŕı, R. et al., TimeML annotation guidelines, http://www.cs.brandeis.
edu/∼jamesp/arda/time/timeMLdocs/annguide12wp.pdf (2004).

[8] Schlobach, S., D. Ahn, M. de Rijke and V. Jijkoun, Data-driven type checking
in open domain question answering, Journal of Applied Logic (to appear).

[9] Schockaert, S., Construction of membership functions for fuzzy time periods, in:
J. Gervain, editor, ESSLLI 2005 Student Session, 2005.

[10] Schockaert, S., D. Ahn, M. De Cock and E. E. Kerre, Question answering with
imperfect temporal information, in: FQAS-2006, to appear.

[11] Schockaert, S., M. De Cock and E. E. Kerre, Imprecise temporal interval
relations, in: LNCS 3849, Springer, 2006 .

[12] Wikipedia, Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/
index.php?title=Wikipedia&oldid=35397363, [Accessed 16-January-2006].

[13] Zadeh, L. A., Fuzzy sets, Information and Control 8 (1965), pp. 338–353.

132

http://www.cs.brandeis.edu/~jamesp/arda/time/readings/TERQAS-FINAL-REPORT.pdf
http://www.cs.brandeis.edu/~jamesp/arda/time/readings/TERQAS-FINAL-REPORT.pdf
http://www.cs.brandeis.edu/~jamesp/arda/time/timeMLdocs/annguide12wp.pdf
http://www.cs.brandeis.edu/~jamesp/arda/time/timeMLdocs/annguide12wp.pdf
http://en.wikipedia.org/w/index.php?title=Wikipedia&oldid=35397363
http://en.wikipedia.org/w/index.php?title=Wikipedia&oldid=35397363

Formal Semantics Of Verbs For Knowledge Inference

Igor Boyko, Ph.D.
Logical Properties Inc., Montreal, Canada

igor_m_boyko@hotmail.com

Abstract

This short paper is focused on the formal semantic model: Universal Semantic Code
(USC), which acquires a semantic lexicon from thesauruses and pairs it with formal
meaning representation. The USC model postulates: Knowledge Inference (KI) is effec-
tive only on the basis of Semantic Knowledge Representation (SKR). The USC model
represents formalized meanings of verbs and phrasal verbs as a main component of its
semantic classification. USC algebra defines a formula for the verb, limited set of ele-
ments, relations between them, and a natural language interpretation of the formula.

1 Introduction

Knowledge Inference applications development depends on natural language processing (NLP)
components including lexical classifiers for word sense disambiguation. Word meaning classifi-
cation and word sense disambiguation techniques facilitate understanding of the terms from dif-
ferent domains.

Numerous approaches of the lexical classification exist. A regular thesaurus defines the mean-
ing of the world but not provides its formal classification what excludes the possibility of KR
and KI from such source. Unfortunately in this short paper we are not able to make deep analysis
of known methods of knowledge inference in comparison with USC and therefore will talk about
main features of the USC model.

Functional classification of verbs based on Universal Semantic Code (Martynov, 1996, 2001)
covers the idea of combining the thesaurus and formal representation. In the core the USC model
considers verbs as actions and provides inference of the consequences of actions.

2 Formalization of the Verb Classes

The USC model has algebraic and logic roots and declares that knowledge can be represented
and stored with semantic code, and knowledge inference can be implemented on the basis of the
theorems and axioms operating with the semantic code.

Every verb represents an action and every natural language statement comprises an action.
Even a statement ‘the desk’ means the action: ‘the desk exists’. Since USC does not make a dif-
ference between ‘action’ and ‘verb’ we consider ‘verb’ or ‘action’ as a main component of the
world description. Every action should be surrounded with some elements.

Potentially any action is a reaction on some stimulus where stimulus is an action too. Three-
component USC notation (X!!!!Y) !!!!Z means stimulus: X by means of Y affects on Z.

The first element of the reaction is always equal to the last element of the stimulus, because
some action was implemented with the object Z. An example of the complete USC formula is
((X!!!!Y)!!!!Z)!!!!((Z!!!!Y)!!!!W) or shortly ((XY)Z)((ZY)W). On the abstract level the interpreta-

133

tion of the formula is: “X by means of Y affects on Z (stimulus) in a result Z by means of Y af-
fects on W (reaction)”.

In USC the reaction part of the formula can be ‘active’ or ‘passive’:
((XY)Z)((ZY)W) – ‘active’ formula
((XY)Z)(Z(YW)) – ‘passive’ formula with the interpretation: X by means of Y affects on Z in

a result Z holds Y in W.
The difference is in changing the position of the parenthesis in the right part of the formula.
The active reaction represents an active action like: create, destroy, compress, etc. and the pas-

sive reaction represents a passive action like: exist, absent, etc.
Each USC formula represents a class of similar actions or similar verbs. The action assigned as

a name to the class represents all of those similar actions. The class action (CA) defines a name
of the class and has one or minimal number of meanings. For example, the class “fill” comprises
a list of actions-analogues in Fig.1. Fig.2 demonstrates actions-analogues for the class “pay”.

Fig 1. Class “Fill”

Fig 2. Class “Pay”

We would like to emphasize that the action “charge” is displaced in the both examples accord-

ing to the meaning.

3 Interpretation of the CA

Since each CA represents the class of the actions, we are able to formulate its interpretation for
extracting the hidden members of the action.

The action “fill” has the interpretation “X by means of Y fills Z into W”. Then we extract the
active members of the action, their roles and substitute them with potential subject and objects of
the action. For instance:

• X = subject - worker
• Y = instrument - loading arm
• Z = first object - oil
• W = second object - tanker

The complete phrase is: “Worker by means of the loading arm fills oil into the tanker”.
Each action of the class “fill” has the same interpretation. So for the action “charge”, as a

member of the class “fill”, the interpretation is: “X by means of Y charges Z in W” and action
(phrasal verb) “load up” has the interpretation: “X by means of Y loads up Z in W”.

For the action “pay” the interpretation is: “X by means of Y pays Z”, where:
• X = subject - customer
• Y = tool - credit card
• Z = object - money

The complete phrase is: “Customer by means of credit card pays money”. So the action “charge”
as a member of the class “pay” has the interpretation: “X by means of Y charges Z” and the ac-
tion “pay back” has the interpretation: “X by means of Y pays back Z”.

Action verb:
 Fill

Actions-analogues:
 Charge
 Inflate
 Load up

Action verb:
 Pay

Actions-analogues:
 Charge
 Disburse
 Pay back

134

4 Formal Representation of the CA

So far we have considered two CAs: “fill” and “pay” and determined their sets of variables:
• Fill – XYZW
• Pay – XYZ

Complete formula of the class consists of two parts. The first part of the formula is a stimulus
and the second part is a reaction on the stimulus. A procedure of reading of the formula has sev-
eral steps. For instance, the formula and interpretation for the action “fill”:

 ((X!!!!Y)!!!!Z)!!!!(Z!!!!(Y!!!!W))
“A worker by means of the loading arm affects oil in a result oil being kept within the tanker”
or “A worker fills oil into the tanker by the loading arm”.

The operation of implication [!] demonstrates the direction of the action.
The left part of all USC formula: ((X!!!!Y)!!!!Z) is identical as a stimulus for all actions, but

the right parts are different. The operation of implication between two parts of the formula is a
standard logical implication. But implication inside of the parts of the formula is a directed influ-
ence of one element onto another.

So for the CA “pay” the formula and interpretation are:
 ((X!!!!Y)!!!!Z)!!!!(Z!!!!(Z!!!!Y’))

“A customer by means of the credit card affects the money in a result the money being kept out
of the credit card” or “A customer pays the money by the credit card”.

Those formulas for “fill” and “pay” differ in the right part.
The operation [’] is a pointer on the location of one object with respect to another in space

and considered as a negation to the location.
USC is a kind of a spatial geometry. All objects in the world can have one of three locations: to

be in, to be on the cover, to be out of the cover and notations like: W, W’, W’’ mean accordingly
‘inside’, ‘not inside’ that is equal to ‘superficially’, ‘not superficially’ that is equal to ‘outside’.
For example actions: ‘compress’ is in, ‘join’ is on, ‘disperse’ is out and they are active.

 W = inside

 W’= not in ! superficially

 W’’ = not superficially ! outside

Fig.3 Location of the objects in space

Now we can represent action as four-element structure (Fig.4):

Fig.4. Structure of the action

Class action:
 Fill

 Interpretation:
X by means of Y fills Z
into W

Actions-analogs:
Charge
Inflate
Load up

 Formula:
((X!!!!Y)!!!!Z)!!!!(Z!!!!(Y!!!!W))

135

5 USC Axioms

KI with the USC model is based on the axioms of the USC algebra. Relations between USC
formulas can be represented as an oriented graph of the axioms. The nodes of the graph are rep-
resented by the USC formulas and the arcs are the USC axioms. Since a solution of an intellec-
tual problem is a kind of inference the solution can be obtained as a route of arcs. The algorithm
of the problem solving is based on the successive drawing of the route from the target situation
to the initial one or vice versa.

The axioms of the USC algebra determine the rules of conversion from one formula into an-
other. For example, the axiom of transposition determines changing of parenthesis in the right
part of the formula:

((XY)Z)((ZW)Z’’) " ((XY)Z)(Z(WZ’’)) == if ‘create’ " then ‘exist’

In the axiom of diffusion the right part of the formula can be converted by replacing the vari-
able in the first or second position into the second or third position (Fig.5). With CAs in the posi-
tions of the formulas we receive the consequences of the actions in Fig.6.

((ZW)Y) ((ZY)W))

((ZW)W) (ZW)Z) ((ZY)Z) ((ZY)Y))

((ZZ)W) ((ZZ)Z)) (ZZ)Y))

Fig 5. Axiom of diffusion

embed extract

connect prevent implement disconnect

 fill move withdraw

Fig 6. Substitution with CAs

The arrows between formulas determine the direction of the inference from the action to the
action. The nodes of the both graphs show antonymic dependence of the class names, like: ‘em-
bed’ – ‘extract’ or ‘connect’ – ‘disconnect’.

A set of the USC axioms consists of two parts (Martynov, 2001):
a) Four axioms of generation defining sets of variables and their positions in the formula
b) Four axioms of transformation defining rules of converting one formula into another
The axioms define the consequence of the actions cannot be arbitrary.

So, the formal part of the USC algebra has been determined as A = < M, !!!!, ’ >, where M is a
set of elements, !!!! is a binary-non-commutative and non-associative operation on the given set
(the operation of implication), [’] is a unary operation on the given set (the operation of nega-
tion). It strictly corresponds to Lukasiewicz variant of algebra (Lukasiewicz, 1958).

6 Semantic Knowledge Inference with USC

To start knowledge inference with USC we should ask: What are we going to infer? Since USC
operates with the actions we will calculate the consequences of the actions because each action
has a precedent action or a cause and each action is a cause for a consequent action:

136

 (precedent action ! current action! consequent action) == (precedent verb ! current verb!
consequent verb).

As an example we will consider a process of cooking liquid according to the description (Bon-
nisone, 1985): “The coffee machine’s container comprises cold water and heating elements. The
heating elements heat the water in a result the water steam is lifting to the top of the container
where grain coffee is displaced. The steam is condensing in the top cold part of the container
then percolates through grain coffee and drops into the cap”.

According to the goal the final result is ‘cooked coffee’. Extraction of the actions from the de-
scription gives us a consequence of the actions: heat ! lift ! condense ! percolate ! drop”.
Substitution of the actions with the USC formulas gives a consequence of the formulas:
(ZY)Y’ ! (ZY)Y’’ ! (ZW)Y’ ! (ZY)W’’ ! Z(YZ’’).

Using the graph of the USC axiomatic action relations we are able to verify correctness of the
formulas order. We will start the analysis from the last formula Z(YZ). According to the axioms
this formula cannot be derived from the (ZY)W. To derive it one intermediate formula should be
introduced: (ZY)W’’ ! Z(YW’’) ! Z(YZ’’). This inference extends the final stage of the proc-
ess and corresponds to the USC thesaurus: percolate ! cook ! drop. Such inference looks logi-
cally correct because cooked coffee is a result of percolation and only then cooked coffee drops
down.

On the next step we consider a relation between (ZW)Y’ and (ZY)W’’. According to the axi-
oms the next inference between two formulas should be implemented:

 (ZW)Y’ ! (ZY)W’ ! (ZY)W’’
or condense ! liquefy ! percolate.

If we combine two steps of the inference together then receive the consequence:
 (ZW)Y’ ! (ZY)W’ ! (ZY)W’’ ! Z(YW’’) ! Z(YZ’’)

or condense ! liquefy ! percolate ! cook ! drop.
The next step of verification for (ZY)Y’’ ! (ZW)Y’ shows a necessity to introduce an inter-

mediate formula:
 (ZY)Y’’! (ZW)Y’’ ! (ZW)Y’

or lift ! cool ! condense.
The final step of verification shows explicit axiomatic relation (ZY)Y’ ! (ZY)Y’’.
In a result we have the consequence of the actions:
 (ZY)Y’ ! (ZY)Y’’! (ZW)Y’’ ! (ZW)Y’ ! (ZY)W’ ! (ZY)W’’ ! Z(YW’’) ! Z(YZ’’)

or heat ! lift ! cool ! condense ! liquefy ! percolate ! cook ! drop.
Now we are able to reconstruct the description of the whole process in the extended and cor-

rected form: “The coffee machine’s container comprises cold water and heating elements. The
heating elements heat the water in a result the water steam is lifting to the top of the container
where grain coffee is displaced. Oh the top the steam is cooling and condensing on the grain cof-
fee. As a result the grain coffee is liquefying and liquid is percolating through. Percolated liquid
is a liquid coffee which drops into the cap”.

The example includes the inference with axioms presented and not presented in this short arti-
cle but all set of rules, axioms and an example of the USC thesaurus could be seen in the book of
Martynov V., 2001.

The model was successfully applied for the inventive problems solving (Boyko, 2001) where
an inventive solution is a consequence of the actions (technological operations) related through
the USC axioms. Besides, the USC inference using the USC thesaurus and axioms can be ap-
plied not only for the technical domain but also for SKI in physical, chemical, biological, infor-

137

mational, and other domains with a condition of having specialized dictionaries coordinated with
the USC thesaurus.

7 Conclusion

The USC model unites several components including: formal representation of the actions,
natural language interpretation, visualization of location of the elements in space, and axioms of
inference. The latest published version of the USC action classifier comprises 96 classes divided
on two main parts: 48 physical and 48 informational classes (Martynov, 2001). In the article we
were able to analyze only the part with physical classes.

Informational classes include actions like ‘forget’, ‘understand’, ‘offend’, ‘order’ etc. Axio-
matic relations between them are similar to axiomatic relations for physical actions represented
in the article with some restrictions.

All classes relatively paired by the opposite or antonymic principle: create/destroy, lift/low,
push/pull, remember/forget, love/hate, etc. “Relatively paired” means the opposite actions can be
deduced by axioms and they are located on the same level in the classification table. The whole
set of actions comprises 5200 entities. Since 2001 year the number of the classes has not been
changed but the names of the classes in some positions has been verified and reconsidered.
Axiomatic structure has been changed slightly.

Formal representation of the actions as an intermediate code in “human-computer” interface is
the essential property of USC. The USC formulas have been used to represent not only verbs and
phrasal verbs, but also to represent deverbal nouns and adjectives for development of the univer-
sal principles of machine translation (Boyko, 2002). The USC model can be adjusted to any
natural language.

In general the models of formal semantic coding for knowledge inference is a new area of ma-
chine learning that has been applied almost exclusively to classification tasks. Most experiments
in corpus-based natural language processing present results for some subtasks and there are few
results that can be successfully integrated to build a complete NLP system.

References

Boyko, I. 2001. Computer Semantic Search of Inventive Solutions. TRIZ Journal. USA. March.
 http://www.triz-journal.com/archives/2001/03/d/
Boyko I. 2002. Terminological Abstractions for Terminology Classification. 6th International

Conference Terminology and Knowledge Engineering. Nancy, France. http://www.sempl.net
Bonnisone P.P., Valavanis K.P., A Comparative Study of Different Approaches to Qualitative

Physics Theories. Proceedings of the Second Conference Artificial Intelligence Applications
(CAIA-85), Miami Beach, 1985.

Lukasiewicz J. 1958. Elementy Logiki Matematysznej. Warszawa.
Martynov V. 1996. USC Calculus of Class Word and Class Ideas. Invention Machine Pro-

ject’96. Cambridge, MA. http://www.sempl.net
Martynov V. 2001. Foundations of semantic coding. Summary. European Humanity University.

Minsk. http://www.sempl.net

138

http://www.sempl.net/

���������
	��
�
����������� ��������������	 �
�!�#"$"$��%&�����#�('����)	*���+���&,

-/.103240451576�038903:�;1<
=?>A@CBEDFBEGABIH$JK=ML�NPORQ�>SDFTUHCV?@?DEBEWYXMZK[]\UV_^`@_V?GbacH

d eSfhgji�kRlnm]o�g�pqkrf
s$t�uYv?uxw?yczF{j|_}Fyc~ yb����v_}����c}F~j��v?u)��u)v_ux~j�xuxw�}�wR�xuxv�|
�b}�~�z���tj}F�ct�z���}F~A|_uxv_v?uxzF��|Cu)� �R}�|Ct&|_t�u
�xyc����{j|C��|C}�yc~�yb�]�j}Fw_�)yc{�v?w_u�v?uxzF��|C}�yc~�w��bw��Ku)zFz
�bw��R}�|_t�|_t�u&}�~A|Cux�bvC��|_}Fyc~�yb�]�rycv?zF�
� ~�y��RzFux�j�cu�}F~A|Cy�|Ct�u/}�~A|Cuxv?��v_u+|
��|_}Fyc~�yb�r����}Fw?�xyc{jv_w_u����M~��Rt���|���yczFz�y��Rw
�ru���v_u)w_ux~A|
u+�j�b����zFu)w]�Rt�}F�
t��xz�uU�bv?z��&�xycv?v_yc��ycv_��|Cu/|_t�}Fw]�I�b�+|U��|Ct�u���ycz�zFy��R}F~j��u+�j�b����z�u�}Fw]|
� � ux~
��v_yc���¡ �¢3£
¤¦¥�§�¨ª©�«�¬®­�¯I­±° Xxa²> HC>³BIH
VMH�´/BFacHµVMX¶XU·n¸r¹¦HR@C\Uº»BFacH]¼
ab\U>½´²H
^¾D�HCV
@�¿c\�V�Àx^¾DF>�Á�Â
V?DÃÁUa�BE^ÄWÅ¸
�M~9|Ct�}�w�u+�j�b����z�ubÆh|Ctju�v_u)w_ycz�{j|C}�yc~9yb��|_t�u���v?}F���c}�~��®v?u)��u)v_ux~j�xu»ÇÉÈ�ÊªË
ÈjÌbÍ�Î³Ê+ÏÃÐ3Ê+Ñ

��ux��ux~j��whyc~�|Ct�uµ��}Fw?�xyc{�v?w_uµv_uxzF��|C}�yc~��S���Rt�}��
t�|Ctju¦w_u)�xyc~j��w_ux~A|_ux~��)u]}Fwr��|_|C�b�
t�u)�*|Cy
|Ct�u�Ò�v?w?|x�*�M~ª�I�b�+|UÆÓ�bw?w_{���}F~���|Ct���|n�Ku��U�b~�~�yb|�w_u)u�yc�SÔ?ux�)|_wY}�~®��v_y³yc�Õ}��K�ru���v_u
~�yb|�}�~�}�|xÆÖ|_t�u/�
t��b~j��uxz�}Fuxv¦�U�b~×yc~�z�� �Öu�z�}F~ � ux��|_y*|Ct�u�v?y½yc�Ø}�~�|Ct�uYÒ�v_w?|nw?ux~A|Cu)~��xu
}��1|_t�u�w_u)ux}F~j��u)Ùcu)~A|���ycz�zFy��Rwµ|_t�u�ux~A|_uxv_}�~���u)Ùbux~A|UÆÓ}3�`ub�nyc~jz��&}��P|Ct�u/|_ux���ÖybvC�bzÓycv_�juxv
}F���Öybw_ux���S�&|Ct�u��)ycv_v?uxw?�Öyc~j��}F~�����}�w_�)yc{�v_w?u�v_u)zE��|_}Fyc~��jv_uxw?uxv�Ùcuxwn|Ctju�w_{�v��I�b�xu�ycv?��uxv)�
�M~�����v?|C}��x{�zF�bvxÆ�}�~j��uxv?v_}�~��*ÚnÌbÑ¶Ñ?ÌbÇ4Ð3Û²Í�ycvnÜRÊ
Ý+Þ³ÏÃÇrßI�)�q�#�¡à�¢Eá$�ryc{�z�����u��)yc~�w?}Fw?|_ux~A|]�R}�|Ct
|Ct�u�v?uxw?yczF{j|_}Fyc~�Æ½�Rt�}�zFuYâ�ã)ä�Ï�ÌbÍ�ÌbÇ4Ð3Û²Í��ryc{�z�� ~jyb|U�På
yÅ�±zFu+|Uæ`w$�xyc~�w?}F��u)vh|Ct�u���ycz�zFy��R}F~j�
u+�j�b����zFu�£
¤¦¥�§�¨ª©�«�¬®­�¯�çè° Xxa²>�H
>³BIHCVqHq´#BFacHhVMX¶XU·n¸é¹¦Hr@C\�º×BFacHR¼
ab\U>½´²H
^¾D�HCV$BFa²VMXUGÅÁUa�BFacH$º�D�>½´²XUºÓ¸
êPv?y�Ù½}���ux�ª|Ct���|#|Ctju��R}�~���y��ë}Fw#v_u)w_ycz�Ùcux�ì�bw���ux}�~������bv?|�yb�h|_t�u�v?y½yb�í�b~��ì��w�î

w_{���}F~j��|Ct���|]�ru/�U�b~�yb~�z�� w_u)u�yc�³Ô?u)�)|Cw]|_t�v_yb{��ct����R}�~���y��ï�Rt�}F�
t×�bv?uY~�y�|�}F~�|_t�u
wC�b��u
v_y³yc�&ÆA|_t�u]��u+Ò�~�}�|_u¦��u)w_�)v_}F�½|C}Fyb~�ÇÉÈ�ÊYË
ÈjÌbÍ�Î³Ê+ÏÃÐ3Ê+Ñð�x�b~*yc~�z����Öuµv_uxw?ycz�Ùbux����wK��u+î
zFyc~j�c}F~���|Cy�|Ct�unv_y³yc�ñ}��Ó|Ct�unw_u)ux}�~���u+Ùcu)~S|µ��v?ux�xu)��uxw
|Ct�unu)~S|_uxv?}F~���yb�Ó|Ct�u#v_y³yc�ñ|_t�u
�
t��b~��juxzF}�uxv��Öu)zFyc~��bw�|Cy����M~/|Ct�}�w��x�bw_uh|_t³{jwKâðã)ä�Ï�ÌbÍ�ÌbÇIÐ3Û²Í]�ryc{�zF����u$�µÙ��bz�}F����}Fw?�xyc{�v?w_u
v_u)zE��|_}Fyc~�ÆS�Rt�}�zFuYÚ�ÌbÑ+Ñ?ÌbÇIÐ3Û²Í*�b~j��ÜRÊ
Ý+Þ³ÏÃÇ��Kyb{�zF� ~�yb|x�
s$t�u��b��yÅÙbu/u+�j�b����z�uxw]�)zFuU��v_z���w?t�y��òtjyÅ�ó|Ctju/�xyc����{j|C��|C}�yc~�y��P��}Fw?�xyc{�v?w_u�v?uxzE�Åî

|C}�yc~�wxÆc�rycv?zF� � ~�y��RzFux�j�cu
�b~�����v_}����c}F~j��v_u)��u)v_u)~��xu
v_u)w_ycz�{j|C}�yc~��xyc~jw?|Cv_�b}F~�ux�b�
t�yb|_t�uxv)�
s$t�u¦��ycz�zFy��R}F~��#u+�j�b����z�uµ�)yc~�w_}�w?|_}F~��/}�~��Y��}F~�}�����z����b}�vK�bz�w_y�}F~AÙcycz�Ùcu)wK|Cu)����ycvC��z

�bw_��ux�+|Cw
�b~�� t��bwR��uxu)~&��}�w_�){�w_w?ux��}�~��¾ô²¢Ó��~��&zF��|Cu)vh}F~ª�¡õ�¢4£
¤¦¥�§�¨ª©�«�¬®­�¯�ö
\Å¸ ° Xxa²>�\UV_V_D�T�Hq´�\�B�BFacH]X¶\x@_D�@
¸#÷�acH]¼?\U·#HC^¾@¦\UVqH @_B�\U>½´�D�>�Á�Gb>j´²HCV
BFaAHP¿c\U^Ä·µ@
¸
Â+¸ ° Xxa²>�\UV_V_D�T�Hq´�\�BðBFacH]X¶\U@?D�@C¸#÷�acH]¼?\U·#HC^¾@Rº�HCVqH @_B�\�>½´UDF>�ÁYGc>½´²HCVµBFacHP¿c\U^Ä·¦@C¸
s$t�u��Öyc}�~A|nt�uxv?u�}�w]|Ct��²|�|Ct�u��U����u)zFw�}F~�|_t�u�w_ux�)yc~�����}Fw?�xyc{jv_w_u��U��~�~jyb|#�Öu�v?u+î

w_ycz�Ùcu)����w1�Öu)}F~��]|_t�uR��ux�b~�w1yb�ø|Cv_�b~�w?�Öycv�|P�A�/�Rt�}F�
t�ùbyctj~���v_v_}�Ùcu)����wð|Ct�u${�w?uRyb�Ö|_t�u
}F���Öu)v?��u)�)|hw?t�y��Rw
�/��v_u+��uxv_u)~��xu���ycvK}F~A|Cu)v_��v?u)|C}�~��/|Ctju�w?|
�²|Cu�}F~�|Ct�u�w?ux�xyb~��&w?ux~A|Cu)~��xu
ú�û�üÅý1þ¶ÿ��3ü�����þ��	��
��
���¾ý����+ý����4ÿ��������������������3üÅý�� �!� "#�����%$�ý&�'�)(��$þ%����*Yý,+.-

139

�bwr|_ux���ÖybvC�bz�z��/y�Ùbuxv_zF�b����}�~����R}�|Ct�|_t�u]��v_v_}�Ù��bzÓßI�)yc�����bv_u/����¢��b~����`õÅ¢Éá¶Æ½�Rt�}��
t��Kyb{�zF�
�³}Fuxz��×�b~×}F~��)yc~�w?}Fw?|_ux~��+�×�bw�|Ctju��U�b��uxz�w]�Kyc{jzF�×~�yb|n��u���|�|Ctju�yc�bw_}�wn�bw]�Ku)zFzP�bw���u
��|�|Ctju�yA��w_}Fw#��|#y�Ùcu)v_zF�b����}�~���w?|
�²|Cuxw)��s$t�u�v_u)w_ycz�{j|C}�yc~×yb�r|_t�u��U�b��uxzP�bwn��ux}�~�� |_t�u
��ux�b~�w]y��é|_vC�b~jw_��ycv?|��A���Rtj}F�
t�ùbyct�~��bv?v_}�Ùcux�×w?t�yc{�z���|CtS{�w���u���v_yctj}F��}�|Cux���S���b~A�
�b�x�)yc{�~A|
yb����v_}����c}F~j��v_u)��u)v_u)~��xu#v_u)w_ycz�{j|C}�yc~��
�M~��cu)~�uxv_�bz��Ku#t��UÙcu#|Cy��xyc~��)zF{��ju#|_t���|R|Ct�u#v_u)w_ycz�{j|C}�yc~ yb�1����v_}����c}�~���v_u)��u)v_u)~��xu

t��bw�|Cy���u��xyc~�w?}Fw�|Cux~A|#�R}�|_t×�rycv?zF� � ~jyÅ�Rz�ux���bu���wn�ruxz�zP�bw��R}�|_t�|_t�u��xyc~�w?u��S{�u)~��xu)w
}F~A|Cv?y½�j{��xu)���A�n�xu)v?|C�b}F~#��}Fw?�xyc{jv_w_uév_u)zE��|_}Fyc~jw��bw��Ku)zFz³�bw��A�#|_ux~�w?ur}�~j��ycv?����|_}Fyc~����M~Yycvqî
��uxvÓ|Cy]��y³��uxzA|Ctjuh}F~j��ybv_����|C}�yc~���y�� ��u)|M�ruxu)~���v_}����c}F~j�µv?u)��uxv?ux~��)u$v_u)w_ycz�{j|C}�yc~�Æ��rycv?zF�
� ~�y��RzFux�j�cubÆ�|Cu)~�w_u�}F~j��ybv_����|C}�yc~��b~���|_t�u��)yc����{j|
�²|C}Fyb~�yb�K�j}Fw_�)yc{�v?w_u�v_uxzF��|C}�yc~�w)Æ�}F~
|Ct�}�wµ���b�Öu)v¦�ru/��v_u)w_u)~S|#����ux�)zE�bv_��|C}�Ùcu�Ò�v_w?|�îMycv?��uxv¦�b�x�)yc{�~A|�}�~&�Rt�}��
t���v_}����c}F~j��v_u+�Eî
uxv?ux~��)u¦v_u)w_ycz�{j|C}�yc~�}Fwé���A�³��v_y³��{��+|hyb����{�}�zF��}�~��#�#��}F~�}�����zj��y½��u)z�yb���n��}Fw?�xyc{jv_w_u¦�bw
}F~����Å¢3ÆS�Rt�}F�
t�|CtS{�wK}�wK��zFw_y#�xyb~�w_}�w?|Cu)~A|K�R}�|_t��rycv_z�� � ~�y��RzFu)���cu¦�bwé�ruxz�z���wé|_t�u¦}�����z�}�î
�U��|_}Fyc~jwKyb���Y�)uxv?|C�b}F~�ß�}F~j��u)v_v?ux�øár�j}Fw_�)yc{�v?w_u�v_u)zE��|_}Fyc~��	�]{�v$�b�j��v_yA���
t�}Fwh}�~*zF}�~�uµ�R}�|Ct
|Ct�u��b���jv_yA�b�
tjuxw¦y���
n�bv_��u)~A|]�b~j�
��yc~�v_�b�ì���²¢��bwR�Ku)zFzÓ�bw��µyc�j��wµu+|]��z3�����²¢�}�~ |_t���|
��}�~�}F���bz�}�|M��}FwR|CtjuY��v?}�Ù³}F~�����v?}F~��)}F��z�u#y��ð��}�w_�xyb{�v_w?u/}F~A|Cu)v_��v?u)|C��|C}�yc~��h�M~��)yc~A|Cv_�bw?|µ|Cy
�¾ô�¢3Æø�ru�v?uxz���yb~
�����®}F~ yc{�vµ�b����v?yA�b�
t��K�M~�yc{�vRÙ³}Fu+�nÆø|_t�uxv?uY}�w
}�~ �I���)|
~�y�yb�SÙ³}�yc{�w
v_ux�bw_yc~*�RtA���j}Fw_�)yc{�v?w_u�}F~A|_uxv_�jv_u)|C��|C}�yc~*w?t�yc{�z����b�)|_{��bzFz����Öu���u)�x}����b��z�ub�	��ycvK��{jv?|Ctjuxv
��y�|C}�Ù���|_}Fyc~×���Öyc{½|��RtA�ª��}�~�}F���bz���y³��uxz�w���v_u�}�~A|Cuxv?uxw�|C}F~j���bwn�Ku)zFzr�bw���ybvY� ��ycv?u
��u)|C�b}Fz�ux��y�Ùcu)v?Ù³}Fu+�7yb��v_u)zE��|_ux���Kybv � Æ�|Ct�un}F~A|_uxv_u)w?|_ux��v?uU�b�juxvR}Fw$v?u)��uxv?v_u)� |_y�����¢4�
� eSf��ri���lnp���fKg��9k���g! ��#"�k��Kpqo%$�"�g! ���kri!&
s$t�unzFyc�b}F�U��z�|_t�uxycv��*��ycvh�Rt�}��
t �ru��h��~S|R|_y�Ò�~�������}F~�}�����z���y³��uxz��)yc~�w?}Fw?|_wRyb��|_t�u
��yczFz�y��R}F~��µ���bv?|_wx£ð}Eá�����uxw?�xv?}F�j|_}Fyc~�yb��|Ct�uR}F~j��{j|P��}�w_�xyb{�v_w?ubÆS}F}Eá���}Fw?�xyc{jv_w_uR��v?}F~��)}F��z�uxw)Æ
}F}�}Éá��²�½}Fyc��w�yb~���}Fw?�xyc{�v?w_u$v?uxzE�²|C}Fyb~�wxÆ�}�Ùjá�|_ux~�w?uR�b~���|Cu)����ycvC��zj�²�½}�yc��w)Æc�b~j�/Ù�á��rycv?zF�
� ~�y��RzFux�j�cub�	'ªu#�juxw_�)v_}��ÖunuU���
t�yb�Ó|Ct�u)w_u#�xyc����yc~�ux~A|_w
}�~*|Ct�u���ycz�zFy��R}F~j�/w_u)�)|C}�yc~�w)�

(*),+ - Íbä�Þ³ÇrÎbÐFÝ�Ë
Û²Þ½ÑCÝ�Ê
s$t�u]}�~���{j|$�j}Fw_�)yc{�v?w_u]�)yc~�w?|_}�|_{j|Cu)wK|Ct�u]Ù��bv?}E�b�jzFu
���bv?|Kyb��|Ctju¦|Ct�u)ycv?�*�bwh}�|rÙ��bv?}Fuxwr��ycv
uU�b�
t���}Fw?�xyc{�v?w_u#�Ku#�h�b~A|µ|Cy*��~��bz��*.)ub�st�u�}F~���{½|¦��u)w_�)v_}F�½|C}Fyb~�yb��|Ct�u���}Fw?�xyc{�v?w_u�}F~
���bv�|C}F�){�zE��v]w?|C��|Cu)w#|_t�u�w?{�v?�I���xu�ycv_��u)v�y��K|Ctju�}�~SÙbycz�Ùbux�ªu)Ùcu)~A|Cwx�/��u+|Uæ`w#��ycvnu¶��������z�u
�xyc~jw_}F�juxv
u+�j�b����zFu�ß10Åá¶Æ���ycv
�Rtj}F�
t�|_t�uY}�~���{j|µ��uxw?�xv?}F�j|_}Fyc~ zFy³y � w¦��w
��ycz�zFy��RwxÆ��Rt�u)v_u
2 ��ux~jyb|Cu)wR|_t�unw_{�v��I�b�xu#ycv?��uxvRyb��u)Ùbux~A|Cw)£

354�67498:6<;=6?>@6BAC4EDGFH4E>5IJ4@KMLON=PQ4EDGF�IJ4�6R;�KSLUTVN�F,W,4EDGF�IJ4�6?>XKGLO4EY�4EDGF�I:49KGLUTZNQ[\F�I:49KGL
TV4E>X]S49A^F�IJ4@KGL�>@_@_9`aIJ>@K�LO[\494QIJ4 8 KML�NbP54EDGF�IJ4 8 6<;QKGLUTVN�F,W,4\DGF�I:4 8 67A\KGL
[\FHN=FH4QI:4 8 KGLUTVN5[\F�IJ4 8 KML�TZ4E>@]S49A^F�I:4 8 KML�A1cVN�DMd=49efW,4E>5IJA1KGLO4�gh4 8

(*)<(i ÐFÝ�Ë
Û²Þ³ÑCÝ�Ê�jrÑ+ÐÉÍ�Ë+ÐÄä�ÏFÊ
Ý
� |�t��bw���uxu)~ �bv?�c{�ux� uxw?�Öu)�x}E��zFz����A�lk¦w?t�uxv�u)|��bz3�7�¾ô²¢µ�b~j� ��{�v�|Ct�u)v_��ycv_u �Öu)�xyc��u
|Ct�u����b}�~»�Öyc}�~A|�}F~lm�n�o�s�Æð|_t���|���}�w_�)yc{�v_w?u�w_ux�b��u)~S|_w�~�uxu)� |Cy×��u��xyc~j~�ux�+|Cux� |Cy
��v_u+Ù³}Fyc{�w¦��}Fw?�xyc{�v?w_u/w?ux�c��ux~A|_w��S��w_yc��uYv?t�u)|_ycv_}��U�bz�v_u)zE��|_}Fyc~��p'®u/�²�½}Fyc����|C}:.xun|Ct�}�w
}F~�yc{jvR|_t�uxybv?���bw$��ycz�zFy��Rwx£
qsrVtvuxw:y=w<z{u}|!~,����q�w:�b��z{���=�br��Oz{uxu�rZ�5ybrZ�xu�rZ�X�Q�

���p�@�S�@���B�{�Z�<�H�7���,�=�����G�X�R�,�X�!���C s�X�Z�@���B�{�Z�<�H�B�!�,�X�:�� ¢¡¤£9¥������X£E�^�X¡{�,�X�,¦1�=�^�

140

s$t���|
��ux�b~�w)Æ�uU�b�
t u)Ùbux~A|]t��bwh|Cy���u#�j}Fw_�)yc{�v?w_un�xyc~j~�ux�+|Cux� |Cy�w_yb��u���v?u)Ù³}Fyb{�w_z��
��u)~A|C}Fyb~�ux�/u+Ùcu)~S|¦ßI�b�x�)ycv_��}�~��¦|_y]|Ct�uhw?{�v?�I���xu$ycv?��uxvðy��øu)Ùcu)~A|Cw
á¶�1s$t�}Fw1}�w�}�~/zF}�~�ur�R}�|Ct
|Ct�u��b�j��v_yA���
t�uxw�yb�����²¢é�b~j� �¡à�¢3��åµy�� �ru�yc~�z���t��UÙcu�|Cy ��u)Ò�~ju��Rt��²|����������
	��
��	��
��ux�b~�w)£
qsrVtvuxw:y=w<z{u}|!~J| ��q�w:�b��z{���=�br��ar����My=w<z{u��Q�

�!�5¦1�X�!¡V£9¥=�����b£E� �b¡{�,�5¦1�X�<��� ¡����X�^�,�5¦1�X�<¦����E�����������a¡��5�b�^�,�5¦1�@�,¦��� G�
�Rt�uxv?u"! �$#%#�# ! �bv_ué�xyc~jw?|
��~S|_w1v_u)��v_u)w_ux~A|_}F~��]|_t�uK��}�w_�)yc{�v_w?uhv_u)zE��|_}Fyc~jwÓ�juxw_�)v_}��Öu)��}F~

�¾ô�¢�w_{��
t���wRÚ�ÌbÑ¶Ñ_ÌbÇIÐ3Û²Í'& jhÌbÑ_ÌbÏÉÏFÊ+Ï(&ÓÜRÊ
Ý+Þ½ÏÃÇ)&Óâðã)ä�Ï�ÌbÍ�ÌbÇIÐ3Û²Í'&�ârÏ�Ì+*+Û²Ñ?ÌbÇ4Ð3Û²Í'&-,µÌ³Ë
.�/bÑCÛ²Þ³Í�ÎbÆ
u)|_�b� m½y�Æ�}F~×�xyb~S|_vC�bw�|�|_y |_t�u��Kybv � }F~ �`ô²¢1�ru��bv?u�|Cv_ux��|C}�~�����}Fw?�xyc{jv_w_u�v?uxzE�²|C}Fyb~�wn�bw
Ò�v_w�|?î ycv_��u)v$�xyc~jw?|
��~S|_wµ}�~�w?|_uU�b� yb��v_u)zE��|_}Fyc~�w)�
(*)10 2 ãcÐ3Û�3YÝ/Û²Í i ÐFÝ�Ë
Û²Þ³Ñ
Ý�ÊµÜRÊ+Ï�ÌbÇ4Ð3Û²ÍjÝ
��{�v?|_t�uxv)Æ��ruK~�u)ux�Y|_y¦��u+Ò�~�uh�Å�j}�yc��wÓw?�Öu)�x}��É�½}�~��µ|_t�uKw?����|_}Fy�î3|Cux����ycvC�bzb�xyc~�w?u��S{�u)~��xu)w
yb�¦�×�b}�Ùcu)~ �j}Fw_�)yc{�v?w_u�v_u)zE��|_}Fyc~��}�øybv/|Ct�u���{�v?�Öybw_uxw�yb�
|Ct�}�w����b��uxvxÆP�ru �R}�zFzK~juxux�
|Cu)����ycvC��zÓ�)yc~�w?u��S{�ux~j�xuxw�yc~»Í�ÌbÑ¶Ñ?ÌbÇ4Ð3Û²Í�Æ�Ñ
Ê
Ý+Þ³ÏÃÇð��~�� Ê?ã)ä�Ï�ÌbÍ�ÌbÇ4Ð3Û²Í�ß��xyc�����bv?u��¡à�¢Eá¦�bw
�Ku)zFz���wR|_t�u/ÝMäjÌbÇ4ÐIÌbÏ�Ë
Û²ÍjÝ�Ê54xÞ�Ê+Í�Ë
Ê
ÝYÛ²Í�Í�ÌbÑ+Ñ?ÌbÇIÐ3Û²Í�}�~ª�¾ô²¢4�
(*)(6 7 Ê+ÍjÝ�ÊnÌbÍ�Î 7 Ê�3¦ä�Û²Ñ?ÌbÏ 2 ãcÐ3Û�3YÝ
�n�b����t��bw��bv?�c{�u)��}�~�����¢�|_t���|]|_t�u�Ý+Ð)3¦ä�ÏFÊ
äjÌ²Ý+Ç-8�ê���w_w_uhm½}����jzFubÆÖ�bw�t�uY��}Fw?�x{�w?w_uxw
}�|h��ybv �øv?ux~��
t98*}Fwh|M�³��}F�x�bzFz���{jw_ux��|Cy�v_u)�Öybv?|$|Ctju#w?{��x�)uxw?w_}�ÙbuYu)zFux��ux~A|_w
y���|_t�un���b}�~
�xyc{jv_w_u�yb�K�b�)|_}Fyc~�yb�K� w�|Cycv��cÆ��Rt�}Fz�u/|Ct�u�}F����uxv?��u)�)|nw?uxv?Ùbuxw#|Cy ��v_u)w_ux~A|�|Ct�u�w_u+|_|_}F~��
}F~��Rt�}F�
t*|_t�u��b�+|C}Fyb~*}Fwé|
� � }F~j�/��zE���xub���M~����bv?|_}F�){�zE�bv)Æ��n�b�����jv_uxw?ux~A|Cw
�Y�jv_y³�xux�j{�v_u
ß_���²¢4Æ��� +:G�báK��uxw?�xv_}���}F~j��t�y�� ��w?ux~A|Cu)~��xu�}F~�|Ct�un��uxv���ux�)|
ycvR}�~�|_t�un}F���Öu)v?��u)�)|Rv_u)zE��|_u
|Cy*|_t�u���v_u)�xu)��}F~�����}�w_�)yc{�v_w?ub�/s$tju��jv_y³�xux�j{�v_u����bw?}F�x�bzFz��&w�|
��|_uxw�|Ctju/��yczFz�yÅ�R}�~���£
�b~
u)Ùbux~A|év_ux��ycv�|Cux��}F~/|_t�u$}F����uxv?��u)�)|1y�Ùbuxv_zF�b��wð�R}�|Ct��bzFz½��v_u)�xu)��}F~��nu+Ùcux~A|_wr}�~�}F���Öu)v?��ux�+|
{�~A|C}�z�|Ctju/Ò�v_w�|�u)Ùbux~A|Yv?ux��ycv?|_ux��}�~�|Ct�u���uxv���ux�)|n}�w]ux~j�xyc{�~A|_uxv_u)���/s$t�u/��ybv_��uxv¦yb~�uxw
�bv_ur|CtS{�w1}F~A|_uxv_�jv_u)|_ux���bwð��u)w_�)v_}F�j}F~��]|_t�u$�x}�v_�x{j��w�|
�b~��)uxw1{�~j��uxv1�Rt�}��
t/|Ct�u$��{j~��)|_{��bz
u)Ùbux~A|YßIv_u)�Öybv?|Cu)��}F~*|_t�u��Öu)v?��u)�)|¶áKy³�x�){�v_v?ux���Ps$t�}�wh}FwK~�yb|h|_t�u��U�bw?ubÆ���ycvr|Ct�u���uxv���ux�)|xÆ
��ycvh�Rt�}��
t �n�b�����xzF�b}F��wK|Ct���|
��w?{��x�)uxw?w_}Fyb~�yb��w_u)~S|_ux~��)uxw]}�~*|Ct�u#��uxv?��u)�)|
�xyb~SÙbu)� �
w_}���}�zE�bvP|Cu)����ycvC��z�ycv?��uxvRyb�Ó|Ct�unv?ux��ycv?|_ux� u)Ùcu)~A|Cwx�
s$t�u�w_u)�xyc~�� ��v_}�~��x}���zFu�}Fw���v?yc���b��z��®|_y�w�|Cv?yc~��×|Cy×�Öu �²�½}�yc���²|C}<.)ux� ßI�bw�|Cu)����ycvC��z
ycv_�juxv/��y³uxwY~�yb|��bz��h�U�³w��xybv_v_u)w_��yc~��ì|_y�|Ct�u�w?{�v?�I�b�)u*ycv?��uxvCá+�×s$tS{�wxÆP�Ku�yb~�z��ª�²�Sî
}Fyc����|_}<.xu*|_t�u&Ò�v_w?|���v_}�~��x}���zFu�yc~�|Ct�u&}F���Öu)v?��u)�)|U�<;Ku+��ycv_u�Æht�y��ru)Ùcu)vxÆR�Ku�~�uxu)�9|Cy
}F~A|Cv?y½�j{��xu/|_t�u�~�yb|_}Fyc~�yb�ry�Ùcu)v_zE���>= �Öu+|M�Ku)ux~®u+Ùcu)~S|_{��bz�}�|C}�uxw)�/�M~��I���)|UÆ��ru��R}Fz�z�}�~½î
|Cv?y½��{j�xu&����{�~��+|C}�yc~?=A@���ux~jyb|C}�~���|_t�u�}�~A|Cuxv?w_u)�)|C}�yc~ ��u)|M�ruxu)~9|M�Ky®u)Ùcu)~A|C{��bz�}�|_}Fuxw)�
��{�v?|_t�uxv)ÆÖ�ru/�R}FzFzÓt��UÙcu��*w?�Öu)�x}F�bz�w?}F�c~CB ��ux~�y�|C}F~j��|Ct�uYux���j|M��}�~S|_uxv?w_ux�+|C}�yc~���s$t�u
�xycv?v_u)w_��yc~���}�~�����v_u)��}F�x��|CuD=FE�}�wR|_t�ux~ ��u+Ò�~�ux�&}F~�|Cu)v_��w$yb�G=H@/��wh��yczFz�yÅ�Rw)£
qsrVtvuxw:y=w<z{u}|!~JI �LK E �

�!�5¦1�X� � K E �X��� � K @ �X��MNPO �1Q¢��R��H���H�B�?¥����
�!�p� K E �¤�1S �TR!�,�
U*�?�¤�H�B�G�
�!�5¦1�X� � K E �X�M� �@� K E �¤�WVv�YXZX �X�[�Q�M�
�!�5¦1� � ¦1� � � � �]\�^ � s� � �]\�^ � � � ��K E � � � s� ��K @ � � �]\�^ �¤�1_ ��R��a`cb\�{�^�
�!�5¦1�X�R¦1�@� �f� \�^ �X�¤ s�@� � K E � ��@� � K E �@�*�
�!�@� � �,�,�@� � � \�^ �@�*� �X� � � K E � �,� K @ �@� �f� K @ �@� ��MNPO �9�1_ ��R��a`cb\�{�adfe �Z�$�Q�R��g!�

141

qsrVtvuxw:y=w<z{u}|!~���������� rZ�	�?rZ�5y5�
�!�p�X�Z�X���7���V�<�H�B�!�,���� fg{��
b�9�,��� g �5¥
���,�=��� �J�!� � �,�X�Z�@���B�{�Z�<�H�B�!�,� � �� g{��
X�@�,� � ��
�@��� � �� ���,�X� �f�9�,�@�S�@���B�{�Z�<�H�7���,�@� �:� g{��
b�@�,�@� � �� g��
��R��b£\�@�,�@� �f�
�@��� �X� ��� ��� � �X� K E ���

�ø{jv?|CtjuxvxÆ1�ru*�R}Fz�zrt��UÙbu&��tjyc��yb�cux~�u)}�|M�®�²�½}Fyc�íw?}F��}FzE��vn|_y�|Ct�u�yb~�u���v_yb�Öycw?ux�
}F~�� 0x¢Rw?|C��|C}�~���|Ct���|�}��]�×�xyc~j��}�|_}Fyc~���t�ycz���w���|�|Ctju&u+Ùcux~A|_{��bzF}�|M� 	cÆr|_t�ux~ }�|��bz�w_y
t�ycz���w]��ycv��b~A�����bv?|nyb�c	c��s$t�u��K���×}�~��Rt�}F�
t×�ru�u¶�j�jv_uxw?w#|_t�}Fw�}�w��A��wC�U�³}F~���|_t���|
��ycvr�b~A��y�Ùcu)v_zF�b����}�~��/u)Ùbux~A|C{��bzF}�|M�9	 � |_t�u]�)yc~���}�|C}Fyb~�wry��]t�yczF��}F~����bv?|_}F�x{jzE�bvr��|K|_t�u}F~A|Cu)v_w?ux�)|_}Fyc~�yb� 	��b~j� 	 � ��s$tju ��ycz�zFy��R}F~j���²�½}Fyc� }Fw��b�+|C{���zFz��ì�b~��²�½}Fyc� w_�
t�u)����Rt�}F�
t�~juxux�jwK|Cy���u¦}�~�w?|C�b~A|C}E�²|Cux����ycvh�bz�zø��}��Öuxv?ux~A|$�xyb~���}�|_}Fyc~jwé�Rt�}��
t��U�b~�tjyczF����|$�
�c}�Ùbux~�u)Ùbux~A|C{��bzF}�|M�Ö£
qsrVtvuxw:y=w<z{u}|!~�� ��� z���z��{rZu�rSwJy��v�

�!�5¦1� � � K E � � �� �,�=� ��� �,� K @ � � �
�!�5¦1� � � K E � � �!� �,�=���"�!� �,� K @ � � �

�ø{jv?|CtjuxvxÆ½��ycvKu+Ùcux~A|_wµ}�~��cux~�u)vC�bz��Ku#�bw?w_{���u¦|_t�u�u+�½}Fw�|Cu)~��xunyb���b~®Ê$#bÊ+Í�Ç1Í�Þ�Ë+ÏFÊ+ÞSÝ
w?|_v_{��+|C{�v?u���w
}�~ª�f0�:²¢��xyc~jw_}Fw�|C}�~���yb�ð����v?ux���bv_��|Cybv?����~������)yc~�w_u=�S{�ux~A|]�jt��bw_u��
qsrVtvuxw:y=w<z{u}|!~&% ��'h�����<rZ���Q�

�!�5¦1� � � �)(g ���agv�,�=�%� � �*(���{£9�,�@�*
Z�,�=�� s� �]\�^ �V�+�F���ag{�Y�5�¤�B�?¥����
�!�5¦1�X� �@� (£9¥��,
=�$-S�,��� � �X� (���{£9�,�@�*
Z�,�=�� s� \�^ �@�,�/. ¥��,
=�$-����@�����
�!�5¦1� � ¦1� � � � � ��K E �C s� �)(���{£9�,�@�0
V�,��� � � � ��K E � � �+1h�{£9�,�@�0
�e �Z�
�5�R��g!�

(*)32 4 Û²Ñ+Ï�Î 5#Í�Û76$ÏFÊ_Î�/³Ê
s$t�uKzF�bw?|�}F~j�cv_u)��}Fu)~S|�}F~�yc{�v�zFyc�c}��U�bz�|Ct�u)ycv?���bv?uh�²�½}Fyb��wÓux~��)y½�j}F~��
�Kycv?zF� � ~jyÅ�Rz�ux���bub�
;Kuxw?}F��u)wnt��UÙ½}�~����²�½}Fyb��w]u)~��xy³��}�~�� ���)yc~��)ux�j|#t�}�uxvC��v_�
tA���R}�|_t�|Ct�u��)ycv_v?uxw_��yc~��j}F~��
��}FwÉÔ?yc}F~A|_~�uxw?w��²�½}Fyc��wxÆ$��ycw�|*}F����ycv?|C�b~A|Cz��®�Ku��R}�zFzRt��UÙcu×�²�½}�yc��w���uxw?�xv?}F��}�~��ì��v?u+î
�xyc~j��}�|_}Fyc~�wµ�b~���u$��u)�)|_w#y��Pu)Ùcu)~A|Cwx��s$t�u��²�½}�yc��wµ~�uxu)��ux����ycvµ|Ct�u/�j{�v_��ycw_u)w�yb�P|Ct�}�w
���b��uxv¦�bv_u�w_t�y��R~�}F~ ��}F�b{�v_u 0c�¦� |¦}Fw
}F���Öybv?|
��~S|R|_y*~�yb|_u�|Ct���|]��ycw?|µyb�1|_t�u/�b��y�Ùcu
�²�½}Fyc��wnw_t�yb{�zF�»���)|C{��bzFz����Öu���ycv_�Y{�zE��|_ux�ª}F~ì� ~�yc~½î ��yb~�yb|Cyb~�}F���I�bw?t�}Fyc~�Æ�}3�`ub��ÐÉÇ]ÐFÝ
Û²Í�Ï�8�Í�Û²Ñ$3�ÌbÏÉÏ�8�Ç�È�Ê�Ë_Ì²Ý�Ê�Ç�ÈjÌbÇrÐ 9:6KÊ#Ý�Ê
ÊnÝ�Û�3�Ê+ÇÉÈ³ÐÉÍ /�Ç�È³ÑCÛ²Þ /²È�Ì;61ÐÉÍ�Î³Û76 &éÇÉÈ�Ê�Û *=<UÊ
Ë+Ç
ÐÉÍ 4xÞ�Ê
Ý+ÇIÐ3Û²ÍªÐFÝYÐÉÍìÌbÍ�Û²ÇÉÈ�Ê+ÑYÑCÛ�Û�3����
y��Ku+Ùcuxv)Æ���~�yc~³îM��yc~�yb|_yc~�}F� � ~�y��RzFu)���cu/v?ux��v?u+î
w_u)~S|C��|C}�yc~*��~���v?uU�bw?yc~�}F~j�Yw_�
tjux��u¦}Fwéyc{j|ryb�Ö|Ct�uµw_�xyb�Öuµyb��|_t�}Fwé���b��uxv)� '®u
v_u+��uxvr|_t�u
}F~A|Cu)v_u)w?|Cu)�&v?uU�b�juxv$|Cy��`àÅ¢3�
> ?A@B@�"�p�o%$�g�pqkKfÕgjkDCFEO$HGI@�"����
��u)|Uæ`wðw�|
�bv�|�|CtjuK��}�w_�x{jw_w_}�yc~�yb�øu¶��������z�u�0b�:0c��'®ur�R}FzFzS��w_w_{j��uK|_t�uh}�~���{j|���uxw?�xv_}��j|C}�yc~
0#�b~�� �cu)|$|_t�u���yczFz�yÅ�R}�~��/}�~j��uxv?ux~��)uxwx£
J - d=A�_9DGDM49A^FH49dZIJ4�674 8 K I�KML ý,
 �ON���
�
²ý&� �3ý&��
²ý&��� K
P - db>@49e?I:4=6B4 8 67DMN=>9>@N�F,W,_9D*KRQTSUSVS�Q�db>@49e?I:4�674 8 67>@49[XWSefF?K I�YOZ ���,�+ÿ��	�Iý\[�ý&�Äþ%� Z ��
 � K
] - 35e!eJN�`UT�IJe<KZL�WRD IJe?6?>XK I [� ��� ��ü²þ L ý � þ%� � � K þ�
 �_^ 4	e:_@AXIJ4�67e?6?>XK I�` ����þ
� Z ��
 K
a - 3�[=6B[8�b eJ_@AbI:[=6<;=6?>XKML�[HcRd 4xLpe:_@AXI:[8 6<;=67>@K*L�4ecRd [8 LpA�N	WG[E4�I:4�6B[8 K I�K
 �4ý&� Z
�� K
f - 35e 8 e:_@A�N�F,WR_9D I:e 8 KMLOeJ_@AXI:4 8 6<;=6Be 8 KGL�e:_@AXIJ4 8 67A@6Be 8 K I (Uý?ý Z
�� Z � ��� Z ý&� �3þ%�hý � ���?þ
� Z ��
 K
g - ��h � I � Z
 Z �hþ�� Z �/i K
åµy���}F~A|Cu)v_u)w?|C}�~��]}�w�t�y��»|_t�uK�)yc���j{j|
��|_}Fyc~#yb�ø��}�w_�)yc{�v_w?uKv?uxzE�²|C}Fyb~�w�}�w��7��u)�)|Cu)�/�A�

|Ct�uR��v?}F���b}F~���v?u)��uxv?ux~��)uµv?uxw?yczF{j|_}Fyc~�£Ckµw_w_{j��uR|Ct��²|Puµ��~���u�æS�bv_uR�)yc~�~�u)�)|Cu)���A�*Ú�ÌbÑ$j
Ñ?ÌbÇ4Ð3Û²Í��ø|Ct�u)~��ruY�cu+|]�A�lkK¬³¨®©\mMn²§�«poqm,rtsx¬�u!v�¬�rtwc¬�sxm,rAy §0nzn²§�{z|}m,r��bwR�Ku)zFz��bw

142

���������
	��
�������
����������������� �!�#"
�$��%��'&�('���$�*)*� "+�
� ,����!,-�.�/���0�.�/�$,1	2�!34"
�$��%��156$7�897':�:1;<897�=?>A@CBDB
E�; E 8+B+=*F�G 8HBJIK7'=�=6�L�8+LNM!E *O�P B
G P 7 8+Q$=R>AB
ES; E 8HLN=T=
���������
	��
�������VU���W4�!	1� ,'�9��X0�0,-������56 P I E IT7�8 P[�YZP 7 8 P =�F[E�\ P �Y 8 P I E =�F E E Y G P �Y 8 P I E =$F E P 7']1: 8 E =$F^7':-:-;<897�=�>@ P1_ I P1_ _ 8 P1_�`�a�P F�bDB
:�L�8 P1_ I E IT7�=�F^B
:�L�8 PN_ _ I E IT7�=�F�L/ESc�] P 8 P I P1_ _ =�F Pd`�a�P1_ _ =T=
���������
	��
�������Ve��Kf��S�g�9��Xh�9��%R"+�
� ���N�$�0�i"
��('�g	'�
����5j6 P I E IT:�8H] P-P 8 P =kFlE�\ P[�Y 8 P I E =kFE E Y G P �Y 8 P Im:'=�F E P 7�]1: 8 E =!F�:�nZo P L Y 8+:'=D>@ Bp8HB
:�L�8 P I E ITB9=�F�B9:-L'8 P I�:CIKB9=�=T=
���������
	��
�������+qCrs��f��S�g�9��X0	��*,-��t�X��u�<v^�+�*)*� v��2�9��%R"+�
� �d��)R�Vw?�C,-� �!	�"
�*('�g	��
����56 P I E I�:^8H] P1PNx My7':-c!\SM�zjG �O :1{�8 P =�F4E�\ P[�Y 8 P I E =-F E E Y G P �Y 8 P IK:'=�F E P 7�]1: 8 E =�F|:�nZo P L Y 8+:'=�>@ BJImB _ 8HB
:�L�8 P I E I�B9=�F�B9:�L�8 P I�:CI�B _ =*F^B?}~ B _ =�=
�4�i���K�K� �����*��� ���/� ���V���g�V�V�/���k� �K�/�y���m�-���'���^���m�/���N�V�V� �2�����N�����������/�V�����4�k���N���g������K�K���g�K�!�'�T�4���y�-�K�V���+�K�/���!�'�m���V� �^�/�'�K���/�
�-�K�/�[��� ���[���g�����m�N���/�V�/�1�
���������
	��
�������+q!qu�T�^,�,'�
���+��X0�9��%R"+�
� �d	�,-�C�!�g"9"+�+��X�56 P I E I�B�ES7�7-GH� P E Y 8 P I E IKB9=�F P � P[�Y 8 P =*F E P 7�]1: 8 E =!F[B
:�L/E Y GJ: 8+B9=?>@ P1_ F Y 7'E�� P B Y :C8 P1_ I E I�B9=�F P1_�� E 7 P E 8 P =
���������
	��
�������+q ���T��,-�C�$� "+"9�+��X<�9��%R"+�
� �d�u�<�*)*�i�!3�	�,1�$�*�1%R�$,1	'56 P I E I�B Y 7'ES� P B Y :C8 P I E ITB9=�F P � P[�Y 8 P =*F E P 7']1: 8 E =!F[B
:�L/E Y GH: 8+B+=�>@C;�;i: O�P- @ x 7'E] E :17 Y 8+;i=�F[@ B _ 8+B9:�L�8 P I E I�B _ =�F�B9:�L�8 P IT;#ImB _ =T=
���������
	��
�������+qC¡s�TB
:�Lk�
�k3Tt��*(�	'�
�����$"+5¢6 P IK:SIKBJI�B _ B
:�L�8 P I�:CImB9=$F[B
:�L�8 P IK:SImB _ =D>£B ~ B _
���������
	��
�������+qS¤¥�T¦?��(��g	��
����56�:CI�B�G 8+:CI�B+=D>�6 P B9:-L'8 P I�:CI�B9=
6 P I�:CI�: _ IKB*c �OSP 7 8 P IK:CI�: _ =�F�B
:�L�8 P I�: _ I�B9=�>£B
:�L�8 P I�:CImB9=§�¨
¨9¨ ©

ª2«J¬�­¯®*­^°²±�³S´Tµ·¶�¸�±�¹<´Jº!µ�¬�º�»<¼p«Z±R½¢¾
¿ ©Ó§*{z|�§�«toTm,rtsx¬�u!vÓ¬�rtwc¬�s m,r y&§0nznÅ§*{z|/m,ré£ 	¢À?	 � �b~j�·Á�Â.ÂW�Y��ß-Ã ��Ä�ÅpÄ ÂIá*Æ�ÂW���bß 	 �mÄ'ÅpÄ Â4á¶�
k¦w?w_{���u�|Ct��²|�u×�b~�� ubæh�bv_u��)yc~�~�u)�)|Cu)���A�±ÜRÊ
Ý+Þ³ÏÃÇ4��|_t�ux~ �Ku��bu)|��R}�|_t oTm rtsx¬pÇ
u!v�¬�rtwc¬�slm,rÉÈ*¬�s vÓ«/{c£A	ËÊ�Ì 	 � Æ �$Í�ÎkÃ�	Sß 	 Ä 	 � á��b~��×|CtS{�wÏÃ � =FEf	 � ßNÐé¬�Ñ {ÓÒÕÔOv {²á¶Æ
}3�`ub�éùbyctj~�æ¾wR��ux}�~���}F~�|Ct�unv?y½yc�ñy�Ùcuxv?zE�b�jwR�R}�|Ct�|Ctju#w?uxu)}F~����
k¦w?w_{���uY|Ct���|]u���~���ubæÖ�bv_uY�xyc~�~jux�)|_ux�×�A��â�ã)ä�Ï�ÌbÍ�ÌbÇIÐ3Û²Í��Ö|_t�ux~��ru/�cu)|¦�R}�|Ct oqm,r2Ç
sx¬�u!v�¬�rtwc¬�s m,ró¤µ¥�©�«�§)r�§*{z|/m,ré£D	 � Ê�Ì 	�Æ �$Í�Î�Ã�	Sß 	 �mÄ 	Åán�b~���|CtS{�wlÃ =FE 	 � ßNÐé¬�Ñ {
ÒÕÔ v {²á¶Æ�|Ctju*zE��|?|Cu)v�z�uU�b��}�~���|Cy�� �xyc~A|Cv_�b��}��)|C}�yc~ì��wÖÃ��b~�� 	 � t��UÙcu*�)yc~A|CvC����}F�+|Cycv��
�xyc~j��}�|_}Fyc~�w)�ð�M~*�I�b�+|UÆ�}�|ht�ycz���wK|_t���|�×ØÂW�Y��ß-Ã =A@ 	 � Ä'ÅpÄ !cá]ßÉ��v_yc� ��b��y�Ùcun�b~j�ÚÙ�m�¨ m�Ç
Û ¬�r�¬�|/{!ÜÓáP�bwé�Ku)zFzÖ�bwuÂW���bß1Ã =A@ 	 �KÄ'ÅpÄ !bá¦ß���v?yc� �jÆ!���b~��*õ/�b��yÅÙbubÆ4Â ��� |=sÝÑ vtrOw�{z|/m,rÓ§�«
�b~��AÙ�m�¨ m Û ¬�r�¬�|/{!ÜÓá¶Æ��Rt�}��
t×�xzFux�bv_z���v_u)w_{�z�|Cw]}�~��*�xyc~A|_vC�b��}��)|_}Fyc~&��{�u/|Cy�|Ct�uY�I���)||Ct��²|ÖÂW�Y��}Fw#��{�~��+|C}Fyb~��bz3� s$tS{�wxÆé�bw?w_{���}F~j�&|Ct���|Y|_t�u*�
t��b~j��uxz�}Fuxv�}Fw�}F~A|Cu)v_��v?u)|Cu)���bw
�Öu)zFyc~j�c}F~��ª|Cy»|Ct�u×v?y½yc� Æ�âðã)ä�Ï�ÌbÍ�ÌbÇIÐ3Û²Í��U�b~(~�yb|���u×}F~j��u)v_v?ux�(�bw���}�w_�xyb{�v_w?uªv?uxzE�Åî
|C}�yc~&�Rt�}�zFu�Ü
Ê
Ý+Þ³ÏÃÇ��b~��®Ú�ÌbÑ+Ñ?ÌbÇIÐ3Û²Í �bv_u��xyc~�w?}Fw�|Cux~A|��R}�|Ct�|_t�u��bw?w_{����j|C}�yc~&|_t���|]|_t�u
�
t��b~��juxzF}�uxv]��uxz�yc~��cwµ|Cy*|Ctju�v_y³yc� ��ux~A|_}Fyc~�u)�×}F~�|_t�u/Ò�v_w�|nw_u)~S|_ux~��)ub�
�}�Ùbux~�|Ct�u)w_u
u+�½��zF�b~���|_}Fyc~�w)ÆAu+�j�b����zFu�0b� ô]}Fw1ux�bw?��|_ynu+�½��zE��}F~����M~�u¶��������z�u�0c�Äô½Æc�Kybv_zF� � ~�y��RzFu)���cu
}F����zF}�uxw�|_t���|ð~jux}�|_t�uxvPÜRÊ
Ý+Þ½ÏÃÇ½~�ycvéÚ�ÌbÑ¶Ñ?ÌbÇ4Ð3Û²Í��x�b~/��uK}F~½��uxv_v?ux�/��ux�x�b{�w?u$}F~Y��yb|_t/�U�bw?uxw
��w?|C��|CuÞÃ�}�~&�Rt�}��
t�|Ct�uY�xyc~��j}�|C}�yc~£ÂW���bß1Ã Ä'ÅpÄ !bá
t�ycz���wµ�ryc{�z����³}Fu)zF�����xyc~A|Cv_�b��}��)|C}�yc~�R}�|_tls)¬³¬�|}r Û {Rß n7m,v Û ß §áà |}r[â m|à |4¨ª©�«}|I¬�sÏâO|�ãP¬Rn²¬�r {�«/m wc§*{z|/m,rOs��1�M~��I���)|UÆ�|_t�u
��}Fw?�xyc{jv_w_uYv_uxzF��|C}�yc~�wnÜ
Ê
Ý+Þ³ÏÃÇ�ybv�ÚnÌbÑ¶Ñ?ÌbÇIÐ3Û²Í �x�b~�yc~�z�����u/��v?ux��}��)|_ux�×}F~�u¶�j�b���jzFu 0c�Äô
}��1|_t�u/�
t��b~j��uxz�}Fuxv¦}Fw��b�)�xyc����y½���²|Cux�&�R}�|Ct&|Ct�u�v?uxw_{jz�|]|_t���|]|_t�u���y³��u)zÓ�ryc{�z���~�yb|
�Öu���}F~j}F���bz���~S�³��ycv_u�����ycv$u+�j�b����zFus0b� ����Æ��ruY��w_w_{j��u�|Ctjun��ybzFzFy��R}�~��/}F~j��{j|U£

354�674 8 6<;=67_Q6BA@6JT�N�>9>EWRYQ4 N�F�IJ4@KGLONbP54EDGF�IJ4�6<;QKGL�TVN�F,W,4EDGF�IJ4�67_XKGL
4EY�4EDGF�IJ4@KGLUTVN5[\F�IJ4@KGLUTV4E>X]S49A^F�IJ4@KGLO_@N5[\W,[�I:_XKGL�A1N=`�49e:[�IJA\KGL
WVDMd�4E>5IJ4 8 6BA@6JTSKGL�[1FHN�FH4QIJ4 8 KML�TVN5[\F�IJ4 8 K*L�TV>@_EPSI:49K*L�TZN�eJ`�[�I�TZK

k¦w_w?{���}F~��/|_t���|h|_t�u����bz���wK�bv_u]v?uxw?ycz�Ùbux�&�bwh��uxzFyb~��c}F~j�Y|Cy/|_t�u�yA�bw?}FwxÆ³�Ku]�³}�uxzF�*|_t�u��yczFz�y��R}F~���}F~j��u)v_ux~j�xuxw)£
143

J - eJ_@AXI:4 8 6JT{67_XK þ%
 � �3üUÿ � eJ_@AXI:4 8 6BA@67_XK I�` ����þ%� Z ��
 K
P - d=A�_9DGDM49A^FH49dZIJ4�674 8 K I�KML ý,
 �ON���
�
²ý&� �3ý&��
²ý&��� K
] - db>@49e?I:4=6B4 8 67DMN=>9>@N�F,W,_9D*KRQTSUSVS�Q�db>@49e?I:4�674 8 67>@49[XWSefF?K I�YOZ ���,�+ÿ��	�Iý\[�ý&�Äþ%� Z ��
 � K
a - 354 8 8 F,>9N�YQ49e FH_5IJ4 8 8 6<;=67_XKMLO4 8 8�� T¤>@4BT{I:49KGLO4 8 8 cRd 4 I�� ��� ZVL	Z
�� Z � � � Z ý&� ���3þ L ý,� Z
 ����� �3ý,� K
f - 4 8	��
 4 I�� � �bý,��� ý&�'� K þ�
 � �4üUÿ � 4 8
��
 4 8 8 I�� ÿ �,�¾ý?ÿ � K
g - 3Q` `�_@d=4��]�� >@N�D*[7TV_9>9F�If`�KMLOeJ_@AXI:4 8 8 6<;=6Be:KGLOeJ_@AXI:4 8 8 6?`a67e<K I � ����ý ���jû �3þ�
 � ������� K
� - b eJ_@AXI<[b6R;=67_XKML�[\c�dh4�LOe:_@AXI:[8 6<;=67_XKMLO4ecRd [8 I�� ��� ZVL þ%� K
� - ` h A I � Z
 Z �$þ%� Z �/i K
s$t³{jwR�ru��cu+|R�b~�}F~j�xyc~�w?}Fw�|Cux~j�)�*}�~�u)Ùbuxv?�*��y³��uxzø�Rt�}��
t }���ux~A|_}�Ò�u)wK|Ct�u��x�b��uxzFwc�

�R}�|_t�|_t�u
��y³��u$yb��|Cv_�b~�w_��ycv�|�����s$t�}FwP}F~j�xyc~�w?}Fw�|Cux~j�)��}FwP��{juR|_y#|_t�u$�I�b�)|P|_t���|Kùbyct�~
}Fw1w?����|C}�y�î |_ux���ÖybvC�bz�z��n�xybv_v_u)zE��|_ux���R}�|_t�|_t�uR��y³��u$yb��|Cv_�b~�w?�Öycv�|é��{�v_}�~���ß[� � =A@2ÃÅá+=A@
	 � Æ³}3�`u�Â ����ß_ß[� � =A@^ÃÅá =A@�	 �mÄ'ÅpÄ Â4á�ÆÞÂW�Y��ß_ß 	 � � =A@�ÃÅá =A@�	 ��Ä � Ä ÂIáRßB�½Æ¾õ#�b�Öy�ÙbubÆ|Ùlm�¨ m Û ¬�r�¬pÇ
|/{!Ü1Æ2Ðé¬�Ñ {ÓÒÕÔ v {AÆ^ÐP¬�Ñ {�� ���Ö¬Rn²«�§�©ðá¶Æ��Rt�}F�
t×�³}Fu)zF��w]�³}Fu)zF�×���xyb~S|_vC�b�j}F�)|_}Fyc~��R}�|Ct
×ØÂ ����ß_ß[� � =H@�Ã²á = 	 �mÄ'ÅpÄ ��áh�b~��ÚÂW�Y��ß_ß 	 � � =A@uÃÅá
= 	 ��Ä � Ä ��ár��{jun|_y�0bÆ �/�b��y�Ùcu�Æ�Ù�m�¨ m�Ç
Û ¬�r�¬�|/{!Ü1Æ�Ðé¬�Ñ { ÒÕÔOv {AÆdÐP¬�Ñ { ÒÕÔ v {�� ����¬Rn�«�§�©»��~��ÓÐHm wl|=sÞÑ vtrtw�{z|}m,r�§�«q�
� � krf]o "?m��jp�krf
'®u�t��UÙcu*�jv_uxw?ux~A|Cu)���b~»�b���jv_yA�b�
tª|Cy���v?}F���b}F~�� v_u+��uxv_u)~��xu�v_uxw?yczF{½|C}Fyb~ª|
� � }�~���}�~A|Cy
�b�x�)yc{�~A|P|Ct�uR}�~j��ycv_����|_}Fyc~a��yÅ� �Öu+|M�Ku)ux~��#�)uxv?|C�b}F~�v?uxw_ybzF{j|_}Fyc~�Æc|_t�uR�xyc����{j|C��|C}�yc~�yb�
��}Fw?�xyc{jv_w_uµv_u)zE��|_}Fyc~�wé�bwé�Ku)zFz��bwrzF}F~j�c{�}Fw�|C}��R�b~����rycv?zF� � ~�y��Rz�ux���cu��P�M~�yc{�vK�b����v?yA�b�
t
|Ct�}�w$}F~j��ybv_����|C}�yc~ ��y��7}�w
�jux�xzF�bvC�²|C}�Ùbun�b~��&ux��uxv_�buxw
�bwµ���A�³��v_y³��{��+|¦y��ð��{�}�zF��}�~����
��}�~�}F���bz���y³��u)z���ycv
��z�yc�c}��U�bz�|Ct�u)ycv?� �bwR}�~ì���²¢4� �]{�vR�xyb~S|_v_}���{j|C}�yc~ zF}Fu)w$}F~�w_��uxz�zF}�~��
yc{j|$|_t�un}F~��cv?ux��}�ux~A|Cw$y��ðw_{j�
t���zFyc�b}F�U��z�|_t�uxycv��c�
 � �b��i��Óf]o%� �
! ®#"|»�´Z´Jº!¸%$'&�­)(�¸�µ+* ­iª�ºy³S¬-,�¾'±R¸.$PJé¼+BEDEX�>A@�\U>½´ªHCTUH
>³BF@�DF>�BIHC·r¿cXUVM\U^h^ X�Á�DÉ¼�$/&�±-,�³S¸0(�´#±21
3¯±�¬R«5476i±R½980,�:;(<:�«J±R¸�� � ®>=2=	? � $@808d­BA2Cp®ED�A-F<=?­

!HG "|»�¾;I�ºy³J$BK�­0(�¸�µ·»�­B3L(�¾;4�(*³S«Zµ�º!¾�$½NéV?DÉ´¶Á�DF>�Á-$@&�±-,�³C¸B(�´�±21NM?º!½9(�¸O:�«54y¾ ��� � ®>=2=2= � ­
! C
"P6Ø«Z½¢«5(�¸�±�$'Q�­R$éJTS�V�@CBVU X�V ´²H
V�\Å¼�¼?XUGc>³B#X Z�BFacH*VqHC^Ã\�BEDÉXU>9Â?H
BEº�H�H
> ÂCV_DÉ´¶Á�HC@�O]´�D�@
¼�XUGcV?@
H
VqHC^Ã\�BEDÉXU>A@�\U>½´/ºÓXUV_^Ã´YÀ)>½X�º1^ÃH�´¶Á�H�$XW�º>4YI�¸�«54�(�´d³�º�8�±�³;:�$�Z�¸�¾[:�«5:;,�:'º�»�Z-ª]\^$@_�¸�«R`�ºy³S¾S«R:baÞ±21
¶c(*³S´Z¾'³Y,0I�º � G<d2d-e � $PIO:[:[8%fhg2g�¹#¹#¹�­i(�«51�jd­i,�¸�«lknm<(*³S´Z¾'³Y,0I�º�­
µ�º
g�°+\/M0g
8P4y«og
j�³S«Zµ�¬R«T¸�¬�­H8�µ�1N­

! ?<"P6Ø´5(*³;mX$qp�­R$KNéV_DE´+Á�DF>�Á2$<«T¸.f/Q�­^&�±-I�¸�¾�±R¸rkb3s(�«J³Cµ�(�¸�µtQk­#°u(�¾'±R¸.$0º!µ�«R:'±�³S¾�$�÷�a�D�>AÀxD�>bÁUO
véHq\Å´UDF>�Á�@
D�>xw�XqÁÅ>SDEBED�T�H7y½¼
D�HC>½¼_Hz$@6{(�½7j�³S«Tµ�¬�º|_0¸�«5`�ºy³S¾�«R:}a~Q�³�º!¾�¾�$d®>=-F2F�8B8d­�?�®�®ED�? G<d ­

! A
"P*|(*³Sµ�º!¸O:�$76�­|(�¸�µ ¶j­h¶h±R¸�³Y(�µ.$R=?>³BIH
V�¿½VqH
BEDF>�Á9´²H�S�>SDEBIH_@&Gb@_D�>�Á»·�X+´²HC^
ÁbHC>jH
V \�BEDÉXU>B$
&R±-,�³S¸B(�´�±21]3s(�¸�¬-,B(*¬�º7(�¸�µ�6.±R½�80,�:;(<:�«J±R¸�� � G<d2d2d � $P8B8d­�®>=2CJD G<d =?­

!He "P*|(*³Sµ�º!¸O:�$~6�­�(�¸�µT\�­¢°²º�jBj�ºy³>$&÷½XUºÓ\UVM´x@�BFacH�G�@¶H»X Z�\UGAB�XU·n\�BIH�´ VqHq\x@
XU>SDF>�Á�D�>
´�D�@
¼�XUGcV?@
H�´�D�@
\U·#ÂCDÃÁ�GS\�BEDÉXU>B$�&�±-,�³S¸B(�´Ï±21�3d±�¬R«�4<$�3L(�¸�¬-,B(*¬�º�(�¸�µ�Z�¸�1�±�³C½9(<:�«J±R¸ �O�
� G<d2d ® � $X8B8d­�?��-F>D�A d =?­

! FJ"@p0±2jBj�¾>$]&�­R$]��­NM�:�«54;m�º!´n$]�¥­�»�8B8�º!´R:7(�¸�µ�Qk­���(*³;:�«T¸.$�=?>½BIHCVI¿½VMH¶B�\�BEDÉXU>�\x@�\�Âq´UGS¼¶BEDÉXU>B$
»0³;:�«R�@4y«5(�´XZ-¸O:'º!´Z´Z«J¬�º!¸04gº_% I � ®>=2=2C � $@8B8¯­ e =JD|®z? G ­

! �
"|¶c(�½�8%$
ps­R$<�1TUH
>³BF@�O�D�>S@_B�\U>³BF@P\U>½´
BIHC·r¿cXUVM\U^SVqHEZ¶HCVqHC>j¼?Hz$*«Z¸.f�yjHC·n\U>³BEDÉ¼C@�Z_V XU·��
D �KHCVqHC>½B
�éXUDF>³BF@µX Z���DÉH
º�$@M�8�³S«T¸�¬�ºy³>$�®>=-F<=·­

! =
"@3L(�¾;4�(*³S«Zµ�º!¾�$4»s­P(�¸�µ�Ks­�»0¾YI�ºy³>$P�
D�@C¼?XUGcV�@¶H�VqHC^Ã\�BEDÉXU>A@#\U>½´�´²HEZ¶Hq\x@_DÉÂ
^ÃH]À)>½X�º1^ÃH�´¶Á�H�$�«T¸.f
�&H�H¶BED�>�Á/X ZµBFacH$Jh@?@CX¶¼¶DE\ÅBEDEXU>�Z
XUV�w�X�·é¿jGcB�\ÅBEDEXU>j\U^s��DF>�Á�GcD�@_BEDÉ¼C@E$d®>=2=p®<$@8B8d­0A2AJD e2G ­

! ® d "X� ±?º!¸�¾�$~��­�(�¸�µ���­�M�:'ºyº!µ�½9(�¸.$�÷jHC·r¿cX�V \U^*XU>³B�XU^ÃXqÁÅW \U>j´�BIH
·r¿cXUVM\U^�VqHEZ¶HCVqHC>j¼?Hz$
6.±R½�80,�:;(<:�«J±R¸0(�´.3¯«Z¸�¬-,�«Z¾[:�«54y¾ � ®>=2�2� � ­

144

A Computational Theory of Inference for
Arithmetic Explanation

Albert Goldfain

Department of Computer Science and Engineering
Center for Cognitive Science

University at Buffalo
Buffalo, NY 14260

ag33@ cse. buffalo. edu

Abstract

Mathematical understanding can be measured by a cognitive agent’s ability to ex-
plain itself, i.e., answer relevant questions about its mathematical activities. Two
inference techniques, rule-based inference and path-based inference, are applied
to an implemented computational cognitive agent using the SNePS knowledge-
representation, reasoning, and acting system.

1 Introduction

When engaged in classroom mathematical activities, students are often en-
couraged to “show their work” as they progress towards a solution and to
“explain their answers” after a solution has been found. This justification,
required well before a student learns how to produce rigorous logical proofs,
is a demonstration that the student understands how the problem is solved
and why the obtained result is a solution. Students “show their work” by ex-
plicitly providing the intermediate computations needed to reach a solution.
When confronted with a problem of averaging, e.g., 2, 3, 15, and 20, students
should show the intermediate sum 2+3+15+20=40 and the intermediate di-
vision 40/4 = 10. Students show that they understand averaging in terms of
the simpler operations of addition and division.

Unlike human students, computers and calculators are usually expected
to produce fast, reliable results without an explanation. These results often
take the form of a numerical output devoid of intermediate calculations, lin-
guistic content, and problem-specific semantic information. In such a role,
the computer is a tool for the human user, a tool that produces the correct
answers without justification. However, in the field of artificial intelligence,
there are several reasons to design computational agents that can both produce
the correct answers and can explain their answers. Such agents could better

145

ag33@cse.buffalo.edu�

communicate and interoperate with human users. Knowing the “how” and
“why” behind mathematical routines is required for a computational model of
mathematical cognition in a cognitive agent. Extending these abilities can be
a great benefit to autonomous embodied agents that must reason in the real
world with minimal human interaction.

This paper is a preliminary investigation of the inferential and representa-
tional requirements for a computational agent that can produce mathematical
explanations at the level of basic arithmetic and counting. Explanation is
treated as a justification of procedural action (the kind of solution a student
might give), rather than as a formal proof (the kind of solution a mathemati-
cian might give).

2 Question Answering

To probe a cognitive agent’s mathematical understanding, a series of questions
can be posed to the agent after it has completed a mathematical activity. For
example, if an agent has just determined that 2 is the greatest common divisor
of 8 and 6, a highly idealized explanation dialogue might look like the following:

Q1: Why is 2 the greatest common divisor of 8 and 6?

A1: 2 is the greatest of the common divisors of 8 and 6.

Q2: Why is 2 a common divisor of 8 and 6?

A2: 2 is a divisor of 8 and 2 is a divisor of 6.

Q3: Why is 2 a divisor of 6?

A3: There is a number that, when multiplied by 2, gives 6, and that number is 3.

Q4: Why is 2 times 3 = 6?

A4: Multiplication is repeated addition; 2 plus 2 is 4 and 4 plus 2 is 6

Q5: Why is 2 plus 2 = 4?

A5: When I count from 2 for two numbers I end up at 4

Q6: How do you know that you will end up at 4?

A6: I counted two groups of oranges, with 2 oranges in each, ending up with 4 total oranges.

Q7: What is 2?

A7: It is a number and the greatest common divisor of 8 and 6.

Q8: What is a number?

A8: Some examples are 2,4,6 and 8 . . . It is something that can be counted, added, multiplied . . . and something that can be the

result of finding a greatest common divisor

A human addressee will likely stop short of such a detailed answer. How-
ever, for computational agents, such a dialogue will be a useful Turing-test-
style demonstration of mathematical understanding. The ability to produce
such answers demands a representational and inferential capacity beyond that
of just finding a greatest common divisor. During a dialogue, an agent may
need to: (1) call upon linguistic information (e.g., for A2 above), (2) call upon
real-world experiences (e.g., for A6 above), (3) infer the relationships between

146

procedures and their constituent sub-procedures (e.g., for A4 above), and (4)
infer relationships between concepts (e.g., for A8 above). The question for
a computational agent then becomes: where does this (required) additional
knowledge come from?

One answer to this question is to design an agent that accumulates knowl-
edge during a mathematical activity. The ability to assimilate newly inferred
material with existing knowledge is essential for mathematical understanding
[2]. Mathematical understanding is driven by doing things, not simply by
thinking about things. This is consistent with the cognitive foundations of
mathematics presented by Lakoff & Núñez [4], in which a metaphoric rela-
tionship is established between a human activity (such as object collection)
and a formal operation (such as addition).

The activity-driven nature of mathematical understanding can be wit-
nessed even in the developmentally early routine of counting. Children turn
a routine that is nothing more than a meaningless recitation of ordered words
(much like a nursery rhyme) into a tool for ascribing cardinal size and ordi-
nal position to real-world entities. The semantics of counting routines arises
from children performing tasks that require counting, not from the contem-
plation of number-name meanings. Outside the context of the number line,
number-names are meaningless identifiers.

3 SNePS

My computational theory is implemented in the SNePS knowledge-
representation, reasoning, and acting system [11]. The fundamental data-
structure of SNePS is a propositional semantic network. A SNePS network
represents the beliefs of Cassie, the SNePS cognitive agent. A semantic net-
work is abstract enough to represent both numeric and linguistic information.
This is one of the reasons semantic networks have been used in models of
arithmetic word-problem solving [1]. Numeric information is basically syntac-
tic [8], but obtains a conceptual-role semantics [6] through integration with a
system such as SNePS.

Cassie’s acting system is SNeRE (the SNePS Rational Engine [3]). Acts
in SNePS are either primitive or complex. Primitive acts are the fundamental
repertoire of acts available to Cassie. Complex acts are composed of sets of
primitive acts that are structured by control acts (i.e., acts for sequencing,
iteration, and conditionals) and are bound to plans for performing them with
the ActPlan predicate function. SNePS has a uniform representation for both
conceptual and procedural knowledge so that all of Cassie’s SNeRE plans are
stored in the same network as her conceptual knowledge. Most importantly,
Cassie can add beliefs to her network while she is acting, constituting an
episodic memory of the act, which can be accessed during an act to prompt
further action or after an act for answering questions.

SNIP, the SNePS Inference Package, enables inferential operations over

147

the beliefs in Cassie’s network. This allows SNePS to serve as a logical rule-
based system. Commands for finding and deducing nodes (representing propo-
sitions) allow the user to ask Cassie questions and are the foundation for the
path-based and rule-based inference techniques described in the next section.

3.1 Rule-Based Inference

At the highest level of abstraction, an ActPlan for an arithmetic act is set up
as follows:

all(x,y)({Number(x),Number(y)} &=> ActPlan(Add(x,y),CountAdd(x,y))).

The semantics of such a statement is roughly: If you can infer that both x
and y are numbers, then a plan for doing this generic arithmetic operation
(e.g., Add) is this specific arithmetic operation (e.g., CountAdd). When Cassie
is told to perform one of the generic arithmetic acts on two given inputs, say
perform Add(2,3), she produces the following sequence of inferences: 1

(i) Try to deduce a plan for the act Add(2,3). This amounts to asking the
open question ActPlan(Add(2,3),?x)?.

(ii) Once Cassie finds an asserted node corresponding to Add(x,y), she
backchains and wonders whether Number(2) and Number(3) are asserted
beliefs.

(iii) Once Cassie determines that Number(2) and Number(3) both hold, she
retrieves the plan corresponding to the act Add(2,3). In this case, she
finds CountAdd(2,3).

(iv) Cassie then attempts to perform CountAdd(2,3) by finding a plan for
it.

This cycle of actions continues until Cassie completes the task. When a prim-
itive action is reached, Cassie does not try to further decompose the action.

During the course of executing a specific arithmetic operation, Cassie needs
to store the result using the CountSum case frame. We also want to be able
to say that each of these specific arithmetic results is a result for the abstract
act. Cassie is given the following rule:

all(x,y,z)(CountSum(x,y,z) => Sum(x,y,z)).

This tells Cassie that a CountSum is a Sum per se. Thus, the moment Cassie
believes the result CountSum(2,3,5), she will infer Sum(2,3,5) by forward
chaining. This provides a specific and generic access point for arithmetic
results.

These arithmetic acts force Cassie to perform successively simpler opera-
tions. Rule-based inference establishes a connection between three things: a
general act (e.g., addition), a specific plan for performing that act (e.g., count-
addition), and a specific performance of that plan (e.g., the count-addition of

1 Cassie also checks whether an act has any preconditions and any effects. Since the
arithmetic operations involve mental acts only, we omit these inferences.

148

2 and 3). Since Cassie explicitly deduces propositions at the knowledge level
using this technique, rule-based inference can be seen as a model of “con-
scious” inference (i.e., Cassie is attending to the information that triggers the
inference).

3.2 Path-Based Inference

Paths in SNePS networks are ordered sequences of arc-labels between nodes.
Paths are specified using a syntax similar to regular expressions [9]. Path-
based techniques can be used as a model of unconscious inference for SNePS
agents [10]. A relation between nodes in a given network may be inferred by
the presence of a certain path between those nodes. This is an “unconscious”
activity, because the newly inferred relation is added to the agent’s belief space
without an explicit knowledge level deduction.

For each new number generated by a counting procedure, Cassie builds a
Successor relation to hold between that number and its immediate prede-
cessor. Using path-based inference, this link can be exploited to generate the
GreaterThan relation, which holds between each new number generated and
all preceding numbers.

Path-based inference takes advantage of the fact that Cassie’s knowledge is
stored in a semantic network, in which a node’s “meaning” is determined by its
position in the network relative to other nodes [5,6]. This type of inference can
also be used in SNePS to determine the conceptual-role semantics for vague
concepts such as “number”. To define a concept such as “number” in the
context of a completed arithmetic activity, a series of path-based inferences
can be performed to give the elements of the class number, to give the acts
with argument type number, and to give the operations that have thus far
resulted in numbers.

This technique can also be used to provide semantic meaning for arithmetic
procedures. The possibility of treating an arithmetic operation as either a
concrete object (as a node) and a process (as an ActPlan) during inference
is an important result of using SNePS to model mathematical understanding
(see [7]).

4 Conclusion and Further Research

Inference is central to explanations of all sorts. We have seen that for a
domain such as arithmetic, in which complex procedures can be rigidly built up
from simpler procedures, the knowledge inferred during an agent’s action can
provide a justification for that action. For a computational agent, the choice
of a knowledge-representation system determines the methods of inference
that can be applied. SNePS is particularly useful for implementing my theory
because it can be used as a logical rule-based system (by applying node-
based inference) or as a traditional semantic network (by applying path-based

149

inference). The agent implementation is still in its early stages and there are
several avenues to pursue. 2

References

[1] Greeno, J. G., Instructional Representations Based on Research about
Understanding, in: Cognitive Science and Mathematics Education, Lawrence
Erlbaum Associates, Hillsdale, NJ, 1987 pp. 61–88.

[2] Hiebert, J. and P. Lefevre, Conceptual and Procedural Knowledge in
Mathematics: An Introductory Analysis, in: Conceptual and Procedural
Knowledge: The Case of Mathematics, Lawrence Erlbaum Associates, Hillsdale,
NJ, 1986 pp. 1–27.

[3] Kumar, D., From Beliefs and Goals to Intentions and Actions: An Amalgamated
Model of Inference and Acting, Technical Report 94-04, Department of
Computer Science, State University of New York at Buffalo (1994).

[4] Lakoff, G. and R. Núñez, “Where Mathematics Comes From: How the
Embodied Mind Brings Mathematics Into Being,” Basic Books, New York, NY,
2000.

[5] Quillian, M. R., Semantic Memory, in: Semantic Information Processing, MIT
Press, Cambridge, MA, 1968 pp. 216–270.

[6] Rapaport, W. J., Holism, Conceptual-Role Semantics, and Syntactic Semantics,
Minds and Machines 12 (2002), pp. 3–59.

[7] Sfard, A., On The Dual Nature of Mathematical Conceptions: Reflections on
Processes and Objects as Different Sides of the Same Coin, Educational Studies
in Mathematics 22 (1991), pp. 1–36.

[8] Shapiro, S. C., Representing numbers in semantic networks: prolegomena,
Proceedings of the 5th International Joint Conference on Artificial Intelligence
(1977), p. 284.

[9] Shapiro, S. C., Path-based and node-based inference in semantic networks, ACM,
New York, NY, 1978 pp. 219–225.

[10] Shapiro, S. C., Cables, paths and “subconscious” reasoning in propositional
semantic networks, in: J. F. Sowa, editor, Principles of Semantic Networks,
Morgan Kaufmann, San Mateo, CA, 1991 pp. 137–156.

[11] Shapiro, S. C. and W. J. Rapaport, The SNePS Family, Computers and
Mathematics with Applications 23 (1992), pp. 243–275.

2 I would like to thank William J. Rapaport and Stuart C. Shapiro for reading earlier drafts
of this paper.

150

Towards a Logical Foundation of Semantic
Networks – A Typology of Descriptive Means for

Semantic Inference

Hermann Helbig, Ingo Glöckner
Intelligent Information and Communication Systems

FernUniversität in Hagen, Germany

Abstract

Semantic Networks (SN) are a knowledge representation paradigm especially
suited for the meaning representation of natural language expressions. In order
to clearly define their basic constructs, the relations and functions used in a se-
mantic network must be given a logical characterization. The paper exemplifies
this strategy for Multilayered Extended Semantic Networks (the so-called Multi-
Net paradigm). In particular, it is shown that the axioms characterizing the logical
properties of the expressional means of an SN have to be classified according to
different criteria which are connected with specific types of inference.

1 Introduction
Semantic Networks have a long tradition as a paradigm for representing cognitive struc-
tures, starting with Quillian [9]. As to the logical underpinning of relations and func-
tions used in such networks, we find a logically oriented and a more linguistically ori-
ented approach. The works in the first line, like Shapiro’s SNePS [10], and Brachmann’s
KL-ONE [1], have a clear logical foundation, but none of them give a systematic and
complete description of the relations and functions constituting an SN. By contrast, lin-
guistically oriented work normally discusses selected semantic relations (so-called cog-
nitive roles or theta-roles) in greater detail [5], however not on a formal logical level.
Moreover the proposed relations and roles are not contrasted with each other to form a
balanced system of expressional means. In SNePS [10], for example, the guideline for
choosing the appropriate relations is deliberately given the status of a recommendation
only. To meet the requirements on a knowledge representation formalism useful for NLP
(especially the universality, homogeneity, and interoperability criteria [4, Chap. 1]), one
needs a commitment on a clearly defined repertory of expressional means. Multilay-
ered Extended Semantic Networks (the MultiNet paradigm [4]) were designed to fulfill
these requirements, by fixing a set of expressional means and formalizing axioms which
describe these functions and relations. The formalism is comprehensively documented
and successfully used in NLP applications, e.g. for describing large semantically based
computational lexica [3], and as the backbone of NL interfaces [7]. Its application in the

151

Figure 1: “It is not true that Peter didn’t drive to Boston with his car”

peter.0fe

c3na
SUB forename

FACT real
GENER sp
QUANT “one”
REFER det
CARD 1
ETYPE 0
VARIA con


VAL cs

oo

c4d
SUB car

FACT real
GENER sp
QUANT “one”
REFER det
CARD 1
ETYPE 0
VARIA con



c6d∨io
SUB city

FACT real
GENER sp
QUANT “one”
REFER det
CARD 1
ETYPE 0
VARIA con


ATTRc c//

c7na
SUB name

FACT real
GENER sp
QUANT “one”
REFER det
CARD 1
ETYPE 0
VARIA con



VAL

c

s��

c2d
SUB person

FACT real
GENER sp
QUANT “one”
REFER det
CARD 1
ETYPE 0
VARIA con



POSS

s

c ??�����������

ATTR

c

c OO

c1da
SUBS drive

TEMP past.0[
FACT nonreal
GENER sp

]

MODL

r

s��

DIRCLc s//

INSTR

c

s OO

AGT cs
oo

c5l

FACT real
GENER sp
QUANT “one”
REFER det
CARD 1
ETYPE 0
VARIA con



*FLP

c

s OO

boston.0fe

*NONmd

InSicht question-answering system [2] has been successfully evaluated in CLEF 2004,
with a MultiNet knowledge base generated from 4,9 Mio sentences.
MultiNet extends simple semantic networks by the following features: (1) Every node is
labeled by a sort from a predefined ontology of sorts and by bundles of layer attributes.
(2) MultiNet admits functions and relations of arbitrary arity. (3) The arcs (relations)
are formally characterized by associated axioms. (4) Subnetworks can be encapsulated
to form concepts of higher order which can be connected to other concepts by relations
and functions. (5) The relationships in the network are assigned a knowledge type and
thus marked as categorically valid (c), prototypically valid (p), modally restricted (r), or
situationally bounded (s) with regard to each argument, as shown in Fig. 1.

2 The Expressional Means of MultiNet
To characterize an SN, we need a precise specification of the relations corresponding to
the arcs (links). Our formalism provides about 140 relations and functions characterized
on the basis of a uniform schema and by logical axioms. Table 1 sketches the relations
and functions needed in this paper. MultiNet distinguishes 45 sorts of conceptual enti-
ties used to define the signatures of relations and functions [4, Sect. 17.1]. Some of these
sorts are explained in Table 1. The sorts are also needed to constrain the applicability
of logical rules. For example, the law of double negation holds for semantically total
properties (sort [tq]) like dead and its negation alive, where not alive means the same as
dead. Another sort [gq] is used for gradable properties like friendly and unfriendly. Al-
though unfriendly means not friendly, the law of double negation does not hold in this
case, i.e. if someone is not unfriendly this does not mean that the person is friendly.
MultiNet not only classifies conceptual entities by their sorts but also by the values of

152

Relation Signature Short Characteristics
AFF si× [o∪ si] C-Role – Affected object
AGT si×o C-Role – Agent
ANTE [t ∪ si]× [t ∪ si] Temporal successorship
ATTR o×at Specification of an attribute
AVRT si×o C-Role – Averting/Turning away from an object
CAUS si

′ × si
′

Relation between cause and effect (Causality)
CIRC si× si Relation between situation and circumstance
COMPL p× p Complementarity relation
DIRCL [si∪o]× l Relation specifying a direction
FIN si× [t ∪ si] Relation between a situation and its temporal end
LOC [o∪ si]× l Relation specifying the location
MIN qn×qn Smaller-than relation
MODL si×md Relation specifying a restricting modality
OBJ si× [o∪ si] C-Role – Neutral object of a situation
ORNT si×o C-Role – Orientation of a situation toward something
PARS co× co Part-whole relationship
PROP o× p Relation between object and property
SUB o×o Relation of conceptual subordination (for objects)
SUBS si× si Relation of conceptual subordination (for situations)
TEMP si× [t ∪ si] Relation specifying the temporal embedding of a situation
VAL at × [o∪qn∪ p∪ f e] Relation between an attribute and its value

Table 1: Strongly abbreviated description of relations used in this paper. Explanation
of sorts: objects o include concrete objects co (house) and attributes at (height); situations
si (write); locations l (here), times t (now), modal descriptors md (impossible); properties p
(dead), quantificators and measurements qn (many, two litres), formal entities f e (figures or
names). The notation si

′
demands [FACT = real], and the notation si demands [GENER = ge].

six so-called ‘layer attributes’. Here we are concerned only with two of these attributes:
Facticity. We discern three kinds of facticity: [FACT=real] for existing entities (Eiffel
tower), [FACT=non] for non-existing entities (the light ether), and [FACT=hypo] for
hypothetical entities (quarks). Apart from the extensional negation expressed by a non-
existing situation with [FACT=non], MultiNet supports the intensional negation of a
situation s, expressed by the relation (s MODL *NON). Both types occur in the example
shown in Fig. 1. Facticity must be anchored in the logical language since special infer-
ence rules apply to hypothetical and non-existing objects.
Genericity. The GENER attribute (degree of generality) divides the world of concepts
into generic objects with [GENER=ge] (house) and specific objects with [GENER=sp]
(〈my house〉). In this way, assertions about the generic concept can be clearly separated
from assertions about instances of that concept. Generic concepts are also needed to
model prototypical knowledge. Consider “Lions feed on antelopes”. A modeling by
a universal quantifier ranging over all lions would be inadequate because the sentence
expresses only default knowledge.

153

3 A Typology of Axioms for Inferences over an SN
While a logical expression is either true or false in first-order logic (FOL), a semantic
formalism dealing with NL must support different degrees of reliability. Moreover, log-
ical calculi normally do not give a clue how to use the axioms in an effective inference
strategy. These considerations suggest the following cross-classification of axioms.

3.1 Conceptually Bound vs. Conceptually Non-bound Axioms
R-axioms. From a syntactical point of view, there are two types of expressions describ-
ing axiomatic knowledge. The first type contains no lexical constants but only relation
and function symbols (apart from logical signs). These expressions are called concep-
tually non-bound or R-Axioms. The following R-Axiom connects causality and time,
saying that effects never take place before the cause: (x CAUS y)→¬(y ANTE x) (1)
Other examples are given by axioms (4), (5), (7) below. Axioms which are conceptually
not bound have to be treated with care by the reasoner, since an R-axiom for a relation
R can be applied in inferences over the SN wherever R is involved (global effect). Inter
alia, R-axioms serve to express the symmetry or transitivity of relations, i.e. properties
which are difficult to handle efficiently.
B-axioms. Axioms containing the representative of at least one concept are called con-
ceptually bound or B-axioms. Thus, with every selling act s there is a buying act b
entailed by s. The corresponding relationship is given by the following axiom:
(s SUBS sell)∧ (s AGT a)∧ (s OBJ o)∧ (s ORNT d)→

∃b(b SUBS buy)∧ (b OBJ o)∧ (b AVRT a)∧ (b AGT d) (2)
Another example of a B-axiom is (6) which contains only one concept. Such B-axioms
have only a local effect, i.e. they are applied only in those cases where one concept
has to be connected to another during the inference process. Here, we meet the Frame
Problem in Artificial Intelligence: In a B-axiom like (2), only the change of participant
roles (like AGT, AFF, AVRT, and OBJ) is specified, but nothing is said about the local,
temporal and circumstantial embedding of the main situation (mainly represented by
LOC, TEMP, and CIRC, resp.) The transfer of these specifications must be handled by
axiom schemata for classes of concepts: While the temporal specification of a selling
act like s in (2) transfers unchanged to b, there is no such transfer of the specification
(s1 TEMP t1) of a sending act s1 to the corresponding receiving act s2 = sk(s1). For the
latter class we have:

(s1 SUBS 〈send-act〉)∧ (s1 TEMP t1)∧
(sk(s1)SUBS 〈receive-act〉)∧ (sk(s1)TEMP t2)→ (t1 ANTE t2) (3)

3.2 Categorically vs. Prototypically Valid Axioms
Categorically Valid Axioms. It seems to be a contradiction to speak of axioms which
are restricted in their validity. But, if we want to formalize natural language semantics,
we must also account for prototypical regularities.

154

The following axiom expresses knowledge which is categorically valid:
(p1 COMPL p2)→ (o PROP p1)∨ (o PROP p2) (4)
Axiom (4) states that one from two complementary properties (if applicable at all) must
hold. It is obvious that there is no exception from this rule.
Prototypically Valid Axioms. By contrast, rule (5), governing the inheritance of the
part-whole relationship within the SUB hierarchy, has only the status of default (or pro-
totypically valid) knowledge:
(d1 SUB d2)∧ (d3 PARS d2)→∃d4[(d4 SUB d3)∧ (d4 PARS d1)] (5)
It is a good assumption that a conceptual object subordinated to a generic object inherit
known parts from the latter. However, there are exceptions. While ships normally have
a keel, there are also ships which have not.

Categorically valid axioms lead to monotonic reasoning, while prototypically valid
axioms call for nonmonotonic reasoning. The standard approach to default reasoning
based on a truth-maintenance system does not scale up, though. In MultiNet, we warrant
that every deduction step involving a default again produces only default knowledge.
The newly generated default knowledge has to be checked for local contradictions in
a neighborhood of the concepts involved. Semantic networks can help defining such
neighborhoods as their link structure gives a natural notion of vicinity for concepts.

3.3 Deductive Axioms vs. Destructive Axioms
Deductive Axioms. Many axioms, like (1) through (5), can be used in a deductive
process to derive new knowledge, given by the conclusion, provided that the premise be
fulfilled. The important feature of monotonic deduction is that no piece of knowledge
in the knowledge base must ever be retracted.
Destructive Axioms. There are also axiomatic regularities which not only generate new
knowledge but also cancel earlier knowledge. Into this class of ‘destructive’ axioms we
number the derivation of the temporal end of a situation s:

(e SUBS end)∧ (e AFF s)∧ (e TEMP t)→ (s FIN t)|DEL (s TEMP _) (6)
Thus if an activity e ends a situation s at time t, then a new relation FIN for s must
be established and the earlier specification of s by the relation TEMP must be deleted.
While the first type of axioms can be treated by symbolic derivations, the latter type
requires actions on the knowledge base like deleting arcs.

3.4 Epistemically Restricted vs. Non-restricted Axioms
Epistemically Restricted Axioms. There are axioms which are epistemically restricted
in the sense that their validity is only warranted within a certain epistemic or cognitive
context. A typical example is the restricted transitivity of CAUS:

(k1 CAUS k2)∧ (k2 CAUS k3)→ (k1 CAUS k3) (7)
This axiom is connected with a fading effect preventing infinite prolongation of causal-
ity chains by a presumed (but not strongly valid) transitivity of CAUS. This effect is due
to the so-called INUS-conditions [8], i.e. humans asserting a causal relation emphasize

155

a certain cause and neglect other necessary conditions for this relationship.
Epistemically Non-restricted Axioms. For most axioms no epistemically motivated
restriction can be observed. In particular, the transitivity of conceptual subordination
(8) and of spatial inclusion (9) hold unconditionally:

(o1 SUB o2)∧ (o2 SUB o3)→ (o1 SUB o3) (8)
(o LOC (*INm))∧ (m LOC (*INn))→ (o LOC (*INn)) (9)

For epistemically restricted axioms, we propose the use of built-in procedures which
treat borderlines of epistemic or functional levels by special parameters for controlling
the inference process.

4 Conclusion
The MultiNet formalism is intended for the semantic representation of unrestricted lan-
guage and thus supposed to represent the facticity status, degree of generality, modal
embedding, and other characteristics of NL concepts. The meaning of the relations
and functions on which the formalism is based, can be made precise by axioms which
capture their expected behaviour. These axioms differ with respect to the classificatory
dimensions of categoricity, conceptual boundedness, and epistemic restriction. We have
shown that these dimensions also affect the validity and efficiency of inference.

References
[1] R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledge representa-

tion system. Cognitive Science, 9(2):171–216, 1985.

[2] S. Hartrumpf. Question answering using sentence parsing and semantic network matching.
In Proc. of CLEF 2004, pages 385–392, Bath, England, Sept. 2004.

[3] S. Hartrumpf, H. Helbig, and R. Osswald. The semantically based computer lexicon Ha-
GenLex. Traitement automatique des langues, 44(2):81–105, 2003.

[4] H. Helbig. Knowledge Representation and the Semantics of Natural Language. Springer,
Berlin, 2006.

[5] R. Jackendoff. Semantic Structures. MIT Press, Cambridge, Massachusetts, 1990.

[6] F. Lehmann, editor. Semantic Networks in Artificial Intelligence. Pergamon Press, 1992.

[7] J. Leveling and H. Helbig. A robust natural language interface for access to bibliographic
databases. In Proceedings of SCI 2002, pages 133–138, Orlando, Florida, July 2002.

[8] J. L. Mackie. The Cement of Universe. Oxford University Press, Oxford, 1974.

[9] M. R. Quillian. Semantic memory. In M. Minsky, editor, Semantic Information Processing,
pages 227–270. MIT Press, Cambridge, Massachusetts, 1968.

[10] S. C. Shapiro and W. J. Rapaport. The SNePS family. In Lehmann [6], pages 243–275.

156

The ALLIGATOR Theorem Prover for
Dependent Type Systems: Description and

Proof Sample

Paul Piwek

Centre for Research in Computing
The Open University, Milton Keynes, UK

p.piwek@open.ac.uk

Abstract

This paper introduces theAlligator theorem prover for Dependent Type Systems (dts).
We start with highlighting a number of properties ofdts that make them specifically suited
for computational semantics. We then briefly introducedts and our implementation. The
paper concludes with an example of adts proof that illustrates the suitability ofdts for
modelling anaphora resolution.

1 Introduction

Automatedsymbolicinference requires a formal language as the substratum for
reasoning. Blackburn and Bos ([7]) make a good case for the use of First Order
Predicate Logic (fopl) in computational semantics, citing both practical (availabil-
ity of high performance theorem provers and to a lesser extent model builders) and
theoretical reasons (they discuss a range of interesting phenomena which can be
dealt with infopl).

We agree with the idea thatfopl is a good starting point, but also think that for
computational semantics to develop further as a field, extensions going beyondfopl

should be actively explored. In this paper, a research tool is described that takes
such explorations in one particular direction. The tool –alligator – is a theorem
prover for Dependent Type Systems (dts) [4,5]. The Sicstus Prolog source code
of this prover is available, free of charge, for research purposes ([18]).dts are an
attractive option for computational semantics for a numberof reasons:

(i) Dynamic potential (cf. [15]): The notion of acontextthat is built upincre-
mentallyis inherent todts.

(ii) Flexibility: By varying a limited number of parameters, it is possible to
switch from, for example, propositional to predicate logic, or first order to
higher order logics. Additionally, although the basic underlying logic is con-
structive,dts allows for the flexible use of axioms to regain full classical

157

logic, or more fine-grained alternatives. For example, it ispossible to specify
for individual predicates whether they are bivalent.

(iii) Extensibility: A dts-context includes what is known as the signature infopl.
Consequently, the signature can be extended incrementally,making it possible
to model the acquisition of new concepts by language users.

(iv) Proof-objects: In dts, Gentzen-style natural deduction proofs are first-class
citizens. This gives us the following advantages: (a)Reliability: It allows us
to heed thede Bruijn criterionfor reliable proof systems: “A proof assistant
satisfies the de Bruijn criterion if it generates ‘proof-objects’ (of some form)
that can be checked by an easy algorithm.” (cited from [5]) (b) Naturalness:
dts proofs correspond with natural deduction proofs. This is ofinterest if one
is concerned with models of human reasoning in natural language understand-
ing. In psychology, some schools of thought argue that natural deduction is a
good approximation of human reasoning (see, e.g., [21]). (c) Relevance: Proof
objects can help to identify proofs which are valid but spurious in the sense
that they do not really consume their premises (see [14]). (d) Justification of
behaviour: Explicit proof objects provide direct access to the justifications
that an agent has for the conclusions and the interpretations that it constructs.
This is particularly useful for dialogue agents that need torespond to utter-
ances of other agents. Such responses can themselves again be queried, for
example, through clarificatory questions (cf. [22]) and why questions (A:p, B:
no,¬p, A: Why¬p?). In order to respond appropriately, the agent needs to ac-
cess its own background knowledge and how it was used to draw conclusions.
dts proof objects provide a compact representation of this information.

(v) Applications: dts-style analyses exist for a wide range of linguistic phe-
nomena including donkey sentences ([23]), anaphoric expressions and tem-
poral reference ([20]), belief revision ([8]), bridging anaphora ([19]), clar-
ification ellipsis ([10]), metonymy ([9]), inter-agent communication, knowl-
edge and observation ([1]), ontological reasoning for feedback dialogues ([6]),
and human-machine dialogue ([2]). Additionally, there is research on relating
dts proof-theoretic natural language semantics to model-theoretic approaches
([12]), and there are studies employing the related formalism of labelled de-
duction to natural language semantics ([16]). In 2005, the 2nd Workshop on
Lambda-Calculus, Type Theory, and Natural Language took place at King’s
College London ([11]).

We concede that none of the properties we have listed is on itsown unique todts.
However, to the best of our knowledge, no extant logical calculus combines all
these properties in asingle systemwith well-understood meta-mathematical prop-
erties (dts play a central role in theoretical computer science, see [4]).

2 Dependent Type Systems

dts come in a wide variety of flavours and variations. All these systems share,
however, two features: atyping systemand a notion ofdependency. Firstly,dts are

158

type systems. That is, given a set of assumptionsΓ, also known as thecontext, they
provide rules for determining whether a particular object,saya, belongs to a given
type, sayt. We writeΓ ⊢ a : t, if, given the contextΓ, a is of typet, i.e.,a inhabits
type t. The objects that are classified using type systems are (normalizing) terms
of theλ-calculus.Γ is a sequence of statementsx1 : t1, . . . , xn : tn (with n ≥ 0).

Dependencyis the second feature ofdts, and it comes in two forms. First, there
is dependency between statements in the context: in order touse a typetk to classify
an objectxk, this typetk needs to have been introduced in that part of the context
thatprecedesit or tk has to be a sort. In other words,tk can only be used if (1) it
itself inhabits a type or can be constructed from other typesthat are available in the
context preceding it, or (2) it belongs to a fixed and usually small set of designated
types that are calledsorts. Because sorts need no preceding context, they make it
possible to keep contexts finite.

Second, there is a variety of dependency that occursinside types. Since type
systems are used to classify terms of theλ-calculus, they can also deal with func-
tions. A functionf from objects of typet1 to objects of typet2 inhabits the function
type t1 → t2. Dependentfunction types are a generalization of function types: a
dependent function type is a function type where the range ofthe function changes
depending on the object to which the function is applied. Thenotation for depen-
dent function types isΠx : A.B (we also use our own alternative ‘arrow notation’:
[x : A] ⇒ B). If we apply an inhabitant of this function type, sayf , to an object of
typeA, then the resulting objectfa (f applied toa) is of typeB, but with all free
occurrences ofx in B substituted witha (that is, the type offa is B[x := a]).

One way to make the leap from type systems to logic is as follows. From a log-
ical point of view, we are interested in propositions as the constituents of deductive
arguments. In classical logic, one focuses on judgements ofthe following form:
the truth of propositionq follows/can be derived from the truth of the propositions
p1, . . . , pn. We reason from the truth of the premises to the truth of the conclu-
sion. To do logic in adts, we move fromtruth to proof: we, now, reason from the
proofs that we (assume to) have for the premises to a proof forthe conclusion. In
other words, we are interested in judgements of the following form: a is proof of
propositionq follows/can be derived assuming thata1 is a proof ofp1, a2 is a proof
of p2, . . ., andan is a proofpn. Such a judgement can be formalized in adts as
a1 : p1, . . . , an : pn ⊢ a : p. Thus, we reada : p as ‘a is a proof for p’. Thus, we
model proofs as (λ-calculus) terms and propositions as (a certain class of) types in
dts. This is known as the Curry-Howard-de Bruijn embedding.

The embedding is grounded in the Brouwer-Heyting-Kolmogorov interpreta-
tion of proofs asconstructions; e.g., a proof for a conditionalp → q is identified
with a method that transforms a proof ofp into a proof forq. In adts, this is for-
malized by modelling the prooff for a typep → q as a function from objects of
typep to objects of typeq, such that ifa is a proof ofp, thenf applied toa is a
proof of q (i.e.,fa : q). Universal quantification is dealt with along the same lines.
In adts, the counterpart for universal quantification is the dependent function type.
In particular,∀x ∈ A : P (x) becomes(Πx : A.Px). A proof for this type is a

159

functionf which, given any objecta : A, returns the prooffa for Pa.
Pure Type Systems (pts; [4]) are of particular interest, because of their gen-

erality. With a small number of parameters,pts can be tailored to match a wide
variety ofdts. Alligator implements an extension ofpts with Σ types.Σ types
are also known as dependent product types and can be used to model∧ and∃.

3 System Architecture, Implementation and Proof Sample

There is no room for a detailed description of the system here, for that we refer to
the documentation and code available at [18]. What we can offer is, firstly, a list of
differences betweenalligator and otherdts provers: (a)alligator directly con-
structs proof objects for natural deduction proofs. Other provers fordts typically
work with internal representations that are only at the end of the reasoning process
translatedto natural deduction proof objects. For example,Cocktail ([13]) uses
tableaux and translates these, whereastps ([3]) is based on the mating method.
The handbook chapter by Barendregt and Geuvers on proof assistants fordts ([5])
lists a number of further automated theorem provers, none ofwhich works directly
with proof objects. (b)alligator was not developed with mathematical/program
specification reasoning in mind, but rather for inferences in language interpretation.
As a consequence, it has been streamlined to link up with notation and function-
ality relevant to computational semantics (specifically, allowing for notation which
is close to [15] and omission of inductive types). (3) To the best of our knowl-
edge,alligator is the only automated theorem prover which directly conforms to
the specification of Pure Type Systems ([4]), the most general and flexible kind of
dts (mostdts can be emulated inpts; see [17] for an overview ofdts and their
counterparts inpts).

Alligator 1.0 has been implemented in SicstusProlog and been tested with
version 3.12.2 of Sicstus. An overview of the architecture is presented in Figure
1.a. Note that the system applies both forward and backward inferencing. Most
of the forward inferencing takes place before backward inferencing (though some
backward inferencing rules do also have forward inferencing component). Reduc-
tion of terms is also carried out mainly before backward inferencing. Inferencing
is done with a flattened representations ofdts terms (the arrow notation). Proofs
are checked at the end of the inferencing process for their correctness (the code for
proof checking is separate from the theorem proving code).

Currently,alligator has the status of an experimental research tool. It is in-
tended for testing computational solutions to theoretically challenging problems in
computational semantics. Scalability has, so far, not beengiven much attention,
though it will obviously need to be addressed if the system isto be used in large-
scale practical applications. Currently, the system is merely intended as abaseline
andstarting pointfor implementing efficient and effective proof search heuristics.
We now conclude with an example of the use ofalligator.

The discourse ‘The barn contains a chain saw or a power drill.It . . .’ (p. 205 of
[15]) poses a problem for the structural approach to anaphora resolution proposed in

160

Fig. 1. Overview ofAlligator 1.0 Architecture (a) and graphical representation of a
proof-object (b)

[15]: the first sentence does not directly introduce an accessible discourse referent
that can bind the pronoun ‘It’. Rather, an object (something that is either a power
drill or a chain saw) needs to beinferredfrom a disjunction. An inferential account
of anaphora resolution that can deal with such cases is presented in [19]. In a
nutshell, the idea is that an anaphoric expression triggersa proof goal that needs to
be filled with a proof from the context.

Alligator can construct an antecedent for ‘It’ from the context (for lack of
space, our formalization is in propositional logic). Firstly, the relevant proposi-
tions need to be available:false:prop (false is a proposition),p:prop (there is a
chain sawis a proposition),q:prop (there is a power drillis a proposition),u:prop
(there is somethingis a proposition). Given these propositions, we can now in-
troduce background information such asa1:p→u (roughly,chain saws are things)
anda2:q→u (power drills are things). Althoughdts are constructive, we can en-
gage in classical reasoning by including the double negation rule in our background
knowledge: dn pr:([P:prop]⇒(((P→false)→false)→P)). It involves higher or-
der quantification over all propositionsP. Finally, assume that the context has
been updated with the information expressed by the sentence‘The barn contains
a chain saw or a power drill’, with disjunction modelled using implication and
negation:a3:(p→false)→q. Given this information,alligator can generate the
proof/antecedent for ‘It’ (modelled here asu) given in Figure 1.b.
Acknowledgements We would like to thank the anonymous reviewers of ICoS-5 for their
helpful comments and suggestions.

161

References

[1] Ahn, R., “Agents, Objects and Events: A computational approach to knowledge, observation
and communication,” Ph.D. thesis, Eindhoven University ofTechnology (2001).

[2] Ahn, R., R. Beun, T. Borghuis, H. Bunt and C. van Overveld,The DenK-architecture: a
fundamental approach to user-interfaces, Artificial Intelligence Review Journal8 (1994),
pp. 431–445.

[3] Andrews, P., M. Bishop, S. Issar, D. Nesmith, F. Pfennig and H. Xi, TPS: A Theorem-Proving
System for Classical Type Theory, Journal of Automated Reasoning16 (1996), pp. 321–353.

[4] Barendregt, H.,Lambda Calculi with Types, in: Handbook of Logic in Computer Science, 2,
Clarendon Press, Oxford, 1992 .

[5] Barendregt, H. and H. Geuvers,Proof-assistants using Dependent Type Systems, in: Handbook
of Automated Reasoning, Elsevier, 2001.

[6] Beun, R., R. van Eijk and H. Prüst, Ontological Feedback in Multiagent Systems, in:
N. Jennings, C. Sierra, L. Sonenberg and M. Tambe, editors,International Joint Conference
on Autonomous Agents and Multiagent Systems(2004), pp. 110–117.

[7] Blackburn, P. and J. Bos,Computational Semantics, Theoria18 (2003), pp. 27–45.
[8] Borghuis, T. and R. Nederpelt,Belief Revision with Explicit Justifications: An Exploration in

Type Theory, CS-Report 00-17, Eindhoven University of Technology (2000).
[9] Bunt, H. and L. Kievit, Agent-dependent metonymy in a context-change model of

communication, in: Computing Meaning II, Studies in Linguistics and Philosophy77, Kluwer
Academic Publishers, Dordrecht, 2001 pp. 75–95.

[10] Cooper, R. and J. Ginzburg,Clarification ellipsis in dependent type theory, in: J. Bos
and C. Matheson, editors,Proceedings of Edilog,the 6th Workshop on the Semantics and
Pragmatics of Dialogue, University of Edinburgh, 2002.

[11] Ferńandez, M., S. Lappin and C. Fox, editors, “Procs. of Lambda Calculus, Type Theory and
Natural Language Workshop,” King’s College, London, 2005.

[12] Fernando, T.,A type reduction from proof-conditional to dynamic semantics, Journal of
Philosophical Logic (2001), pp. 121–153.

[13] Franssen, M. and H. de Swart,Cocktail: A Tool for Deriving Correct Programs, Rev. R. Acad.
Cien. Serie A. Mat.98 (2004), pp. 95–111.

[14] Helman, G., “Restrictions on Lambda Abstraction and the Interpretation of Some Non-
Classical Logics,” Ph.D. thesis, University of Pittsburgh(1977).

[15] Kamp, H. and U. Reyle, “From Discourse to Logic,” KluwerAcademic Publishers, Dordrecht,
1993.

[16] Kempson, R., W. Meyer-Viol and D. Gabbay,Syntactic Computation as Labelled Deduction:
WH a case study, in: R. Borsley and I. Roberts, editors,Syntactic Categories, Academic Press,
2000.

[17] Laan, T., “The Evolution of Type Theory in Logic and Mathematics,” Ph.D. thesis, Eindhoven
University of Technology (1997).

[18] Piwek, P.,Alligator Theorem Prover Home Page, mcs.open.ac.uk/pp2464/alligator (2006).
[19] Piwek, P. and E. Krahmer,Presuppositions in Context: Constructing Bridges, in: P. Bonzon,

M. Cavalcanti and R. Nossum, editors,Formal Aspects of Context, Applied Logic Series20,
Kluwer Academic Publishers, Dordrecht, 2000.

[20] Ranta, A., “Type-Theoretical Grammar,” Clarendon Press, 1994.
[21] Rips, L., “The Psychology of Proof: Deductive Reasoning in Human Thinking,” The MIT

Press, Cambridge, Massachusetts, 1994.
[22] Stone, M.,Specifying Generation of Referring Expressions by Example, in: Procs AAAI Spring

Symposium on Natural Language Generation in Spoken and Written Dialogue, Stanford, 2003.

[23] Sundholm, G.,Proof Theory and Meaning, in: Handbook of Philosophical LogicIII, D.
Reidel, 1986 pp. 471–506.

162

	Introduction
	A Framework
	Approaches to extracting specifications
	Constraints on the CTL specifications

	From Sets of Worlds to Sets of Models
	Extracting the specifications
	Abstract Syntax Trees (ASTs) and their interpretation
	Discussion

	Conclusions and Future Work
	Introduction
	Dominance Graphs
	Solving dominance graphs
	Hypernormally connected dominance graphs

	Equivalence
	Underspecified redundancy elimination
	Conclusion
	References
	References
	Introduction
	Temporal questions
	Architecture of a temporal QA system
	Extracting events from Wikipedia
	Web mining for fuzzy and qualitative information
	Conclusion
	References
	Introduction
	Formalization of the Verb Classes
	Interpretation of the CA
	Formal Representation of the CA
	USC Axioms
	Semantic Knowledge Inference with USC
	Conclusion

