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Abstract 

We introduce Chinese Whispers, a 
randomized graph-clustering algorithm, 
which is time-linear in the number of 
edges. After a detailed definition of the 
algorithm and a discussion of its strengths 
and weaknesses, the performance of 
Chinese Whispers is measured on Natural 
Language Processing (NLP) problems as 
diverse as language separation, 
acquisition of syntactic word classes and 
word sense disambiguation. At this, the 
fact is employed that the small-world 
property holds for many graphs in NLP.  

1 Introduction 

Clustering is the process of grouping together 
objects based on their similarity to each other. In 
the field of Natural Language Processing (NLP), 
there are a variety of applications for clustering. 
The most popular ones are document clustering in 
applications related to retrieval and word clustering 
for finding sets of similar words or concept 
hierarchies.   

Traditionally, language objects are 
characterized by a feature vector. These feature 
vectors can be interpreted as points in a 
multidimensional space. The clustering uses a 
distance metric, e.g. the cosine of the angle 
between two such vectors. As in NLP there are 
often several thousand features, of which only a 
few correlate with each other at a time – think 
about the number of different words as opposed to 
the number of words occurring in a sentence – 
dimensionality reduction techniques can greatly 

reduce complexity without considerably losing 
accuracy.  

An alternative representation that does not deal 
with dimensions in space is the graph 

representation. A graph represents objects (as 
nodes) and their relations (as edges). In NLP, there 
are a variety of structures that can be naturally 
represented as graphs, e.g. lexical-semantic word 
nets, dependency trees, co-occurrence graphs and 
hyperlinked documents, just to name a few. 

Clustering graphs is a somewhat different task 
than clustering objects in a multidimensional 
space: There is no distance metric; the similarity 
between objects is encoded in the edges. Objects 
that do not share an edge cannot be compared, 
which gives rise to optimization techniques. There 
is no centroid or ‘average cluster member’ in a 
graph, permitting centroid-based techniques. 

As data sets in NLP are usually large, there is a 
strong need for efficient methods, i.e. of low 
computational complexities. In this paper, a very 
efficient graph-clustering algorithm is introduced 
that is capable of partitioning very large graphs in 
comparatively short time. Especially for small-
world graphs (Watts, 1999), high performance is 
reached in quality and speed. After explaining the 
algorithm in the next section, experiments with 
synthetic graphs are reported in section 3. These 
give an insight about the algorithm’s performance. 
In section 4, experiments on three NLP tasks are 
reported, section 5 concludes by discussing 
extensions and further application areas. 

2 Chinese Whispers Algorithm 

In this section, the Chinese Whispers (CW) 
algorithm is outlined. After recalling important 
concepts from Graph Theory (cf. Bollobás 1998), 
we describe two views on the algorithm. The 
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second view is used to relate CW to another graph 
clustering algorithm, namely MCL (van Dongen, 
2000). 

We use the following notation throughout this 
paper: Let G=(V,E) be a weighted graph with 
nodes (vi)∈V and weighted edges (vi, vj, wij) ∈E 
with weight wij. If (vi, vj, wij)∈E implies (vj, vi, 
wij)∈E, then the graph is undirected. If all weights 
are 1, G is called unweighted.  

The degree of a node is the number of edges a 
node takes part in. The neighborhood of a node v 
is defined by the set of all nodes v’ such that 
(v,v’,w)∈E or (v’,v,w)∈E; it consists of all nodes 
that are connected to v.  

The adjacency matrix AG of a graph G with n 
nodes is an n×n matrix where the entry aij denotes 
the weight of the edge between vi and vj , 0 
otherwise. 
The class matrix DG of a Graph G with n nodes is 
an n×n matrix where rows represent nodes and 
columns represent classes (ci)∈C. The value dij at 
row i and column j represents the amount of vi as 
belonging to a class cj. For convention, class 
matrices are row-normalized; the i-th row denotes 
a distribution of vi over C. If all rows have exactly 
one non-zero entry with value 1, DG denotes a hard 

partitioning of V, soft partitioning otherwise. 

2.1 Chinese Whispers algorithm 

CW is a very basic – yet effective – algorithm to 
partition the nodes of weighted, undirected graphs. 
It is motivated by the eponymous children’s game, 
where children whisper words to each other. While 
the game’s goal is to arrive at some funny 
derivative of the original message by passing it 
through several noisy channels, the CW algorithm 
aims at finding groups of nodes that broadcast the 
same message to their neighbors. It can be viewed 
as a simulation of an agent-based social network; 
for an overview of this field, see (Amblard 2002).  

The algorithm is outlined in figure 1: 

 

initialize:  

 forall vi in V: class(vi)=i; 

 

while changes: 

 forall v in V, randomized order: 

 class(v)=highest ranked class  

            in neighborhood of v; 

Figure 1: The Chinese Whispers algorithm 
 

Intuitively, the algorithm works as follows in a 
bottom-up fashion: First, all nodes get different 
classes. Then the nodes are processed for a small 
number of iterations and inherit the strongest class 
in the local neighborhood. This is the class whose 
sum of edge weights to the current node is 
maximal. In case of multiple strongest classes, one 
is chosen randomly. Regions of the same class 
stabilize during the iteration and grow until they 
reach the border of a stable region of another class. 
Note that classes are updated immediately: a node 
can obtain classes from the neighborhood that were 
introduced there in the same iteration.  

Figure 2 illustrates how a small unweighted 
graph is clustered into two regions in three 
iterations. Different classes are symbolized by 
different shades of grey.  

 

 

 
Figure 2: Clustering an 11-nodes graph with CW in 
two iterations 
 

It is possible to introduce a random mutation 
rate that assigns new classes with a probability 
decreasing in the number of iterations as described 
in (Biemann & Teresniak 2005). This showed 
having positive effects for small graphs because of 
slower convergence in early iterations.  

The CW algorithm cannot cross component 
boundaries, because there are no edges between 
nodes belonging to different components. Further, 
nodes that are not connected by any edge are 
discarded from the clustering process, which 
possibly leaves a portion of nodes unclustered.  

Formally, CW does not converge, as figure 3 
exemplifies: here, the middle node’s neighborhood 

0. 

1. 

2. 
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consists of a tie which can be decided in assigning 
the class of the left or the class of the right nodes in 
any iteration all over again. Ties, however, do not 
play a major role in weighted graphs. 

 
Figure 3: The middle node gets the grey or the 
black class. Small numbers denote edge weights.   

 
Apart from ties, the classes usually do not 

change any more after a handful of iterations. The 
number of iterations depends on the diameter of 
the graph: the larger the distance between two 
nodes is, the more iterations it takes to percolate 
information from one to another. 

The result of CW is a hard partitioning of the 
given graph into a number of partitions that 
emerges in the process – CW is parameter-free. It 
is possible to obtain a soft partitioning by assigning 
a class distribution to each node, based on the 
weighted distribution of (hard) classes in its 
neighborhood in a final step. 

The outcomes of CW resemble those of Min-

Cut (Wu & Leahy 1993): Dense regions in the 
graph are grouped into one cluster while sparsely 
connected regions are separated. In contrast to 
Min-Cut, CW does not find an optimal hierarchical 
clustering but yields a non-hierarchical (flat) 
partition. Furthermore, it does not require any 
threshold as input parameter and is more efficient. 

Another algorithm that uses only local contexts 
for time-linear clustering is DBSCAN as, described 
in (Ester et al. 1996), needing two input parameters 
(although the authors propose an interactive 
approach to determine them). DBSCAN is 
especially suited for graphs with a geometrical 
interpretation, i.e. the objects have coordinates in a 
multidimensional space. A quite similar algorithm 
to CW is MAJORCLUST (Stein & Niggemann 
1996), which is based on a comparable idea but 
converges slower. 

2.2 Chinese Whispers as matrix operation 

As CW is a special case of Markov-Chain-
Clustering (MCL) (van Dongen, 2000), we spend a 
few words on explaining it. MCL is the parallel 
simulation of all possible random walks up to a 

finite length on a graph G. The idea is that random 
walkers are more likely to end up in the same 
cluster where they started than walking across 
clusters. MCL simulates flow on a graph by 
repeatedly updating transition probabilities 
between all nodes, eventually converging to a 
transition matrix after k steps that can be 
interpreted as a clustering of G. This is achieved by 
alternating an expansion step and an inflation step. 
The expansion step is a matrix multiplication of 
MG with the current transition matrix. The inflation 
step is a column-wise non-linear operator that 
increases the contrast between small and large 
transition probabilities and normalizes the column-
wise sums to 1. The k matrix multiplications of the 
expansion step of MCL lead to its time-complexity 
of O(k⋅n²).  

It has been observed in (van Dongen, 2000), 
that only the first couple of iterations operate on 
dense matrices – when using a strong inflation 
operator, matrices in the later steps tend to be 
sparse. The author further discusses pruning 
schemes that keep only some of the largest entries 
per column, leading to drastic optimization 
possibilities. But the most aggressive sort of 
pruning is not considered: only keeping one single 
largest entry. Exactly this is conducted in the basic 
CW process. Let maxrow(.) be an operator that 
operates row-wise on a matrix and sets all entries 
of a row to zero except the largest entry, which is 
set to 1. Then the algorithm is denoted as simple as 
this: 
 

D
0
 = In 

for t=1 to iterations 

 D
t-1 

= maxrow(D
t-1
) 

 D
t
  = D

t-1
AG  

Figure 4: Matrix Chinese Whispers process. t is 
time step, In is the identity matrix of size n×n, AG is 
the adjacency matrix of graph G. 

 
By applying maxrow(.), Dt-1 has exactly n 

non-zero entries. This causes the time-complexity 
to be dependent on the number of edges, namely 
O(k⋅|E|). In the worst case of a fully connected 
graph, this equals the time-complexity of MCL.  

A problem with the matrix CW process is that it 
does not necessarily converge to an iteration-
invariant class matrix D, but rather to a pair of 
oscillating class matrices. Figure 5 shows an 
example.  

 1 

 1  1 

 1 

 2  2 
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Figure 5: oscillating states in matrix CW for an 
unweighted graph 

 
This is caused by the stepwise update of the 

class matrix. As opposed to this, the CW algorithm 
as outlined in figure 1 continuously updates D after 
the processing of each node. To avoid these 
oscillations, one of the following measures can be 
taken: 
• Random mutation: with some probability, the 

maxrow-operator places the 1 for an otherwise 
unused class 

• Keep class: with some probability, the row is 
copied from Dt-1 to Dt 

• Continuous update (equivalent to CW as 
described in section 2.1.) 

While converging to the same limits, the 
continuous update strategy converges the fastest 
because prominent classes are spread much faster 
in early iterations.  

3 Experiments with synthetic graphs 

The analysis of the CW process is difficult due to 
its nonlinear nature. Its run-time complexity 
indicates that it cannot directly optimize most 
global graph cluster measures because of their NP-
completeness (Šíma and Schaeffer, 2005). 
Therefore we perform experiments on synthetic 
graphs to empirically arrive at an impression of our 
algorithm's abilities. All experiments were 
conducted with an implementation following 
figure 1. For experiments with synthetic graphs, 
we restrict ourselves to unweighted graphs, if not 
stated explicitly. 

3.1 Bi-partite cliques 

A cluster algorithm should keep dense regions 
together while cutting apart regions that are 
sparsely connected. The highest density is reached 
in fully connected sub-graphs of n nodes, a.k.a. n-

cliques. We define an n-bipartite-clique as a graph 
of two n-cliques, which are connected such that 
each node has exactly one edge going to the clique 
it, does not belong to.  

Figures 5 and 6 are n-partite cliques for n=4,10. 

 
Figure 6: The 10-bipartite clique. 

  
We clearly expect a clustering algorithm to cut 

the two cliques apart. As we operate on 
unweighted graphs, however, CW is left with two 
choices: producing two clusters or grouping all 
nodes into one cluster. This is largely dependent on 
the random choices in very early iterations - if the 
same class is assigned to several nodes in both 
cliques, it will finally cover the whole graph.  
Figure 7 illustrates on what rate this happens on n-
bipartite-cliques for varying n. 

 
Figure 7: Percentage of obtaining two clusters 
when applying CW on n-bipartite cliques 

 
It is clearly a drawback that the outcome of CW 

is non-deterministic. Only half of the experiments 
with 4-bipartite cliques resulted in separation. 
However, the problem is most dramatic on small 
graphs and ceases to exist for larger graphs as 
demonstrated in figure 7. 

3.2 Small world graphs 

A structure that has been reported to occur in an 
enormous number of natural systems is the small 

world (SW) graph. Space prohibits an in-depth 
discussion, which can be found in (Watts 1999). 
Here, we restrict ourselves to SW-graphs in 
language data. In (Ferrer-i-Cancho and Sole, 
2001), co-occurrence graphs as used in the 
experiment section are reported to possess the 
small world property, i.e. a high clustering co-
efficient and short average path length between 
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arbitrary nodes. Steyvers and Tenenbaum (2005) 
show that association networks as well as semantic 
resources are scale-free SW-graphs: their degree 
distribution follows a power law.  A generative 
model is provided that generates undirected, scale-
free SW-graphs in the following way: We start 
with a small number of fully connected nodes. 
When adding a new node, an existing node v is 
chosen with a probability according to its degree. 
The new node is connected to M nodes in the 
neighborhood of v. The generative model is 
parameterized by the number of nodes n and the 
network's mean connectivity, which approaches 
2M for large n. 

Let us assume that we deal with natural systems 
that can be characterized by small world graphs. If 
two or more of those systems interfere, their 
graphs are joined by merging some nodes, 
retaining their edges. A graph-clustering algorithm 
should split up the resulting graph in its previous 
parts, at least if not too many nodes were merged.  

We conducted experiments to measure CW's 
performance on SW-graph mixtures: We generated 
graphs of various sizes, merged them by twos to a 
various extent and measured the amount of cases 
where clustering with CW leads to the 
reconstruction of the original parts. When 
generating SW-graphs with the Steyvers-
Tenenbaum model, we fixed M to 10 and varied n 
and the merge rate r, which is the fraction of nodes 
of the smaller graph that is merged with nodes of 
the larger graph.  

 
Figure 8: Rate of obtaining two clusters for mix-
tures of SW-graphs dependent on merge rate r.  

 
Figure 8 summarizes the results for equisized 

mixtures of 300, 3,000 and 30,000 nodes and 
mixtures of 300 with 30,000 nodes.   

It is not surprising that separating the two parts 
is more difficult for higher r. Results are not very 

sensitive to size and size ratio, indicating that CW 
is able to identify clusters even if they differ 
considerably in size – it even performs best at the 
skewed mixtures. At merge rates between 20% and 
30%, still more then half of the mixtures are 
separated correctly and can be found when 
averaging CW’s outcome over several runs.  

3.3 Speed issues 

As formally, the algorithm does not converge, it is 
important to define a stop criterion or to set the 
number of iterations. To show that only a few 
iterations are needed until almost-convergence, we 
measured the normalized Mutual Information 
(MI)1 between the clustering in the 50th iteration 
and the clusterings of earlier iterations. This was 
conducted for two unweighted SW-graphs with 
1,000 (1K) and 10,000 (10K) nodes, M=5 and a 
weighted 7-lingual co-occurrence graph (cf. 
section 4.1) with 22,805 nodes and 232,875 edges. 
Table 1 indicates that for unweighted graphs, 
changes are only small after 20-30 iterations. In 
iterations 40-50, the normalized MI-values do not 
improve any more. The weighted graph converges 
much faster due to fewer ties and reaches a stable 
plateau after only 6 iterations. 

 
Iter 1 2 3 5 10 20 30 40 49 

1K 1 8 13 20 37 58 90 90 91 
10K 6 27 46 64 79 90 93 95 96 
7ling 29 66 90 97 99.5 99.5 99.5 99.5 99.5 
Table 1: normalized Mutual Information values for 
three graphs and different iterations in %. 

4 NLP Experiments 

In this section, some experiments with graphs 
originating from natural language data are 
presented. First, we define the notion of co-
occurrence graphs, which are used in sections 4.1 
and 4.3: Two words co-occur if they can both be 
found in a certain unit of text, here a sentence. 
Employing a significance measure, we determine 
whether their co-occurrences are significant or 
random. In this case, we use the log-likelihood 
measure as described in (Dunning 1993). We use 
the words as nodes in the graph. The weight of an 

                                                           
1 defined for two random variables X and Y as (H(X)+H(Y)-
H(X,Y))/max(H(X),H(Y)) with H(X) entropy. A value of 0 
denotes indepenence, 1 is perfect congruence. 
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edge between two words is set to the significance 
value of their co-occurrence, if it exceeds a certain 
threshold. In the experiments, we used sig-
nificances from 15 on. The entirety of words that 
are involved in at least one edge together with 
these edges is called co-occurrence graph (cf. 
Biemann et al. 2004). 

In general, CW produces a large number of 
clusters on real-world graphs, of which the 
majority is very small. For most applications, it 
might be advisable to define a minimum cluster 
size or something alike. 

4.1 Language Separation 

This section shortly reviews the results of 
(Biemann and Teresniak, 2005), where CW was 
first described. The task was to separate a 
multilingual corpus by languages, assuming its 
tokenization in sentences.  

The co-occurrence graph of a multilingual 
corpus resembles the synthetic SW-graphs: Every 
language forms a separate co-occurrence graph, 
some words that are used in more than one 
language are members of several graphs, 
connecting them. By CW-partitioning, the graph is 
split into its monolingual parts. These parts are 
used as word lists for word-based language 
identification. (Biemann and Teresniak, 2005) 
report almost perfect performance on getting 7-
lingual corpora with equisized parts sorted apart as 
well as highly skewed mixtures of two languages.  

In the process, language-ambiguous words are 
assigned to only one language, which did not hurt 
performance due to the high redundancy of the 
task. However, it would have been possible to use 
the soft partitioning to acquire a distribution over 
languages for each word.  

4.2 Acquisition of Word Classes 

For the acquisition of word classes, we use a 
different graph: the second-order graph on 
neighboring co-occurrences. To set up the graph, a 
co-occurrence calculation is performed which 
yields significant word pairs based on their 
occurrence as immediate neighbors. This can be 
perceived as a bipartite graph, figure 9a gives a toy 
example. Note that if similar words occur in both 
parts, they form two distinct nodes. 

This graph is transformed into a second-order 
graph by comparing the number of common right 

and left neighbors for two words. The similarity 
(edge weight) between two words is the sum of 
common neighbors. Figure 9b depicts the second-
order graph derived from figure 9a and its 
partitioning by CW. The word-class-ambiguous 
word “drink” (to drink the drink) is responsible for 
all intra-cluster edges. The hypothesis here is that 
words sharing many neighbors should usually be 
observed with the same part-of-speech and get 
high weights in the second order graph. In figure 9, 
three clusters are obtained that correspond to 
different parts-of-speech (POS).  

 

   
      (a)             (b) 

Figure 9: Bi-partite neighboring co-occurrence 
graph (a) and second-order graph on neighboring 
co-occurrences (b) clustered with CW. 

 
To test this on a large scale, we computed the 

second-order similarity graph for the British 
National Corpus (BNC), excluding the most 
frequent 2000 words and drawing edges between 
words if they shared at least four left and right 
neighbors. The clusters are checked against a 
lexicon that contains the most frequent tag for each 
word in the BNC. The largest clusters are 
presented in table 2 . 

 
size tags:count sample words 

18432 NN:17120 
AJ: 631 

secret, officials, transport, 
unemployment, farm, county, 
wood, procedure, grounds, ... 

4916 AJ: 4208 
V: 343 

busy, grey, tiny, thin, sufficient, 
attractive, vital, ... 

4192 V: 3784 
AJ: 286 

filled, revealed,  experienced, 
learned, pushed, occurred, ... 

3515 NP: 3198 
NN: 255 

White, Green, Jones, Hill, Brown, 
Lee, Lewis, Young, ... 

2211 NP: 1980 
NN: 174 

Ian, Alan, Martin, Tony, Prince, 
Chris, Brian, Harry, Andrew, 

 1 

 1 

 1  1 

 2 

 2 

 4 

 2 

 2 

 1 
1 

 1 
1 

 1 

1 

left right 
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Christ, Steve, ... 
1855 NP: 1670 

NN: 148  
Central, Leeds, Manchester, 
Australia,  Yorkshire, Belfast, 
Glasgow, Middlesbrough,  ... 

Table 2: the largest clusters from partitioning the 
second order graph with CW. 

 
In total, CW produced 282 clusters, of which 26 

exceed a size of 100. The weighted average of 
cluster purity (i.e. the number of predominant tags 
divided by cluster size) was measured at 88.8%, 
which exceeds significantly the precision of 53% 
on word type as reported by Schütze (1995) on a 
related task. How to use this kind of word clusters 
to improve the accuracy of POS-taggers is outlined 
in (Ushioda, 1996).  

4.3 Word Sense Induction 

The task of word sense induction (WSI) is to find 
the different senses of a word. The number of 
senses is not known in advance, therefore has to be 
determined by the method.  

Similar to the approach as presented in (Dorow 
and Widdows, 2003) we construct a word graph. 
While there, edges between words are drawn iff 
words co-occur in enumerations, we use the co-
occurrence graph. Dorow and Widdows construct a 
graph for a target word w by taking the sub-graph 
induced by the neighborhood of w (without w) and 
clustering it with MCL. We replace MCL by CW. 
The clusters are interpreted as representations of 
word senses.  

To judge results, the methodology of (Bordag, 
2006) is adopted: To evaluate word sense 
induction, two sub-graphs induced by the 
neighborhood of different words are merged. The 
algorithm's ability to separate the merged graph 
into its previous parts can be measured in an 
unsupervised way. Bordag defines four measures:  

• retrieval precision (rP): similarity of the 
found sense with the gold standard sense 

• retrieval recall (rR): amount of words that 
have been correctly assigned to the gold 
standard sense 

• precision (P): fraction of correctly found 
disambiguations 

• recall (R): fraction of correctly found 
senses 

We used the same program to compute co-
occurrences on the same corpus (the BNC). 
Therefore it is possible to directly compare our 

results to Bordag’s, who uses a triplet-based 
hierarchical graph clustering approach. The 
method was chosen because of its appropriateness 
for unlabelled data: without linguistic pre-
processing like tagging or parsing, only the 
disambiguation mechanism is measured and not 
the quality of the preprocessing steps. We provide 
scores for his test 1 (word classes separately) and 
test 3 (words of different frequency bands). Data 
was obtained from BNC's raw text; evaluation was 
performed for 45 test words. 

 
% (Bordag, 2006) Chinese Whispers 

POS P R rP rR P R rP rR 

N 87.0 86.7 90.9 64.2 90.0 79.5 94.8 71.3 

V 78.3 64.3 80.2 55.2 77.6 67.1 87.3 57.9 

A 88.6 71.0 88.0 65.4 92.2 61.9 89.3 71.9 

Table 3: Disambiguation results in % dependent on 
word class (nouns, verbs, adjectives)  
 
% (Bordag, 2006) Chinese Whispers 

freq P R rP rR P R rP rR 

high 93.7 78.1 90.3 80.7 93.7 72.9 95.0 73.8 
med 84.6 85.2 89.9 54.6 80.7 83.8 91.0 55.7 

low 74.8 49.5 71.0 41.7 74.1 51.4 72.9 56.2 

Table 4: Disambiguation results in % dependent on 
frequency 

 
Results (tables 3 and 4) suggest that both 

algorithms arrive at about equal overall 
performance (P and R). Chinese Whispers 
clustering is able to capture the same information 
as a specialized graph-clustering algorithm for 
WSI, given the same input. The slightly superior 
performance on rR and rP indicates that CW leaves 
fewer words unclustered, which can be 
advantageous when using the clusters as clues in 
word sense disambiguation. 

5 Conclusion 

Chinese Whispers, an efficient graph-clustering 
algorithm was presented and described in theory 
and practice. Experiments with synthetic graphs 
showed that for small graphs, results can be 
inconclusive due to its non-deterministic nature. 
But while there exist plethora of clustering 
approaches that can deal well with small graphs, 
the power of CW lies in its capability of handling 
very large graphs in reasonable time. The 
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application field of CW rather lies in size regions, 
where other approaches’ solutions are intractable.  

On the NLP data discussed, CW performs 
equally or better than other clustering algorithms. 
As CW – like other graph clustering algorithms – 
chooses the number of classes on its own and can 
handle clusters of different sizes, it is especially 
suited for NLP problems, where class distributions 
are often highly skewed and the number of classes 
(e.g. in WSI) is not known beforehand. 

To relate the partitions, it is possible to set up a 
hierarchical version of CW in the following way: 
The nodes of equal class are joined to hyper-nodes. 
Edge weights between hyper-nodes are set 
according to the number of inter-class edges 
between the corresponding nodes. This results in 
flat hierarchies.  

In further works it is planned to apply CW to 
other graphs, such as the co-citation graph of 
Citeseer, the co-citation graph of web pages and 
the link structure of Wikipedia.  
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