
Workshop on TextGraphs, at HLT-NAACL 2006, pages 89–96,
New York City, June 2006. c©2006 Association for Computational Linguistics

Evaluating and optimizing the parameters
of an unsupervised graph-based WSD algorithm

Eneko Agirre, David Mart ı́nez, Oier López de Lacalle and Aitor Soroa
IXA NLP Group

University of Basque Country
Donostia, Basque Contry
a.soroa@ehu.es

Abstract

Véronis (2004) has recently proposed
an innovative unsupervised algorithm for
word sense disambiguation based on
small-world graphs calledHyperLex. This
paper explores two sides of the algorithm.
First, we extend Véronis’ work by opti-
mizing the free parameters (on a set of
words which is different to the target set).
Second, given that the empirical compar-
ison among unsupervised systems (and
with respect to supervised systems) is sel-
dom made, we used hand-tagged corpora
to map the induced senses to a standard
lexicon (WordNet) and a publicly avail-
able gold standard (Senseval 3 English
Lexical Sample). Our results for nouns
show that thanks to the optimization of
parameters and the mapping method, Hy-
perLex obtains results close to supervised
systems using the same kind of bag-of-
words features. Given the information
loss inherent in any mapping step and the
fact that the parameters were tuned for an-
other set of words, these are very interest-
ing results.

1 Introduction

Word sense disambiguation (WSD) is a key en-
abling technology. Supervised WSD techniques are
the best performing in public evaluations, but need
large amounts of hand-tagging data. Existing hand-
annotated corpora like SemCor (Miller et al., 1993),
which is annotated with WordNet senses (Fellbaum,

1998) allow for a small improvement over the simple
most frequent sense heuristic, as attested in the all-
words track of the last Senseval competition (Sny-
der and Palmer, 2004). In theory, larger amounts
of training data (SemCor has approx. 500M words)
would improve the performance of supervised WSD,
but no current project exists to provide such an ex-
pensive resource.

Supervised WSD is based on the “fixed-list of
senses” paradigm, where the senses for a target word
are a closed list coming from a dictionary or lex-
icon. Lexicographers and semanticists have long
warned about the problems of such an approach,
where senses are listed separately as discrete enti-
ties, and have argued in favor of more complex rep-
resentations, where, for instance, senses are dense
regions in a continuum (Cruse, 2000).

Unsupervised WSD has followed this line of
thinking, and tries to induce word senses directly
from the corpus. Typical unsupervised WSD sys-
tems involve clustering techniques, which group to-
gether similar examples. Given a set of induced
clusters (which represent worduses or senses1),
each new occurrence of the target word will be com-
pared to the clusters and the most similar cluster will
be selected as its sense.

Most of the unsupervised WSD work has been
based on the vector space model (Schütze, 1998;
Pantel and Lin, 2002; Purandare and Pedersen,
2004), where each example is represented by a vec-
tor of features (e.g. the words occurring in the
context). Recently, Véronis (Véronis, 2004) has

1Unsupervised WSD approaches prefer the term ’word uses’
to ’word senses’. In this paper we use them interchangeably to
refer to both the induced clusters, and to the word senses from
some reference lexicon.

89

proposed HyperLex, an application of graph mod-
els to WSD based on the small-world properties
of cooccurrence graphs. Hand inspection of the
clusters (called hubs in this setting) by the author
was very positive, with hubs capturing the main
senses of the words. Besides, hand inspection of the
disambiguated occurrences yielded precisions over
95% (compared to a most frequent baseline of 73%)
which is an outstanding figure for WSD systems.

We noticed that HyperLex had some free param-
eters and had not been evaluated against a public
gold standard. Besides, we were struck by the few
works where supervised and unsupervised systems
were evaluated on the same test data. In this pa-
per we use an automatic method to map the induced
senses to WordNet using hand-tagged corpora, en-
abling the automatic evaluation against available
gold standards (Senseval 3 English Lexical Sam-
ple S3LS (Mihalcea et al., 2004)) and the automatic
optimization of the free parameters of the method.
The use of hand-tagged corpora for tagging makes
this algorithm a mixture of unsupervised and super-
vised: the method to induce senses in completely
unsupervised, but the mapping is supervised (albeit
very straightforward).

This paper is structured as follows. We first
present the graph-based algorithm as proposed by
Véronis, reviewing briefly the features of small-
world graphs. Section 3 presents our framework for
mapping and evaluating the induced hubs. Section 4
introduces parameter optimization. Section 5 shows
the experiment setting and results. Section 6 ana-
lyzes the results and presents related work. Finally,
we draw the conclusions and advance future work.

2 HyperLex

Before presenting the HyperLex algorithm itself, we
briefly introduce small-world graphs.

2.1 Small world graphs

The small-world nature of a graph can be explained
in terms of itsclustering coefficientandcharacteris-
tic path length. The clustering coefficient of a graph
shows the extent to which nodes tend to form con-
nected groups that have many edges connecting each
other in the group, and few edges leading out of
the group. On the other side, the characteristic path

length represents “closeness” in a graph. See (Watts
and Strogatz, 1998) for further details on these char-
acteristics.

Randomly built graphs exhibit low clustering co-
efficients and are believed to represent something
very close to the minimal possible average path
length, at least in expectation. Perfectly ordered
graphs, on the other side, show high clustering coef-
ficients but also high average path length. According
to Watts and Strogatz (1998), small-world graphs lie
between these two extremes: they exhibit high clus-
tering coefficients, but short average path lengths.

Barabasi and Albert (1999) use the term “scale-
free” to graphs whose degree probability follow a
power-law2. Specifically, scale free graphs follow
the property that the probabilityP (k) that a vertex
in the graph interacts withk other vertices decays as
a power-law, followingP (k) ∼ k−α. It turns out
that in this kind of graphs there exist nodes centrally
located and highly connected, calledhubs.

2.2 The HyperLex algorithm for WSD

The HyperLex algorithm builds a cooccurrence
graph for all pairs of words cooccurring in the con-
text of the target word. Véronis shows that this kind
of graph fulfills the properties of small world graphs,
and thus possess highly connected components in
the graph. The centers or prototypes of these com-
ponents, called hubs, eventually identify the main
word uses (senses) of the target word.

We will briefly introduce the algorithm here,
check (Véronis, 2004) for further details. For each
word to be disambiguated, a text corpus is collected,
consisting of the paragraphs where the word occurs.
From this corpus, a cooccurrence graph for the tar-
get word is built. Nodes in the graph correspond to
the words3 in the text (except the target word itself).
Two words appearing in the same paragraph are said
to cooccur, and are connected with edges. Each edge
is assigned with a weight which measures the rela-
tive frequency of the two words cooccurring. Specif-
ically, let wij be the weight of the edge4 connecting

2Although scale-free graphs are not necessarily small
worlds, a lot of real world networks are both scale-free and
small worlds.

3Following Véronis, we only work on nouns for the time
being.

4Note that the cooccurrence graph is undirected, i.e.wij =

wji

90

nodesi andj, then

wij = 1 − max[P (i | j), P (j | i)]

P (i | j) =
freqij

freqj

and P (j | i) =
freqij

freqi

The weight of an edge measures how tightly con-
nected the two words are. Words which always oc-
cur together receive a weight of0. Words rarely
cooccurring receive weights close to1.

Once the cooccurrence graph is built, a simple it-
erative algorithm is executed to obtain its hubs. At
each step, the algorithm finds the vertex with high-
est relative frequency5 in the graph, and, if it meets
some criteria, it is selected as a hub. These criteria
are determined by a set of heuristic parameters, that
will be explained later in Section 4. After a vertex is
selected to be a hub, its neighbors are no longer eli-
gible as hub candidates. At any time, if the next ver-
tex candidate has a relative frequency below a cer-
tain threshold, the algorithm stops.

Once the hubs are selected, each of them is linked
to the target word with edges weighting0, and the
Minimum Spanning Tree(MST) of the whole graph
is calculated and stored.

The MST is then used to perform word sense dis-
ambiguation, in the following way. For every in-
stance of the target word, the words surrounding it
are examined and confronted with the MST. By con-
struction of the MST, words in it are placed under
exactly one hub. Each word in the context receives
a set of scoress, with one score per hub, where all
scores are0 except the one corresponding to the hub
where it is placed. If the scores are organized in a
score vector, all values are0, except, say, thei-th
component, which receives a scored(hi, v), which
is the distance between the hubhi and the node rep-
resenting the wordv. Thus,d(hi, v) assigns a score
of 1 to hubs and the score decreases as the nodes
move away from the hub in the tree.

For a given occurrence of the target word, the
score vectors of all the words in the context are
added, and the hub that receives the maximum score
is chosen.

5In cooccurrence graphs, the relative frequency of a vertex
and its degree are linearly related, and it is therefore possible to
avoid the costly computation of the degree.

Base
corpus

hyperLex_wsd hyperLex_wsd

hyperLex

Evaluator

Tagged
corpus

Test
corpus

Mapping
corpus

MST

matrix
Mapping

Figure 1: Design for the automatic mapping and evaluation
of HyperLex algorithm against a gold standard (test corpora).

3 Evaluating unsupervised WSD systems

All unsupervised WSD algorithms need some addi-
tion in order to be evaluated. One alternative, as in
(Véronis, 2004), is to manually decide the correct-
ness of the hubs assigned to each occurrence of the
words. This approach has two main disadvantages.
First, it is expensive to manually verify each occur-
rence of the word, and different runs of the algo-
rithm need to be evaluated in turn. Second, it is not
an easy task to manually decide if an occurrence of
a word effectively corresponds with the use of the
word the assigned hub refers to, especially consid-
ering that the person is given a short list of words
linked to the hub. We also think that instead of judg-
ing whether the hub returned by the algorithm is cor-
rect, the person should have independently tagged
the occurrence with hubs, which should have been
then compared to the hub returned by the system.

A second alternative is to evaluate the system ac-
cording to some performance in an application, e.g.
information retrieval (Schütze, 1998). This is a very
attractive idea, but requires expensive system devel-
opment and it is sometimes difficult to separate the
reasons for the good (or bad) performance.

A third alternative would be to devise a method
to map the hubs (clusters) returned by the system
to the senses in a lexicon. Pantel and Lin (2002)
automatically map the senses to WordNet, and then
measure the quality of the mapping. More recently,
the mapping has been used to test the system on
publicly available benchmarks (Purandare and Ped-

91

Default p180 p1800 p6700
value Range Best Range Best Range Best

p1 5 2-3 2 1-3 2 1-3 1
p2 10 3-4 3 2-4 3 2-4 3
p3 0.9 0.7-0.9 0.7 0.5-0.7 0.5 0.3-0.7 0.4
p4 4 4 4 4 4 4 4
p5 6 6-7 6 3-7 3 1-7 1
p6 0.8 0.5-0.8 0.6 0.4-0.8 0.7 0.6-0.95 0.95
p7 0.001 0.0005-0.001 0.0009 0.0005-0.001 0.0009 0.0009-0.003 0.001

Table 1:Parameters of the HyperLex algorithm

ersen, 2004; Niu et al., 2005). See Section 6 for
more details on these systems.

Yet another possibility is to evaluate the induced
senses against a gold standard as a clustering task.
Induced senses are clusters, gold standard senses are
classes, and measures from the clustering literature
like entropy or purity can be used. As we wanted to
focus on the comparison against a standard data-set,
we decided to leave aside this otherwise interesting
option.

In this section we present a framework for au-
tomatically evaluating unsupervised WSD systems
against publicly available hand-tagged corpora. The
framework uses three data sets, called Base corpus,
Mapping corpus and Test corpus:

• TheBase Corpus: a collection of examples of
the target word. The corpus is not annotated.

• TheMapping Corpus: a collection of examples
of the target word, where each corpus has been
manually annotated with its sense.

• TheTest Corpus: a separate collection, also an-
notated with senses.

The evaluation framework is depicted in Figure 1.
The first step is to execute the HyperLex algorithm
over theBase corpusin order to obtain the hubs of
a target word, and the generated MST is stored. As
stated before, theBase Corpusis not tagged, so the
building of the MST is completely unsupervised.

In a second step (left part in Figure 1), we assign a
hub score vector to each of the occurrences of target
word in theMapping corpus, using the MST calcu-
lated in the previous step (following the WSD al-
gorithm in Section 2.2). Using the hand-annotated
sense information, we can compute a mapping ma-
trix M that relates hubs and senses in the following
way. Suppose there arem hubs andn senses for the
target word. Then,M = {mij} 1 ≤ i ≤ m, 1 ≤
j ≤ n, and eachmij = P (sj |hi), that is,mij is the
probability of a word having sensej given that it has

been assigned hubi. This probability can be com-
puted counting the times an occurrence with sense
sj has been assigned hubhi.

This mapping matrix will be used to transform
any hub score vector̄h = (h1, . . . , hm) returned
by the WSD algorithm into a sense score vector
s̄ = (s1, . . . , sn). It suffices to multiply the score
vector byM , i.e., s̄ = h̄M .

In the last step (right part in Figure 1), we apply
the WSD algorithm over theTest corpus, using again
the MST generated in the first step, and returning a
hub score vector for each occurrence of the target
word in the test corpus. We then run theEvaluator,
which uses theM mapping matrix in order to con-
vert the hub score vector into a sense score vector.
The Evaluator then compares the sense with high-
est weight in the sense score vector to the sense that
was manually assigned, and outputs the precision
figures.

Preliminary experiments showed that, similar to
other unsupervised systems, HyperLex performs
better if it sees the test examples when building the
graph. We therefore decided to include a copy of the
training and test corpora in the base corpus (discard-
ing all hand-tagged sense information, of course).
Given the high efficiency of the algorithm this poses
no practical problem (see efficiency figures in Sec-
tion 6).

4 Tuning the parameters

As stated before, the behavior of the HyperLex algo-
rithm is influenced by a set of heuristic parameters,
that affect the way the cooccurrence graph is built,
the number of induced hubs, and the way they are
extracted from the graph. There are 7 parameters in
total:

p1 Minimum frequency of edges (occurrences)
p2 Minimum frequency of vertices (words)
p3 Edges with weights above this value are removed
p4 Context containing fewer words are not processed

92

word train test MFS default p180 p1800 p6700
argument 221 111 51.4 51.4 51.4 51.4 51.4
arm 266 133 82.0 82.0 80.5 82.0 82.7
atmosphere 161 81 66.7 67.9 70.4 70.4 67.9
audience 200 100 67.0 69.0 71.0 74.0 77.0
bank 262 132 67.4 69.7 75.0 76.5 75.0
degree 256 128 60.9 60.9 60.9 62.5 63.3
difference 226 114 40.4 40.4 41.2 46.5 49.1
difficulty 46 23 17.4 30.4 30.4 39.1 26.1
disc 200 100 38.0 66.0 75.0 70.0 76.0
image 146 74 36.5 63.5 62.2 67.6 64.9
interest 185 93 41.9 49.5 41.9 47.3 51.6
judgment 62 32 28.1 28.1 28.1 53.1 50.0
organization 112 56 73.2 73.2 73.2 71.4 73.2
paper 232 117 25.6 42.7 39.3 47.9 53.8
party 230 116 62.1 67.2 64.7 65.5 67.2
performance 172 87 32.2 44.8 46.0 54.0 59.8
plan 166 84 82.1 81.0 79.8 81.0 83.3
shelter 196 98 44.9 45.9 49.0 48.0 54.1
sort 190 96 65.6 64.6 64.6 65.6 64.6
source 64 32 65.6 59.4 56.2 62.5 62.5

Average: 54.5 59.9 60.3 63.0 64.6
(Over S2LS) 51.9 56.2 57.5 58.7 60.0

Table 2:Precision figures for nouns over the test corpus (S3LS). The second and third columns show the number of occurrences
in the train and test splits. TheMFScolumn corresponds to the most frequent sense. The rest of columns correspond to different
parameter settings:default for the default setting,p180 for the best combination over180, etc.. The last rows show the micro-
average over the S3LS run, and we also add the results on the S2LS dataset (different sets of nouns) to confirm that the same trends
hold in both datasets.

p5 Minimum number of adjacent vertices a hub must have
p6 Max. mean weight of the adjacent vertices of a hub
p7 Minimum frequency of hubs

Table 1 lists the parameters of the HyperLex al-
gorithm, and the default values proposed for them in
the original work (second column).

Given that we have devised a method to efficiently
evaluate the performance of HyperLex, we are able
to tune the parameters against the gold standard. We
first set a range for each of the parameters, and eval-
uated the algorithm for each combination of the pa-
rameters on a collection of examples of different
words (Senseval 2 English lexical-sample, S2LS).
This ensures that the chosen parameter set is valid
for any noun, and is not overfitted to a small set of
nouns.6 The set of parameters that obtained the best
results in the S2LS run is then selected to be run
against the S3LS dataset.

We first devised ranges for parameters amounting
to 180 possible combinations (p180 column in Ta-
ble 2), and then extended the ranges to amount to
1800 and 6700 combinations (columns p1800 and
p6700).

6In fact, previous experiments showed that optimizing the
parameters for each word did not yield better results.

5 Experiment setting and results

To evaluate the HyperLex algorithm in a standard
benchmark, we applied it to the20 nouns in S3LS.
We use the standard training-test split. Following
the design in Section 3, we used both the training
and test sets as theBase Corpus(ignoring the sense
tags, of course). TheMapping Corpuscomprised
the training split only, and theTest corpusthe test
split only. The parameter tuning was done in a simi-
lar fashion, but on the S2LS dataset.

In Table 2 we can see the number of examples
of each word in the different corpus and the results
of the algorithm. We indicate only precision, as the
coverage is 100% in all cases. The left column,
namedMFS, shows the precision when always as-
signing the most frequent sense (relative to the train
split). This is the baseline of our algorithm as our
algorithm does see the tags in the mapping step (see
Section 6 for further comments on this issue).

Thedefaultcolumn shows the results for the Hy-
perLex algorithm with the default parameters as set
by Véronis, except for the minimum frequency of
the vertices (p2 in Table 1), which according to some
preliminary experiments we set to3. As we can see,
the algorithm with the default settings outperforms

93

 0.55

 0.56

 0.57

 0.58

 0.59

 0.6

 0.61

 0.62

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

P
re

ci
si

on

Similarity

Parameter space

Best fitting line

Figure 2: Dispersion plot of the parameter space for6700

combinations. The horizontal axis shows the similarity of apa-
rameter set w.r.t. the best parameter set using the cosine. The
vertical axis shows the precision in S2LS. The best fitting line
is also depicted.

the MFS baseline by5.4 points average, and in al-
most all words (exceptplan, sortandsource).

The results for the best of180 combinations of the
parameters improve the default setting (0.4 overall),
Extending the parameter space to1800 and6700 im-
proves the precision up to63.0 and64.6, 10.1 over
the MFS (MFS only outperforms HyperLex in the
best setting for two words). The same trend can be
seen on the S2LS dataset, where the gain was more
modest (note that the parameters were optimized for
S2LS).

6 Discussion and related work

We first comment the results, doing some analysis,
and then compare our results to those of Véronis. Fi-
nally we overview some relevant work and review
the results of unsupervised systems on the S3LS
benchmark.

6.1 Comments on the results

The results show clearly that our exploration of the
parameter space was successful, with the widest pa-
rameter space showing the best results.

In order to analyze whether the search in the pa-
rameter space was making any sense, we drew a dis-
persion plot (see Figure 2). In the top right-hand cor-
ner we have the point corresponding to the best per-
forming parameter set. If the parameters were not
conditioning the good results, then we would have
expected a random cloud of points. On the contrary,
we can see that there is a clear tendency for those

default p180 p1800 p6700
hubs defined 9.2±3.8 15.3±5.7 38.6±11.8 77.7±18.7

used 8.4±3.5 14.4±5.3 30.4±9.3 45.2±13.3
senses defined 5.4±1.5 5.4±1.5 5.4±1.5 5.4±1.5

used 2.6±1.2 2.5±1 3.1±1.1 3.2±1.2
senses in test 5.1±1.3 - - -

Table 3:Average number of hubs and senses (along with the
standard deviation) for three parameter settings. Defined means
the number of hubs induced, and used means the ones actually
returned by HyperLex when disambiguating the test set. The
same applies for senses, that is, defined means total number of
senses (equal for all columns), and used means the senses that
were actually used by HyperLex in the test set. The last row
shows the actual number of senses used by the hand-annotators
in the test set.

parameter sets most similar to the best one to obtain
better results, and in fact the best fitting line shows a
clearly ascending slope.

Regarding efficiency, our implementation of Hy-
perLex is extremely fast. Doing the1800 combina-
tions takes 2 hours in a 2 AMD Opteron processors
at 2GHz and 3Gb RAM. A single run (building the
MST, mapping and tagging the test sentences) takes
only 16 sec. For this reason, even if an on-line ver-
sion would be in principle desirable, we think that
this batch version is readily usable.

6.2 Comparison to (V́eronis, 2004)

Compared to Véronis we are inducing larger num-
bers of hubs (with different parameters), using less
examples to build the graphs and obtaining more
modest results (far from the 90’s). Regarding the lat-
ter, our results are in the range of other S3LS WSD
systems (see below), and the discrepancy can be ex-
plained by the way Véronis performed his evaluation
(see Section 3).

Table 3 shows the average number of hubs for
the four parameter settings. The average number
of hubs for the default setting is larger than that of
Véronis (which ranges between 4 and 9 per word),
but quite close to the average number of senses. The
exploration of the parameter space prefers parame-
ter settings with even larger number of hubs, and the
figures shows that most of them are actually used
for disambiguation. The table also shows that, after
the mapping, less than half of the senses are actu-
ally used, which seems to indicate that the mapping
tends to favor the most frequent senses.

Regarding the actual values of the parameters
used (c.f. Table 1), we had to reduce the value

94

of some parameters (e.g. the minimum frequency
of vertices) due to the smaller number of of exam-
ples (Véronis used from 1900 to 8700 examples per
word). In theory, we could explore larger parame-
ter spaces, but Table 1 shoes that the best setting for
the 6700 combinations has no parameter in a range
boundary (exceptp5, which cannot be further re-
duced).

All in all, the best results are attained with smaller
and more numerous hubs, a kind of micro-senses.
A possible explanation for this discrepancy with
Véronis could be that he was inspecting by hand
the hubs that he got, and perhaps was biased by the
fact that he wanted the hubs to look more like stan-
dard senses. At first we were uncomfortable with
this behavior, so we checked whether HyperLex was
degenerating into a trivial solution. We simulated
a clustering algorithm returning one hub per exam-
ple, and its precision was40.1, well below the MFS
baseline. We also realized that our results are in
accordance with some theories of word meaning,
e.g. the “indefinitely large set of prototypes-within-
prototypes” envisioned in (Cruse, 2000). We now
think that the idea of having many micro-senses is
very attractive for further exploration, especially if
we are able to organize them into coarser hubs.

6.3 Comparison to related work

Table 4 shows the performance of different systems
on the nouns of the S3LS benchmark. When not re-
ported separately, we obtained the results for nouns
running the official scorer program on the filtered
results, as available in the S3LS web page. The sec-
ond column shows the type of system (supervised,
unsupervised).

We include three supervised systems, the winner
of S3LS (Mihalcea et al., 2004), an in-house system
(kNN-all, CITATION OMITTED) which uses opti-
mized kNN, and the same in-house system restricted
to bag-of-words features only (kNN-bow), i.e. dis-
carding other local features like bigrams or trigrams
(which is what most unsupervised systems do). The
table shows that we are one point from the bag-of-
words classifier kNN-bow, which is an impressive
result if we take into account the information loss of
the mapping step and that we tuned our parameters
on a different set of words. The full kNN system is
state-of-the-art, only 4 points below the S3LS win-

System Type Prec. Cov.
S3LS-best Sup. 74.9 0.99
kNN-all Sup. 70.3 1.0
kNN-bow Sup. 65.7 1.0
HyperLex Unsup(S3LS) 64.6 1.0
Cymfony Unsup(10%-S3LS) 57.9 1.0
Prob0 Unsup. (MFS-S3) 55.0 0.98
MFS - 51.5 1.0
Ciaosenso Unsup (MFS-Sc) 53.95 0.90
clr04 Unsup (MFS-Sc) 48.86 1.0
duluth-senserelate Unsup 47.48 1.0
(Purandare and
Pedersen, 2004)

Unsup (S2LS) - -

Table 4:Comparison of HyperLex and MFS baseline to S3LS
systems for nouns. The last system was evaluated on S2LS.

ner.

Table 4 also shows several unsupervised systems,
all of which except Cymfony and (Purandare and
Pedersen, 2004) participated in S3LS (check (Mi-
halcea et al., 2004) for further details on the sys-
tems). We classify them according to the amount of
“supervision” they have: some have have access to
most-frequent information (MFS-S3 if counted over
S3LS, MFS-Sc if counted over SemCor), some use
10% of the S3LS training part for mapping (10%-
S3LS), and some use the full amount of S3LS train-
ing for mapping (S3LS). Only one system (Duluth)
did not use in any way hand-tagged corpora.

Given the different typology of unsupervised sys-
tems, it’s unfair to draw definitive conclusions from
a raw comparison of results. The system coming
closer to ours is that described in (Niu et al., 2005).
They use hand tagged corpora which does not need
to include the target word to tune the parameters of
a rather complex clustering method which does use
local information (an exception to the rule of unsu-
pervised systems). They do use the S3LS training
corpus for mapping. For every sense the target word,
three of its contexts in the train corpus are gathered
(around 10% of the training data) and tagged. Each
cluster is then related with its most frequent sense.
Only one cluster may be related to a specific sense,
so if two or more clusters map to the same sense,
only the largest of them is retained. The mapping
method is similar to ours, but we use all the avail-
able training data and allow for different hubs to be
assigned to the same sense.

Another system similar to ours is (Purandare and
Pedersen, 2004), which unfortunately was evaluated
on Senseval 2 data. The authors use first and second

95

order bag-of-word context features to represent each
instance of the corpus. They apply several clustering
algorithms based on the vector space model, limiting
the number of clusters to 7. They also use all avail-
able training data for mapping, but given their small
number of clusters they opt for a one-to-one map-
ping which maximizes the assignment and discards
the less frequent clusters. They also discard some
difficult cases, like senses and words with low fre-
quencies (10% of total occurrences and 90, respec-
tively). The different test set and mapping system
make the comparison difficult, but the fact that the
best of their combinations beats MFS by 1 point on
average (47.6% vs. 46.4%) for the selected nouns
and senses make us think that our results are more
robust (nearly 10% over MFS).

7 Conclusions and further work

This paper has explored two sides of HyperLex: the
optimization of the free parameters, and the empir-
ical comparison on a standard benchmark against
other WSD systems. We use hand-tagged corpora
to map the induced senses to WordNet senses.

Regarding the optimization of parameters, we
used a another testbed (S2LS) comprising different
words to select the best parameter. We consistently
improve the results of the parameters by Véronis,
which is not perhaps so surprising, but the method
allows to fine-tune the parameters automatically to a
given corpus given a small test set.

Comparing unsupervised systems against super-
vised systems is seldom done. Our results indicate
that HyperLex with the supervised mapping is on
par with a state-of-the-art system which uses bag-
of-words features only. Given the information loss
inherent to any mapping, this is an impressive re-
sult. The comparison to other unsupervised systems
is difficult, as each one uses a different mapping
strategy and a different amount of supervision.

For the future, we would like to look more closely
the micro-senses induced by HyperLex, and see if
we can group them into coarser clusters. We also
plan to apply the parameters to the Senseval 3 all-
words task, which seems well fit for HyperLex: the
best supervised system only outperforms MFS by
a few points in this setting, and the training cor-
pora used (Semcor) is not related to the test corpora

(mainly Wall Street Journal texts).
Graph models have been very successful in some

settings (e.g. the PageRank algorithm of Google),
and have been rediscovered recently for natural lan-
guage tasks like knowledge-based WSD, textual en-
tailment, summarization and dependency parsing.
We would like to test other such algorithms in the
same conditions, and explore their potential to inte-
grate different kinds of information, especially the
local or syntactic features so successfully used by
supervised systems, but also more heterogeneous in-
formation from knowledge bases.

References

A. L. Barabasi and R. Albert. 1999. Emergence of scal-
ing in random networks.Science, 286(5439):509–512,
October.

D. A. Cruse, 2000. Polysemy: Theoretical and Com-
putational Approaches, chapter Aspects of the Micro-
structure of Word Meanings. OUP.

C. Fellbaum. 1998. WordNet: An Electronic Lexical
Database. MIT Press.

R. Mihalcea, T. Chklovski, and A. Kilgarriff. 2004. The
senseval-3 english lexical sample task. In R. Mihal-
cea and P. Edmonds, editors,Senseval-3 proceedings,
pages 25–28. ACL, July.

G.A. Miller, C. Leacock, R. Tengi, and R.Bunker. 1993.
A semantic concordance. InProc. of the ARPA HLT
workshop.

C. Niu, W. Li, R. K. Srihari, and H. Li. 2005. Word
independent context pair classification model for word
sense disambiguation. InProc. of CoNLL-2005.

P. Pantel and D. Lin. 2002. Discovering word senses
from text. InProc. of KDD02.

A. Purandare and T. Pedersen. 2004. Word sense dis-
crimination by clustering contexts in vector and simi-
larity spaces. InProc. of CoNLL-2004.

H. Schütze. 1998. Automatic word sense discrimination.
Computational Linguistics, 24(1):97–123.

B. Snyder and M. Palmer. 2004. The english all-words
task. InProc. of SENSEVAL.

J. Véronis. 2004. HyperLex: lexical cartography for in-
formation retrieval. Computer Speech & Language,
18(3):223–252.

D. J. Watts and S. H. Strogatz. 1998. Collec-
tive dynamics of ’small-world’ networks. Nature,
393(6684):440–442, June.

96

