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PREFACE

Graph theory is a well studied discipline, and so is the field of natural language processing.
Traditionally, these two areas of study have been perceived as distinct, with different algorithms,
different applications, and different potential end-users. However, as recent research work has
shown, the two disciplines are in fact intimately connected, with a large variety of natural language
processing applications finding efficient solutions within graph-theoretical frameworks.

This volume contains papers accepted for presentation at the Textgraphs 2006 Workshop on
Graph-based Algorithms for Natural Language Processing. This event took place on June 9,
2006, in New York City, immediately following the HLT-NAACL Human Language Technologies
Conference. The workshop was centered around the topic of using graph-based algorithms
for natural language processing, and it brought together people working on areas as diverse as
lexical semantics, text summarization, text mining, ontology construction, clustering and learning,
connected by the common underlying theme consisting of the use of graph-theoretical methods for
text processing tasks.

We issued calls for both regular and short, late–breaking papers. After careful review by our
program committee, eleven regular papers and four short papers were accepted for presentation. We
were truly impressed by the high quality of the reviews provided by all the members of the program
committee, particularly since deadlines were very tight. All of the committee members provided
timely and thoughtful reviews, and the papers that appear have certainly benefited from that expert
feedback.

Finally, when we first started planning this workshop, we agreed that having a high quality
invited speaker was crucial. We thank Lillian Lee not only for her talk, but also for the boost of
confidence provided by her quick and enthusiastic acceptance.

Rada Mihalcea and Dragomir Radev
June 2006
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Abstract

Similarity measures for text have histor-
ically been an important tool for solving
information retrieval problems. In this pa-
per we consider extended similarity met-
rics for documents and other objects em-
bedded in graphs, facilitated via a lazy
graph walk. We provide a detailed in-
stantiation of this framework for email
data, where content, social networks and
a timeline are integrated in a structural
graph. The suggested framework is evalu-
ated for the task of disambiguating names
in email documents. We show that rerank-
ing schemes based on the graph-walk sim-
ilarity measures often outperform base-
line methods, and that further improve-
ments can be obtained by use of appropri-
ate learning methods.

1 Introduction

Many tasks in information retrieval can be per-
formed by clever application of textual similarity
metrics. In particular, The canonical IR problem of
ad hoc retrieval is often formulated as the task of
finding documents “similar to” a query. In modern
IR settings, however, documents are usually not iso-
lated objects: instead, they are frequently connected
to other objects, via hyperlinks or meta-data. (An
email message, for instance, is connected via header
information to other emails in the same thread and
also to the recipient’s social network.) Thus it is

important to understand how text-based document
similarity measures can be extended to documents
embedded in complex structural settings.

Our similarity metric is based on a lazy graph
walk, and is closely related to the well-known
PageRank algorithm (Page et al., 1998). PageRank
and its variants are based on a graph walk of infi-
nite length with random resets. In alazygraph walk,
there is a fixed probability of halting the walk at each
step. In previous work (Toutanova et al., 2004), lazy
walks over graphs were used for estimating word
dependency distributions: in this case, the graph
was one constructed especially for this task, and the
edges in the graph represented different flavors of
word-to-word similarity. Other recent papers have
also used walks over graphs for query expansion (Xi
et al., 2005; Collins-Thompson and Callan, 2005).
In these tasks, the walk propagates similarity to a
start node through edges in the graph—incidentally
accumulating evidence of similarity over multiple
connecting paths.

In contrast to this previous work, we consider
schemes for propogating similarity across a graph
that naturally models a structured dataset like an
email corpus: entities correspond to objects includ-
ing email addresses and dates, (as well as the usual
types of documents and terms), and edges corre-
spond to relations likesent-by. We view the simi-
larity metric as atool for performing searchacross
this structured dataset, in which related entities that
are not directly similar to a query can be reached via
multi-step graph walk.

In this paper, we formulate and evaluate this ex-
tended similarity metric. The principal problem we
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consider isdisambiguating personal names in email,
which we formulate as the task of retrieving the per-
son most related to a particular name mention. We
show that for this task, the graph-based approach im-
proves substantially over plausible baselines. After
retrieval, learning can be used to adjust the ranking
of retrieved names based on the edges in the paths
traversed to find these names, which leads to an ad-
ditional performance improvement. Name disam-
biguation is a particular application of the suggested
general framework, which is also applicable to any
real-world setting in which structural data is avail-
able as well as text.

This paper proceeds as follows. Sections 2 and
3 formalize the general framework and its instanti-
ation for email. Section 4 gives a short summary
of the learning approach. Section 5 includes experi-
mental evaluation, describing the corpora and results
for the person name disambiguation task. The paper
concludes with a review of related work, summary
and future directions.

2 Email as a Graph

A graphG consists of a set of nodes, and a set of la-
beled directed edges. Nodes will be denoted by let-
ters likex, y, or z, and we will denote an edge from

x to y with label ` asx
`

−→ y. Every nodex has
a type, denotedT (x), and we will assume that there
are a fixed set of possible types. We will assume for
convenience that there are no edges from a node to
itself (this assumption can be easily relaxed.)

We will use these graphs to represent real-world
data. Each node represents some real-world entity,

and each edgex `
−→ y asserts that some binary

relation `(x, y) holds. The entity types used here
to represent an email corpus are shown in the left-
most column of Table 1. They include the tradi-
tional types in information retrieval systems, namely
file andterm. In addition, however, they include the
typesperson, email-addressanddate. These enti-
ties are constructed from a collection of email mes-
sages in the obvious way–for example, a recipient of
“Einat Minkov <einat@cs.cmu.edu>” indicates the
existence of a person node “Einat Minkov” and an
email-address node “einat@cs.cmu.edu”. (We as-
sume here that person names are unique identifiers.)

The graph edges are directed. We will assume

that edge labels determine the source and target

node types: i.e., ifx `
−→ z and w

`
−→ y then

T (w) = T (x) andT (y) = T (z). However, mul-
tiple relations can hold between any particular pair

of nodes types: for instance, it could be thatx
`

−→ y

or x
`′

−→ y, where` 6= `′. (For instance, an email
messagex could besent-fromy, or sent-toy.) Note
also that edges need not denote functional relations:
for a givenx and`, there may be many distinct nodes

y such thatx `
−→ y. For instance, for a filex, there

are many distinct termsy such thatx has-term
−→ y holds.

In representing email, we also create aninverse
label `−1 for each edge label (relation)`. Note that
this means that the graph will definitely be cyclic.
Table 1 gives the full set of relations used in our
email represention scheme.

3 Graph Similarity

3.1 Edge weights

Similarity between two nodes is defined by a lazy
walk process, and a walk on the graph is controlled
by a small set of parametersΘ. To walk away from
a nodex, one first picks an edge label`; then, given

`, one picks a nodey such thatx `
−→ y. We assume

that the probability of picking the label̀ depends
only on the typeT (x) of the nodex, i.e., that the
outgoing probability from nodex of following an
edge typè is:

Pr(` | x) = Pr(` | Ti) ≡ θ`,Ti

Let STi
be the set of possible labels for an edge leav-

ing a node of typeTi. We require that the weights
over all outgoing edge types given the source node
type form a probability distribution, i.e., that

∑

`∈STi

θ`,Ti
= 1

In this paper, we will assume that once` is picked,
y is chosen uniformly from the set of ally such that

x
`

−→ y. That is, the weight of an edge of typel
connecting source nodex to nodey is:

Pr(x
`

−→ y | `) =
θ`,Ti

| y : x
`

−→ y |

This assumption could easily be generalized, how-
ever: for instance, for the typeT (x) = file and
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source type edge type target type
file sent-from person

sent-from-email email-address
sent-to person
sent-to-email email-address
date-of date
has-subject-term term
has-term term

person sent-from inv. file
sent-to−1 file
alias email-address
has-term term

email-address sent-to-email−1 file
sent-from-email−1 file
alias-inverse person
is-email−1 term

term has-term−1 file
has subject-term−1 file
is-email email-address
has-term−1 person

date date-of−1 file

Table 1: Graph structure: Node and relation types

` = has-term, weights for termsy such thatx `
−→ y

might be distributed according to an appropriate lan-
guage model (Croft and Lafferty, 2003).

3.2 Graph walks

Conceptually, the edge weights above define the
probability of moving from a nodex to some other
nodey. At each step in a lazy graph walk, there
is also some probabilityγ of staying atx. Putting
these together, and denoting byMxy the probability
of being at nodey at timet + 1 given that one is at
x at timet in the walk, we define

Mxy =

{

(1 − γ)
∑

`
Pr(x

`
−→ y|`) · Pr(`|T (x)) x 6= y

γ x = y

If we associate nodes with integers, and makeM

a matrix indexed by nodes, then a walk ofk steps
can then be defined by matrix multiplication: specif-
ically, if V0 is some initial probability distribution
over nodes, then the distribution after ak-step walk
is proportional toVk = V0M

k. Larger values ofγ
increase the weight given to shorter paths between
x andy. In the experiments reported here, we con-
sider small values ofk, and this computation is car-
ried out directly using sparse-matrix multiplication
methods.1 If V0 gives probability 1 to some nodex0

1We have also explored an alternative approach based on
sampling; this method scales better but introduces some addi-
tional variance into the procedure, which is undesirable for ex-
perimentation.

and probability 0 to all other nodes, then the value
given toy in Vk can be interpreted as a similarity
measure betweenx andy.

In our framework, aquery is an initial distribu-
tion Vq over nodes, plus a desired output typeTout ,
and the answer is a list of nodesy of type Tout ,
ranked by their score in the distributionVk. For in-
stance, for an ordinaryad hocdocument retrieval
query (like “economic impact of recycling tires”)
would be an appropriate distributionVq over query
terms, withTout = file. ReplacingTout with person
would find the person most related to the query—
e.g., an email contact heavily associated with the
retread economics. ReplacingVq with a point dis-
tribution over a particular document would find the
people most closely associated with the given docu-
ment.

3.3 Relation to TF-IDF

It is interesting to view this framework in compar-
ison to more traditional IR methods. Suppose we
restrict ourselves to two types, terms and files, and
allow only in-file edges. Now consider an initial
query distributionVq which is uniform over the two
terms “the aardvark”. A one-step matrix multiplica-
tion will result in a distributionV1, which includes
file nodes. The common term “the” will spread
its probability mass into small fractions over many
file nodes, while the unusual term “aardvark” will
spread its weight over only a few files: hence the
effect will be similar to use of an IDF weighting
scheme.

4 Learning

As suggested by the comments above, this graph
framework could be used for many types of tasks,
and it is unlikely that a single set of parameter val-
ues will be best for all tasks. It is thus important to
consider the problem oflearninghow to better rank
graph nodes.

Previous researchers have described schemes for
adjusting the parametersθ using gradient descent-
like methods (Diligenti et al., 2005; Nie et al., 2005).
In this paper, we suggest an alternative approach of
learning to re-order an initial ranking. This rerank-
ing approach has been used in the past for meta-
search (Cohen et al., 1999) and also several natural-
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language related tasks (Collins and Koo, 2005). The
advantage of reranking over parameter tuning is that
the learned classifier can take advantage of “global”
features that are not easily used in walk.

Note that node reranking, while can be used as
an alternative to weight manipulation, it is better
viewed as a complementary approach, as the tech-
niques can be naturally combined by first tuning the
parametersθ, and then reranking the result using a
classifier which exploits non-local features. This hy-
brid approach has been used successfully in the past
on tasks like parsing (Collins and Koo, 2005).

We here give a short overview of the reranking ap-
proach, that is described in detail elsewhere (Collins
and Koo, 2005). The reranking algorithm is pro-
vided with a training set containingn examples. Ex-
amplei (for 1 ≤ i ≤ n) includes a ranked list of
li nodes. Letwij be thejth node for examplei,
and letp(wij) be the probability assigned towij by
the graph walk. A candidate nodewij is represented
throughm features, which are computed bym fea-
ture functionsf1, . . . , fm. We will require that the
features be binary; this restriction allows a closed
form parameter update. Theranking functionfor
nodex is defined as:

F (x, ᾱ) = α0L(x) +
m

∑

k=1

αkfk(x)

whereL(x) = log(p(x)) andᾱ is a vector of real-
value parameters. Given a new test example, the out-
put of the model is the given node list re-ranked by
F (x, ᾱ).

To learn the parameter weightsᾱ, we use a boost-
ing method (Collins and Koo, 2005), which min-
imizes the following loss function on the training
data:

ExpLoss(ᾱ) =
∑

i

li
∑

j=2

e−(F (xi,1,ᾱ)−F (xi,j ,ᾱ))

wherexi,1 is, without loss of generality, a correct
target node. The weights for the function are learned
with a boosting-like method, where in each itera-
tion the featurefk that has the most impact on the
loss function is chosen, andαk is modified. Closed
form formulas exist for calculating the optimal ad-
ditive updates and the impact per feature (Schapire
and Singer, 1999).

5 Evaluation

We experiment with three separate corpora.
TheCspacecorpus contains email messages col-

lected from a management course conducted at
Carnegie Mellon University in 1997 (Minkov et
al., 2005). In this course, MBA students, orga-
nized in teams of four to six members, ran simu-
lated companies in different market scenarios. The
corpus we used here includes the emails of all
teams over a period of four days. TheEnron cor-
pus is a collection of mail from the Enron cor-
pus that has been made available for the research
community (Klimt and Yang, 2004). Here, we
used the saved email of two different users.2 To
eliminate spam and news postings we removed
email files sent from email addresses with suf-
fix “.com” that are not Enron’s; widely distributed
email files (sent from “enron.announcement”, to
“all.employees@enron.com” etc.). Text from for-
warded messages, or replied-to messages were also
removed from the corpus.

Table 2 gives the size of each processed corpus,
and the number of nodes in the graph representation
of it. In deriving terms for the graph, terms were
Porter-stemmed and stop words were removed. The
processed Enron corpora are available from the first
author’s home page.

corpus Person set
files nodes train test

Cspace 821 6248 26 80
Sager-E 1632 9753 11 51
Shapiro-R 978 13174 11 49

Table 2: Corpora Details

5.1 Person Name Disambiguation

5.1.1 Task definition

Consider an email message containing a common
name like “Andrew”. Ideally an intelligent mailer
would, like the user, understand which person “An-
drew” refers to, and would rapidly perform tasks like
retrieving Andrew’s prefered email address or home
page. Resolving the referent of a person name is also
an important complement to the ability to perform
named entity extraction for tasks like social network
analysis or studies of social interaction in email.

2Specifially, we used the “alldocuments” folder, including
both incoming and outgoing files.
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However, although the referent of the name is
unambiguous to the recipient of the email, it can
be non-trivial for an automated system to find out
which “Andrew” is indicated. Automatically de-
termining that “Andrew” refers to “Andrew Y. Ng”
and not “Andrew McCallum” (for instance) is espe-
cially difficult when an informal nickname is used,
or when the mentioned person does not appear in the
email header. As noted above, we model this prob-
lem as a search task: based on a name-mention in an
email messagem, we formulate query distribution
Vq, and then retrieve a ranked list ofpersonnodes.

5.1.2 Data preparation

Unfortunately, building a corpus for evaluating
this task is non-trivial, because (if trivial cases are
eliminated) determining a name’s referent is often
non-trivial for a human other than the intended re-
cipient. We evaluated this task using three labeled
datasets, as detailed in Table 2.

The Cspace corpus has been manually annotated
with personal names (Minkov et al., 2005). Addi-
tionally, with the corpus, there is a great deal of
information available about the composition of the
individual teams, the way the teams interact, and
the full names of the team members. Using this
extra information it is possible to manually resolve
name mentions. We collected 106 cases in which
single-token names were mentioned in the the body
of a message but did not match any name from the
header. Instances for which there was not suffi-
cient information to determine a unique person en-
tity were excluded from the example set. In addition
to names that refer to people that are simply not in
the header, the names in this corpus include people
that are in the email header, but cannot be matched
because they are referred to using:initials–this is
commonly done in the sign-off to an email;nick-
names, including common nicknames (e.g., “Dave”
for “David”), unusual nicknames (e.g., “Kai” for
“Keiko”); or American names adopted in place of
a foreign name (e.g., “Jenny” for “Qing”).

For Enron, two datasets were generated automat-
ically. We collected name mentions which corre-
spond uniquely a names that is in the email “Cc”
header line; then, to simulate a non-trivial matching
task, we eliminate the collected person name from
the email header. We also used a small dictionary of

16 common American nicknames to identify nick-
names that mapped uniquely to full person names
on the “Cc” header line.

For each dataset, some examples were picked ran-
domly and set aside for learning and evaluation pur-
poses.

initials nicknames other
Cspace 11.3% 54.7% 34.0%
Sager-E - 10.2% 89.8%
Shapiro-R - 15.0% 85.0%

Table 3: Person Name Disambiguation Datasets

5.2 Results for person name disambiguation

5.2.1 Evaluation details

All of the methods applied generate a ranked list
of person nodes, and there is exactly one correct an-
swer per example.3 Figure 1 gives results4 for two
of the datasets as a function of recall at rankk, up
to rank 10. Table 4 shows the mean average preci-
sion (MAP) of the ranked lists as well as accuracy,
which we define as the percentage of correct answers
at rank 1 (i.e., precision at rank 1.)

5.2.2 Baseline method

To our knowledge, there are no previously re-
ported experiments for this task on email data. As a
baseline, we apply a reasonably sophisticated string
matching method (Cohen et al., 2003). Each name
mention in question is matched against all of the per-
son names in the corpus. The similarity score be-
tween the name term and a person name is calculated
as the maximal Jaro similarity score (Cohen et al.,
2003) between the term and any single token of the
personal name (ranging between 0 to 1). In addition,
we incorporate a nickname dictionary5, such that if
the name term is a known nickname of a name, the
similarity score of that pair is set to 1.

The results are shown in Figure 1 and Table 4. As
can be seen, the baseline approach is substantially
less effective for the more informal Cspace dataset.
Recall that the Cspace corpus includes many cases
such as initials, and also nicknames that have no
literal resemblance to the person’s name (section

3If a ranking contains a block of items with the same score,
a node’s rank is counted as the average rank of the “block”.

4Results refer to test examples only.
5The same dictionary that was used for dataset generation.
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5.1.2), which are not handled well by the string sim-
ilarity approach. For the Enron datasets, the base-
line approach perfoms generally better (Table 4). In
all the corpora there are many ambiguous instances,
e.g., common names like ”Dave” or “Andy” that
match many people with equal strength.

5.2.3 Graph walk methods

We perform two variants of graph walk, corre-
sponding to different methods of forming the query
distributionVq. Unless otherwise stated, we will use
a uniform weighting of labels—i.e.,θ`,T = 1/ST ;
γ = 1/2; and a walk of length 2.

In the first variant, we concentrate all the prob-
ability in the query distribution on the name term.
The column labeledterm gives the results of the
graph walk from this probability vector. Intuitively,
using this variant, the name term propagates its
weight to the files in which it appears. Then, weight
is propagated to person nodes which co-occur fre-
quently with these files. Note that in our graph
scheme there is a direct path between terms to per-
son names, so that they recieve weight as well.

As can be seen in the results, this leads to very
effective performance: e.g., it leads to 61.3% vs.
41.3% accuracy for the baseline approach on the
CSpace dataset. However, it does not handle am-
biguous terms as well as one would like, as the query
does not include any information of thecontextin
which the name occurred: the top-ranked answer for
ambiguous name terms (e.g., ”Dave”) will always
be the same person. To solve this problem, we also
used afile+term walk, in which the queryVq gives
equal weight to the name term node and the file in
which it appears.

We found that adding the file node toVq provides
useful context for ambiguous instances—e.g., the
correct ”David” would in general be ranked higher
than other persons with this same name. On the
other hand, though, adding the file node reduces
the the contribution of the term node. Although the
MAP and accuracy are decreased, file+term has bet-
ter performance than term at higher recall levels, as
can be seen in Figure 1.

5.2.4 Reranking the output of a walk

We now examine reranking as a technique for im-
proving the results. After some preliminary exper-

imentation, we adopted the following types of fea-
turesf for a nodex. The set of features are fairly
generic. Edge unigram featuresindicate, for each
edge label̀ , whether̀ was used in reachingx from
Vq. Edge bigram featuresindicate, for each pair of
edge labels̀1, `2, whether̀ 1 and`2 were used (in
that order) in reachingx from Vq. Top edge bigram
featuresare similar but indicate if̀ 1, `2 were used
in one of the two highest-scoring paths betweenVq

andx (where the “score” of a path is the product of

Pr(y
`

−→ z) for all edges in the path.)

We believe that these features could all be com-
puted using dynamic programming methods. Cur-
rently, however, we compute features by using a
method we callpath unfolding, which is simi-
lar to theback-propagation through timealgorithm
(Haykin, 1994; Diligenti et al., 2005) used in train-
ing recurrent neural networks. Graph unfolding is
based on a backward breadth-first visit of the graph,
starting at the target node at time stepk, and expand-
ing the unfolded paths by one layer per each time
step. This procedure is more expensive, but offers
more flexibility in choosing alternative features, and
was useful in determining an optimal feature set.

In addition, we used for this task some addi-
tional problem-specific features. One feature indi-
cates whether the set of paths leading to a node orig-
inate from one or two nodes inVq. (We conjecture
that in the file+term walk, nodes are connected to
both the source term and file nodes are more rele-
vant comparing to nodes that are reached from the
file node or term node only.) We also form features
that indicate whether the given term is a nickname of
the person name, per the nicknames dictionary; and
whether the Jaro similarity score between the term
and the person name is above 0.8. This information
is similar to that used by the baseline method.

The results (for the test set, after training on the
train set) are shown in Table 4 and (for two represen-
tative cases) Figure 1. In each case the top 10 nodes
were reranked. Reranking substantially improves
performance, especially for the file+term walk. The
accuracy rate is higher than 75% across all datasets.
The features that were assigned the highest weights
by the re-ranker were the literal similarity features
and thesource countfeature.
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Figure 1: Person name disambiguation results: Re-
call at rank k

6 Related Work

As noted above, the similarity measure we use is
based on graph-walk techniques which have been
adopted by many other researchers for several dif-
ferent tasks. In the information retrieval commu-
nity, infinite graph walks are prevalent for deter-
mining document centrality (e.g., (Page et al., 1998;
Diligenti et al., 2005; Kurland and Lee, 2005)). A
related venue of research is ofspreading activa-
tion over semantic or association networks, where
the underlying idea is to propagate activation from
source nodes via weighted links through the network
(Berger et al., 2004; Salton and Buckley, 1988).

The idea of representing structured data as a
graph is widespread in the data mining community,
which is mostly concerned with relational or semi-
structured data. Recently, the idea of PageRank

MAP Accuracy
Cspace
Baseline 49.0 41.3
Graph - term 72.6 61.3
Graph - file+term 66.3 48.8
Reranking - term 85.6 72.5
Reranking - file+term 89.0 83.8
Sager-E
Baseline 67.5 39.2
Graph - term 82.8 66.7
Graph - file+term 61.7 41.2
Reranking - term 83.2 68.6
Reranking - file+term 88.9 80.4
Shapiro-R
Baseline 60.8 38.8
Graph - term 84.1 63.3
Graph - file+term 56.5 38.8
Reranking - term 87.9 65.3
Reranking - file+term 85.5 77.6

Table 4: Person Name Disambiguation Results

has been applied to keyword search in structured
databases (Balmin et al., 2004). Analysis of inter-
object relationships has been suggested for entity
disambiguation for entities in a graph (Kalashnikov
et al., 2005), where edges are unlabelled. It has been
suggested to model similarity between objects in re-
lational data in terms of structural-context similarity
(Jeh and Widom, 2002).

We propose the use of learned re-ranking schemes
to improve performance of a lazy graph walk.
Earlier authors have considered instead using hill-
climbing approaches to adjust the parameters of a
graph-walk (Diligenti et al., 2005). We have not
compared directly with such approaches; prelimi-
nary experiments suggest that the performance gain
of such methods is limited, due to their inability to
exploit the global features we used here6. Related
research explores random walks for semi supervised
learning (Zhu et al., 2003; Zhou et al., 2005).

The task of person disambiguation has been stud-
ied in the field of social networks (e.g., (Malin et
al., 2005)). In particular, it has been suggested to
perform name disambiguation in email using traf-
fic information, as derived from the email headers
(Diehl et al., 2006). Our approach differs in that it
allows integration of email content and a timeline in
addition to social network information in a unified

6For instance, re-ranking using a set of simple locally-
computable features only modestly improved performance of
the “random” weight set for the CSpace threading task.
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framework. In addition, we incorporate learning to
tune the system parameters automatically.

7 Conclusion

We have presented a scheme for representing a cor-
pus of email messages with a graph of typed entities,
and an extension of the traditional notions of docu-
ment similarity to documents embedded in a graph.
Using a boosting-based learning scheme to rerank
outputs based on graph-walk related, as well as other
domain-specific, features provides an additional per-
formance improvement. The final results are quite
strong: for the explored name disambiguation task,
the method yields MAP scores in the mid-to-upper
80’s. The person name identification task illustrates
a key advantage of our approach—that context can
be easily incorporated in entity disambiguation.

In future work, we plan to further explore the
scalability of the approach, and also ways of inte-
grating this approach with language-modeling ap-
proaches for document representation and retrieval.
An open question with regard to contextual (multi-
source) graph walk in this framework is whether it is
possible to further focus probability mass on nodes
that are reached from multiple source nodes. This
may prove beneficial for complex queries.
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Abstract 

Classification techniques deploy supervised 
labeled instances to train classifiers for 
various classification problems. However 
labeled instances are limited, expensive, 
and time consuming to obtain, due to the 
need of experienced human annotators.  
Meanwhile large amount of unlabeled data 
is usually easy to obtain. Semi-supervised 
learning addresses the problem of utilizing 
unlabeled data along with supervised la-
beled data, to build better classifiers.  In 
this paper we introduce a semi-supervised 
approach based on mutual reinforcement in 
graphs to obtain more labeled data to en-
hance the classifier accuracy. The approach 
has been used to supplement a maximum 
entropy model for semi-supervised training 
of the ACE Relation Detection and Charac-
terization (RDC) task. ACE RDC is con-
sidered a hard task in information 
extraction due to lack of large amounts of 
training data and inconsistencies in the 
available data. The proposed approach pro-
vides 10% relative improvement over the 
state of the art supervised baseline system. 

1 Introduction 

Classification techniques use labeled data to train 
classifiers for various classification problems.  Yet 
they often face a shortage of labeled training data. 
Labeled instances are often difficult, expensive, 

and /or time consuming to obtain. Meanwhile large 
numbers of unlabeled instances are often available. 
Semi-supervised learning addresses the problem of 
how unlabeled data can be usefully employed, 
along with labeled data, to build better classifiers. 

In this paper we propose a semi-supervised ap-
proach for acquiring more training instances simi-
lar to some labeled instances. The approach 
depends on constructing generalized extraction 
patterns, which could match many instances, and 
deploying graph based mutual reinforcement to 
weight the importance of these patterns.  The mu-
tual reinforcement is used to automatically identify 
the most informative patterns; where patterns that 
match many instances tend to be correct. Similarly, 
instances matched by many patterns also tend to be 
correct. The labeled instances should have more 
effect in the mutual reinforcement weighting proc-
ess. The problem can therefore be seen as hubs 
(instances) and authorities (patterns) problem 
which can be solved using the Hypertext Induced 
Topic Selection (HITS) algorithm (Kleinberg, 
1998 ). 

HITS is an algorithmic formulation of the notion 
of authority in web pages link analysis, based on a 
relationship between a set of relevant “authorita-
tive pages”  and a set of “hub pages” . The HITS 
algorithm benefits from the following observation:  
when a page (hub) links to another page (author-
ity), the former confers authority over the latter.  

By analogy to the authoritative web pages prob-
lem, we could represent the patterns as authorities 
and instances as hubs, and use mutual reinforce-
ment between patterns and instances to weight the 
most authoritative patterns. Instances from unsu-
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pervised data matched with the highly weighted 
patterns are then used in retraining the system.  

The paper proceeds as follows: in Section 2 we 
discuss previous work followed by a brief defini-
tion of our general notation in Section 3. A detailed 
description of the proposed approach then follows 
in Section 4. Section 5 discusses the application of 
the proposed approach to the problem of detecting 
semantic relations from text. Section 6 discusses 
experimental results while the conclusion is pre-
sented in Section 7. 

2 Previous Work 

(Blum and Mitchell, 1998) proposed an approach 
based on co-training that uses unlabeled data in a 
particular setting. They exploit the fact that, for 
some problems, each example can be described by 
multiple representations. They develop a boosting 
scheme which exploits conditional independence 
between these representations.  

(Blum and Chawla, 2001) proposed  a general 
approach utilizing unlabeled data by constructing a 
graph on all the data points based on distance rela-
tionships among examples, and then to use the 
known labels to perform a graph partitioning using  
the minimum cut that agrees with the labeled data. 
(Zhu et al., 2003) extended this approach by pro-
posing a  cut based on the assumption that labels 
are generated according to a Markov Random 
Field on the graph , (Joachims, 2003) presented  an 
algorithm based on spectral graph partitioning. 
(Blum et al., 2004) extended the min-cut  approach 
by adding randomness to the graph structure, their 
algorithm addresses several shortcomings of the 
basic mincut approach, yet it may not help in cases 
where the graph does not have small cuts for a 
given classification problem. 

3 Background  

In graph theory, a graph is a set of objects called 
vertices joined by links called edges. A bipartite 
graph, also called a bigraph, is a special graph 
where the set of vertices can be divided into two 
disjoint sets with no two vertices of the same set 
sharing an edge.  

The Hypertext Induced Topic Selection (HITS) 
algorithm is an algorithm for rating, and therefore 
ranking, web pages. The HITS algorithm makes 
use of the following observation: when a page 

(hub) links to another page (authority), the former 
confers authority over the latter. HITS uses two 
values for each page, the "authority value" and the 
"hub value". "Authority value" and "hub value" are 
defined in terms of one another in a mutual recur-
sion. An authority value is computed as the sum of 
the scaled hub values that point to that authority. A 
hub value is the sum of the scaled authority values 
of the authorities it points to. 

A template, as we define for this work, is a se-
quence of generic forms that could generalize over 
the given training instance. An example template 
is:  
COUNTRY  NOUN_PHRASE PERSON 
VERB_PHRASE  
This template could represent the sentence: 

“ American vice President Al Gore visited ...” .  
This template is derived from the representation of 
the Named Entity tags, Part-of-Speech (POS) tags 
and semantic tags. The choice of the template rep-
resentation here is for illustration purpose only; 
any combination of tags, representations and tag-
ging styles might be used.  

A pattern is more specific than a template. A 
pattern specifies the role played by the tags (first 
entity, second entity, or relation). An example of a 
pattern is: 
COUNTRY(E2) NOUN_PHRASE(R) PERSON(E1)   
VERB_PHRASE  

This pattern indicates that the word(s) with the 
tag COUNTRY in the sentence represents the sec-
ond entity (Entity 2) in the relation, while the 
word(s) tagged PERSON represents the first entity 
(Entity 1) in this relation. Finally, the word(s) with 
the tag NOUN_PHRASE represents the relation 
between the two previous entities.   

A tuple, in our notation during this paper, is the 
result of the application of a pattern to unstructured 
text. In the above example, one result of applying 
the pattern to some raw text is the following tuple: 
Entity 1:  Al Gore 
Entity 2: United States 
Relation: vice President 

4 The Approach 

The semi-supervised graph-based approach we 
propose depends on the construction of generalized 
extraction patterns that could match many training 
instances. The patterns are then weighted accord-
ing to their importance by deploying graph based 
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mutual reinforcement techniques. Patterns derived 
from the supervised training instances should have 
a superior effect in the reinforcement weighting 
process. This duality in patterns and tuples relation 
could be stated that patterns could match different 
tuples, and tuples in turn could be matched by dif-
ferent patterns. The proposed approach is com-
posed of two main steps namely, pattern extraction 
and pattern weighting or induction. Both steps are 
detailed in the next subsections. 

4.1 Patterns Extraction 

As shown in Figure 1, several syntactic, lexical, 
and semantic analyzers could be applied to the 
training instances. The resulting analyses could be 
employed in the construction of extraction pat-
terns. Any extraction pattern could match different 
relations and hence could produce several tuples. 
As an example let’s consider the pattern depicted 
in figure 1: 

 

 
Figure 1:  An example of a pattern and its possible 
tuples. 
 
PEOPLE_Inhabitant(E2) NOUN_PHRASE(R) 
PERSON(E1) VERB_PHRASE  
This pattern could extract the tuple: 
Entity 1: Al Gore 
Entity 2: American  
Relation: vice President 

Another tuple that could be extracted by the same 
pattern is:  
Entity 1: Berlusconi 
Entity 2: Italian  
Relation: Prime Minister 
On the other hand, many other patterns could ex-
tract the same information in the tuple from differ-
ent contexts. It is worth mentioning that the 
proposed approach is general enough to accommo-
date any pattern design; the introduced pattern de-
sign is for illustration purposes only. 

To further increase the number of patterns that 
could match a single tuple, the tuple space might 
be reduced i.e. by grouping tuples conveying the 
same information content together into a single 
tuple. This will be detailed further in the experi-
mental setup section. 

4.2   Pattern Induction 

The inherent duality in the patterns and tuples rela-
tion suggests that the problem could be interpreted 
as a hub authority problem. This problem could be 
solved by applying the HITS algorithm to itera-
tively assign authority and hub scores to patterns 
and tuples respectively. 

 
Figure 2: A bipartite graph representing patterns 
and tuples 

 
Patterns and tuples are represented by a bipartite 

graph as illustrated in figure 2. Each pattern or tu-
ple is represented by a node in the graph. Edges 
represent matching between patterns and tuples.  

The pattern induction problem can be formu-
lated as follows: Given a very large set of data D 
containing a large set of patterns P which match a 
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Patterns� Tuples�

American vice President   Al Gore said today... 

Word: American 
Entity: PEOPLE 
POS : ADJ 
Sem: Inhabitant 

Word: vice president 
Entity:  
POS: NOUN_PHRASE 
Sem:  

Word: Al Gore 
Entity: PERSON 
POS: 
Sem: 

PEOPLE_Inhabitant    NOUN_PHRASE        PERSON 
VERB_PHRASE 
 

Entity 1:  Al Gore 
Entity 2: American 
Relation: vice President 

American vice Presi-
dent   Al Gore said 
today… 

Italian Prime Minister 
Berlusconi  visited….. 

Entity 1: Berlusconi  
Entity 2: Italian 
Relation: prime minister 
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large set of tuples T, the problem is to identify P
~

, 
the set of patterns that match the set of the most 

correct tuplesT
~

. The intuition is that the tuples 
matched by many different patterns tend to be cor-
rect and the patterns matching many different tu-
ples tend to be good patterns. In other words; we 
want to choose, among the large space of patterns 
in the data, the most informative, highest confi-
dence patterns that could identify correct tuples; 
i.e. choosing the most “ authoritative”  patterns in 
analogy with the hub authority problem. However, 

bothP
~

andT
~

are unknown. The induction process 
proceeds as follows:  each pattern p in P is associ-
ated with a numerical authority weight av which 
expresses how many tuples match that pattern. 
Similarly, each tuple t in T has a numerical hub 
weight ht which expresses how many patterns were 
matched by this tuple. The weights are calculated 
iteratively as follows: 
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where T(p) is the set of tuples matched by p, P(t) is 

the set of patterns matching t, ( )pa i )1( +  is the au-

thoritative weight of pattern p  at iteration  )1( +i , 

and ( )th i )1( +  is the hub weight of tuple t  at itera-

tion  )1( +i  . H(i) and A(i) are normalization fac-
tors defined as: 
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Patterns with weights lower than a predefined 
threshold are rejected, and examples associated 
with highly ranked patterns are then used in unsu-
pervised training. 

It is worth mentioning that both T and P contain 
supervised and unsupervised examples, however 
the proposed method could assign weights to the 
correct examples (tuples and patterns) in a com-
pletely unsupervised setup. For semi-supervised 
data some supervised examples are provided, 
which are associated in turn with tuples and pat-
terns.  

We adopt the HITS extension introduced in 
(White and Smyth, 2003) to extend HITS with Pri-
ors. By analogy, we handle the supervised exam-
ples as priors to the HITS induction algorithm.  

A prior probabilities vector pr ={pr1, . . . , prn}  
is defined such that the probabilities sum to 1,  
where prv denotes the relative importance (or 
“prior bias” ) we attach to node v. A pattern Pi is 
assigned a prior pr i=1/n if pattern Pi matches a 
supervised tuple, otherwise pr i is set to zero, n is 
the total number of patterns that have a supervised 
match. We also define a “ back probability”  

�
, 0 �  �

 �  1 which determines how often we bias the su-
pervised nodes: 
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where T(p) is the set of tuples matched by p , P(t) 
is the set of patterns matching t, and H(i) and A(i) 
are normalization factors defined as in  equations 
(3) and (4) 
 
Thus each node in the graph (pattern or tuple) has 
an associated prior weight depending on its super-
vised data. The induction process proceeds to itera-
tively assign weights to the patterns and tuples. In 
the current work we used 5.0=β . 

5 Experimental Setup  

5.1 ACE Relation Detection and Characteri-
zation 

In this section, we describe Automatic Content 
Extraction (ACE). ACE is an evaluation conducted 
by NIST to measure Entity Detection and Tracking 
(EDT) and Relation Detection and Characteriza-
tion (RDC). The EDT task is concerned with the 
detection of mentions of entities, and grouping 
them together by identifying their coreference. The 
RDC task detects relations between entities identi-
fied by the EDT task. We choose the RDC task to 
show the performance of the graph based semi-
supervised information extraction approach we 
propose. To this end we need to introduce the no-
tion of mentions and entities. Mentions are any 
instances of textual references to objects like peo-
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ple, organizations, geo-political entities (countries, 
cities …etc), locations, or facilities. On the other 
hand, entities are objects containing all mentions to 
the same object. 

 

Type Subtype Number of 
Instances 

User-Owner 
Inventor ART 
Other 

331 

DISC DISC 143 

Employ-Exec 
Employ-Staff 

Employ-Undetermined 
Member-of-Group 

Subsidiary 

EMP-ORG 

Other 

1673 

Ethnic 
Ideology Other-AFF 

Other 

153 

Citizen-Resident 
Based-in GPE-AFF 

Other 

695 

Business 
Family PER-SOC 

Other 

358 

Located 
Near PHYS 

Part-Whole 

1411 

 
Table 1. Types and subtypes of ACE relations 

 
Table 1 lists the types and subtypes of relations 

for the ACE RDC task. Here, we present an exam-
ple for those relations: 
 

Spai n’ s I nt er i or  Mi ni st er  an-
nounced t hi s eveni ng t he ar -
r est  of  separ at i st  
or gani zat i on Et a’ s pr esumed 
l eader  I gnaci o Gar ci a Ar -
r egui .  Ar r egui ,  who i s con-
si der ed t o be t he Et a 
or gani zat i on’ s t op man,  was 
ar r est ed at  17h45 Gr eenwi ch.  
The Spani sh j udi c i ar y sus-
pect s Ar r egui  of  or der i ng a 
f ai l ed at t ack on Ki ng Juan 
Car l os i n 1995.  

In this fragment, all the underlined phrases are 
mentions to Eta organization, or to “Garcia Ar-
regui” . There is a management relation between 
leader which references to “Garcia Arregui”  and 
Eta. 

5.2 Baseline System 

The base line system uses a Maximum Entropy 
model that combines diverse lexical, syntactic and 
semantic features derived from text, like the sys-
tem described in (Nanda, 2004). The system was 
trained on the ACE training data provided by LDC. 
The training set contained 145K words, and 4764 
instances of relations, the number of instances cor-
responding to each relation is shown in Table 1. 

The test set contained around 41K words, and 
1097 instances of relations. The system was evalu-
ated using standard ACE evaluation procedure. 
ACE evaluation procedure assigns the system an 
ACE value for each relation type and a total ACE 
value. The ACE value is a standard NIST metric 
for evaluating relation extraction. The reader is 
referred to the ACE web site (ACE, 2004) for more 
details.  

5.3 Pattern Construction 

We used the baseline system described in the pre-
vious section to label a large amount of unsuper-
vised data. The data comes from LDC English 
Gigaword corpus, Agence France Press English 
Service (AFE). The data contains around 3M 
words, from which 80K instances of relations have 
been extracted. 

We start by extracting a set of patterns that rep-
resent the supervised and unsupervised data. We 
consider each relation type separately and extract a 
pattern for each instance in the selected relation. 
The pattern we used consists of a mix between the 
part of speech (POS) tags and the mention tags for 
the words in the training instance. We use the men-
tion tag, if it exists; otherwise we use the part of 
speech tag. An example of a pattern is: 
 

Text :  Et a’ s pr esumed l eader  
Ar r egui  … 
Pos:  NNP POS JJ NN NNP 
Ment i on:  ORG 0 0 0 PERSON 
Pat t er n:  ORG( E2)  POS JJ NN( R)  
PERSON( E1)  
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5.4 Tuples Clustering 

As discussed in the previous section, the tuple 
space should be reduced to allow more matching 
between pattern-tuple pairs. This space reduction 
could be accomplished by seeking a tuple similar-
ity measure, and constructing a weighted undi-
rected graph of tuples. Two tuples are linked with 
an edge if their similarity measure exceeds a cer-
tain threshold. Graph clustering algorithms could 
be deployed to partition the graph into a set of ho-
mogeneous communities or clusters. To reduce the 
space of tuples, we seek a matching criterion that 
group similar tuples together. Using WordNet, we 
can measure the semantic similarity or relatedness 
between a pair of concepts (or word senses), and 
by extension, between a pair of sentences. We use 
the similarity measure described in (Wu and 
Palmer, 1994) which finds the path length to the 
root  node from the least common subsumer (LCS) 
of the two word senses which is the most specific 
word sense they share as an ancestor. The similar-
ity score of two tuples, ST, is calculated as follows:. 

2
2

2
1 EET SSS +=   (9) 

where SE1, and SE2 are the similarity scores of the 
first entities in the two tuples, and their second en-
titles respectively. 
The tuple matching procedure assigns a similarity 
measure to each pair of tuples in the dataset. Using 
this measure we can construct an undirected graph 
G. The vertices of G are the tuples. Two vertices 
are connected with an edge if the similarity meas-
ure between their underlying tuples exceeds a cer-
tain threshold. It was noticed that the constructed 
graph consists of a set of semi isolated groups as 
shown in figure 3. Those groups have a very large 
number of inter-group edges and meanwhile a 
rather small number of intra-group edges. This im-
plies that using a graph clustering algorithm would 
eliminate those weak intra-group edges and pro-
duce separate groups or clusters representing simi-
lar tuples. We used Markov Cluster Algorithm 
(MCL) for graph clustering (Dongen, 2000). MCL 
is a fast and scalable unsupervised cluster algo-
rithm for graphs based on simulation of stochastic 
flow. 

A bipartite graph of patterns and tuple clusters is 
constructed. Weights are assigned to patterns and 
tuple clusters by iteratively applying the HITS with 
Priors’  algorithm. Instances associated with highly 

ranked patterns are then added to the training data 
and the model is retrained. Samples of some highly 
ranked patterns and corresponding matching text 
are introduced in Table 2. 

 

 
Figure 3: Applying Clustering Algorithms to Tuple 
graph  
 

Pattern Matches 
GPE PERSON 
PERSON PERSON 

Zimbabwean President 
Robert Mugabe 

GPE POS PERSON 
PERSON 

Zimbabwe 's President 
Robert Mugabe 

GPE JJ PERSON 
American diplomatic per-
sonnel 

PERSON IN JJ GPE 
candidates for local gov-
ernment 

ORGANIZATION 
PERSON 

Airways spokesman 

ORGANIZATION 
PERSON      

Ajax players 

PERSON IN DT JJ  
ORGANIZATION  

chairman of the opposition 
parties 

ORGANIZATION 
PERSON    

parties chairmans 

 
Table 2: Examples of patterns with high weights 

6 Results and Discussion 

We train several models like the one described in 
section 5.2 on different training data sets. In all 
experiments, we use both the LDC ACE training 
data and the labeled unsupervised data induced 
with the graph based approach we propose. We use 
the ACE evaluation procedure and ACE test cor-
pus, provided by LDC, to evaluate all models. 

We incrementally added labeled unsupervised 
data to the training data to determine the amount of 
data after which degradation in the system per-
formance occurs. We sought this degradation point 
separately for each relation type. Figure 4 shows 
the effect of adding labeled unsupervised data on 
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the ACE value for each relation separately. We 
notice from figure 4 and table 1 that relations with 
a small number of training instances had a higher 
gain in performance compared to relations with a 
large number of training instances. This implies 
that the proposed approach achieves significant 
improvement when the number of labeled training 
instances is small but representative. 
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Figure 4: The effect of adding labeled unsuper-
vised data on the ACE value for each relation. The 
average number of relations per document is 4. 
 

From figure 4, we determined the number of 
training instances resulting in the maximum boost 
in performance for each relation. We added the 
training instances corresponding to the maximum 
boost in performance for all relations to the super-
vised training data and trained a new model on 
them. Figure 5 compares the ACE values for each 
relation in the base line model and the final model 

The total system ACE value has been improved 
by 10% over the supervised baseline system. All 
relation types, except the DSC relation, had sig-
nificant improvement ranging from 7% to 30% 
over the baseline supervised system. The DISC 
relation type had a small degradation; noting that it 
already has a low ACE value with the baseline sys-
tem. We think this is due to the fact that the DISC 
relation has few and inconsistent examples in the 
supervised data set. 

To assess the usefulness of the smoothing 
method employing WordNet distance, we repeated 
the experiment on EMP-ORG relation without it. 
We found out that it contributed to almost 30% of 
the total achieved improvement. We also repeated 
the experiment but with considering hub scores 
instead of authority scores. We added the examples 
associated with highly ranked tuples to the training 
set. We noticed that using hub scores yielded very 

little variation in the ACE value (i.e. 0.1 point for 
EMP-ORG relation). 
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Figure 5: A comparison of base line ACE values, 
and final ACE values for each relation. 
 

To evaluate the quality and representativeness of 
the labeled unsupervised data, acquired using the 
proposed approach, we study the effect of replac-
ing supervised data with unsupervised data while 
holding the amount of training data fixed. Several 
systems have been built using mixture of the su-
pervised and the unsupervised data. In Figure 6, 
the dotted line shows the degradation in the system 
performance when using a reduced amount of su-
pervised training data only, while the solid line 
shows the effect of replacing supervised training 
data with unsupervised labeled data on the system 
performance. We notice from Figure 6 that the un-
supervised data could replace more than 50% of 
the supervised data without any degradation in the 
system performance. This is an indication that the 
induced unsupervised data is good for training the 
classifier.  
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Figure 6: The effect of removing portions of the 
supervised data on the ACE value. And the effect 
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of replacing portions of the supervised data with 
labeled training data. 

7 Conclusion 

We introduce a general framework for semi-
supervised learning based on mutual reinforcement 
in graphs. We construct generalized extraction pat-
terns and deploy graph based mutual reinforcement 
to automatically identify the most informative pat-
terns. We provide motivation for our approach 
from a graph theory and graph link analysis per-
spective. 

We present experimental results supporting the 
applicability of the proposed approach to ACE Re-
lation Detection and Characterization (RDC) task, 
demonstrating its applicability to hard information 
extraction problems. Our approach achieves a sig-
nificant improvement over the base line supervised 
system especially when the number of labeled in-
stances is small. 
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Abstract 

We discuss several feature sets for 
novelty detection at the sentence level, 
using the data and procedure established 
in task 2 of the TREC 2004 novelty track. 
In particular, we investigate feature sets 
derived from graph representations of 
sentences and sets of sentences. We show 
that a highly connected graph produced 
by using sentence-level term distances 
and pointwise mutual information can 
serve as a source to extract features for 
novelty detection. We compare several 
feature sets based on such a graph 
representation. These feature sets allow us 
to increase the accuracy of an initial 
novelty classifier which is based on a bag-
of-word representation and KL 
divergence. The final result ties with the 
best system at TREC 2004. 

1 Introduction 

Novelty detection is the task of identifying novel 
information given a set of already accumulated 
background information. Potential applications of 
novelty detection systems are abundant, given the 
“information overload” in email, web content etc. 
Gabrilovich et al (2004), for example, describe a 
scenario in which a newsfeed is personalized based 
on a measure of information novelty: the user can 
be presented with pieces of information that are 
novel, given the documents that have already been 
reviewed. This will spare the user the task of 
sifting through vast amounts of duplicate and 

redundant information on a topic to find bits and 
pieces of information that are of interest. 

In 2002 TREC introduced a novelty track 
(Harman 2002), which continued — with major 
changes — in 2003 (Soboroff and Harman 2003) 
and 2004 (Voorhees 2004). In 2002 the task was to 
identify the set of relevant and novel sentences 
from an ordered set of documents within a TREC 
topic. Novelty was defined as “providing new 
information that has not been found in any 
previously picked sentences”. Relevance was 
defined as “relevant to the question or request 
made in the description section of the topic”. Inter-
annotator agreement was low (Harman 2002). 
There were 50 topics for the novelty task in 2002. 
For the 2003 novelty track a number of major 
changes were made. Relevance and novelty 
detection were separated into different tasks, 
allowing a separate evaluation of relevance 
detection and novelty detection. In the 2002 track, 
the data proved to be problematic since the 
percentage of relevant sentences in the documents 
was small. This, in turn, led to a very high 
percentage of relevant sentences being novel, 
given that amongst the small set of relevant 
sentences there was little redundancy. 50 new 
topics were created for the 2003 task, with a better 
balance of relevant and novel sentences. Slightly 
more than half of the topics dealt with “events,” 
the rest with “opinions.” 

The 2004 track used the same tasks, the same 
number of topics and the same split between event 
and opinion topics as the 2003 track. 

For the purpose of this paper, we are only 
concerned with novelty detection, specifically with 
task 2 of the 2004 novelty track, as described in 
more detail in the following section. 
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The question that we investigate here is: what is 
a meaningful feature set for text representation for 
novelty detection? This is obviously a far-reaching 
and loaded question. Possibilities range from 
simple bag-of-word features to features derived 
from sophisticated linguistic representations. 
Ultimately, the question is open-ended since there 
will always be another feature or feature 
combination that could/should be exploited. For 
our experiments, we have decided to focus more 
narrowly on the usefulness of features derived 
from graph representations and we have restricted 
ourselves to representations that do not require 
linguistic analysis. Simple bag-of-word metrics 
like KL divergence establish a baseline for 
classifier performance. More sophisticated metrics 
can be defined on the basis of graph 
representations. Graph representations of text can 
be constructed without performing linguistic 
analysis, by using term distances in sentences and 
pointwise mutual information between terms to 
form edges between term-vertices. A term-distance 
based representation has been used successfully for 
a variety of tasks in Mihalcea (2004) and Mihalcea 
and Tarau (2004). 

2 Previous work 

There were 13 participants and 54 submitted runs 
for the 2004 TREC novelty track task 2. Each 
participant submitted up to five runs with different 
system configurations. Metrics and approaches 
varied widely, from purely string based approaches 
to systems that used sophisticated linguistic 
components for synonymy resolution, coreference 
resolution and named entity recognition. Many 
systems employed a thresholding approach to the 
task, defining a novelty metric and then 
determining a sentence to be novel if the threshold 
is exceeded (e.g. Blott et al. 2004, Zhang et al. 
2004, Abdul-Jaleel et al. 2004, Eichmann et al. 
2004, Erkan 2004). Thresholds are either 
determined on the 2003 data, are based on a notion 
of mean score, or are determined in an ad hoc 
manner1. Tomiyama et al (2004), similar to our 
approach, use an SVM classifier to make the 
binary classification of a sentence as novel or not. 

The baseline result for the 2004 task 2 was an 
average F-measure of 0.577. This baseline is 
                                                           
1 Unfortunately, some of the system descriptions are unclear about the exact 
rationale for choosing a particular threshold. 

achieved if all relevant sentences are categorized 
as novel. The difficulty of the novelty detection 
task is evident from the relatively low score 
achieved by even the best systems. The five best-
performing runs were: 

1. Blott et al. (2004) (Dublin City 
University): using a tf.idf based metric of 
“importance value” at an ad hoc threshold: 
0.622. 

2. Tomiyama et al. (2004) (Meiji University): 
using an SVM classifier trained on 2003 
data, features based on conceptual fuzzy 
sets derived from a background corpus: 
0.619. 

3. Abdul-Jaleel et al. (2004) (UMass): using 
named entity recognition, using cosine 
similarity as a metric and thresholds 
derived from the 2003 data set: 0.618. 

4. Schiffman and McKeown (2004) 
(Columbia): using a combination of tests 
based on weights (derived from a 
background corpus) for previously unseen 
words with parameters trained on the 2003 
data set, and taking into account the 
novelty status of the previous sentence: 
0.617. 

5. Tomiyama et al (2004) (Meiji University): 
slight variation of the system described 
above, with one of the features (scarcity 
measure) eliminated: 0.617. 

As this list shows, there was no clear tendency 
of any particular kind of approach outperforming 
others. Among the above four systems and five 
runs, there are thresholding and classification 
approaches, systems that use background corpora 
and conceptual analysis and systems that do not. 

3 Experimental setup 

3.1 The task 

Task 2 of the 2004 novelty track is formulated as 
follows: 

Task 2: Given the relevant sentences in the 
complete document set (for a given topic), 
identify all novel sentences. 

The procedure is sequential on an ordered list of 
sentences per topic. For each Sentence Si the 
determination needs to be made whether it is novel 
given the previously seen sentences S1 through Si-1. 
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The evaluation metric for the novelty track is F1-
measure, averaged over all 50 topics. 

3.2 Novelty detection as classification 

For the purpose of this paper we view novelty 
detection as a supervised classification task. While 
the supervised approach has its limitations in real-
life scenarios where annotated data are hard to 
come by, it can serve as a testing ground for the 
question we are interested in: the evaluation of 
feature sets and text representations. 

At training time, a feature vector is created for 
each tagged sentence S and the set of sentences 
that comprise the already seen information that S is 
compared to. Features in the vector can be features 
of the tagged sentence, features of the set of 
sentences comprising the given background 
information and features that capture a relation 
between the tagged sentence and the set of 
background sentences. A classifier is trained on the 
set of resulting feature vectors. At evaluation time, 
a feature vector is extracted from the sentence to 
be evaluated and from the set of sentences that 
form the background knowledge. The classifier 
then determines whether, given the feature values 
of that vector, the sentence is more likely to be 
novel or not. 

We use the TREC 2003 data set for training, 
since it is close to the 2004 data set in its makeup. 
We train Support Vector Machines (SVMs) on the 
2003 data, using the LibSVM tool (Chang and Lin 
2001). Following the methodology outlined in 
Chang and Lin 2003, we use radial basis function 
(RBF) kernels and perform a grid search on two-
fold cross validated results on the training set to 
identify optimal parameter settings for the penalty 
parameter C and the RBF parameter γ. 
Continuously valued features are scaled to values 
between -1 and 1. The scaling range is determined 
on the training set and the same range is applied to 
the test set. 

The text was minimally preprocessed before 
extracting features: stop words were removed, 
tokens were lowercased and punctuation was 
stripped from the strings. 

4 Text representations and features 

4.1 KL divergence as a feature 

Treating sentences as an unordered collection of 
terms, the information-theoretic metric of KL 
divergence (or relative entropy) has been 
successfully used to measure “distance” between 
documents by simply comparing the term 
distributions in a document compared to another 
document or set of documents. The notions of 
distance and novelty are closely related: if a new 
document is very distant from the collection of 
documents that has been seen previously, it is 
likely to contain new, previously unseen 
information. Gabrilovich et al. (2004), for 
example, report on a successful use of KL 
divergence for novelty detection. KL divergence is 
defined in Equation 1: 

( )
( ) log

( )
d

d
w R

p w
p w

p w∑  

Equation 1: KL divergence. 

w belongs to the set of words that are shared 
between document d and document (set) R. pd and 
pR are the probability distributions of words in d 
and R, respectively. Both pd(w) and pR(w) need to 
be non-zero in the equation above. We used simple 
add-one smoothing to ensure non-zero values. 
While it is conceivable that KL divergence could 
take into account other features than just bag-of-
words information, we restrict ourselves to this 
particular use of the measure since it corresponds 
to the typical use in novelty detection. 

4.2 Term distance graphs: from text to 
graph without linguistic analysis 

KL divergence as described above treats a 
document or sentence as an unordered collection of 
words. Language obviously provides more 
structure than that. Linguistic resources can impose 
structure on a string of words through consultation 
of linguistic knowledge (either hand-coded or 
learned from a tagged corpus). Even without any 
outside knowledge, however, the order of words in 
a sentence provides a means to construct a highly 
connected undirected graph with the words as 
vertices. The intuition here is: 
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1. All words in a sentence have some 
relationship to all other words in the 
sentence, modulo a “window size” 
outside of which the relationship is not 
taken into consideration 

2. The closer two words are to each other, 
the stronger their connection tends to 
be2 

It follows from (2) that weights on the edges 
will be inversely proportional to the distance 
between two words (vertices). In the remainder of 
the paper we will refer to these graphs as TD (term 
distance) graphs. Of course (1) and (2) are rough 
generalizations with many counterexamples, but 
without the luxury of linguistic analysis this seems 
to be a reasonable step to advance beyond simple 
bag-of-word assumptions. Multiple sentence 
graphs can then be combined into a highly 
connected graph to represent text. Mihalcea (2004) 
and Mihalcea and Tarau (2004) have successfully 
explored very similar graph representations for 
extractive summarization and key word extraction. 

In addition to distance, we also employ 
pointwise mutual information as defined in 
Equation 2 between two words/vertices to enter 
into the calculation of edge weight3. This 
combination of distance and a cooccurrence 
measure such as PMI is reminiscent of decaying 
language models, as described for IR, for example, 
in Gao et al. (2002)4. Cooccurrence is counted at 
the sentence level, i.e. ( , )P i j  is estimated by the 
number of sentences that contain both terms wi and 
wj, and ( )P i  and ( )P j  are estimated by counting 
the total sentences containing wi and wj, 
respectively. As the set of seen sentences grows 
and cooccurrence between words becomes more 
prevalent, PMI becomes more influential on edge 
weights, strengthening edges between words that 
have high PMI. 

( , ) 2

( , )
log

( ) ( )i j

P i j
PMI

P i P j
=  

Equation 2: Pointwise Mutual Information (PMI) 
between two terms i and j. 
                                                           
2 This view is supported by examining dependency structures derived from the 
Penn Tree Bank and mapping the probability of a dependency to the distance 
between words. See also Eisner and Smith (2005) who explore this 
generalization for dependency parsing. 
3 We also computed results from a graph where the edge weight is determined 
only by term distance, without PMI. These results were consistently worse than 
the ones reported here. 
4 We are grateful to an anonymous reviewer for pointing this out. 

Formally, the weight wt for each edge in the 
graph is defined as in Equation 3, where di,j is the 
distance between words wi and wj.and PMI(i,j) is 
the pointwise mutual information between words 
wi and wj, given the sentences seen so far. For the 
purpose of Equation 3 we ignored negative PMI 
values, i.e. we treated negative PMI values as 0. 

, 2
,

1 ( , )
i j

i j

PMI i j
wt

d

+=  

Equation 3: Assigning weight to an edge between 
two vertices. 

We imposed a “window size” as a limit on the 
maximum distance between two words to enter an 
edge relationship. Window size was varied 
between 3 and 8; on the training set a window size 
of 6 proved to be optimal. 

On a TD graph representation, we can calculate 
various features based on the strengths and number 
of connections between words. In novelty 
detection, we can model the growing store of 
background information by adding each 
“incoming” sentence graph to the existing 
background graph. If an “incoming” edge already 
exists in the background graph, the weight of the 
“incoming” edge is added to the existing edge 
weight. 

Figure 1 shows a subset of a TD graph for the 
first two sentences of topic N57. The visualization 
is generated by the Pajek tool (Bagatelj and 
Mrvar). 

 
Figure 1: A subset of a TD graph of the first two 
sentences of topic N57. 
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4.3 Graph features 

4.3.1 Simple Graph features 

In novelty detection, graph based features allow to 
assess the change a graph undergoes through the 
addition of a new sentence. The intuition behind 
these features is that the more a graph changes 
when a sentence is added, the more likely the 
added sentence is to contain novel information. 
After all, novel information may be conveyed even 
if the terms involved are not novel. Establishing a 
new relation (i.e. edge in the graph) between two 
previously seen terms would have exactly that 
effect: old terms conveying new information. KL 
divergence or any other measure of distributional 
similarity is not suited to capture this scenario. As 
an example consider a news story thread about a 
crime. The various sentences in the background 
information may mention the victim, multiple 
suspects, previous convictions, similar crimes etc. 
When a new sentence is encountered where one 
suspect’s name is mentioned in the same sentence 
with the victim, at a close distance, none of these 
two terms are new. The fact that suspect and victim 
are mentioned in one sentence, however, may 
indicate a piece of novel information: a close 
relationship between the two that did not exist in 
the background story. 

We designed 21 graph based features, based on 
the following definitions: 

• Background graph: the graph representing 
the previously seen sentences. 

• G(S): the graph of the sentence that is 
currently being evaluated.  

• Reinforced background edge: an edge that 
exists both in the background graph and 
in G(S). 

• Added background edge: a new edge in 
G(S) that connects two vertices that 
already exist in the background graph. 

• New edge: an edge in G(S) that connects 
two previously unseen vertices. 

• Connecting edge: an edge in G(S) between 
a previously unseen vertex and a 
previously seen vertex. 

The 21 features are: 
• number of new edges 
• number of added background edges 
• number of background edges 

• number of background vertices 
• number of connecting edges 
• sum of weights on new edges 
• sum of weights on added background 

edges 
• sum of weights on connecting edges 
• background connectivity (ratio between 

edges and vertices) 
• connectivity added by S 
• ratio between added background edges and 

new edges 
• ratio between new edges and connecting 

edges 
• ratio between added background edges and 

connecting edges 
• ratio between the sum of weights on new 

edges and the sum of weights on added 
background edges 

• ratio between the sum of weights on new 
edges and the sum of weights on 
connecting edges 

• ratio between the sum of weights on added 
background edges and the sum of weights 
on connecting edges 

• ratio between sum of weights on added 
background edges and the sum of pre-
existing weights on those edges 

• ratio between sum of weights on new 
edges and sum of weight on background 
edges 

• ratio between sum of weights added to 
reinforced background edges and sum of 
background weights 

• ratio between number of added 
background edges and reinforced 
background edges 

• number of background edges leading from 
those background vertices that have been 
connected to new vertices by G(S) 

We refer to this set of 21 features as simple 
graph features, to distinguish them from a second 
set of graph-based features that are based on 
TextRank. 

4.3.2 TextRank features 

The TextRank metric, as described in Mihalcea 
and Tarau (2004) is inspired by the PageRank 
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metric which is used for web page ranking5. 
TextRank is designed to work well in text graph 
representations: it can take edge weights into 
account and it works on undirected graphs. 
TextRank calculates a weight for each vertex, 
based on Equation 4. 

( )
( )

( ) (1 ) * ( )
j i

k j

ji
i j

V NB V jk
V NB V

wt
TR V d d TR V

wt∈
∈

⎛ ⎞
⎜ ⎟

= − + ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑
Equation 4: The TextRank metric. 

where TR(Vi) is the TextRank score for vertex i, 
NB(Vi) is the set of neighbors of Vi, i.e. the set of 
nodes connected to Vi by a single edge, wtxy is the 
weight of the edge between vertex x and vertex y, 
and d is a constant “dampening factor”, set at 
0.856. To calculate TR, an initial score of 1 is 
assigned to all vertices, and the formula is applied 
iteratively until the difference in scores between 
iterations falls below a threshold of 0.0001 for all 
vertices (as in Mihalcea and Tarau 2004). 

The TextRank score itself is not particularly 
enlightening for novelty detection. It measures the 
“importance” rather than the novelty of a vertex - 
hence its usefulness in keyword extraction. We 
can, however, derive a number of features from the 
TextRank scores that measure the change in scores 
as a result of adding a sentence to the graph of the 
background information. The rationale is that the 
more the TextRank scores are “disturbed” by the 
addition of a new sentence, the more likely it is 
that the new sentence carries novel information. 
We normalize the TextRank scores by the number 
of vertices to obtain a probability distribution. The 
features we define on the basis of the (normalized) 
TextRank metric are: 

1. sum of TR scores on the nodes of S, 
after adding S 

2. maximum TR score on any nodes of S 
3. maximum TR score on any background 

node before adding S 
4. delta between 2 and 3 
5. sum of TR scores on the background 

nodes (after adding S) 

                                                           
5 Erkan and Radev (2005) introduced LexRank where a graph representation of a 
set of sentences is derived from the cosine similarity between sentences. 
Kurland and Lee (2004) derive a graph representation for a set of documents by 
linking documents X and Y with edges weighted by the score that a language 
model trained on X assigns to Y. 
6 Following Mihalcea and Tarau (2004), who in turn base their default setting on 
Brin and Page (1998). 

6. delta between 5 and 1 
7. variance of the TR scores before adding 

S 
8. variance of TR scores after adding S 
9. delta between 7 and 8 
10. ratio of 1 to 5 
11. KL divergence between the TR scores 

before and after adding S 

5 Results 

To establish a baseline, we used a simple bag-of-
words approach and KL divergence as a feature for 
classification. Employing the protocol described 
above, i.e. training the classifier on the 2003 data 
set, and optimizing the parameters on 2 folds of the 
training data, we achieve a surprisingly high result 
of 0.618 average F-measure on the 2004 data. This 
result would place the run at a tie for third place 
with the UMass system in the 2004 competition. 

In the tables below, KL refers to the KL 
divergence feature, TR to the TextRank based 
features and SG to the simple graph based features. 

Given that the feature sets we investigate 
possibly capture orthogonal properties, we were 
also interested in using combinations of the three 
feature sets. For the graph based features we 
determined on the training set that results were 
optimal at a “window size” of 6, i.e. if graph edges 
are produced only if the distance between terms is 
six tokens or less. All results are tabulated in Table 
1, with the best results boldfaced. 

Feature set Average F measure 
KL 0.618 
TR 0.600 
SG 0.619 
KL + SG 0.622 
KL + SG + TR 0.621 
SG + TR 0.615 
TR + KL 0.618 

Table 1: Performance of the different feature sets. 

We used the McNemar test to determine 
pairwise statistical significance levels between the 
novelty classifiers based on different feature sets7. 
The two (boldfaced) best results from Table 1 are 
significantly different from the baseline at 0.999 
confidence. Individual sentence level 

                                                           
7 We could not use the Wilcoxon rank test for our results since we only had 
binary classification results for each sentence, as opposed to individual (class 
probability) scores. 

22



classifications from the official 2004 runs were not 
available to us, so we were not able to test for 
statistical significance on our results versus TREC 
results. 

6 Summary and Conclusion 

We showed that using KL divergence as a feature 
for novelty classification establishes a surprisingly 
good result at an average F-measure of 0.618, 
which would top all but 3 of the 54 runs submitted 
for task 2 in the TREC novelty track in 2004. To 
improve on this baseline we computed graph 
features from a highly connected graph built from 
sentence-level term cooccurrences with edges 
weighted by distance and pointwise mutual 
information. A set of 21 “simple graph features” 
extracted directly from the graph perform slightly 
better than KL divergence, at 0.619 average F-
measure. We also computed TextRank features 
from the same graph representation. TextRank 
features by themselves achieve 0.600 average F-
measure. The best result is achieved by combining 
feature sets: Using a combination of KL features 
and simple graph features produces an average F-
measure of 0.622. 

Being able to establish a very high baseline with 
just the use of KL divergence as a feature was 
surprising to us: it involves a minimal approach to 
novelty detection. We believe that the high 
baseline indicates that a classification approach to 
novelty detection is promising. This is 
corroborated by the very good performance of the 
runs from Meiji University which also used a 
classifier. 

The second result, i.e. the benefit obtained by 
using graph based features was in line with our 
expectations. It is a reasonable assumption that the 
graph features would be able to add to the 
information that a feature like KL divergence can 
capture. The gains were statistically significant but 
very modest, which poses a number of questions. 
First, our feature engineering may be less than 
optimal, missing important information from a 
graph-based representation. Second, the 
classification approach may be suffering from 
inherent differences between the training data 
(TREC 2003) and the test data (TREC 2004). To 
explore this hypothesis, we trained SVMs on the 
KL + SG feature set with default settings on three 
random folds of the 2003 and 2004 data. For these 

experiments we simply measured accuracy. The 
baseline accuracy (predicting the majority class 
label) was 65.77% for the 2003 data and 58.59% 
for the 2004 data. Average accuracy for the 
threefold crossvalidation on 2003 data was 
75.72%, on the 2004 data it was 64.88%. Using the 
SVMs trained on the 2003 data on the three folds 
of the 2004 data performed below baseline at 
55.07%. These findings indicate that the 2003 data 
are indeed not an ideal fit as training material for 
the 2004 task. 

With these results indicating that graph features 
can be useful for novelty detection, the question 
becomes which graph representation is best suited 
to extract these features from. A highly connected 
term-distance based graph representation, with the 
addition of pointwise mutual information, is a 
computationally relatively cheap approach. There 
are at least two alternative graph representations 
that are worth exploring. 

First, a “true” dependency graph that is based on 
linguistic analysis would provide a less connected 
alternative. Such a graph would, however, contain 
more information in the form of directed edges and 
edge labels (labels of semantic relations) that could 
prove useful for novelty detection. On the 
downside, it would necessarily be prone to errors 
and domain specificity in the linguistic analysis 
process. 

Second, one could use the parse matrix of a 
statistical dependency parser to create the graph 
representation. This would yield a dependency 
graph that has more edges than those coming from 
a “1-best” dependency parse. In addition, the 
weights on the edges could be based on 
dependency probability estimates, and analysis 
errors would not be as detrimental since several 
alternative analyses enter into the graph 
representations. 

It is beyond the scope of this paper to present a 
thorough comparison between these different 
graph representations. However, we were able to 
demonstrate that a computationally simple graph 
representation, which is based solely on pointwise 
mutual information and term distance, allows us to 
successfully extract useful features for novelty 
detection. The results that can be achieved in this 
manner only present a modest gain over a simple 
approach using KL divergence as a classification 
feature. The best achieved result, however, would 
tie for first place in the 2004 TREC novelty track, 
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in comparison to many systems which relied on 
relatively heavy analysis machinery and additional 
data resources. 
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Abstract 

In many information retrieval and selec-
tion tasks it is valuable to score how much 
a text is about a certain entity and to com-
pute how much the text discusses the en-
tity with respect to a certain viewpoint. In 
this paper we are interested in giving an 
aboutness score to a text, when the input 
query is a person name and we want to 
measure the aboutness with respect to the 
biographical data of that person. We pre-
sent a graph-based algorithm and compare 
its results with other approaches. 

1 Introduction 

In many information processing tasks one is inter-
ested in measuring how much a text or passage is 
about a certain entity. This is called aboutness or 
topical relevance (Beghtol 1986; Soergel 1994). 
Simple word counts of the entity term often give 
only a rough estimation of aboutness. The true fre-
quency of the entity might be hidden by corefer-
ents. Two entities are considered as coreferents 
when they both refer to the same entity in the situa-
tion described in the text (e.g., in the sentences: 
"Dan Quayle met his wife in college. The Indiana 
senator married her shortly after he finished his 
studies": "his", "Indiana senator" and "he" all core-
fer to "Dan Quayle"). If we want to score the 
aboutness of an entity with respect to a certain 
viewpoint, the aboutness is also obfuscated by the 
referents that refer to the chosen viewpoint and in 
which context the entity is mentioned. In the ex-
ample “Dan Quayle ran for presidency”, “presi-

dency” can be considered as a referent for “Dan 
Quayle”. Because, coreferents and referents can be 
depicted in a graphical representation of the dis-
course content, it seems interesting to exploit this 
graph structure in order to compute aboutness. This 
approach is inspired by studies in cognitive science 
on text comprehension (van Dijk and Kintsch, 
1983). When humans read a text, they make many 
inferences about and link information that is found 
in the text, a behavior that influences aboutness 
assessment. Automated aboutness computation has 
many applications such as text indexing, summari-
zation, and text linking.  

We focus on estimating the aboutness score of a 
text given an input query in the form of a person 
proper name. The score should reflect how much 
the text deals with biographical information about 
the person. We present an algorithm based on ei-
genvector analysis of the link matrix of the dis-
course graph built by the noun phrase coreferents 
and referents. We test the approach with a small set 
of documents, which we rank by decreasing about-
ness of the input entity. We compare the results 
with results obtained by traditional approaches 
such as a normalized term frequency (possibly cor-
rected by coreference resolution and augmented 
with other referent information). Although the re-
sults on a small test set do not pretend to give firm 
evidence on the validity of our approach, our con-
tribution lies in the reflection of using graph based 
document representations of discourse content and 
exploiting this structure in content recognition.  

2 Methods  

Our approach involves the detection of entities and 
their noun phrase coreferents, the generation of 
terms that are correlated with biographical infor-
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mation, the detection of references between enti-
ties, and the computation of the aboutness score. 
As linguistic resources we used the LT-POS tagger 
developed at the University of Edinburgh and the 
Charniak parser developed at Brown University.  

2.1 Noun Phrase Coreference Resolution 

Coreference resolution focuses on detecting “iden-
tity'' relationships between noun phrases (i.e. not 
on is-a or whole/part links). It is natural to view 
coreferencing as a partitioning or clustering of the 
set of entities. The idea is to group coreferents into 
the same cluster, which is accomplished in two 
steps: 1) detection of the entities and extraction of 
their features set; 2) clustering of the entities. For 
the first subtask we use the same set of features as 
in Cardie and Wagstaff (1999). For the second step 
we used the progressive fuzzy clustering algorithm 
described in Angheluta et al. (2004).  

2.2 Learning Biographical Terms 

We learn a term’s biographical value as the corre-
lation of the term with texts of biographical nature. 
There are different ways of learning associations 
present in corpora (e.g., use of the mutual informa-
tion statistic, use of the chi-square statistic). We 
use the likelihood ratio for a binomial distribution 
(Dunning 1993), which tests the hypothesis 
whether the term occurs independently in texts of 
biographical nature given a large corpus of bio-
graphical and non-biographical texts. For consider-
ing a term as biography-related, we set a likelihood 
ratio threshold such that the hypothesis can be re-
jected with a certain significance level.  

2.3 Reference Detection between Entities  

We assume that the syntactic relationships between 
entities (proper or common nouns) in a text give us 
information on their semantic reference status. In 
our simple experiment, we consider reference rela-
tionships found within a single sentence, and more 
specifically we take into account relationships be-
tween two noun phrase entities. The analysis re-
quires that the sentences are syntactically analyzed 
or parsed. The following syntactic relationships are 
detected in the parse tree of each sentence:   
1) Subject-object: An object refers to the subject 
(e.g., in the sentence He eats an apple, an apple 
refers to He). This relationship type also covers 

prepositional phrases that are the argument of a 
verb (e.g., in the sentence He goes to Hollywood, 
Hollywood refers to He). The relationship holds 
between the heads of the respective noun phrases 
in case other nouns modify them.    
2) NP-PP{NP}: A noun phrase is modified by a 
prepositional noun phrase: the head of the preposi-
tional noun phrase refers to the head of the domi-
nant noun phrase (e.g., in the chunk The nominee 
for presidency, presidency refers to The nominee). 
3) NP-NP: A noun phrase modifies another noun 
phrase: the head of the modifying noun phrase re-
fers to the head of the dominant noun phrase (e.g., 
in the chunk Dan Quayle's sister, Dan Quayle re-
fers to sister, in the chunk sugar factory, sugar 
refers to factory). 
 When a sentence is composed of different sub-
clauses and when one of the components of the 
first two relationships has the form of a subclause, 
the first noun phrase of the subclause is consid-
ered. When computing a reference relation with an 
entity term, we only consider biographical terms 
found as described in (2.2).  

2.4 Computing the Aboutness Score  

The aboutness of a document text D for the input 
entity E is computed as follows:  
 

aboutness(D,E) = entity _ score(E)

entity _ score(F)
F∈distinctentities of D

∑
 

 
entity_score is zero when E does not occur in D. 
Otherwise we compute the entity score as follows. 
We represent D as a graph, where nodes represent 
the entities as mentioned in the text and the 
weights of the connections represent the reference 
score (in our experiments set to 1 when the entities 
are coreferents, 0.5 when the entities are other ref-
erents). The values 1 and 0.5 were selected ad hoc. 
Future fine-tuning of the weights of the edges of 
the discourse graph based on discourse features 
could be explored (cf. Givón 2001). The edge val-
ues are stored in a link matrix A. The authority of 
an entity is computed by considering the values of 
the principal eigenvector of ATA. (cf. Kleinberg 
1998) (in the results below this approach is re-
ferred to as LM). In this way we compute the au-
thority of each entity in a text.  
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 We implemented four other entity scores: the 
term frequency (TF), the term frequency aug-
mented with noun phrase coreference information 
(TFCOREF), the term frequency augmented with 
reference information (weighted by 0.5) (TFREF) 
and the term frequency augmented with corefer-
ence and reference information (TFCOREFREF). 
The purpose is not that the 4 scoring functions are 
mutually comparable, but that the ranking of the 
documents that is produced by each of them can be 
compared against an ideal ranking built by hu-
mans.  

3 Experiments and Results 

For learning person related words we used a train-
ing corpus consisting of biographical texts of per-
sons obtained from the Web (from 
http://www.biography.com) and biographical and 
non-biographical texts from DUC-2002 and DUC-
2003. For considering a term as biography-related, 
we set a likelihood ratio threshold such that the 
hypothesis of independence can be rejected with a 
significance level of less than 0.0025, assuring that 
the selected terms are really biography-related.  
 In order to evaluate the aboutness computation, 
we considered five input queries consisting of a 
proper person name phrase ("Dan Quayle" (D), 
"Hillary Clinton" (H), "Napoleon" (N), "Sadam 
Hussein" (S) and "Sharon Stone" (ST)) and 
downloaded for each of the queries 5 texts from 
the Web (each text contains minimally once an 
exact match with the input query). Two persons 
were asked to rank the texts according to rele-
vancy, if they were searching biographical infor-
mation on the input person (100% agreement was 
obtained). Two aspects are important in determin-
ing relevancy: a text should really and almost ex-
clusively contain biographical information of the 
input person in order not to lose time with other 
information. For each query, at least one of the 
texts is a biographical text and one of the texts only 
marginally mentions the person in question. All 
texts except for the biography texts speak about 
other persons, and pronouns are abundantly used. 
The "Hillary Clinton" texts do not contain many 
other persons except for Hillary, in contrast with 
the "Dan Quayle", "Napoleon" and "Sadam Hus-
sein" texts. The "Hillary Clinton" texts are in gen-
eral quite relevant for this first lady. For 
"Napoleon" there is one biographical text on Napo-

leon's surgeon that mentions Napoleon only mar-
ginally. The “Dan Quayle” texts contain a lot of 
direct speech. For "Sharon Stone" 4 out of the 5 
texts described a movie in which this actress 
played a role, thus being only marginally relevant 
for a demand of biographical data of the actress.  
 Then we ranked the texts based on the TF, 
TFCOREF, TFREF, TFCOREFREF and LM 
scores and computed the congruence of each rank-
ing (Rx) with the manual ranking (Rm). We used the 
following measure of similarity of the rankings:  
 

sim(Rx, Rm) =1−

rx, i− rm, i

i

∑

floor
n2

2

*100
 

where n is the number of items in the 2 rankings 
and rx,i and rm,i denote the position of the ith item in 
Rx and Rm. respectively. Table 1 shows the results.  

4 Discussion of the Results and Related 
Research 

From our limited experiments we can draw the 
following findings. It is logical that erroneous 
coreference resolution worsens the results com-
pared to the TF baseline. In one of the "Napoleon” 
texts, one mention of Napoleon and one mention of 
the name of his surgeon entail that a large number 
of pronouns in the text are wrongly resolved. They 
all refer to the surgeon, but the system considers 
them as referring to Napoleon, making that the 
ranking of this text is completely inversed com-
pared to the ideal one. Adding other reference in-
formation gives some mixed results. The ranking 
based on the principal eigenvector computation of 
the link matrix of the text that represents reference 
relationships between entities provides a natural 
way of computing a ranking of the texts with re-
gard to the person entity. This can be explained as 
follows. Decomposition into eigenvectors breaks 
down the original relationships into linear inde-
pendent components. Sorting them according to 
their corresponding eigenvalues sorts the compo-
nents from the most important information to the 
less important one. When keeping the principal 
eigenvector, we keep the most important informa-
tion which best distinguishes it from other infor-
mation while ignoring marginal information. In 
this way we hope to smooth some noise that is 
generated when building the links. On the other 
hand, when relationships that are wrongly detected 
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are dominant, they will be reinforced (as is the case 
in the “Napoleon” text). Although an aboutness 
score is normalized by the sum of a text’s entity 
scores, the effect of this normalization and the be-
havior of eigenvectors in case of texts of different 
length should be studied.  
 The work is inspired by link analysis algorithms 
such as HITS, which uses theories of spectral parti-
tioning of a graph for detecting authoritative pages 
in a graph of hyperlinked pages (Kleinberg 1998). 
Analogically, Zha (2002) detects terms and sen-
tences with a high salience in a text and uses these 
for summarization. The graph here is made of 
linked term and sentence nodes. Other work on 
text summarization computes centrality on graphs 
(Erkan and Radev 2004; Mihalcea and Tarau 
2004). We use a linguistic motivation for linking 
terms in texts founded in reference relationships 
such as coreference and reference by biographical 
terms in certain syntactical constructs. Intuitively, 
an important entity is linked to many referents; the 
more important the referents are, the more impor-
tant the entity is. Latent semantic indexing (LSI) is 
also used to detect main topics in a set of docu-
ments/sentences, it will not explicitly model the 
weights of the edges between entities.  
 Our implementation aims at measuring the 
aboutness of an entity from a biographical view-
point. One can easily focus upon other viewpoints 
when determining the terms that enter into a refer-
ence relationship with the input entity (e.g., com-
puting the aboutness of an input animal name with 
regard to its reproductive activities). 

5 Conclusion 

In this paper we considered the problem of ranking 
texts when the input query is in the form of a per-
son proper name and when we are interested in 
biographical information. The ranking based on the 
computation of the principal eigenvector of the 
link matrix that represents coreferent and other 
referent relationships between noun phrase entities 
offers novel directions for future research. 
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Table 1. Similarity of the system made rankings com-
pared to the ideal ranking for the methods used with 
regard to the input queries.  
 
 TF TFCOREF TFREF TFCOREFREF LM 
D 0.33 0.00 0.33 0.00 0.50 
H 0.33 0.50 0.33 0.33 0.66 
N 0.66 0.33 0.66 0.66 0.33 
S 0.83 0.66 0.66 0.66 1.00 
ST 0.00 0.33 0.16 0.50 0.83 
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Abstract

We study how two graph algorithms ap-
ply to topic-driven summarization in the
scope of Document Understanding Con-
ferences. The DUC 2005 and 2006 tasks
were to summarize into 250 words a col-
lection of documents on a topic consist-
ing of a few statements or questions.
Our algorithms select sentences for ex-
traction. We measure their performance
on the DUC 2005 test data, using the Sum-
mary Content Units made available after
the challenge. One algorithm matches a
graph representing the entire topic against
each sentence in the collection. The
other algorithm checks, for pairs of open-
class words in the topic, whether they can
be connected in the syntactic graph of
each sentence. Matching performs bet-
ter than connecting words, but a combi-
nation of both methods works best. They
also both favour longer sentences, which
makes summaries more fluent.

1 Introduction
The DUC 2005 and 2006 summarization challenges
were motivated by the desire to make summariza-
tion relevant to real users. The task was focussed by
specifying an information need as a topic: one or a
few statements or questions (Dang, 2005). Systems
usually employ such data as a source of key words
or phrases which then help rank document sentences
by relevance to the topic.

We explore other information that can be ex-
tracted from a topic description. In particular, we
look at connections between open-class words. A
dependency parser, MiniPar (Lin, 1998), builds a
dependency relation graph for each sentence. We
apply such graphs in two ways. We match a graph
that covers the entire topic description against the
graph for each sentence in the collection. We also
extract all pairs of open-class words from the topic
description, and check whether they are connected
in the sentence graphs. Both methods let us rank
sentences; the top-ranking ones go into a summary

of at most 250 words. We evaluate the summaries
with the summary content units (SCU) data made
available after DUC 2005 (Nenkova and Passon-
neau, 2004; Copeck and Szpakowicz, 2005). The
experiments show that using more information than
just keywords leads to summaries with more SCUs
(total and unique) and higher SCU weight.

We present related work in section 2, and the data
and the representation we work with in section 3.
Section 4 shows the algorithms in more detail. We
describe the experiments and their results in section
5, and draw a few conclusions in section 6.

2 Related work

Erkan and Radev (2004), Mihalcea (2004), Mihal-
cea and Tarau (2004) introduced graph methods
for summarization, word sense disambiguation and
other NLP applications.

The summarization graph-based systems imple-
ment a form of sentence ranking, based on the idea
of prestige or centrality in social networks. In this
case the network consists of sentences, and signifi-
cantly similar sentences are interconnected. Various
measures (such as node degree) help find the most
central sentences, or to score each sentence.

In topic-driven summarization, one or more sen-
tences or questions describe an information need
which the summaries must address. Previous sys-
tems extracted key words or phrases from topics
and used them to focus the summary (Fisher et al.,
2005).

Our experiments show that there is more to topics
than key words or phrases. We will experiment with
using grammatical dependency relations for the task
of extractive summarization.

In previous research, graph-matching using gram-
matical relations was used to detect textual entail-
ment (Haghighi et al., 2005).

3 Data

3.1 Topics
We work with a list of topics from the test data in
the DUC 2005 challenge. A topic has an identifier,
category (general/specific), title and a sequence of
statements or questions, for example:
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d307b
specific
New Hydroelectric Projects
What hydroelectric projects are planned
or in progress and what problems are
associated with them?

We apply MiniPar to the titles and contents
of the topics, and to all documents. The out-
put is post-processed to produce dependency pairs
only for open-class words. The dependency pairs
bypass prepositions and subordinators/coordinators
between clauses, linking the corresponding open-
class words. After post-processing, the topic will
be represented like this:
QUESTION NUMBER: d307b
LIST OF WORDS:
associate, hydroelectric, in, plan,
problem, progress, project, new, them
LIST OF PAIRS:
relation(project, hydroelectric)
relation(project, new)
relation(associate, problem)
relation(plan, project)
relation(in, progress)
relation(associate, them)

The parser does not always produce perfect
parses. In this example it did not associate the phrase
in progress with the noun projects, so we missed the
connection between projects and progress.

In the next step, we expand each open-class word
in the topic with all its WordNet synsets and one-step
hypernyms and hyponyms. We have two variants
of the topic file: with all open-class words from the
topic description Topicsall, and only with nouns and
verbs TopicsNV .

3.2 Documents
For each topic, we summarize a collection of up to
50 news items. In our experiments, we build a file
with all documents for a given topic, one sentence
per line, cleaned of XML tags. We process each file
with MiniPar, and post-process the output similarly
to the topics. For documents we keep the list of de-
pendency relations but not a separate list of words.
This processing also gives one file per topic, each
sentence followed by its list of dependency relations.

3.3 Summary Content Units
The DUC 2005 summary evaluation included an
analysis based on Summary Content Units. SCUs
are manually-selected topic-specific summary-
worthy phrases which the summarization systems
are expected to include in their output (Nenkova and
Passonneau, 2004; Copeck and Szpakowicz, 2005).
The SCUs for 20 of the test topics became available
after the challenge. We use the SCU data to mea-
sure the performance of our graph-matching and
path-search algorithms: the total number, weight
and number of unique SCUs per summary, and
the number of negative SCU sentences, explicitly
marked as not relevant to the summary.

4 Algorithms
4.1 Topic↔sentence graph matching (GM)
We treat a sentence and a topic as graphs. The nodes
are the open-class words in the sentence or topic (we
also refer to them as keywords), and the edges are
the dependency relations extracted from MiniPar’s
output. In order to maximize the matching score, we
replace a word wS in the sentence with wQ from the
query, if wS appears in the WordNet expansion of
words in wQ.

To score a match between a sentence and a graph,
we compute and then combine two partial scores:

SN (node match score) the node (keyword) overlap
between the two text units. A keyword count
is equal to the number of dependency pairs it
appears with in the document sentence;

SE (edge match score) the edge (dependency rela-
tion) overlap.

The overall score is S = SN +

WeightFactor ∗ SE , where WeightFactor ∈
{0, 1, 2, ..., 15, 20, 50, 100}. Varying the weight
factor allows us to find various combinations
of node and edge score matches which work
best for sentence extraction in summarization.
When WeightFactor = 0, the sentence scores
correspond to keyword counts.

4.2 Path search for topic keyword pairs (PS)
Here too we look at sentences as graphs. We only
take the list of words from the topic representation.
For each pair of those words, we check whether they
both appear in the sentence and are connected in
the sentence graph. We use the list of WordNet-
expanded terms again, to maximize matching. The
final score for the sentence has two components:
the node-match score SN , and SP , the number of
word pairs from the topic description connected by
a path in the sentence graph. The final score is
S = SN +WeightFactor∗SP . WeightFactor, in
the same range as previously, is meant to boost the
contribution of the path score towards the final score
of the sentence.

5 Experiments and results
We produce a summary for each topic and each ex-
perimental configuration. We take the most highly
ranked (complete) sentences for which the total
number of words does not exceed the 250-word
limit. Next, we gather SCU data for each sentence in
each summary from the SCU information files. For
a specific experimental configuration – topic repre-
sentation, graph algorithm – we produce summaries
for the 20 documents with the weight factor values
0, 1, 2, ..., 15, 20, 50, 100. Each experimental con-
figuration generates 19 sets of average results, one
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Figure 1: Average SCU weights for graph matching
(GM) and path search (PS) with different topic rep-
resentations

per weight factor. For one weight factor, we gen-
erate summaries for the 20 topics, and then average
their SCU statistics, including SCU weight, number
of unique SCUs and total number of SCUs. In the re-
sults which follow we present average SCU weight
per summary. The number of unique SCUs and
the number of SCUs closely follow the presented
graphs. The overlap of SCUs (number of SCUs
/ number of unique SCUs) reaches a maximum of
1.09. There was no explicit redundancy elimination,
mostly because the SCU overlap was so low.

We compare the performance of the two algo-
rithms, GM and PS, on the two topic representations
– with all open-class words and only with nouns and
verbs. Figure 1 shows the performance of the meth-
ods in terms of average SCU weights per summary
for each weight factor considered 1.

The results allow us to make several observations.

• Keyword-only match performs worse that ei-
ther GM or PS. The points corresponding to
keyword (node) match only are the points for
which the weight factor is 0. In this case the
dependency pairs match and paths found in the
graph do not contribute to the overall score.

• Both graph algorithms achieve better perfor-
mance for only the nouns and verbs from the

1The summary statistics level off above a certain weight fac-
tor, so we include only the non-flat part of the graph.

topic than for all open-class words. If, how-
ever, the topic requests entities or events with
specific properties, described by adjectives or
adverbs, using only nouns and verbs may pro-
duce worse results.

• GM performs better than PS for both types of
topic descriptions. In other words, looking at
the same words that appear in the topic, con-
nected in the same way, leads to better results
than finding pairs of words that are “somehow”
connected.

• Higher performance for higher weight factors
further supports the point that looking for word
connections, instead of isolated words, helps
find sentences with information content more
related to the topic.

For the following set of experiments, we use the
topics with the word list containing only nouns and
verbs. We want to compare graph matching and
path search further. One issue that comes to mind is
whether a combination of the two methods will per-
form better than each of them individually. Figure 2
plots the average of SCU weights per summary.
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Figure 2: Graph matching, path search and their
combination

We observe that the combination of graph match-
ing and path search gives better results than ei-
ther method alone. The sentence score com-
bines the number of edges matched and the num-
ber of connections found with equal weight fac-
tors for the edge match and path score. This
raises the question whether different weights for
the edge match and path would lead to better
scores. Figure 3 plots the results produced us-
ing the score computation formula S = SN +

WeightFactorE ∗ SE + WeightFactorP ∗ SP ,
where both WeightFactorE and WeightFactorP

are integers from 0 to 30.
The lowest scores are for the weight factors 0,

when sentence score depends only on the keyword
score. There is an increase in average SCU weights
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Figure 3: Graph match and path search combined
with different weight factors

towards higher values of weight factors. A transpar-
ent view of the 3D graph shows that graph match has
higher peaks toward higher weight factors than path
search, and higher also than the situation when path
search and graph match have equal weights.

The only sentences in the given documents tagged
with SCU information are those which appeared in
the summaries generated by the competing teams
in 2005. Our results are therefore actually a lower
bound – more of the sentences selected may include
relevant information. A manual analysis of the sum-
maries generated using only keyword counts showed
that, for these summaries, the sentences not contain-
ing SCUs were not informative. We cannot check
this for all the summaries generated in these ex-
periments, because the number is very large, above
1000. An average summary had 8.24 sentences, with
3.19 sentences containing SCUs. We cannot say
much about the sentences that do not contain SCUs.
This may raise doubts about our results. Support
for the fact that the results reflect a real increase in
performance comes from the weights of the SCUs
added: the average SCU weight increases from 2.5
when keywords are used to 2.75 for path search al-
gorithm, and 2.91 for graph match and the combina-
tion of path search and graph match. This shows that
by increasing the weight of graph edges and paths
in the scoring of a sentence, the algorithm can pick
more and better SCUs, SCUs which more people see
as relevant to the topic. It would be certainly in-
teresting to have a way of assessing the “SCU-less”
sentences in the summary. We leave that for future
work, and possibly future developments in SCU an-
notation.

6 Conclusions
We have studied how two algorithms influence sum-
marization by sentence extraction. They match the
topic description and sentences in a document. The

results show that using connections between the
words in the topic description improves the accu-
racy of sentence scoring compared to simple key-
word match. Finding connections between query
words in a sentence depends on finding the corre-
sponding words in the sentence. In our experiments,
we have used one-step extension in WordNet (along
IS-A links) to find such correspondences. It is, how-
ever, a limited solution, and better word matches
should be attempted, such as for example word sim-
ilarity scores in WordNet.

In summarization by sentence extraction, other
scores affect sentence ranking, for example position
in the document and paragraph or proximity to other
high-ranked sentences. We have analyzed the effect
of connections in isolation, to reduce the influence of
other factors. A summarization system would com-
bine all these scores, and possibly produce better re-
sults. Word connections or pairs could also be used
just as keywords were, as part of a feature descrip-
tion of documents, to be automatically ranked using
machine learning.
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Abstract

In this paper we present a novel similarity
between pairs of co-indexed trees to auto-
matically learn textual entailment classi-
fiers. We defined a kernel function based
on this similarity along with a more clas-
sical intra-pair similarity. Experiments
show an improvement of 4.4 absolute per-
cent points over state-of-the-art methods.

1 Introduction

Recently, a remarkable interest has been devoted to
textual entailment recognition (Dagan et al., 2005).
The task requires to determine whether or not a text
T entails a hypothesisH. As it is a binary classifica-
tion task, it could seem simple to use machine learn-
ing algorithms to learn an entailment classifier from
training examples. Unfortunately, this is not. The
learner should capture the similarities between dif-
ferent pairs,(T ′,H ′) and(T ′′,H ′′), taking into ac-
count the relations between sentences within a pair.
For example, having these two learning pairs:

T1 ⇒ H1

T1 “At the end of the year, all solid compa-
nies pay dividends”

H1 “At the end of the year, all solid
insurancecompanies pay dividends.”

T1 ; H2

T1 “At the end of the year, all solid compa-
nies pay dividends”

H2 “At the end of the year, all solid compa-
nies pay cashdividends.”

determining whether or not the following implica-
tion holds:

T3 ⇒ H3?
T3 “All wild animals eat plants that have

scientifically proven medicinal proper-
ties.”

H3 “All wild mountainanimals eat plants
that have scientifically proven medici-
nal properties.”

requires to detect that:
1. T3 is structurally (and somehow lexically) sim-

ilar to T1 andH3 is more similar toH1 than to
H2;

2. relations between the sentences in the pairs
(T3,H3) (e.g.,T3 andH3 have the same noun
governing the subject of the main sentence) are
similar to the relations between sentences in the
pairs(T1,H1) and(T1,H2).

Given this analysis we may derive thatT3 ⇒ H3.
The example suggests that graph matching tec-

niques are not sufficient as these may only detect
the structural similarity between sentences of textual
entailment pairs. An extension is needed to consider
also if two pairs show compatible relations between
their sentences.

In this paper, we propose to observe textual entail-
ment pairs as pairs of syntactic trees with co-indexed
nodes. This shuold help to cosider both the struc-
tural similarity between syntactic tree pairs and the
similarity between relations among sentences within
a pair. Then, we use thiscross-pairsimilarity with
more traditionalintra-pair similarities (e.g., (Corley
and Mihalcea, 2005)) to define a novel kernel func-
tion. We experimented with such kernel using Sup-
port Vector Machines on the Recognizing Textual
Entailment (RTE) challenge test-beds. The compar-
ative results show that (a) we have designed an ef-
fective way to automatically learn entailment rules

33



from examples and (b) our approach is highly accu-
rate and exceeds the accuracy of the current state-of-
the-art models.

In the remainder of this paper, Sec. 2 introduces
the cross-pair similarity and Sec. 3 shows the exper-
imental results.

2 Learning Textual Entailment from
examples

To carry out automatic learning from exam-
ples, we need to define a cross-pair similarity
K((T ′,H ′), (T ′′,H ′′)). This function should con-
sider pairs similar when: (1) texts and hypotheses
are structurally and lexically similar (structural sim-
ilarity ); (2) the relations between the sentences in
the pair(T ′,H ′) are compatible with the relations
in (T ′′,H ′′) (intra-pair word movement compatibil-
ity). We argue that such requirements could be met
by augmenting syntactic trees withplaceholdersthat
co-index related words within pairs. We will then
define a cross-pair similarity over these pairs of co-
indexed trees.

2.1 Training examples as pairs of co-indexed
trees

Sentence pairs selected as possible sentences in en-
tailment are naturally co-indexed. Many words (or
expressions)wh in H have a referentwt in T . These
pairs (wt, wh) are calledanchors. Possibly, it is
more important that the two words in an anchor are
related than the actual two words. The entailment
could hold even if the two words are substitued with
two other related words. To indicate this we co-
index words associatingplaceholderswith anchors.
For example, in Fig. 1,2” indicates the(compa-
nies,companies)anchor betweenT1 andH1. These
placeholders are then used to augment tree nodes. To
better take into account argument movements, place-
holders are propagated in the syntactic trees follow-
ing constituent heads (see Fig. 1).

In line with many other researches (e.g., (Cor-
ley and Mihalcea, 2005)), we determine these an-
chors using different similarity or relatedness dec-
tors: the exact matching between tokens or lemmas,
a similarity between tokens based on their edit dis-
tance, the derivationally related form relation and
the verb entailment relation in WordNet, and, fi-

nally, a WordNet-based similarity (Jiang and Con-
rath, 1997). Each of these detectors gives a different
weight to the anchor: the actual computed similarity
for the last and 1 for all the others. These weights
will be used in the final kernel.

2.2 Similarity between pairs of co-indexed
trees

Pairs of syntactic trees where nodes are co-indexed
with placeholders allow the design a cross-pair simi-
larity that considers both the structural similarity and
the intra-pair word movement compatibility.

Syntactic trees of texts and hypotheses permit to
verify the structural similarity between pairs of sen-
tences. Texts should have similar structures as well
as hypotheses. In Fig. 1, the overlapping subtrees
are in bold. For example,T1 andT3 share the sub-
tree starting withS → NP VP. Although the lexicals
in T3 andH3 are quite different from thoseT1 and
H1, their bold subtrees are more similar to those of
T1 andH1 than toT1 andH2, respectively.H1 and
H3 share the productionNP → DT JJ NN NNS while
H2 andH3 do not. To decide on the entailment for
(T3,H3), we can use the value of(T1,H1).

Anchors and placeholders are useful to verify if
two pairs can be aligned as showing compatible
intra-pair word movement. For example,(T1,H1)
and (T3,H3) show compatible constituent move-
ments given that the dashed lines connecting place-
holders of the two pairs indicates structurally equiv-
alent nodes both in the texts and the hypotheses. The
dashed line between3 and b links the main verbs
both in the textsT1 andT3 and in the hypothesesH1

andH3. After substituting3 to b and 2 to a, T1

andT3 share the subtreeS → NP 2 VP 3 . The same
subtree is shared betweenH1 andH3. This implies
that words in the pair(T1,H1) are correlated like
words in(T3,H3). Any different mapping between
the two anchor sets would not have this property.

Using the structural similarity, the placeholders,
and the connection between placeholders, the over-
all similarity is then defined as follows. LetA′ and
A′′ be the placeholders of(T ′,H ′) and (T ′′,H ′′),
respectively. The similarity between two co-indexed
syntactic tree pairsKs((T

′,H ′), (T ′′,H ′′)) is de-
fined using a classical similarity between two trees
KT (t1, t2) when the best alignment between theA′

and A′′ is given. LetC be the set of all bijective
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Figure 1: Relations between(T1,H1), (T1,H2), and(T3,H3).

mappings froma′ ⊆ A′ : |a′| = |A′′| to A′′, an
elementc ∈ C is a substitution function. The co-
indexed tree pair similarity is then defined as:
Ks((T

′, H ′), (T ′′, H ′′)) =
maxc∈C(KT (t(H ′, c), t(H ′′, i)) + KT (t(T ′, c), t(T ′′, i))

where (1)t(S, c) returns the syntactic tree of the
hypothesis (text)S with placeholders replaced by
means of the substitutionc, (2) i is the identity sub-
stitution and (3)KT (t1, t2) is a function that mea-
sures the similarity between the two treest1 andt2.

2.3 Enhancing cross-pair syntactic similarity

As the computation cost of the similarity measure
depends on the number of the possible sets of corre-
spondencesC and this depends on the size of the
anchor sets, we reduce the number ofplacehold-
ersused to represent the anchors. Placeholders will

have the same name if these are in the samechunk
both in the text and the hypothesis, e.g., the place-
holders2’ and 2” are collapsed to2.

3 Experimental investigation

The aim of the experiments is twofold: we show that
(a) entailments can be learned from examples and
(b) our kernel function over syntactic structures is
effective to derive syntactic properties. The above
goals can be achieved by comparing our cross-pair
similarity kernel against (and in combination with)
other methods.

3.1 Experimented kernels

We compared three different kernels: (1) the ker-
nel Kl((T

′,H ′), (T ′′,H ′′)) based on the intra-pair
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Datasets Kl Kl + Kt Kl + Ks

Train:D1 Test:T1 0.5888 0.6213 0.6300
Train:T1 Test:D1 0.5644 0.5732 0.5838
Train:D2(50%)′ Test:D2(50%)′′ 0.6083 0.6156 0.6350
Train:D2(50%)′′ Test:D2(50%)′ 0.6272 0.5861 0.6607
Train:D2 Test:T2 0.6038 0.6238 0.6388
Mean 0.5985 0.6040 0.6297

(± 0.0235 ) (± 0.0229 ) (± 0.0282 )

Table 1: Experimental results

lexical similarity siml(T,H) as defined in (Cor-
ley and Mihalcea, 2005). This kernel is de-
fined asKl((T

′,H ′), (T ′′,H ′′)) = siml(T
′,H ′) ×

siml(T
′′,H ′′). (2) the kernelKl+Ks that combines

our kernel with the lexical-similarity-based kernel;
(3) the kernelKl + Kt that combines the lexical-
similarity-based kernel with a basic tree kernel.
This latter is defined asKt((T

′,H ′), (T ′′,H ′′)) =
KT (T ′, T ′′)+ KT (H ′,H ′′). We implemented these
kernels within SVM-light (Joachims, 1999).

3.2 Experimental settings

For the experiments, we used the Recognizing Tex-
tual Entailment (RTE) Challenge data sets, which
we name asD1, T1 andD2, T2, are the develop-
ment and the test sets of the first and second RTE
challenges, respectively.D1 contains 567 examples
whereasT1, D2 andT2 have all the same size, i.e.
800 instances. The positive examples are the 50%
of the data. We produced also a random split ofD2.
The two folds areD2(50%)′ andD2(50%)′′.

We also used the following resources: the Char-
niak parser (Charniak, 2000) to carry out the syntac-
tic analysis; thewn::similarity package (Ped-
ersen et al., 2004) to compute the Jiang&Conrath
(J&C) distance (Jiang and Conrath, 1997) needed to
implement the lexical similaritysiml(T,H) as de-
fined in (Corley and Mihalcea, 2005); SVM-light-
TK (Moschitti, 2004) to encode the basic tree kernel
function,KT , in SVM-light (Joachims, 1999).

3.3 Results and analysis

Table 1 reports the accuracy of different similar-
ity kernels on the different training and test split de-
scribed in the previous section. The table shows
some important result.

First, as observed in (Corley and Mihalcea, 2005)
the lexical-based distance kernelKl shows an accu-
racy significantly higher than the random baseline,
i.e. 50%. This accuracy (second line) is comparable

with the best systems in the first RTE challenge (Da-
gan et al., 2005). The accuracy reported for the best
systems, i.e. 58.6% (Glickman et al., 2005; Bayer
et al., 2005), is not significantly far from the result
obtained withKl, i.e. 58.88%.

Second, our approach (last column) is signifi-
cantly better than all the other methods as it pro-
vides the best result for each combination of train-
ing and test sets. On the “Train:D1-Test:T1” test-
bed, it exceeds the accuracy of the current state-of-
the-art models (Glickman et al., 2005; Bayer et al.,
2005) by about 4.4 absolute percent points (63% vs.
58.6%) and 4% over our best lexical similarity mea-
sure. By comparing the average on all datasets, our
system improves on all the methods by at least 3 ab-
solute percent points.

Finally, the accuracy produced by our kernel
based on co-indexed treesKl + Ks is higher than
the one obtained with the plain syntactic tree ker-
nel Kl + Kt. Thus, the use of placeholders and co-
indexing is fundamental to automatically learn en-
tailments from examples.
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Abstract

In this paper we present a graph-based
approach to question answering. The
method assumes a graph representation
of question sentences and text sentences.
Question answering rules are automati-
cally learnt from a training corpus of ques-
tions and answer sentences with the an-
swer annotated. The method is indepen-
dent from the graph representation formal-
ism chosen. A particular example is pre-
sented that uses a specific graph represen-
tation of the logical contents of sentences.

1 Introduction

Text-based question answering (QA) is the process
of automatically finding the answers to arbitrary
questions in plain English by searching collections
of text files. Recently there has been intensive re-
search in this area, fostered by evaluation-based
conferences such as the Text REtrieval Conference
(TREC) (Voorhees, 2001b), the Cross-Lingual Eval-
uation Forum (CLEF) (Vallin et al., 2005), and the
NII-NACSIS Test Collection for Information Re-
trieval Systems workshops (NTCIR) (Kando, 2005).
Current research focuses on factoid question an-
swering, whereby the answer is a short string that
indicates a fact, usually a named entity. An exam-
ple of a factoid question is Who won the 400m race
in the 2000 Summer Olympic games?, which has a
short answer: Cathy Freeman.

There are various approaches to question answer-
ing. The focus of this paper is on rule-based sys-

tems. A rule could be, say, “if the question is of
the form Who is the <position> of <country>” and
a text sentence says <position> of <country> Y
and Y consists of two capitalised words, then Y is
the answer”). Such a rule was used by Soubbotin
(2001), who developed a system who obtained the
best accuracy in the 2001 Text REtrieval Conference
(Voorhees, 2001a). The system developed by Soub-
botin (2001) relied on the development of a large
set of patterns of potential answer expressions, and
the allocation of those patterns to types of questions.
The patterns were developed by hand by examining
the data.

Soubbotin (2001)’s work shows that a rule-based
QA system can produce good results if the rule set is
comprehensive enough. Unfortunately, if the system
is ported to a new domain the set of rules needs to
be ported as well. It has not been proven that rules
like the ones developed by Soubbotin (2001), which
were designed for the TREC QA task, can be ported
to other domains. Furthermore, the process of pro-
ducing the rules was presumably very labour inten-
sive. Consequently, the cost of manually producing
new rules for a specialised domain could become too
expensive for some domains.

In this paper we present a method for the auto-
matic learning of question answering rules by apply-
ing graph manipulation methods. The method relies
on the representation of questions and answer sen-
tences as graphs. Section 2 describes the general
format of the graph-based QA rules and section 3
describes the method to learn the rules. The meth-
ods described on the above two sections are indepen-
dent of the actual sentence representation formalism,
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as long as the representation is a graph. Section 4
presents a specific application using logical graphs.
Finally, sections 5 and 6 focus on related research
and final conclusions, respectively.

2 Question Answering Rules

In one form or another, a question answering rule
must contain the following information:

1. a pattern that matches the question;

2. a pattern that matches the corresponding an-
swer sentence; and

3. a pointer to the answer in the answer sentence

The patterns in our rules are expressed as graphs
with vertices containing variables. A vertex with
a variable can unify with a subgraph. For exam-
ple, Figure 1 shows two graphs and a pattern that
matches both graphs.

Graph 1
1 2 3

4

5

Graph 2
1 2 7 8

9

Pattern
1 2 X

Y

Figure 1: Two graphs and a pattern (variables in up-
percase)

Such patterns are used to match the graph repre-
sentation of the question. If a pattern defined in a
rule matches a question sentence, then the rule ap-
plies to the sentence.

Our rules specify the pattern of the answer sen-
tence in an unusual way. Instead of keeping a pat-
tern to match the answer sentence, our rules define
an extension graph that will be added to the graph of
the question. The rationale for this is that we want to
reward answer sentences that have a high similarity
with the question. Therefore, the larger the num-
ber of vertices and edges that are shared between the
question and the answer, the better. The extension
graph contains information that simulates the dif-
ference between a question sentence and a sentence
containing an answer.

For example, lets us use graph representations
of syntactic dependency structures. We will base
our representation on the output of Connexor
(Tapanainen and Järvinen, 1997), but the choice of
parser is arbitrary. The same method applies to the
output of any parser, as long as it can be represented
as a graph. In our choice, the dependency structure
is represented as a bipartite graph where the lexi-
cal entries are the vertices represented in boxes and
the dependency labels are the vertices represented in
ovals. Figure 2 shows the graphs of a question and
an answer sentence, and an extension of the question
graph. The answer is shown in thick lines, and the
extension is shown in dashed lines. This is what we
aim to reproduce with our graph rules. In particular,
the extension of the question graph is such that the
graph of the answer sentence becomes a subgraph of
the extended question graph.

The question and answer sentence of Figure 2
have an almost identical dependency graph and con-
sequently the extension required to the question
graph is very small. Sentence pairs with more dif-
ferences would induce a more substantial extension
graph.

Note that the extended graph still contains the rep-
resentation of information that does not appear in
the answer sentence, namely the question term what
book. There is no need to remove any element from
the question graph because, as we will see later, the
criteria to score the answer extracted are based on
the overlap between graphs.

In sum, a graph rule has the following compo-
nents:

Rp a question pattern;

Re an extension graph, which is a graph to be added
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Q: What book did Rachel Carson write in 1962? A: In 1962 Rachel Carson wrote “Silent Spring”
write

v ch obj loc

do book in

subj det pcomp

carson what 1962

attr

rachel

write

subj obj tmp

carson in

attr

1962

spring

attr

silent

Q extended
write

v ch obj loc

do book in

subj det pcomp

carson what 1962

attr

rachel

spring

attr2

silent

Figure 2: Graph of a question, an answer sentence, and an extension of the question graph
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to the question graph; and

Ra a pointer to the answer in the extension graph

An example of a rule is shown in Figure 3. This
rule is derived from the pair of question and answer
sentence shown in Figure 2.

X

obj

Y

det

what

ANSWER

Figure 3: Example of a QA rule. Rp is in solid lines,
Re is in dashed lines, and Ra is in thick lines.

The rule can be used with a fresh pair of question
qi and answer sentence asi. Let us use the notation
Gr(s) to denote the graph that represents the string
s. Also, unless said explicitly, names starting with
uppercase denote graphs, and names starting with
lowercase denote strings. Informally, the process to
find the answer is:

1. If Gr(qi) matches Rp then the rule applies.
Otherwise try a new rule.

2. Extend Gr(qi) with re to produce a new graph
ERe

qi
.

3. Compute the overlap between ERe
qi

and
Gr(asi).

4. If a part of Ra is in the resulting overlap, then
expand its projection on Gr(asi).

The crucial point in the process is to determine
the projection of an overlap on the answer sentence,
and then to extend it. Once the overlap is found in
step 3, if this overlap includes part of the annotated
answer, that is if it includes Ra, then part of the an-
swer will be the string in the answer sentence that
corresponds to the overlap. The full answer can be
retrieved by expanding the answer found in the over-
lap by following the outgoing edges in the graph of

qi What book did Michael Ende write in 1984? ex-
tended with the extension graph (Re) of Figure 3

write

v ch obj loc

do book in

subj det pcomp

ende what 1984

attr

michael

ANSWER

asi In 1984 Michael Ende wrote the novel titled
“The Neverending Story”

write

v ch obj loc

do novel in

subj det mod pcomp

ende the title 1984

attr mod

michael story

det attr

the neverending

Figure 4: An extended graph of a question and a
graph of an answer sentence
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write

v ch obj loc

do in

subj pcomp

ende 1984

attr

michael

novel

Figure 5: Overlap of the graphs of Figure 4

the answer. Part of the process is shown in Figures 4
and 5.

In Figure 5 the overlap between the extended
question graph and the answer sentence graph con-
tains the answer fragment novel. After expanding it
we obtain the full answer the novel titled “The Never
Ending Story”.1

3 Learning of Graph Rules

To learn a QA rule we need to determine the in-
formation that is common between a question and
a sentence containing an answer. In terms of graphs,
this is a variant of the well-known problem of find-
ing the maximum common subgraph (MCS) of two
graphs (Bunke et al., 2002).

The problem of finding the MCS of two graphs is
known to be NP-complete, but there are implemen-
tations that are fast enough for practical uses, espe-
cially if the graphs are not particularly large (Bunke
et al., 2002). Given that our graphs are used to repre-
sent sentences, their size would usually stay within
a few tens of vertices. This size is acceptable.

There is an algorithm based on Conceptual
Graphs (Myaeng and López-López, 1992) which is
particularly efficient for our purposes.Their method
follows the traditional procedure of building the as-
sociation graph of the two input graphs. However, in

1Note that this answer is not an exact answer according to
the TREC definition since it contains the string the novel titled;
one further step would be needed to extract the exact answer;
this is work for further research.

contrast with the traditional approach, which finds
the cliques of the association graph (and this is the
part that is NP-complete), the method by Myaeng
and López-López (1992) first simplifies the associa-
tion graph by merging some of its vertices, and then
it proceeds to searching the cliques. By so doing the
algorithm is still exponential on the size of n, but
now n is smaller than with the traditional approach
for the same input graphs.

The method presented by Myaeng and López-
López (1992) finds connected graphs but we also
need to find overlaps that form unconnected graphs.
For example, Figure 6 shows two graphs and their
MCS. The resulting MCS is an unconnected graph,
though Myaeng and López-López (1992)’s algo-
rithm returns the two parts of the graph as indepen-
dent MCSs. It is easy to modify the original algo-
rithm to obtain the desired output, as we did.

Graph 1 Graph 2
1

2
3

4

5

1

2

3 4

5

MCS (overlap)
1

2

4

5

Figure 6: MCS of two graphs

Given two graphs G1 and G2, then their MCS
is MCS(G1, G2). To simplify the notation, we
will often refer to the MCS of two sentences
as MCS(s1, s2). This is to be understood to
be the MCS of the graphs of the two sentences
MCS(Gr(s1), Gr(s2)).

Let us now assume that the graph rule R is origi-
nated from a pair (q,as) in the training corpus, where
q is a question and as a sentence containing the an-
swer a. The rule components are built as follows:

Rp is the MCS of q and as, that is, MCS(q, as).

Re is the path between the projection of Rp in
Gr(as) and the actual answer Gr(a).

Ra is the graph representation of the exact answer.
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Note that this process defines Rp as the MCS of
question and answer sentence. Consequently, Rp

is a subgraph of both the question and the answer
sentence. This constraint is stronger than that of a
typical QA rule, where the pattern needs to match
the question only. The resulting question pattern is
therefore more general than it could be had one man-
ually built the rule. Rp does not include question-
only elements in the question pattern because it is
difficult to determine what components of the ques-
tion are to be added to the pattern, and what compo-
nents are idiosyncratic to the specific question used
in the training set.

Rules learnt this way need to be generalised in or-
der to form generic patterns. We currently use a sim-
ple method of generalisation: convert a subset of the
vertices into variables. To decide whether a vertex
can be generalised a list of very common vertices is
used. This is the list of “stop vertices”, in analogy to
the concept of stop words in methods to detect key-
words in a string. Thus, if a vertex is not in the list
of stop vertices, then the vertex can be generalised.
The list of stop vertices is fixed and depends on the
graph formalism used.

For the question answering process it is useful to
associate a weight to every rule learnt. The rule
weight is computed by testing the accuracy of the
rule in the training corpus. This way, rules that over-
generalise acquire a low weight. The weight W(r)
of a rule r is computed according to its precision on
the training set:

W(r) =
# correct answers found

# answers found

4 Application: QA with Logical Graphs

The above method has been applied to graphs rep-
resenting the logical contents of sentences. There
has been a long tradition on the use of graphs for
this kind of sentence representation, such as Sowa’s
Conceptual Graphs (Sowa, 1979), and Quillian’s Se-
mantic Nets (Quillian, 1968). In our particular ex-
periment we have used a graph representation that
can be built automatically and that can be used effi-
ciently for QA (Mollá and van Zaanen, 2006).

A Logical Graph (LG) is a directed, bipartite
graph with two types of vertices, concepts and re-
lations.

Concepts Examples of concepts are objects dog, ta-
ble, events and states run, love, and properties
red, quick.

Relations Relations act as links between concepts.
To facilitate the production of the LGs we have
decided to use relation labels that represent
verb argument positions. Thus, the relation 1
indicates the link to the first argument of a verb
(that is, what is usually a subject). The re-
lation 2 indicates the link to the second argu-
ment of a verb (usually the direct object), and
so forth. Furthermore, relations introduced by
prepositions are labelled with the prepositions
themselves. Our relations are therefore close to
the syntactic structure.

An example of a LG is shown in Figure 7, where
the concepts are pictured in boxes and the relations
are pictured in ovals.

The example in Figure 7 shows LG’s ability to
provide the graph representation of sentences with
embedded clauses. In contrast, other theories (such
as Sowa (1979)’s Conceptual Graphs) would rep-
resent the sentence as a graph containing vertices
that are themselves graphs. This departs from the
usual definition of a graph, and therefore standard
Graph Theory algorithms would need to be adapted
for Conceptual Graphs. An advantage of our LGs,
therefore, is that they can be manipulated with stan-
dard Graph Theory algorithms such as the ones de-
scribed in this paper.

Using the LG as the graph representation of
questions and answer sentences, we implemented a
proof-of-concept QA system. The implementation
and examples of graphs are described by Mollá and
van Zaanen (2005) and here we only describe the
method to generalise rules and the decisions taken
to choose the exact answer.

The process to generalise rules takes advantage
of the two kinds of vertices. Basically, relation ver-
tices represent names of relations and we considered
these to be important in the rule. Consequently rela-
tions edges were left unmodified in the generalised
rule. Concept vertices are generalised by replacing
them with generic variables, except for a specific set
of “stop concepts” which were not generalised. The
list of stop concepts is very small:
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tom 1 believe 2

want1mary 2

marry1 2

sailor

Tom believes that Mary wants to marry a sailor

Figure 7: Example of a Logical Graph

and, or, not, nor, if, otherwise, have, be,
become, do, make

Every question/answer pair in the training corpus
generates one rule (or more if we use a process of
increasingly generalising the rules). Since the rule is
based on deep linguistic information, it generalises
over syntactic paraphrases. Consequently, a small
training corpus suffices to produce a relatively large
number of rules.

The QA system was trained with an annotated
corpus of 560 pairs of TREC questions and answer
sentences where the answers were manually anno-
tated. We only tested the ability of the system to ex-
tract the exact answers. Thus, the system accepted
pairs of question and answer sentences (where the
sentence is guaranteed to contain an answer), and
returned the exact answer. Given a question and an-
swer sentence pair, the answer is found by applying
all matching rules. All strings found as answers are
ranked by multiplying the rule weights and the sizes
of the overlaps. If an answer is found by several
rules, its score is the sum of all scores of each indi-
vidual sentence. Finally, if an answer occurs in the
question it is ignored. The results of a five-fold cross
validation on the annotated corpus gave an accuracy
(percentage of questions where the correct answer
was found) of 21.44%. Given that the QA system
does not do any kind of question classification and it
does not use any NE recogniser, the results are sat-
isfactory.

5 Related Research

There have been other attempts to learn QA rules au-
tomatically. For example, Ravichandran and Hovy
(2002) learns rules based on simple surface patterns.
Given that surface patterns ignore much linguistic
information, it becomes necessary to gather a large

corpus of questions together with their answers and
sentences containing the answers. To obtain such
a corpus Ravichandran and Hovy (2002) mine the
Web to gather the relevant data.

Other methods learn patterns based on syntactic
information. For example, Shen et al. (2005) de-
velop a method of extracting dependency paths con-
necting answers with words found in the question.
However we are not aware of any method that at-
tempts to learn patterns based on logical informa-
tion, other than our own.

There is recent interest on the use of graph
methods for Natural Language Processing, such
as document summarisation (Mihalcea, 2004) doc-
ument retrieval (Montes-y-Gómez et al., 2000;
Mishne, 2004), and recognition of textual entailment
(Pazienza et al., 2005). The present very workshop
shows the current interest on the area. However,
we are not aware of any significant research about
the use of conceptual graphs (or any other form of
graph representation) for question answering other
than our own.

6 Conclusions

We have presented a method to learn question an-
swering rules by applying graph manipulation meth-
ods on the representations of questions and answer
sentences. The method is independent of the actual
graph representation formalism.

We are studying to combine WordNet with a
Named Entity Recogniser to produce generalised
rules. This way it becomes possible to replace ver-
tices with vertex types (e.g. “PERSON”, “DATE”,
etc). We are also exploring the use of machine learn-
ing techniques to learn classes of vertices. In par-
ticular, grammar induction techniques (van Zaanen,
2002) could be applied to learn types of regularities
in the strings.
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Further research will also focus on developing
methods to extend the question pattern Rp with in-
formation found in the question only. A possibility
is to keep a database of question subgraphs that are
allowed to be added to Rp. This database could be
built by hand, but ideally it should be learnt auto-
matically.

Additional research efforts will be allocated to de-
termine degrees of word similarity or paraphrasing,
such as the connection between was born in and ’s
birthplace is. In particular, we will explore the use
of nominalisations. We will also study paraphrasing
methods to detect these connections.

Considering that text information as complex as
syntactic information or even logic and semantic
information can be expressed in graphs (Quillian,
1968; Schank, 1972; Sowa, 1979), we are convinced
that the time is ripe to explore the use of graphs for
question answering.
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Abstract

We present a graph-based semi-supervised
learning algorithm to address the senti-
ment analysis task of rating inference.
Given a set of documents (e.g., movie
reviews) and accompanying ratings (e.g.,
“4 stars”), the task calls for inferring nu-
merical ratings for unlabeled documents
based on the perceived sentiment ex-
pressed by their text. In particular, we
are interested in the situation where la-
beled data is scarce. We place this task
in the semi-supervised setting and demon-
strate that considering unlabeled reviews
in the learning process can improve rating-
inference performance. We do so by creat-
ing a graph on both labeled and unlabeled
data to encode certain assumptions for this
task. We then solve an optimization prob-
lem to obtain a smooth rating function
over the whole graph. When only lim-
ited labeled data is available, this method
achieves significantly better predictive ac-
curacy over other methods that ignore the
unlabeled examples during training.

1 Introduction

Sentiment analysis of text documents has received
considerable attention recently (Shanahan et al.,
2005; Turney, 2002; Dave et al., 2003; Hu and
Liu, 2004; Chaovalit and Zhou, 2005). Unlike tra-
ditional text categorization based on topics, senti-

ment analysis attempts to identify the subjective sen-
timent expressed (or implied) in documents, such as
consumer product or movie reviews. In particular
Pang and Lee proposed the rating-inference problem
(2005). Rating inference is harder than binary posi-
tive / negative opinion classification. The goal is to
infer a numerical rating from reviews, for example
the number of “stars” that a critic gave to a movie.
Pang and Lee showed that supervised machine learn-
ing techniques (classification and regression) work
well for rating inference with large amounts of train-
ing data.

However, review documents often do not come
with numerical ratings. We call such documentsun-
labeled data. Standard supervised machine learning
algorithms cannot learn from unlabeled data. As-
signing labels can be a slow and expensive process
because manual inspection and domain expertise are
needed. Often only a small portion of the documents
can be labeled within resource constraints, so most
documents remain unlabeled. Supervised learning
algorithms trained on small labeled sets suffer in
performance. Can one use the unlabeled reviews to
improve rating-inference? Pang and Lee (2005) sug-
gested that doing so should be useful.

We demonstrate that the answer is ‘Yes.’ Our
approach is graph-based semi-supervised learning.
Semi-supervised learning is an active research area
in machine learning. It builds better classifiers or
regressors using both labeled and unlabeled data,
under appropriate assumptions (Zhu, 2005; Seeger,
2001). This paper contains three contributions:

• We present a novel adaptation of graph-based
semi-supervised learning (Zhu et al., 2003)
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to the sentiment analysis domain, extending
past supervised learning work by Pang and
Lee (2005);

• We design a special graph which encodes
our assumptions for rating-inference problems
(section 2), and present the associated opti-
mization problem in section 3;

• We show the benefit of semi-supervised learn-
ing for rating inference with extensive experi-
mental results in section 4.

2 A Graph for Sentiment Categorization

The semi-supervised rating-inference problem is
formalized as follows. There aren review docu-
mentsx1 . . . xn, each represented by some standard
feature representation (e.g., word-presence vectors).
Without loss of generality, let the firstl ≤ n doc-
uments be labeled with ratingsy1 . . . yl ∈ C. The
remaining documents are unlabeled. In our exper-
iments, the unlabeled documents are also the test
documents, a setting known as transduction. The
set of numerical ratings areC = {c1, . . . , cC}, with
c1 < . . . < cC ∈ R. For example, a one-star to
four-star movie rating system hasC = {0, 1, 2, 3}.
We seek a functionf : x 7→ R that gives a contin-
uous ratingf(x) to a documentx. Classification is
done by mappingf(x) to the nearest discrete rating
in C. Note this is ordinal classification, which dif-
fers from standard multi-class classification in that
C is endowed with an order. In the following we use
‘review’ and ‘document,’ ‘rating’ and ‘label’ inter-
changeably.

We make two assumptions:

1. We are given asimilarity measurewij ≥ 0
between documentsxi and xj . wij should
be computable from features, so that we can
measure similarities between any documents,
including unlabeled ones. A largewij im-
plies that the two documents tend to express
the same sentiment (i.e., rating). We experi-
ment withpositive-sentence percentage(PSP)
based similarity which is proposed in (Pang and
Lee, 2005), and mutual-information modulated
word-vector cosine similarity. Details can be
found in section 4.

2. Optionally, we are given numerical rating pre-
dictions ŷl+1, . . . , ŷn on the unlabeled doc-
uments from a separate learner, for in-
stanceε-insensitive support vector regression
(Joachims, 1999; Smola and Schölkopf, 2004)
used by (Pang and Lee, 2005). This acts
as an extra knowledge source for our semi-
supervised learning framework to improve
upon. We note our framework is general and
works without the separate learner, too. (For
this to work in practice, a reliable similarity
measure is required.)

We now describe our graph for the semi-
supervised rating-inference problem. We do this
piece by piece with reference to Figure 1. Our undi-
rected graphG = (V,E) has 2n nodesV , and
weighted edgesE among some of the nodes.

• Each document is a node in the graph (open cir-
cles, e.g.,xi andxj). The true ratings of these
nodesf(x) are unobserved. This is true even
for the labeled documents because we allow for
noisy labels. Our goal is to inferf(x) for the
unlabeled documents.

• Each labeled document (e.g.,xj) is connected
to an observed node (dark circle) whose value
is the given ratingyj . The observed node is
a ‘dongle’ (Zhu et al., 2003) since it connects
only to xj . As we point out later, this serves
to pull f(xj) towardsyj . The edge weight be-
tween a labeled document and its dongle is a
large numberM . M represents the influence
of yj : if M → ∞ thenf(xj) = yj becomes a
hard constraint.

• Similarly each unlabeled document (e.g.,xi) is
also connected to an observed dongle nodeŷi,
whose value is the prediction of the separate
learner. Therefore we also require thatf(xi)
is close toŷi. This is a way to incorporate mul-
tiple learners in general. We set the weight be-
tween an unlabeled node and its dongle arbi-
trarily to 1 (the weights are scale-invariant oth-
erwise). As noted earlier, the separate learner
is optional: we can remove it and still carry out
graph-based semi-supervised learning.
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Figure 1: The graph for semi-supervised rating in-
ference.

• Each unlabeled documentxi is connected to
kNNL(i), its k nearestlabeled documents.
Distance is measured by the given similarity
measurew. We wantf(xi) to be consistent
with its similar labeled documents. The weight
betweenxi andxj ∈ kNNL(i) is a · wij .

• Each unlabeled document is also connected to
k′NNU (i), its k′ nearestunlabeled documents
(excluding itself). The weight betweenxi and
xj ∈ k′NNU (i) is b · wij . We also want
f(xi) to be consistent with its similar unla-
beled neighbors. We allow potentially different
numbers of neighbors (k andk′), and different
weight coefficients (a andb). These parameters
are set by cross validation in experiments.

The last two kinds of edges are the key to semi-
supervised learning: They connect unobserved
nodes and force ratings to be smooth throughout the
graph, as we discuss in the next section.

3 Graph-Based Semi-Supervised Learning

With the graph defined, there are several algorithms
one can use to carry out semi-supervised learning
(Zhu et al., 2003; Delalleau et al., 2005; Joachims,
2003; Blum and Chawla, 2001; Belkin et al., 2005).
The basic idea is the same and is what we use in this
paper. That is, our rating functionf(x) should be
smoothwith respect to the graph.f(x) is not smooth
if there is an edge with large weightw between
nodesxi andxj , and the difference betweenf(xi)
andf(xj) is large. The (un)smoothness over the par-

ticular edge can be defined asw
(
f(xi) − f(xj)

)2
.

Summing over all edges in the graph, we obtain the
(un)smoothnessL(f) over the whole graph. We call
L(f) theenergyor loss, which should be minimized.
Let L = 1 . . . l and U = l + 1 . . . n be labeled
and unlabeled review indices, respectively. With the
graph in Figure 1, the lossL(f) can be written as∑

i∈L

M(f(xi)− yi)2 +
∑
i∈U

(f(xi)− ŷi)2

+
∑
i∈U

∑
j∈kNNL(i)

awij(f(xi)− f(xj))2

+
∑
i∈U

∑
j∈k′NNU (i)

bwij(f(xi)− f(xj))2. (1)

A small loss implies that the rating of an unlabeled
review is close to its labeled peers as well as its un-
labeled peers. This is how unlabeled data can par-
ticipate in learning. The optimization problem is
minf L(f). To understand the role of the parame-
ters, we defineα = ak + bk′ andβ = b

a , so that
L(f) can be written as∑

i∈L

M(f(xi)− yi)2 +
∑
i∈U

[
(f(xi)− ŷi)2

+
α

k + βk′

( ∑
j∈kNNL(i)

wij(f(xi)− f(xj))2

+
∑

j∈k′NNU (i)

βwij(f(xi)− f(xj))2
)]

. (2)

Thusβ controls the relative weight between labeled
neighbors and unlabeled neighbors;α is roughly
the relative weight given to semi-supervised (non-
dongle) edges.

We can find the closed-form solution to the opti-
mization problem. Defining ann× n matrixW̄ ,

W̄ij =


0, i ∈ L
wij , j ∈ kNNL(i)
βwij , j ∈ k′NNU (i).

(3)

Let W = max(W̄ , W̄>) be a symmetrized version
of this matrix. LetD be a diagonaldegreematrix
with

Dii =
n∑

j=1

Wij . (4)

Note that we define a node’s degree to be the sum of
its edge weights. Let∆ = D −W be the combina-
torial Laplacianmatrix. LetC be a diagonal dongle
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weight matrix with

Cii =
{

M, i ∈ L
1, i ∈ U

. (5)

Let f = (f(x1), . . . , f(xn))> and y =
(y1, . . . , yl, ŷl+1, . . . , ŷn)>. We can rewriteL(f) as

(f − y)>C(f − y) +
α

k + βk′
f>∆f . (6)

This is a quadratic function inf . Setting the gradient
to zero,∂L(f)/∂f = 0 , we find the minimum loss
function

f =
(

C +
α

k + βk′
∆

)−1

Cy. (7)

BecauseC has strictly positive eigenvalues, the in-
verse is well defined. All our semi-supervised learn-
ing experiments use (7) in what follows.

Before moving on to experiments, we note an
interesting connection to the supervised learning
method in (Pang and Lee, 2005), which formulates
rating inference as ametric labelingproblem (Klein-
berg and Tardos, 2002). Consider a special case of
our loss function (1) whenb = 0 andM → ∞. It
is easy to show for labeled nodesj ∈ L, the opti-
mal value is the given label:f(xj) = yj . Then the
optimization problem decouples into a set of one-
dimensional problems, one for each unlabeled node
i ∈ U : Lb=0,M→∞(f(xi)) =

(f(xi)− ŷi)2 +
∑

j∈kNNL(i)

awij(f(xi)− yj)2. (8)

The above problem is easy to solve. It corresponds
exactly to the supervised, non-transductive version
of metric labeling, except we use squared differ-
ence while (Pang and Lee, 2005) used absolute dif-
ference. Indeed in experiments comparing the two
(not reported here), their differences are not statis-
tically significant. From this perspective, our semi-
supervised learning method is an extension with in-
teracting terms among unlabeled data.

4 Experiments

We performed experiments using the movie re-
view documents and accompanying 4-class (C =
{0, 1, 2, 3}) labels found in the “scale dataset v1.0”

available at http://www.cs.cornell.edu/people/pabo/
movie-review-data/ and first used in (Pang and Lee,
2005). We chose 4-class instead of 3-class labeling
because it is harder. The dataset is divided into four
author-specific corpora, containing 1770, 902, 1307,
and 1027 documents. We ran experiments individu-
ally for each author. Each document is represented
as a{0, 1} word-presence vector, normalized to sum
to 1.

We systematically vary labeled set size|L| ∈
{0.9n, 800, 400, 200, 100, 50, 25, 12, 6} to observe
the effect of semi-supervised learning.|L| = 0.9n
is included to match 10-fold cross validation used
by (Pang and Lee, 2005). For each|L| we run 20
trials where we randomly split the corpus into la-
beled and test (unlabeled) sets. We ensure that all
four classes are represented in each labeled set. The
same random splits are used for all methods, allow-
ing pairedt-tests for statistical significance. All re-
ported results are average test set accuracy.

We compare our graph-based semi-supervised
method with two previously studied methods: re-
gression and metric labeling as in (Pang and Lee,
2005).

4.1 Regression

We ran linearε-insensitive support vector regression
using Joachims’ SVMlight package (1999) with all
default parameters. The continuous prediction on a
test document is discretized for classification. Re-
gression results are reported under the heading ‘reg.’
Note this method does not use unlabeled data for
training.

4.2 Metric labeling

We ran Pang and Lee’s method based on metric la-
beling, using SVM regression as the initial label
preference function. The method requires an item-
similarity function, which is equivalent to our simi-
larity measurewij . Among others, we experimented
with PSP-based similarity. For consistency with
(Pang and Lee, 2005), supervised metric labeling re-
sults with this measure are reported under ‘reg+PSP.’
Note this method does not use unlabeled data for
training either.

PSPi is defined in (Pang and Lee, 2005) as the
percentage of positive sentences in reviewxi. The
similarity between reviewsxi, xj is the cosine angle
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Figure 2: PSP for reviews expressing each fine-grain
rating. We identified positive sentences using SVM
instead of Näıve Bayes, but the trend is qualitatively
the same as in (Pang and Lee, 2005).

between the vectors(PSPi, 1−PSPi) and(PSPj , 1−
PSPj). Positive sentences are identified using a bi-
nary classifier trained on a separate “snippet data
set” located at the same URL as above. The snippet
data set contains 10662 short quotations taken from
movie reviews appearing on the rottentomatoes.com
Web site. Each snippet is labeled positive or neg-
ative based on the rating of the originating review.
Pang and Lee (2005) trained a Naı̈ve Bayes classi-
fier. They showed that PSP is a (noisy) measure for
comparing reviews—reviews with low ratings tend
to receive low PSP scores, and those with higher
ratings tend to get high PSP scores. Thus, two re-
views with a high PSP-based similarity are expected
to have similar ratings. For our experiments we de-
rived PSP measurements in a similar manner, but us-
ing a linear SVM classifier. We observed the same
relationship between PSP and ratings (Figure 2).

The metric labeling method has parameters
(the equivalent ofk, α in our model). Pang and
Lee tuned them on a per-author basis using cross
validation but did not report the optimal parameters.
We were interested in learning a single set of
parameters for use with all authors. In addition,
since we varied labeled set size, it is convenient
to tunec = k/|L|, the fraction of labeled reviews
used as neighbors, instead ofk. We then used
the samec, α for all authors at all labeled set

sizes in experiments involving PSP. Becausec is
fixed, k varies directly with |L| (i.e., when less
labeled data is available, our algorithm considers
fewer nearby labeled examples). In an attempt to
reproduce the findings in (Pang and Lee, 2005),
we tunedc, α with cross validation. Tuning ranges
are c ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} and α ∈
{0.01, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0}.
The optimal parameters we found arec = 0.2 and
α = 1.5. (In section 4.4, we discuss an alternative
similarity measure, for which we re-tuned these
parameters.)

Note that we learned a single set of shared param-
eters for all authors, whereas (Pang and Lee, 2005)
tunedk andα on a per-author basis. To demonstrate
that our implementation of metric labeling produces
comparable results, we also determined the optimal
author-specific parameters. Table 1 shows the ac-
curacy obtained over 20 trials with|L| = 0.9n for
each author, using SVM regression, reg+PSP using
sharedc, α parameters, and reg+PSP using author-
specificc, α parameters (listed in parentheses). The
best result in each row of the table is highlighted in
bold. We also show in bold any results that cannot
be distinguished from the best result using a paired
t-test at the 0.05 level.

(Pang and Lee, 2005) found that their metric la-
beling method, when applied to the 4-class data we
are using, was not statistically better than regres-
sion, though they observed some improvement for
authors (c) and (d). Using author-specific parame-
ters, we obtained the same qualitative result, but the
improvement for (c) and (d) appears even less sig-
nificant in our results. Possible explanations for this
difference are the fact that we derived our PSP mea-
surements using an SVM classifier instead of an NB
classifier, and that we did not use the same range of
parameters for tuning. The optimal shared parame-
ters produced almost the same results as the optimal
author-specific parameters, and were used in subse-
quent experiments.

4.3 Semi-Supervised Learning

We used the same PSP-based similarity measure
and the same shared parametersc = 0.2, α =
1.5 from our metric labeling experiments to per-
form graph-based semi-supervised learning. The
results are reported as ‘SSL+PSP.’ SSL has three
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reg+PSP reg+PSP
Author reg (shared) (specific)

(a) 0.592 0.592 0.592(0.05, 0.01)
(b) 0.501 0.498 0.496(0.05, 3.50)
(c) 0.592 0.589 0.593(0.15, 1.50)
(d) 0.496 0.498 0.500(0.05, 3.00)

Table 1: Accuracy using shared (c = 0.2, α = 1.5)
vs. author-specific parameters, with|L| = 0.9n.

additional parametersk′, β, and M . Again
we tuned k′, β with cross validation. Tuning
ranges arek′ ∈ {2, 3, 5, 10, 20} and β ∈
{0.001, 0.01, 0.1, 1.0, 10.0}. The optimal parame-
ters arek′ = 5 andβ = 1.0. These were used for all
authors and for all labeled set sizes. Note that unlike
k = c|L|, which decreases as the labeled set size de-
creases, we letk′ remain fixed for all|L|. We setM
arbitrarily to a large number108 to ensure that the
ratings of labeled reviews are respected.

4.4 Alternate Similarity Measures

In addition to using PSP as a similarity measure be-
tween reviews, we investigated several alternative
similarity measures based on the cosine of word
vectors. Among these options were the cosine be-
tween the word vectors used to train the SVM re-
gressor, and the cosine between word vectors con-
taining only words with high (top 1000 or top 5000)
mutual information values. The mutual information
is computed with respect to the positive and negative
classes in the 10662-document “snippet data set.”
Finally, we experimented with using as a similarity
measure the cosine between word vectors containing
all words, each weighted by its mutual information.
We found this measure to be the best among the op-
tions tested in pilot trial runs using the metric label-
ing algorithm. Specifically, we scaled the mutual in-
formation values such that the maximum value was
one. Then, we used these values as weights for the
corresponding words in the word vectors. For words
in the movie review data set that did not appear in
the snippet data set, we used a default weight of zero
(i.e., we excluded them. We experimented with set-
ting the default weight to one, but found this led to
inferior performance.)

We repeated the experiments described in sec-
tions 4.2 and 4.3 with the only difference being

that we used the mutual-information weighted word
vector similarity instead of PSP whenever a simi-
larity measure was required. We repeated the tun-
ing procedures described in the previous sections.
Using this new similarity measure led to the opti-
mal parametersc = 0.1, α = 1.5, k′ = 5, and
β = 10.0. The results are reported under ‘reg+WV’
and ‘SSL+WV,’ respectively.

4.5 Results

We tested the five algorithms for all four authors us-
ing each of the nine labeled set sizes. The results
are presented in table 2. Each entry in the table rep-
resents the average accuracy across 20 trials for an
author, a labeled set size, and an algorithm. The best
result in each row is highlighted in bold. Any results
on the same row that cannot be distinguished from
the best result using a pairedt-test at the 0.05 level
are also bold.

The results indicate that the graph-based semi-
supervised learning algorithm based on PSP simi-
larity (SSL+PSP) achieved better performance than
all other methods in all four author corpora when
only 200, 100, 50, 25, or 12 labeled documents
were available. In 19 out of these 20 learning sce-
narios, the unlabeled set accuracy by the SSL+PSP
algorithm was significantly higher than all other
methods. While accuracy generally degraded as we
trained on less labeled data, the decrease for the SSL
approach was less severe through the mid-range la-
beled set sizes. SSL+PSP remains among the best
methods with only 6 labeled examples.

Note that the SSL algorithm appears to be quite
sensitive to the similarity measure used to form the
graph on which it is based. In the experiments where
we used mutual-information weighted word vector
similarity (reg+WV and SSL+WV), we notice that
reg+WV remained on par with reg+PSP at high la-
beled set sizes, whereas SSL+WV appears signif-
icantly worse in most of these cases. It is clear
that PSP is the more reliable similarity measure.
SSL uses the similarity measure in more ways than
the metric labeling approaches (i.e., SSL’s graph is
denser), so it is not surprising that SSL’s accuracy
would suffer more with an inferior similarity mea-
sure.

Unfortunately, our SSL approach did not do as
well with large labeled set sizes. We believe this
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PSP word vector
|L| regression reg+PSP SSL+PSP reg+WV SSL+WV

A
ut

ho
r

(a
)

1593 0.592 0.592 0.546 0.592 0.544
800 0.553 0.554 0.534 0.553 0.517
400 0.522 0.525 0.526 0.522 0.497
200 0.494 0.498 0.521 0.494 0.472
100 0.463 0.477 0.511 0.462 0.450
50 0.439 0.458 0.499 0.438 0.429
25 0.408 0.421 0.465 0.400 0.404
12 0.401 0.378 0.451 0.335 0.398
6 0.390 0.359 0.422 0.314 0.389

A
ut

ho
r

(b
)

811 0.501 0.498 0.481 0.503 0.473
800 0.501 0.497 0.478 0.503 0.474
400 0.471 0.471 0.465 0.471 0.450
200 0.447 0.449 0.452 0.447 0.429
100 0.415 0.423 0.443 0.415 0.397
50 0.388 0.396 0.434 0.387 0.376
25 0.373 0.380 0.418 0.364 0.367
12 0.354 0.360 0.399 0.313 0.353
6 0.348 0.352 0.380 0.302 0.347

A
ut

ho
r

(c
)

1176 0.592 0.589 0.566 0.594 0.514
800 0.579 0.585 0.559 0.579 0.509
400 0.550 0.556 0.544 0.551 0.491
200 0.513 0.519 0.532 0.513 0.479
100 0.484 0.495 0.521 0.484 0.466
50 0.462 0.476 0.504 0.461 0.456
25 0.459 0.472 0.484 0.439 0.454
12 0.420 0.405 0.477 0.356 0.414
6 0.320 0.382 0.366 0.334 0.322

A
ut

ho
r

(d
)

924 0.496 0.498 0.495 0.499 0.490
800 0.500 0.501 0.495 0.504 0.483
400 0.474 0.478 0.486 0.477 0.463
200 0.459 0.459 0.468 0.459 0.445
100 0.444 0.445 0.460 0.444 0.437
50 0.429 0.431 0.445 0.429 0.428
25 0.411 0.411 0.425 0.400 0.409
12 0.393 0.362 0.405 0.335 0.391
6 0.393 0.357 0.403 0.312 0.393

Table 2: 20-trial average unlabeled set accuracy for each author across different labeled set sizes and meth-
ods. In each row, we list in bold the best result and any results that cannot be distinguished from it with a
pairedt-test at the 0.05 level.
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is due to two factors: a) the baseline SVM regres-
sor trained on a large labeled set can achieve fairly
high accuracy for this difficult task without consid-
ering pairwise relationships between examples; b)
PSP similarity is not accurate enough. Gain in vari-
ance reduction achieved by the SSL graph is offset
by its bias when labeled data is abundant.

5 Discussion

We have demonstrated the benefit of using unla-
beled data for rating inference. There are several
directions to improve the work: 1. We will inves-
tigate better document representations and similar-
ity measures based on parsing and other linguis-
tic knowledge, as well as reviews’ sentiment pat-
terns. For example, several positive sentences fol-
lowed by a few concluding negative sentences could
indicate an overall negative review, as observed in
prior work (Pang and Lee, 2005). 2. Our method
is transductive: new reviews must be added to the
graph before they can be classified. We will extend
it to the inductive learning setting based on (Sind-
hwani et al., 2005). 3. We plan to experiment with
cross-reviewer and cross-domain analysis, such as
using a model learned on movie reviews to help clas-
sify product reviews.
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Abstract

This paper describes a new approach for
estimating term weights in a text classifi-
cation task. The approach uses term co-
occurrence as a measure of dependency
between word features. A random walk
model is applied on a graph encoding
words and co-occurrence dependencies,
resulting in scores that represent a quan-
tification of how a particular word feature
contributes to a given context. We argue
that by modeling feature weights using
these scores, as opposed to the traditional
frequency-based scores, we can achieve
better results in a text classification task.
Experiments performed on four standard
classification datasets show that the new
random-walk based approach outperforms
the traditional term frequency approach to
feature weighting.

1 Introduction

Term frequency has long been adapted as a measure
of term significance in a specific context (Robert-
son and Jones, 1997). The logic behind it is that the
more a certain term is encountered in a certain con-
text, the more it carries or contributes to the mean-
ing of the context. Due to this belief, term frequency
has been a major factor in estimating the probabilis-
tic distribution of features using maximum likeli-
hood estimates and hence has been incorporated in a
broad spectrum of tasks ranging from feature selec-

tion techniques (Yang and Pedersen, 1997; Schutze
et al., 1995) to language models (Bahl et al., 1983).

In this paper we introduce a new measure of term
weighting, which integrates the locality of a term
and its relation to the surrounding context. We
model this local contribution using a co-occurrence
relation in which terms that co-occur in a certain
context are likely to share between them some of
their importance (or significance). Note that in this
model the relation between a given term and its con-
text is not linear, since the context itself consists of
a collection of other terms, which in turn have a
dependency relation with their own context, which
might include the original given term. In order to
model this recursive relation we use a graph-based
ranking algorithm, namely the PageRank random-
walk algorithms (Brin and Page, 1998), and its Text-
Rank adaption to text processing applications (Mi-
halcea and Tarau, 2004). TextRank takes as in-
put a set of textual entities and relations between
them, and uses a graph-based ranking algorithm
(also known as random walk algorithm) to produce
a set of scores that represent the accumulated weight
or rank for each textual entity in their context. The
TextRank model was so far evaluated on three nat-
ural language processing tasks: document summa-
rization, word sense disambiguation, and keyword
extraction, and despite being fully unsupervised, it
has been shown to be competitive with other some-
time supervised state-of-the-art algorithms.

In this paper, we show how TextRank can be
used to model the probabilistic distribution of word
features in a document, by making further use of
the scores produced by the random-walk model.
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Through experiments performed on a text classifi-
cation task, we show that these random walk scores
outperform the traditional term frequencies typically
used to model the feature weights for this task.

2 Graph-based Ranking Algorithms

The basic idea implemented by an iterative graph-
based ranking algorithm is that of “voting” or “rec-
ommendation”. When one vertex links to another
one, it is basically casting a vote for that other ver-
tex. The higher the number of votes that are cast
for a vertex, the higher the importance of the ver-
tex. Moreover, the importance of the vertex casting
a vote determines how important the vote itself is,
and this information is also taken into account by
the ranking algorithm. Hence, the score associated
with a vertex is determined based on the votes that
are cast for it, and the scores of the vertices casting
these votes.

While there are several graph-based ranking algo-
rithms previously proposed in the literature (Herings
et al., 2001), we focus on only one such algorithm,
namely PageRank (Brin and Page, 1998), as it was
previously found successful in a number of applica-
tions, including Web link analysis (Brin and Page,
1998), social networks (Dom et al., 2003), citation
analysis, and more recently in several text process-
ing applications (Mihalcea and Tarau, 2004), (Erkan
and Radev, 2004).

Given a graphG = (V, E), let In(Va) be the
set of vertices that point to vertexVa (predecessors),
and letOut(Va) be the set of vertices that vertexVa

points to (successors). The PageRank score associ-
ated with the vertexVa is then defined using a recur-
sive function that integrates the scores of its prede-
cessors:

S(Va) = (1 − d) + d ∗
∑

Vb∈In(Va)

S(Vb)

|Out(Vb)|
(1)

whered is a parameter that is set between 0 and 11.
The score of each vertex is recalculated upon each

iteration based on the new weights that the neighbor-
ing vertices have accumulated. The algorithm termi-
nates when the convergence point is reached for all
the vertices, meaning that the error rate for each ver-
tex falls below a pre-defined threshold. Formally,

1The typical value ford is 0.85 (Brin and Page, 1998), and
this is the value we are also using in our implementation.

for a vertexVi let Sk(Vi) be the rank or the score
at iterationk andSk+1(Vi) be the score at iteration
k + 1. The error rateER is defined as:

ER = Sk+1(Vi) − Sk(Vi) (2)

This vertex scoring scheme is based on a ran-
dom walk model, where a walker takes random steps
on the graphG, with the walk being modeled as
a Markov process – that is, the decision on what
edge to follow is solely based on the vertex where
the walker is currently located. Under certain con-
ditions, this model converges to a stationary dis-
tribution of probabilities, associated with vertices
in the graph. Based on the Ergodic theorem for
Markov chains (Grimmett and Stirzaker, 1989), the
algorithm is guaranteed to converge if the graph is
both aperiodic and irreducible. The first condition is
achieved for any graph that is a non-bipartite graph,
while the second condition holds for any strongly
connected graph – property achieved by PageRank
through the random jumps introduced by the(1−d)
factor. In matrix notation, the PageRank vector of
stationary probabilities is the principal eigenvector
for the matrixArow, which is obtained from the ad-
jacency matrixA representing the graph, with all
rows normalized to sum to 1: (P = AT

rowP ).
Intuitively, the stationary probability associated

with a vertex in the graph represents the probability
of finding the walker at that vertex during the ran-
dom walk, and thus it represents the importance of
the vertex within the graph. In the context of se-
quence data labeling, the random walk is performed
on the label graph associated with a sequence of
words, and thus the resulting stationary distribution
of probabilities can be used to decide on the most
probable set of labels for the given sequence.

2.1 TextRank

Given a natural language processing task, the Text-
Rank model includes four general steps for the
application of a graph-based ranking algorithm to
graph structures derived from natural language texts:

1. Identify text units that best define the proposed
task and add them as vertices in the graph.

2. Identify relations that connect such test units,
and use these relations to draw edges between
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vertices in the graph. Edges can be directed or
undirected, weighted or un-weighted.

3. Iterate the graph ranking algorithm to conver-
gence.

4. Sort vertices based on their final score. Use the
values attached to each vertex for ranking.

The strength of this model lies in the global repre-
sentation of the context and its ability to model how
the co-occurrence between features might propagate
across the context and affect other distant features.

While TextRank has already been applied to sev-
eral language processing tasks, we focus here on the
keyword extraction task, since it best relates to our
approach. The goal of a keyword extraction tool is
to find a set of words or phrases that best describe a
given document. The co-occurrence relation within
a specific window is used to portray the correlation
between words, which are represented as vertices in
the graph. Two vertices are connected if their cor-
responding lexical units co-occur within a window
of at mostN words, whereN can be set to any
value greater than two. The TextRank application
to keyword extraction has also used different syn-
tactic filters for vertex selection, including all open
class words, nouns and verbs, nouns and adjectives,
and others. The algorithm was found to provide the
best results using nouns and adjectives with a win-
dow size of two.

Our approach follows the same main steps as used
in the TextRank keyword extraction application. We
are however incorporating a larger number of lexical
units, and we use different window sizes, as we will
show in the following section.

3 TextRank for Term Weighting

The goal of the work reported in this paper is to
study the ranking scores obtained using TextRank,
and evaluate their potential usefulness as a new mea-
sure of term weighting.

To understand how the random-walk weights
(rw) might be a good replacement for the traditional
term frequency weights (tf ), consider the example
in Figure 1. The example represents a sample doc-
ument from the Reuters collection. A graph is con-
structed as follows. If a term has not been previously
seen, then a node is added to the graph to represent

this term. A term can only be represented by one
node in the graph. An undirected edge is drawn be-
tween two nodes if they co-occur within a certain
window size. This example assumes a window size
of two, corresponding to two consecutive terms in
the text (e.g.Londonis linked tobased).

London-based sugar operator Kaines Ltd con-

firmed it sold two cargoes of white sugar to India

out of an estimated overall sales total of four or five

cargoes in which other brokers participated. The

sugar, for April/May and April/June shipment, was

sold at between 214 and 218 dlrs a tonne cif, it said.

Figure 1: Sample Reuters document

London

based

sugar

operator

Kaines

confirmed

sold

cargoes

white

Indiaestimatedsales

total

brokers

participated

April

MayJune

shipment

dlrs

tonne

cif

Figure 2: Sample graph

Table 1 shows thetf andrw weights, also plotted
in Figure 3. By analyzing therw weights, we can
observe a non-linear correlation with thetf weights,
with an emphasis given to terms surrounding impor-
tant key term like e.g. “sugar” or “cargoes.” This
spatial locality has resulted in higher ranks for terms
like “operator” compared to other terms like “lon-
don”2.

2All the missing words (e.g. “Ltd,” “it”) that are not shown
in the graph are common-words that were eliminated in the pre-
processing phase.
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Term rw tf

sugar 2.248 3
sold 1.594 2
april 1.407 2
cargoes 1.542 2
cif 0.600 1
sales 0.891 1
london 0.546 1
tonne 1.059 1
shipment 0.829 1
based 0.933 1
estimated 0.888 1
dlrs 0.938 1
kaines 0.871 1
confirmed 0.859 1
total 0.856 1
white 0.796 1
india 0.846 1
operator 0.839 1
brokers 0.826 1
june 0.801 1
participated 0.819 1

Table 1:tf & rw scores

0

0.5

1

1.5

2

2.5

3

3.5

s
u
g
a
r

s
o
ld

c
a
rg
o
e
s

a
p
ri
l

to
n
n
e

d
lr
s

b
a
s
e
d

s
a
le
s

e
s
ti
m
a
te
d

k
a
in
e
s

c
o
n
fi
rm
e
d

to
ta
l

in
d
ia

o
p
e
ra
to
r

s
h
ip
m
e
n
t

b
ro
k
e
rs

p
a
rt
ic
ip
a
te
d

ju
n
e

w
h
it
e c
if

lo
n
d
o
n

F
re
q
u
e
n
c
y

r.w

t.f

Figure 3:tf & rw plots

4 Experimental Setup

To evaluate our random-walk based approach to fea-
ture weighting, we integrate it in a text classification
algorithm, and evaluate its performance on several
standard text classification data sets.

4.1 Random-Walk Term Weighting

Starting with a given document, we determine a
ranking over the words in the document by using the
approach described in Section 3.

First, we tokenize the document for punctuation,
special symbols, word abbreviations. We also re-
move the common words, using a list of approx-
imately 500 frequently used words as used in the

Smart retrieval system3.
Next, the resulting text is processed to extract both

tf andrw weights for each term in the document.
Note that we do not apply any syntactic filters, as
it was previously done in applications of TextRank.
Instead, we consider each word as a potential fea-
ture. To determinetf we simply count the frequen-
cies of each word in the document. To determine
rw, all the terms are added as vertices in a graph
representing the document. A co-occurrence scan-
ner is then applied to the text to relate the terms that
co-occur within a given window size . For a given
term, all the terms that fall in the vicinity of this
term are considered dependent terms. This is rep-
resented by a set of edges that connect this term to
all the other terms in the window. Experiments are
performed for window sizes of 2, 4, 6, and 8. Once
the graph is constructed and the edges are in place,
the TextRank algorithm is applied4. The result of the
ranking process is a list of all input terms and their
correspondingrw scores.

We then calculatetf.idf andrw.idf as follows:

tf.idf = tf ∗ log
ND

n

whereND represent the total number of documents
in the collection andn is the number of documents
in which the target term appeared at least once.

Similarly,

rw.idf = rw ∗ log
ND

n

These term weights (tf.idf or rw.idf ) are then
used to create a feature vector for each document.
The vectors are fed to a traditional text classifica-
tion system, using one of the learning algorithms de-
scribed below. The results obtained usingtf.idf will
act as a baseline in our evaluation.

4.2 Text Classification

Text classification is a problem typically formulated
as a machine learning task, where a classifier learns
how to distinguish between categories in a given set

3ftp://ftp.cs.cornell.edu/pub/smart.
4We use an implementation where the maximum number of

iterations is limited to 100, the damping factor is set to 0.85, and
convergence threshold to 0.0001. Each graph node is assigned
with an initial weight of 0.25.
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using features automatically extracted from a collec-
tion of training documents. There is a large body
of algorithms previously tested on text classification
problems, due also to the fact that this task is one
of the testbeds of choice for machine learning algo-
rithms. In the experiments reported here, we com-
pare results obtained with four frequently used text
classifiers – Rocchio, Naı̈ve Bayes, Nearest Neigh-
bor, and Support Vector Machines, selected based on
their diversity of learning methodologies.
Näıve Bayes. The basic idea in a Naı̈ve Bayes
text classifier is to estimate the probability of a
category given a document using joint probabili-
ties of words and documents. Naı̈ve Bayes as-
sumes word independence, which means that the
conditional probability of a word given a category
is assumed to be independent of the conditional
probability of other words given the same category.
Despite this simplification, Naı̈ve Bayes classifiers
were shown to perform surprisingly well on text
classification (Joachims, 1997), (Schneider, 2004).
While there are several versions of Naı̈ve Bayes
classifiers (variations of multinomial and multivari-
ate Bernoulli), we use the multinomial model (Mc-
Callum and Nigam, 1998), which was shown to be
more effective.
Rocchio. This is an adaptation of the relevance
feedback method developed in information retrieval
(Rocchio, 1971). It uses standardtf.idf weighted
vectors to represent documents, and builds a pro-
totype vector for each category by summing up the
vectors of the training documents in each category.
Test documents are then assigned to the category
that has the closest prototype vector, based on a
cosine similarity. Text classification experiments
with different versions of the Rocchio algorithm
showed competitive results on standard benchmarks
(Joachims, 1997), (Moschitti, 2003).
KNN. K-Nearest Neighbor is one of the earliest text
categorization approaches (Makoto and Takenobu,
1995; Masand et al., 1992). The algorithm classifies
a test document based on the best class label identi-
fied for the nearest K-neighbors in the training doc-
uments. The best class label is chosen by weighting
the class of each similar training document with its
similarity to the target test document.
SVM. Support Vector Machines (Vapnik, 1995) is
a state-of-the-art machine learning approach based

on decision plans. The algorithm defines the best
hyper-plan which separates set of points associated
with different class labels with a maximum-margin.
The unlabeled examples are then classified by de-
ciding in which side of the hyper-surface they re-
side. The hyper-plan can be a simple linear plan as
first proposed by Vapnik, or a non-linear plan such
as e.g. polynomial, radial, or sigmoid. In our eval-
uation we used the linear kernel since it was proved
to be as powerful as the other kernels when tested on
text classification data sets (Yang and Liu, 1999).

4.3 Data Sets

In our experiments we useReuters-21578,
WebKB, 20Newsgroups, and LingSpam

datasets. These datasets are commonly used for text
classification evaluations (Joachims, 1996; Craven
et al., 1998; Androutsopoulos et al., 2000; Mihalcea
and Hassan, 2005).
Reuter-21578.This is a publicly available subset of
the Reuters news, containing about 120 categories.
We use the standard ModApte data split (Apte et
al., 1994). The unlabeled documents were discarded
and only the documents with one or more class la-
bels were used in the classification experiments.
WebKB. This is a data set collected from com-
puter science departments of various universities by
the CMU text learning group. The dataset contains
seven class labels which are Project, Student, De-
partment, Faculty, Staff, Course, and Other. The
Other label was removed from the dataset for evalu-
ation purposes. Most of the evaluations in the liter-
ature have been performed on only four of the cate-
gories (Project, Student, Faculty, and Course) since
they represent the largest categories. However, since
we wanted to see how our system behaves when only
a few training examples were available as e.g. in the
Staff and the Department classes, we performed our
evaluations on two versions ofWebKB: one with
the four categories version (WebKB4) and one with
the six categories (WebKB6).
20-Newsgroups.This is a collection of 20,000 mes-
sages from 20 different newsgroups, corresponding
to different topics or subjects. Each newsgroup has
about 1000 message split into 400 test and 600 train
documents.
LingSpam. This is a spam corpus, consisting of
email messages organized in 10 collections to al-
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low for 10-fold cross validation. Each collection has
roughly 300 spam and legitimate messages. There
are four versions of the corpus standing for bare,
stop-word filtered, lemmatized, and stop-word and
lemmatized. We use the bare collection with a stan-
dard 10-fold cross validation.

4.4 Performance Measures

To evaluate the classification system we used the tra-
ditional accuracy measure defined as the number of
correct predictions divided with the number of eval-
uated examples.

We also use the correlation coefficient (ρ) as
a diversity measure to evaluate the dissimilarity
between the weighting models. Pairwise diver-
sity measures have been traditionally used to mea-
sure the statistical independence among ensemble of
classifiers (Kuncheva and Whitaker, 2003). Here,
we use them to measure the correlation between our
random-walk approach and the traditional term fre-
quency approach. The typical setting in which the
pairwise diversity measures are used is a set of dif-
ferent classifiers which are used to classify the same
set of feature vectors or documents over a given
dataset. In our evaluation we use the same classifier
to evaluate two different sets of feature vectors that
are produced by different weighting features: therw

random walk weighting, and thetf term frequency
weighting. Since the two feature vector collections
are evaluated by one classifier at a time, the resulted
diversity scores will reflect the diversity of the two
systems.

Let Di andDj be two feature weighting models
with the following contingency table.

Dj correct=Y Dj correct=N

Di correct=Y a b
Di correct=N c d

Table 2:Di & Dj Contingency table

The correlation coefficient (ρ) is defined as:

ρij =
ad − bc

√

(a + b)(c + d)(a + c)(b + d)

5The symbol†indicates a statistically significant result using

Table 3: Naive Bayes Results5

N.B. tf rw2 rw4 rw6 rw8

WebKB4 81.9 81.9 82.8 82.7 81.2
WebKB6 71.7 73.0 74.2† 74.4† 73.5
Reuter 83.2 82.5 82.9 83.0 82.8
20NG 81.7 82.0 82.3‡ 82.3‡ 82.1†
LSpam 99.3 99.4 99.3 99.3 99.3

Table 4: Rocchio Results
ROC tf rw2 rw4 rw6 rw8

WebKB4 71.9 77.5‡ 78.6‡ 80.8‡ 80.9‡
WebKB6 58.3 69.6‡ 72.0‡ 76.5‡ 76.2‡
Reuter 78.2 80.8‡ 81.1‡ 81.0‡ 81.4‡
20NG 76.2 77.3‡ 77.1‡ 77.2‡ 77.4‡
LSpam 97.5 97.8 97.8 97.7 97.8

5 Evaluation and Discussion

Tables 3, 4, 5, 6 show the classification results for
WebKB4, WebKB6, LingSpam, Reuter, and
20Newsgroups respectively. Therw2, rw4, rw6,
and rw8 represent the accuracies achieved using
random-walk weighting under window sizes of 2,
4, 6, and 8 respectively. Thetf column represents
the results obtained with a term frequency weighting
scheme.

By examining the results we can see that the
rw.idf model outperforms thetf.idf model on all
the classifiers and datasets with only one excep-
tion in the case of a Naı̈ve Bayes classifier under
Reuter. The error reductions range from3.5% as in
{20Newsgroups, NaiveBayes, rw4} to 44% as in
the case of{WebKB6, Rocchio, rw6}. The system
gives, in its worst performance, a comparable result
to thetf.idf baseline. The system shows a consis-
tent performance with different window sizes, with
no clear cut window size that would give the best
result. By further analyzing the results using statis-
tical paired t-tests we can see that windows of size
4 and 6 supply the most significant results across all
the classifiers as well as the datasets.

ComparingWebKB4 andWebKB6 fine-grained
results, we found that both systems failed to pre-
dict the class Staff; however the significant improve-

a paired t-test, withp < 0.05. The result is marked by‡ when
p < 0.001.
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Table 5: KNN Results
KNN tf rw2 rw4 rw6 rw8

WebKB4 59.2 68.6‡ 67.0‡ 64.6‡ 66.6‡
WebKB6 55.8 63.7‡ 55.8 59.9† 61.0‡
Reuter 73.6 76.9‡ 78.1‡ 78.5‡ 78.5‡
20NG 70.3 76.1‡ 76.5‡ 77.2‡ 77.8‡
LSpam 97.5 97.8 97.8 98.1† 97.9

Table 6: SVM Results
SV M tf rw2 rw4 rw6 rw8

WebKB4 87.7 87.9 87.9 89† 88.5
WebKB6 82.5 84.5‡ 85.2‡ 85.2‡ 84.6‡
Reuter 83.2 84.5‡ 84.4‡ 84.6‡ 84.1†
20NG 95.2 95.5‡ 95.6‡ 95.6‡ 95.4†
LSpam 95.6 96.4‡ 96.4‡ 96.2‡ 96.3‡

ment was over the class Department, in which our
rw model scores an accuracy of 47% compared to
4% in usingtf.idf . This indicates how successful
rw.idf model is in cases where there are few train-
ing examples. This could be due to the ability of the
model to extract more realistic and smoother distri-
bution of terms as seen in therw curve plotted in
Figure 3, hence reducing the feature bias imposed
by the limited number of training examples.

Table 7: Naive Bayes Correlationρ
N.B. rw2 rw4 rw6 rw8

WebKB4 0.68 0.70 0.70 0.66
WebKB6 0.71 0.71 0.71 0.65
Reuter 0.86 0.87 0.87 0.85
20NG 0.82 0.84 0.83 0.82
LSpam 0.89 0.89 0.92 0.92

By also examining thediversity of the classifi-
cation systems based onrw and tf weighting, as
shown in Table 7, 8, 9, 10, we can see an inter-
esting property of the system. The two models are
generally more diverse and less correlated when us-
ing windows of size 6 and 8 than using windows of
size 2 and 4. This could be due to the increasing
drift from the feature independence assumption that
is implied bytf.idf . However increasing the depen-
dency is not always desirable as seen in the reported
accuracies. We expect that at a certain window size
the system performance will degrade totf.idf . This

Table 8: Rocchio Correlationρ
ROC rw2 rw4 rw6 rw8

WebKB4 0.49 0.51 0.53 0.54
WebKB6 0.40 0.40 0.41 0.42
Reuter 0.75 0.77 0.75 0.71
20NG 0.77 0.77 0.77 0.77
LSpam 0.82 0.85 0.81 0.78

Table 9: KNN Correlationρ
KNN rw2 rw4 rw6 rw8

WebKB4 0.35 0.32 0.36 0.37
WebKB6 0.35 0.35 0.37 0.37
Reuter 0.74 0.70 0.68 0.67
20NG 0.62 0.64 0.63 0.59
LSpam 0.66 0.69 0.63 0.57

threshold window size will be equal to the document
size. In such a case each term will depend on all the
remaining terms resulting in an almost completely
connected graph. Consequently, each feature contri-
bution to the surrounding will be equal resulting in
similar rw scores to all the features.

6 Conclusions and Future Work

Based on results obtained in text classification ex-
periments, the TextRank random-walk model to
term weighting was found to achieve error rate re-
ductions of 3.5–44% as compared to the traditional
frequency-based approach. The evaluation results
have shown that the system performance varies de-
pending on window size, dataset, as well as classi-
fier, with the greatest boost in performance recorded
for KNN ,Rocchio, and SVM. We believe that these
results support our claim that random-walk models
can accurately estimate term weights, and can be
used as a technique to model the probabilistic dis-
tribution of features in a document.

The evaluations reported in this paper has shown
that the TextRank model can accurately provideuni-
gramprobabilities for a sequence of words. In future
work we will try to extend the TextRank model and
use it to define a formal language model in which
we can estimate the probability of entire sequences
of words (n-grams).
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Table 10: SVM Correlationρ
SV M rw2 rw4 rw6 rw8

WebKB4 0.73 0.77 0.78 0.82
WebKB6 0.73 0.76 0.78 0.80
Reuter 0.80 0.83 0.82 0.82
20NG 0.80 0.78 0.82 0.83
LSpam 0.86 0.88 0.88 0.89
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Abstract

Document indexing and representation of
term-document relations are very impor-
tant for document clustering and retrieval.
In this paper, we combine a graph-based
dimensionality reduction method with a
corpus-based association measure within
the Generalized Latent Semantic Analysis
framework. We evaluate the graph-based
GLSA on the document clustering task.

1 Introduction

Document indexing and representation of term-
document relations are very important issues for
document clustering and retrieval. Although the
vocabulary space is very large, content bearing
words are often combined into semantic classes that
contain synonyms and semantically related words.
Hence there has been a considerable interest in low-
dimensional term and document representations.

Latent Semantic Analysis (LSA) (Deerwester et
al., 1990) is one of the best known dimensionality
reduction algorithms. The dimensions of the LSA
vector space can be interpreted as latent semantic
concepts. The cosine similarity between the LSA
document vectors corresponds to documents’ sim-
ilarity in the input space. LSA preserves the docu-
ments similarities which are based on the inner prod-
ucts of the input bag-of-word documents and it pre-
serves these similarities globally.

More recently, a number of graph-based dimen-
sionality reduction techniques were successfully ap-
plied to document clustering and retrieval (Belkin

and Niyogi, 2003; He et al., 2004). The main ad-
vantage of the graph-based approaches over LSA is
the notion of locality. Laplacian Eigenmaps Embed-
ding (Belkin and Niyogi, 2003) and Locality Pre-
serving Indexing (LPI) (He et al., 2004) discover the
local structure of the term and document space and
compute a semantic subspace with a stronger dis-
criminative power. Laplacian Eigenmaps Embed-
ding and LPI preserve the input similarities only
locally, because this information is most reliable.
Laplacian Eigenmaps Embedding does not provide
a fold-in procedure for unseen documents. LPI
is a linear approximation to Laplacian Eigenmaps
Embedding that eliminates this problem. Similar
to LSA, the input similarities to LPI are based on
the inner products of the bag-of-word documents.
Laplacian Eigenmaps Embedding can use any kind
of similarity in the original space.

Generalized Latent Semantic Analysis
(GLSA) (Matveeva et al., 2005) is a frame-
work for computing semantically motivated term
and document vectors. It extends the LSA approach
by focusing on term vectors instead of the dual
document-term representation. GLSA requires a
measure of semantic association between terms and
a method of dimensionality reduction.

In this paper, we use GLSA with point-wise mu-
tual information as a term association measure. We
introduce the notion of locality into this framework
and propose to use Laplacian Eigenmaps Embed-
ding as a dimensionality reduction algorithm. We
evaluate the importance of locality for document
representation in document clustering experiments.

The rest of the paper is organized as follows. Sec-
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tion 2 contains the outline of the graph-based GLSA
algorithm. Section 3 presents our experiments, fol-
lowed by conclusion in section 4.

2 Graph-based GLSA

2.1 GLSA Framework

The GLSA algorithm (Matveeva et al., 2005) has the
following setup. The input is a document collection
C with vocabularyV and a large corpusW .

1. For the vocabulary inV , obtain a matrix of
pair-wise similarities,S, using the corpusW

2. Obtain the matrixUT of a low dimensional
vector space representation of terms that pre-
serves the similarities inS, UT ∈ Rk×|V |

3. Construct the term document matrixD for C

4. Compute document vectors by taking linear
combinations of term vectorŝD = UT D

The columns of D̂ are documents in thek-
dimensional space.

GLSA approach can combine any kind of simi-
larity measure on the space of terms with any suit-
able method of dimensionality reduction. The inner
product between the term and document vectors in
the GLSA space preserves the semantic association
in the input space. The traditional term-document
matrix is used in the last step to provide the weights
in the linear combination of term vectors. LSA is
a special case of GLSA that uses inner product in
step 1 and singular value decomposition in step 2,
see (Bartell et al., 1992).

2.2 Singular Value Decomposition

Given any matrixS, its singular value decompo-
sition (SVD) is S = UΣV T . The matrixSk =
UΣkV

T is obtained by setting all but the firstk di-
agonal elements inΣ to zero. IfS is symmetric, as
in the GLSA case,U = V andSk = UΣkU

T . The
inner product between the GLSA term vectors com-
puted asUΣ

1/2

k optimally preserves the similarities
in S wrt square loss.

The basic GLSA computes the SVD ofS and uses
k eigenvectors corresponding to the largest eigenval-
ues as a representation for term vectors. We will re-
fer to this approach asGLSA. As for LSA, the simi-
larities are preserved globally.

2.3 Laplacian Eigenmaps Embedding

We used the Laplacian Embedding algo-
rithm (Belkin and Niyogi, 2003) in step 2 of
the GLSA algorithm to compute low-dimensional
term vectors. Laplacian Eigenmaps Embedding
preserves the similarities inS only locally since
local information is often more reliable. We will
refer to this variant of GLSA asGLSAL.

The Laplacian Eigenmaps Embedding algorithm
computes the low dimensional vectorsy to minimize
under certain constraints

∑

ij

||yi − yj||
2Wij .

W is the weight matrix based on the graph adjacency
matrix. Wij is large if termsi andj are similar ac-
cording toS. Wij can be interpreted as the penalty
of mapping similar terms far apart in the Laplacian
Embedding space, see (Belkin and Niyogi, 2003)
for details. In our experiments we used a binary ad-
jacency matrixW . Wij = 1 if terms i and j are
among the k nearest neighbors of each other and is
zero otherwise.

2.4 Measure of Semantic Association

Following (Matveeva et al., 2005), we primarily
used point-wise mutual information (PMI) as a mea-
sures of semantic association in step 1 of GLSA.
PMI between random variables representing two
words,w1 andw2, is computed as

PMI(w1, w2) = log
P (W1 = 1,W2 = 1)

P (W1 = 1)P (W2 = 1)
.

2.5 GLSA Space

GLSA offers a greater flexibility in exploring the
notion of semantic relatedness between terms. In
our preliminary experiments, we obtained the matrix
of semantic associations in step 1 of GLSA using
point-wise mutual information (PMI), likelihood ra-
tio andχ2 test. Although PMI showed the best per-
formance, other measures are particularly interest-
ing in combination with the Laplacian Embedding.

Related approaches, such as LSA, the Word Space
Model (WS) (Schütze, 1998) and Latent Relational
Analysis (LRA) (Turney, 2004) are limited to only
one measure of semantic association and preserve
the similarities globally.
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Assuming that the vocabulary space has some un-
derlying low dimensional semantic manifold. Lapla-
cian Embedding algorithm tries to approximate this
manifold by relying only on the local similarity in-
formation. It uses the nearest neighbors graph con-
structed using the pair-wise term similarities. The
computations of the Laplacian Embedding uses the
graph adjacency matrixW . This matrix can be bi-
nary or use weighted similarities. The advantage
of the binary adjacency matrix is that it conveys
the neighborhood information without relying on in-
dividual similarity values. It is important for co-
occurrence based similarity measures, see discus-
sion in (Manning and Schütze, 1999).

The Locality Preserving Indexing (He et al.,
2004) has a similar notion of locality but has to use
bag-of-words document vectors.

3 Document Clustering Experiments

We conducted a document clustering experiment for
the Reuters-21578 collection. To collect the co-
occurrence statistics for the similarities matrixS
we used a subset of the English Gigaword collec-
tion (LDC), containing New York Times articles la-
beled as “story”. We had 1,119,364 documents with
771,451 terms. We used the Lemur toolkit1 to tok-
enize and index all document collections used in our
experiments, with stemming and a list of stop words.

Since Locality Preserving Indexing algorithm
(LPI) is most related to the graph-based GLSAL, we
ran experiments similar to those reported in (He et
al., 2004). We computed the GLSA document vec-
tors for the 20 largest categories from the Reuters-
21578 document collection. We had 8564 docu-
ments and 7173 terms. We used the same list of 30
TREC words as in (He et al., 2004) which are listed
in table 12. For each word on this list, we generated
a cluster as a subset of Reuters documents that con-
tained this word. Clusters are not disjoint and con-
tain documents from different Reuters categories.

We computedGLSA, GLSAL, LSA and LPI rep-
resentations. We report the results fork = 5 for
thek nearest neighbors graph for LPI and Laplacian
Embedding, and binary weights for the adjacency

1http://www.lemurproject.org/
2We used 28 words because we used stemming whereas (He

et al., 2004) did not, so that in two cases, two words were re-
duces to the same stem.

matrix. We report results for 300 embedding dimen-
sions for GLSA, LPI and LSA and 500 dimensions
for GLSAL.

We evaluate these representations in terms of how
well the cosine similarity between the document
vectors within each cluster corresponds to the true
semantic similarity. We expect documents from the
same Reuters category to have higher similarity.

For each cluster we computed all pair-wise doc-
ument similarities. All pair-wise similarities were
sorted in decreasing order. The term “inter-pair” de-
scribes a pair of documents that have the same label.
For the kth inter-pair, we computed precision atk as:

precision(pk) =
#inter − pairs pj, s.t. j < k

k
,

wherepj refers to thejth inter-pair. The average
of the precision values for each of the inter-pairs was
used as the average precision for the particular doc-
ument cluster.

Table 1 summarizes the results. The first column
shows the words according to which document clus-
ters were generated and the entropy of the category
distribution within that cluster. The baseline was to
use thetf document vectors. We report results for
GLSA, GLSAL, LSA and LPI. The LSA and LPI
computations were based solely on the Reuters col-
lection. ForGLSA andGLSALwe used the term as-
sociations computed for the Gigaword collection, as
described above. Therefore, the similarities that are
preserved are quite different. For LSA and LPI they
reflect the term distribution specific for the Reuters
collection whereas for GLSA they are more general.
By paired 2-tailed t-test, at p≤ 0.05,GLSA outper-
formed all other approaches. There was no signifi-
cant difference in performance ofGLSAL, LSA and
the baseline. Disappointingly, we could not achieve
good performance with LPI. Its performance varies
over clusters similar to that of other approaches but
the average is significantly lower. We would like
to stress that the comparison of our results to those
presented in (He et al., 2004) are only suggestive
since (He et al., 2004) applied LPI to each cluster
separately and used PCA as preprocessing. We com-
puted the LPI representation for the full collection
and did not use PCA.
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word tf glsa glsaL lsa lpi

agreement(1) 0.74 0.73 0.73 0.75 0.46
american(0.8) 0.63 0.72 0.59 0.64 0.36

bank(1.4) 0.45 0.52 0.40 0.48 0.28
control(0.7) 0.78 0.82 0.80 0.80 0.58

domestic(0.8) 0.64 0.68 0.66 0.68 0.35
export(0.8) 0.64 0.65 0.70 0.67 0.37
five(1.3) 0.74 0.77 0.71 0.70 0.40

foreign(1.2) 0.51 0.58 0.55 0.56 0.28
growth(1) 0.51 0.58 0.48 0.54 0.32

income(0.5) 0.84 0.86 0.83 0.80 0.69
increase(1.3) 0.51 0.61 0.53 0.53 0.29
industrial(1.2) 0.59 0.66 0.58 0.61 0.34
internat.(1.1) 0.58 0.59 0.54 0.61 0.34
investment(1) 0.68 0.77 0.70 0.72 0.46

loss(0.3) 0.98 0.99 0.98 0.98 0.88
money(1.1) 0.70 0.62 0.71 0.65 0.38
national(1.3) 0.49 0.58 0.49 0.55 0.27

price(1.2) 0.53 0.63 0.57 0.57 0.29
production(1) 0.56 0.66 0.58 0.59 0.29
public(1.2) 0.58 0.60 0.57 0.57 0.31
rate(1.1) 0.61 0.62 0.64 0.60 0.35

report(1.2) 0.66 0.72 0.62 0.65 0.35
service(0.9) 0.59 0.66 0.56 0.61 0.39
source(1.2) 0.56 0.54 0.59 0.60 0.27
talk(0.9) 0.74 0.67 0.73 0.74 0.39
tax(0.7) 0.91 0.93 0.90 0.89 0.67
trade(1) 0.85 0.74 0.82 0.60 0.33

world(1.1) 0.63 0.65 0.68 0.66 0.33

Av. Acc 0.65 0.68 0.65 0.66 0.40

Table 1: Average inter-pairs accuracy.

The inter-pair accuracy depended on the cate-
gories distribution within clusters. For more homo-
geneous clusters, e.g. “loss”, all methods (except
LPI) achieve similar precision. For less homoge-
neous clusters, e.g. “national”, ”industrial”, ”bank”,
GLSA and LSA outperformed thetf document vec-
tors more significantly.

4 Conclusion and Future Work

We introduced a graph-based method of dimension-
ality reduction into the GLSA framework. Lapla-
cian Eigenmaps Embedding preserves the similar-
ities only locally, thus providing a potentially bet-

ter approximation to the low dimensional semantic
space. We explored the role of locality in the GLSA
representation and used binary adjacency matrix as
similarity which was preserved and compared it to
GLSA with unnormalized PMI scores.

Our results did not show an advantage ofGLSAL.
GLSAL and LPI seem to be very sensitive to the pa-
rameters of the neighborhood graph. We tried dif-
ferent parameter settings but more experiments are
required for a thorough analysis. We are also plan-
ning to use a different document collection to elimi-
nate the possible effect of the specific term distribu-
tion in the Reuters collection. Further experiments
are needed to make conclusions about the geometry
of the vocabulary space and the appropriateness of
these methods for term and document embedding.
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Abstract

Synonyms extraction is a difficult task to
achieve and evaluate. Some studies have
tried to exploit general dictionaries for
that purpose, seeing them as graphs where
words are related by the definition they ap-
pear in, in a complex network of an ar-
guably semantic nature. The advantage
of using a general dictionary lies in the
coverage, and the availability of such re-
sources, in general and also in specialised
domains. We present here a method ex-
ploiting such a graph structure to compute
a distance between words. This distance
is used to isolate candidate synonyms for
a given word. We present an evaluation of
the relevance of the candidates on a sam-
ple of the lexicon.

1 Introduction

Thesaurus are an important resource in many natural
language processing tasks. They are used to help in-
formation retrieval (Zukerman et al., 2003), machine
or semi-automated translation, (Ploux and Ji, 2003;
Barzilay and McKeown, 2001; Edmonds and Hirst,
2002) or generation (Langkilde and Knight, 1998).
Since the gathering of such lexical information is a
delicate and time-consuming endeavour, some effort
has been devoted to the automatic building of sets of
synonyms words or expressions.
Synonym extraction suffers from a variety of

methodological problems, however. Synonymy it-
self is not an easily definable notion. Totally equiv-
alent words (in meaning and use) arguably do not
exist, and some people prefer to talk about near-
synonyms (Edmonds and Hirst, 2002). A near-
synonym is a word that can be used instead of
another one, in some contexts, withouttoo much
change in meaning. This leaves of lot of freedom
in the degree of synonymy one is ready to accept.
Other authors include “related” terms in the build-
ing of thesaurus, such as hyponyms and hypernyms,
(Blondel et al., 2004) in a somewhat arbitrary way.
More generally,paraphraseis a preferred term re-
ferring to alternative formulations of words or ex-
pressions, in the context of information retrieval or
machine translation.
Then there is the question of evaluating the results.
Comparing to already existing thesaurus is a de-
batable means when automatic construction is sup-
posed to complement an existing one, or when a spe-
cific domain is targeted, or when simply the auto-
matic procedure is supposed to fill a void. Manual
verification of a sample of synonyms extracted is a
common practice, either by the authors of a study
or by independent lexicographers. This of course
does not solve problems related to the definition of
synonymy in the “manual” design of a thesaurus,
but can help evaluate the relevance of synonyms ex-
tracted automatically, and which could have been
forgotten. One can hope at best for a semi-automatic
procedure were lexicographers have to weed out bad
candidates in a set of proposals that is hopefully not
too noisy.
A few studies have tried to use the lexical informa-
tion available in a general dictionary and find pat-
terns that would indicate synonymy relations (Blon-
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del et al., 2004; Ho and Cédrick, 2004). The general
idea is that words are related by the definition they
appear in, in a complex network that must be seman-
tic in nature (this has been also applied to word sense
disambiguation, albeit with limited success (Veronis
and Ide, 1990; H.Kozima and Furugori, 1993)).
We present here a method exploiting the graph struc-
ture of a dictionary, where words are related by the
definition they appear in, to compute a distance be-
tween words. This distance is used to isolate can-
didate synonyms for a given word. We present an
evaluation of the relevance of the candidates on a
sample of the lexicon.

2 Semantic distance on a dictionary graph

We describe here our method (dubbed Prox) to com-
pute a distance between nodes in a graph. Basi-
cally, nodes are derived from entries in the dictio-
nary or words appearing in definitions, and there are
edges between an entry and the word in its definition
(more in section 3). Such graphs are "small world"
networks with distinguishing features and we hypo-
thetize these features reflect a linguistic and seman-
tic organisation that can be exploited (Gaume et al.,
2005).
The idea is to see a graph as a Markov chain whose
states are the graph nodes and whose transitions are
its edges, valuated with probabilities. Then we send
random particles walking through this graph, and
their trajectories and the dynamics of their trajec-
tories reveal their structural properties. In short, we
assume the average distance a particle has made be-
tween two nodes after a given time is an indication
of the semantic distance between these nodes. Ob-
viously, nodes located in highly clustered areas will
tend to be separated by smaller distance.
Formally, if G = (V,E) is a reflexive graph (each
node is connected to itself) with|V | = n, we note
[G] the n × n adjacency matrix ofG that is such
that [G]i,j (the ith row andjth column) is non null
if there is an edge between nodei and nodej and
0 otherwise. We can have different weights for
the edge between nodes (cf. next section), but the
method will be similar.
The first step is to turn the matrix into a Markovian
matrix. We note[Ĝ] the Markovian matrix ofG,

such that

[Ĝ]r,s =
[G]r,s∑

x∈V ([G]r,x)

The sum of each line of G is different from 0 since
the graph is reflexive.
We note[Ĝ]i the matrix[Ĝ] multiplied i times by it-
self.
Let now PROX(G, i, r, s) be [Ĝ]ir,s. This is thus
the probability that a random particle leaving noder
will be in nodes afteri time steps. This is the mea-
sure we will use to determine if a nodes is closer
to a noder than another nodet. The choice fori
will depend on the graph and is explained later (cf.
section 4).

3 Synonym extraction

We used for the experiment the XML tagged MRD
Trésor de la Langue Française informatisé(TLFi)
from ATILF (http://atilf.atilf.fr/ ), a
large French dictionary with 54,280 articles, 92,997
entries and 271,166 definitions. The extraction of
synonyms has been carried out only for nouns, verbs
and adjectives. The basic assumption is that words
with semantically close definitions are likely to be
synonyms. We then designed a oriented graph
that brings closer definitions that contain the same
words, especially when these words occur in the be-
ginning. We selected the noun, verb and adjective
definitions from the dictionary and created a record
for each of them with the information relevant to
the building of the graph: the word or expression
being defined (henceforth,definiendum); its gram-
matical category; the hierarchical position of the de-
fined (sub-)sense in the article; the definition proper
(henceforthdefiniens).
Definitions are made of 2 members: adefiniendum
and adefiniensand we strongly distinguish these 2
types of objects in the graph. They are represented
by 2 types of nodes: a-type nodes for the words be-
ing defined and for their sub-senses; o-type nodes
for the words that occur indefiniens.
For instance, the nounnostalgie‘nostalgia’ has 6 de-
fined sub-senses numbered A.1, A.2, B., C., C. – and
D.:
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NOSTALGIE, subst. fém.
A. 1. État de tristesse [...]
2. Trouble psychique [...]
B. Regret mélancolique [...] désir d’un retour dans
le passé.
C. Regret mélancolique [...] désir insatisfait.
– Sentiment d’impuissance [...]
D. État de mélancolie [...]

The 6 sub-senses yield 6 a-nodes in the graph plus
one for the article entry:

a.S.nostalgie article entry
a.S.nostalgie.1_1 sub-senseA. 1.
a.S.nostalgie.1_2 sub-senseA. 2.
a.S.nostalgie.2 sub-senseB.
a.S.nostalgie.3 sub-senseC.
a.S.nostalgie.3_1 sub-senseC. –
a.S.nostalgie.4 sub-senseD.

A-node tags have 4 fields: the node type (namelya);
its grammatical category (S for nouns, V for verbs
and A for adjectives); the lemma that correponds to
the definiendum; a representation of the hierarchi-
cal position of the sub-sense in the dictionary arti-
cle. For instance, theA. 2. sub-sense ofnostalgie
corresponds to the hierarchical position 1_2.
O-nodes represent the types that occur indefiniens.1

A second example can be used to present them. The
adjective jonceux ‘rushy’ has two sub-senses ‘re-
sembling rushes’ and ‘populated with rushes’:

Jonceux, -euse,
a) Qui ressemble au jonc.
b) Peuplé de joncs.

Actually, TLFi definitions are POS-tagged and lem-
matized:

Jonceux/S
a) qui/Pro ressembler/V au/D jonc/S ./X
b) peuplé/A de/Prep jonc/S ./X2

The 2definiensyield the following o-type nodes in
the graph:
o.Pro.qui ; o.V.ressembler ; o.D.au ;
o.S.jonc ; o.X.. ; o.A.peuplé ; o.Prep.de

1The tokens are represented by edges.
2In this sentence,peupléis an adjective and not a verb.

All the types that occur indefiniensare represented,
including the function words (pronouns, deter-
miners...) and the punctuation. Function words
play an important role in the graph because they
bring closer the words that belong to the same
semantical referential classes (e.g. the adjectives
of resemblance), that is words that are likely to
be synonyms. Their role is also reinforced by the
manner edges are weighted.
A large number of TLFi definitions concerns
phrases and locutions. However, these definitions
have been removed from the graph because:

• their tokens are not identified in thedefiniens;

• their grammatical categories are not given in
the articles and are difficult to calculate;

• many lexicalized phrases are not sub-senses of
the article entry.

O-node tags have 3 fields: the node type (namelyo);
the grammatical category of the word; its lemma.
The oriented graph built for the experiment then
contains one a-node for each entry and each entry
sub-sense (i.e. eachdefiniendum) and one o-node
for each type that occurs in a definition (i.e. in a
definiens). These nodes are connected as follows:

1. The graph is reflexive;

2. Sub-senses are connected to the words of their
definiensand vice versa (e.g. there is an edge
betweena.A.jonceux.1 ando.Pro.qui ,
and another one betweeno.Pro.qui and
a.A.jonceux.1 ).

3. Each a-node is connected to the a-nodes
of the immediately lower hierarchical
level but there is no edge between an
a-node and the a-nodes of higher hier-
archical levels (e.g. a.S.nostalgie
is connected to a.S.nostalgie.1_1 ,
a.S.nostalgie.1_2 ,
a.S.nostalgie.2 , a.S.nostalgie.3
and a.S.nostalgie.4 , but none of the
sub-senses is connected to the entry).
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4. Each o-node is connected to the a-node that
represents its entry, but there is no edge be-
tween the a-node representing an entry and the
corresponding o-node (e.g. there is an edge be-
tween o.A.jonceux and a.A.jonceux ,
but none between a.A.jonceux and
o.A.jonceux ).

All edge weights are 1 with the exception of
the edges representing the 9 first words of each
definiens. For these words, the edge weight takes
into account their position in thedefiniens. The
weight of the edge that represent the first token is
10; it is 9 for the second word; and so on down to
1.3

These characteristics are illustrated by the fragment
of the graph representing the entryjonceuxin table
1.

4 Experiment and results

Once the graph built, we used Prox to compute a se-
mantic similarity between the nodes. We first turned
the matrixG that represent the graph into a Marko-
vian matrix [Ĝ] as described in section 2 and then
computed[Ĝ]5, that correspond to 5-steps paths in
the Markovian graph.4 For a given word, we have
extracted as candidate synonyms the a-nodes (i) of
the same category as the word (ii ) that are the clos-
est to the o-node representing that word in the dictio-
nary definitions. Moreover, only the first a-node of
each entry is considered. For instance, the candidate
synonyms of the verbaccumuler‘accumulate’ are
the a-nodes representing verbs (i.e. their tags begin
in a.V ) that are the closer to theo.V.accumuler
node.

5-steps paths starting from an o-node representing a
wordw reach six groups of a-nodes:

A1 the a-nodes of the sub-senses which havew in
their definition;

3Lexicographic definitions usually have two parts: agenus
and adifferentia. This edge weight is intended to favour the
genuspart of thedefiniens.

4The path length has been determined empirically.

A2 the a-nodes of the sub-senses withdefiniens
containing the same words as those ofA1;

A3 the a-nodes of the sub-senses withdefiniens
containing the same words as those ofA2;

B1 the a-nodes of the sub-senses of the article ofw.
(These dummy candidates are not kept.)

B2 the a-nodes of the sub-senses withdefiniens
containing the same words as those ofB1;

B3 the a-nodes of the sub-senses withdefiniens
containing the same words as those ofB2;

The three first groups take advantage of the fact
that synonyms of thedefiniendumare often used in
definiens.

The question of the evaluation of the extraction of
synonyms is a difficult one, as was already men-
tioned in the introduction. We have at our disposal
several thesauri for French, with various coverages
(from about 2000 pairs of synonyms, to 140,000),
and a lot of discrepancies.5 If we compare the the-
saurus with each other and restrict the comparison
to their common lexicon for fairness, we still have
a lot of differences. The best f-score is never above
60%, and it raises the question of the proper gold
standard to begin with. This is all the more distress-
ing as the dictionary we used has a larger lexicon
than all the thesaurus considered together (roughly
twice as much). As our main purpose is to build a set
of synonyms from the TLF to go beyond the avail-
able thesaurus, we have no other way but to have
lexicographers look at the result and judge the qual-
ity of candidate synonyms. Before imposing this
workload on our lexicographer colleagues, we took
a sample of 50 verbs and 50 nouns, and evaluated
the first ten candidates for each, using the ranking
method presented above, and a simpler version with
equal weights and no distinction between sense lev-
els or node types. The basic version of the graph
also excludes nodes with too many neighbours, such
as "être" (be), "avoir" (have), "chose" (thing), etc. ).
Two of the authors separately evaluated the candi-
dates, with the synonyms from the existing thesauri

5These seven classical dictionaries of synonyms are all
available fromhttp://www.crisco.unicaen.fr/dicosyn.html.
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o.A.jonceux 1 1
a.A.jonceux 1 1 1
a.A.jonceux.1 1 1 1 1 1 1
a.A.jonceux.2 1 1 1 1 1
o.Pro.qui 10 1
o.V.ressembler 9 1
o.D.au 8 1
o.S.jonc 7 8 1
o.X.. 6 7 1
o.A.peuplé 10 1
o.Prep.de 9 1

Table 1: A fragment of the graph, presented as a matrix.

already marked. It turned out one of the judge was
much more liberal than the other about synonymy,
but most synonyms accepted by the first were ac-
cepted by the second judge (precision of 0.85).6

We also considered a few baselines inspired by the
method. Obviously a lot of synonyms appear in the
definition of a word, and words in a definition tend
to be consider close to the entry they appear in. So
we tried two different baselines to estimate this bias,
and how our method improves or not from this.

The first baseline considers as synonyms of a word
all the words of the same category (verbs or nouns
in each case) that appear in a definition of the word,
and all the entry the word appear in. Then we se-
lected ten words at random among this base.

The second baseline was similar, but restricted to the
first word appearing in a definition of another word.
Again we took ten words at random in this set if it
was larger than ten, and all of them otherwise.

We show the results of precision for the first can-
didate ranked by prox, the first 5, and the first 10
(always excluding the word itself). In the case of
the two baselines, results for the first ten are a bit

6The kappa score between the two annotators was 0.5 for
both verbs and nouns, which only moderately satisfactory.

misleading, since the average numbers of candidates
proposed by these methods were respectively 8 and
6 for verbs and 9 and 5.6 for nouns (Table 2). Also,
nouns had an average of 5.8 synonyms in the exist-
ing thesauri (when what was considered was the min
between 10 and the number of synonyms), and verbs
had an average of 8.9.

We can see that both baselines outperforms
weighted prox on the existing thesaurus for verbs,
and that the simpler prox is similar to baseline 2 (first
word only). For nouns, results are close between B2
and the two proxs. It is to be noted that a lot of
uncommon words appear as candidates, as they are
related with very few words, and a lot of these do
not appear in the existing thesauri.

By looking precisely at each candidate (see judges’
scores), we can see that both baselines are slightly
improved (and still close to one another), but are
now beaten by both prox for the first and the first
5 words. There is a big difference between the two
judges, so Judge 2 has better scores than Judge 1 for
the baselines, but in each case, prox was better. It
could be troubling to see how good the second base-
line is for the first 10 candidates, but one must re-
member this baseline actually proposes 6 candidates
on average (when prox was always at 10), making
it actually nothing more than a variation on the 5

69



Existing Thesauri (V) Judge 1 Judge 2ET (N) J1 J2
baseline-1 1 0.30 0.42 0.38 0.06 0.12 0.12

5 0.29 0.39 0.375 0.08 0.12 0.13
10 0.31 0.41 0.39 0.10 0.14 0.15

baseline-2 1 0.32 0.52 0.44 0.21 0.22 0.23
5 0.36 0.50 0.446 0.21 0.24 0.25
10 0.28 0.51 0.46 0.19 0.245 0.255

simple prox 1 0.35 0.67 NA 0.27 0.415 0.417
5 0.34 0.52 NA 0.137 0.215 0.237
10 0.247 0.375 NA 0.123 0.17 0.19

weighted prox 1 0.22 0.56 0.76 0.18 0.44 0.5
5 0.196 0.44 0.58 0.148 0.31 0.39
10 0.17 0.36 0.47 0.10 0.22 0.3

Table 2: Experimental results on a sample, V=verbs, N=nouns,

candidate baseline, to which it should be compared
in all fairness (and we see that prox is much better
there). The difference between the two versions of
prox shows that a basic version is better for verbs
and the more elaborate one is better for nouns, with
overall better results for verbs than for nouns.

One could wonder why there was some many more
candidates marked as synonyms by both judges,
compared to the original compilation of thesaurus.
Mainly, it seemed to us that it can be accounted for
by a lot of infrequent words, or old senses of words
absent for more restricted dictionaries. We are cur-
rently investigating this matter. It could also be that
our sample picked out a lot of not so frequent words
since they outnumber frequent words in such a large
dictionary as the TLF. An indication is the average
frequency of words in a corpus of ten years of the
journal "Le Monde". The 50 words picked out in
our sample have an average frequency of 2000 oc-
currences, while when we consider all our about 430
candidates for synonymy, the average frequency is
5300.

The main conclusion to draw here is that our method
is able to recover a lot of synonyms that are in the
definition of words, and some in definitions not di-
rectly related, which seems to be an improvement on
previous attempts from dictionaries. There is some
arbitrariness in the method that should be further
investigated (the length of the random walk for in-
stance), but we believe the parameters are rather in-
tuitive wrt to graph concepts. We also have an as-
sessment of the quality of the method, even though
it is still on a sample. The precision seems fair on

the first ten candidates, enough to be used in a semi-
automatic way, coupled with a lexicographic analy-
sis.

5 Related work

Among the methods proposed to collect synonymy
information, two families can be distinguished ac-
cording to the input they consider. Either a gen-
eral dictionary is used (or more than one (Wu and
Zhou, 2003)), or a corpus of unconstrained texts
from which lexical distributions are computed (sim-
ple collocations or syntactic dependencies) (Lin,
1998; Freitag et al., 2005) . The approach of (Barzi-
lay and McKeown, 2001) uses a related kind of re-
source: multiple translations of the same text, with
additional constraints on availability, and problems
of text alignment, for only a third of the results be-
ing synonyms (when compared to Wordnet).

A measure of similarity is almost always used to
rank possible candidates. In the case of distribu-
tional approaches, similarity if determined from the
appearance in similar contexts (Lin, 1998); in the
case of dictionary-based methods, lexical relations
are deduced from the links between words expressed
in definitions of entries.

Approaches that rely on distributional data have two
major drawbacks: they need a lot of data, gener-
ally syntactically parsed sentences, that is not al-
ways available for a given language (English is an
exception), and they do not discriminate well among
lexical relations (mainly hyponyms, antonyms, hy-
pernyms) (Weeds et al., 2004) . Dictionary-based
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approaches address the first problem since dictionar-
ies are readily available for a lot of language, even
electronically, and this is theraison d’êtreof our ef-
fort. As we have seen here, it is not an obvious task
to sort related terms with respect to synonymy, hy-
pernymy, etc, just as with distribution approaches.

A lot of work has been done to extract lexical rela-
tions from the definitions taken in isolation (mostly
for ontology building), see recently (Nichols et al.,
2005), with a syntactic/semantic parse, with usually
results around 60% of precision (that can be com-
pared with the same baseline we used, all words in
the definition with the same category), on dictionar-
ies with very small definitions (and thus a higher
proportions of synonyms and hypernyms). Estimat-
ing the recall of such methods have not been done.

Using dictionaries as network of lexical items or
senses has been quite popular for word sense dis-
ambiguation (Veronis and Ide, 1990; H.Kozima and
Furugori, 1993; Niwa and Nitta, 1994) before los-
ing ground to statistical approaches, even though
(Gaume et al., 2004; Mihalcea et al., 2004) tried a re-
vival of such methods. Both (Ho and Cédrick, 2004)
and (Blondel et al., 2004) build a graph of lexical
items from a dictionary in a manner similar to ours.
In the first case, the method used to compute similar-
ity between two concepts (or words) is restricted to
neighbors, in the graph, of the two concepts; in the
second case, only directly related words are consid-
ered as potential candidates for synonymy: for two
words to be considered synonyms, one has to appear
in the definition of another. In both cases, only 6
or 7 words have been used as a test of synonymy,
with a validation provided by the authors with "re-
lated terms" (an unclear notion) considered correct.
The similarity measure itself was evaluated on a set
of related terms from (Miller and Charles, 1991), as
in (Budanitsky and Hirst, 2001; Banerjee and Ped-
ersen, 2003), with seemingly good results, but se-
mantically related terms is a very different notion
("car" and "tire" for instance are semantically related
terms, and thus considered similar).
We do not know of any dictionary-based graph ap-
proach which have been given a larger evaluation of
its results. Parsing definitions in isolation prevents a
complete coverage (we estimated that only 30% of

synonyms pairs in the TLF can be found from defi-
nitions).

As for distributional approaches, (Barzilay and
McKeown, 2001) gets a very high precision (around
90%) on valid paraphrases as judged by humans,
among which 35% are synonymy relations in Word-
net, 32% are hypernyms, 18% are coordinate terms.
Discriminating among the paraphrases types is not
addressed. Other approaches usually consider either
given sets of synonyms among which one is to be
chosen (for a translation for instance) (Edmonds and
Hirst, 2002) or must choose a synonym word against
unrelated terms in the context of a synonymy test
(Freitag et al., 2005), a seemingly easier task than
actually proposing synonyms. (Lin, 1998) proposes
a different methodology for evaluation of candidate
synonyms, by comparing similarity measures of the
terms he provides with the similarity measures be-
tween them in Wordnet, using various semantic dis-
tances. This makes for very complex evaluation pro-
cedures without an intuitive interpretation, and there
is no assessment of the quality of the automated the-
saurus.

6 Conclusion

We have developed a general method to extract near-
synonyms from a dictionary, improving on the two
baselines. There is some arbitrariness in the param-
eters we used, but we believe the parameters are
rather intuitive wrt to graph concepts.7 There is
room for improvement obviously, also for a combi-
nation with other methods to filter synonyms (with
frequency estimates for instance, such as tf.idf or
mutual information measures).

Clearly the advantage of using a dictionary is re-
tained: there is no restriction of coverage, and we
could have used a specialised dictionary to build a
specialised thesaurus. We have provided an assess-
ment of the quality of the results, although there
is not much to compare it to (to the best of our
knowledge), since previous accounts only had cur-
sory evaluation.

7The lexical graph can be explored at http://prox.irit.fr.
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Abstract 

We introduce Chinese Whispers, a 
randomized graph-clustering algorithm, 
which is time-linear in the number of 
edges. After a detailed definition of the 
algorithm and a discussion of its strengths 
and weaknesses, the performance of 
Chinese Whispers is measured on Natural 
Language Processing (NLP) problems as 
diverse as language separation, 
acquisition of syntactic word classes and 
word sense disambiguation. At this, the 
fact is employed that the small-world 
property holds for many graphs in NLP.  

1 Introduction 

Clustering is the process of grouping together 
objects based on their similarity to each other. In 
the field of Natural Language Processing (NLP), 
there are a variety of applications for clustering. 
The most popular ones are document clustering in 
applications related to retrieval and word clustering 
for finding sets of similar words or concept 
hierarchies.   

Traditionally, language objects are 
characterized by a feature vector. These feature 
vectors can be interpreted as points in a 
multidimensional space. The clustering uses a 
distance metric, e.g. the cosine of the angle 
between two such vectors. As in NLP there are 
often several thousand features, of which only a 
few correlate with each other at a time – think 
about the number of different words as opposed to 
the number of words occurring in a sentence – 
dimensionality reduction techniques can greatly 

reduce complexity without considerably losing 
accuracy.  

An alternative representation that does not deal 
with dimensions in space is the graph 

representation. A graph represents objects (as 
nodes) and their relations (as edges). In NLP, there 
are a variety of structures that can be naturally 
represented as graphs, e.g. lexical-semantic word 
nets, dependency trees, co-occurrence graphs and 
hyperlinked documents, just to name a few. 

Clustering graphs is a somewhat different task 
than clustering objects in a multidimensional 
space: There is no distance metric; the similarity 
between objects is encoded in the edges. Objects 
that do not share an edge cannot be compared, 
which gives rise to optimization techniques. There 
is no centroid or ‘average cluster member’ in a 
graph, permitting centroid-based techniques. 

As data sets in NLP are usually large, there is a 
strong need for efficient methods, i.e. of low 
computational complexities. In this paper, a very 
efficient graph-clustering algorithm is introduced 
that is capable of partitioning very large graphs in 
comparatively short time. Especially for small-
world graphs (Watts, 1999), high performance is 
reached in quality and speed. After explaining the 
algorithm in the next section, experiments with 
synthetic graphs are reported in section 3. These 
give an insight about the algorithm’s performance. 
In section 4, experiments on three NLP tasks are 
reported, section 5 concludes by discussing 
extensions and further application areas. 

2 Chinese Whispers Algorithm 

In this section, the Chinese Whispers (CW) 
algorithm is outlined. After recalling important 
concepts from Graph Theory (cf. Bollobás 1998), 
we describe two views on the algorithm. The 
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second view is used to relate CW to another graph 
clustering algorithm, namely MCL (van Dongen, 
2000). 

We use the following notation throughout this 
paper: Let G=(V,E) be a weighted graph with 
nodes (vi)∈V and weighted edges (vi, vj, wij) ∈E 
with weight wij. If (vi, vj, wij)∈E implies (vj, vi, 
wij)∈E, then the graph is undirected. If all weights 
are 1, G is called unweighted.  

The degree of a node is the number of edges a 
node takes part in. The neighborhood of a node v 
is defined by the set of all nodes v’ such that 
(v,v’,w)∈E or (v’,v,w)∈E; it consists of all nodes 
that are connected to v.  

The adjacency matrix AG of a graph G with n 
nodes is an n×n matrix where the entry aij denotes 
the weight of the edge between vi and vj , 0 
otherwise. 
The class matrix DG of a Graph G with n nodes is 
an n×n matrix where rows represent nodes and 
columns represent classes (ci)∈C. The value dij at 
row i and column j represents the amount of vi as 
belonging to a class cj. For convention, class 
matrices are row-normalized; the i-th row denotes 
a distribution of vi over C. If all rows have exactly 
one non-zero entry with value 1, DG denotes a hard 

partitioning of V, soft partitioning otherwise. 

2.1 Chinese Whispers algorithm 

CW is a very basic – yet effective – algorithm to 
partition the nodes of weighted, undirected graphs. 
It is motivated by the eponymous children’s game, 
where children whisper words to each other. While 
the game’s goal is to arrive at some funny 
derivative of the original message by passing it 
through several noisy channels, the CW algorithm 
aims at finding groups of nodes that broadcast the 
same message to their neighbors. It can be viewed 
as a simulation of an agent-based social network; 
for an overview of this field, see (Amblard 2002).  

The algorithm is outlined in figure 1: 

 

initialize:  

 forall vi in V: class(vi)=i; 

 

while changes: 

 forall v in V, randomized order: 

 class(v)=highest ranked class  

            in neighborhood of v; 

Figure 1: The Chinese Whispers algorithm 
 

Intuitively, the algorithm works as follows in a 
bottom-up fashion: First, all nodes get different 
classes. Then the nodes are processed for a small 
number of iterations and inherit the strongest class 
in the local neighborhood. This is the class whose 
sum of edge weights to the current node is 
maximal. In case of multiple strongest classes, one 
is chosen randomly. Regions of the same class 
stabilize during the iteration and grow until they 
reach the border of a stable region of another class. 
Note that classes are updated immediately: a node 
can obtain classes from the neighborhood that were 
introduced there in the same iteration.  

Figure 2 illustrates how a small unweighted 
graph is clustered into two regions in three 
iterations. Different classes are symbolized by 
different shades of grey.  

 

 

 
Figure 2: Clustering an 11-nodes graph with CW in 
two iterations 
 

It is possible to introduce a random mutation 
rate that assigns new classes with a probability 
decreasing in the number of iterations as described 
in (Biemann & Teresniak 2005). This showed 
having positive effects for small graphs because of 
slower convergence in early iterations.  

The CW algorithm cannot cross component 
boundaries, because there are no edges between 
nodes belonging to different components. Further, 
nodes that are not connected by any edge are 
discarded from the clustering process, which 
possibly leaves a portion of nodes unclustered.  

Formally, CW does not converge, as figure 3 
exemplifies: here, the middle node’s neighborhood 

0. 

1. 

2. 
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consists of a tie which can be decided in assigning 
the class of the left or the class of the right nodes in 
any iteration all over again. Ties, however, do not 
play a major role in weighted graphs. 

 
Figure 3: The middle node gets the grey or the 
black class. Small numbers denote edge weights.   

 
Apart from ties, the classes usually do not 

change any more after a handful of iterations. The 
number of iterations depends on the diameter of 
the graph: the larger the distance between two 
nodes is, the more iterations it takes to percolate 
information from one to another. 

The result of CW is a hard partitioning of the 
given graph into a number of partitions that 
emerges in the process – CW is parameter-free. It 
is possible to obtain a soft partitioning by assigning 
a class distribution to each node, based on the 
weighted distribution of (hard) classes in its 
neighborhood in a final step. 

The outcomes of CW resemble those of Min-

Cut (Wu & Leahy 1993): Dense regions in the 
graph are grouped into one cluster while sparsely 
connected regions are separated. In contrast to 
Min-Cut, CW does not find an optimal hierarchical 
clustering but yields a non-hierarchical (flat) 
partition. Furthermore, it does not require any 
threshold as input parameter and is more efficient. 

Another algorithm that uses only local contexts 
for time-linear clustering is DBSCAN as, described 
in (Ester et al. 1996), needing two input parameters 
(although the authors propose an interactive 
approach to determine them). DBSCAN is 
especially suited for graphs with a geometrical 
interpretation, i.e. the objects have coordinates in a 
multidimensional space. A quite similar algorithm 
to CW is MAJORCLUST (Stein & Niggemann 
1996), which is based on a comparable idea but 
converges slower. 

2.2 Chinese Whispers as matrix operation 

As CW is a special case of Markov-Chain-
Clustering (MCL) (van Dongen, 2000), we spend a 
few words on explaining it. MCL is the parallel 
simulation of all possible random walks up to a 

finite length on a graph G. The idea is that random 
walkers are more likely to end up in the same 
cluster where they started than walking across 
clusters. MCL simulates flow on a graph by 
repeatedly updating transition probabilities 
between all nodes, eventually converging to a 
transition matrix after k steps that can be 
interpreted as a clustering of G. This is achieved by 
alternating an expansion step and an inflation step. 
The expansion step is a matrix multiplication of 
MG with the current transition matrix. The inflation 
step is a column-wise non-linear operator that 
increases the contrast between small and large 
transition probabilities and normalizes the column-
wise sums to 1. The k matrix multiplications of the 
expansion step of MCL lead to its time-complexity 
of O(k⋅n²).  

It has been observed in (van Dongen, 2000), 
that only the first couple of iterations operate on 
dense matrices – when using a strong inflation 
operator, matrices in the later steps tend to be 
sparse. The author further discusses pruning 
schemes that keep only some of the largest entries 
per column, leading to drastic optimization 
possibilities. But the most aggressive sort of 
pruning is not considered: only keeping one single 
largest entry. Exactly this is conducted in the basic 
CW process. Let maxrow(.) be an operator that 
operates row-wise on a matrix and sets all entries 
of a row to zero except the largest entry, which is 
set to 1. Then the algorithm is denoted as simple as 
this: 
 

D
0
 = In 

for t=1 to iterations 

 D
t-1 

= maxrow(D
t-1
) 

 D
t
  = D

t-1
AG  

Figure 4: Matrix Chinese Whispers process. t is 
time step, In is the identity matrix of size n×n, AG is 
the adjacency matrix of graph G. 

 
By applying maxrow(.), Dt-1 has exactly n 

non-zero entries. This causes the time-complexity 
to be dependent on the number of edges, namely 
O(k⋅|E|). In the worst case of a fully connected 
graph, this equals the time-complexity of MCL.  

A problem with the matrix CW process is that it 
does not necessarily converge to an iteration-
invariant class matrix D, but rather to a pair of 
oscillating class matrices. Figure 5 shows an 
example.  

 1 

 1  1 

 1 

 2  2 
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Figure 5: oscillating states in matrix CW for an 
unweighted graph 

 
This is caused by the stepwise update of the 

class matrix. As opposed to this, the CW algorithm 
as outlined in figure 1 continuously updates D after 
the processing of each node. To avoid these 
oscillations, one of the following measures can be 
taken: 
• Random mutation: with some probability, the 

maxrow-operator places the 1 for an otherwise 
unused class 

• Keep class: with some probability, the row is 
copied from Dt-1 to Dt 

• Continuous update (equivalent to CW as 
described in section 2.1.) 

While converging to the same limits, the 
continuous update strategy converges the fastest 
because prominent classes are spread much faster 
in early iterations.  

3 Experiments with synthetic graphs 

The analysis of the CW process is difficult due to 
its nonlinear nature. Its run-time complexity 
indicates that it cannot directly optimize most 
global graph cluster measures because of their NP-
completeness (Šíma and Schaeffer, 2005). 
Therefore we perform experiments on synthetic 
graphs to empirically arrive at an impression of our 
algorithm's abilities. All experiments were 
conducted with an implementation following 
figure 1. For experiments with synthetic graphs, 
we restrict ourselves to unweighted graphs, if not 
stated explicitly. 

3.1 Bi-partite cliques 

A cluster algorithm should keep dense regions 
together while cutting apart regions that are 
sparsely connected. The highest density is reached 
in fully connected sub-graphs of n nodes, a.k.a. n-

cliques. We define an n-bipartite-clique as a graph 
of two n-cliques, which are connected such that 
each node has exactly one edge going to the clique 
it, does not belong to.  

Figures 5 and 6 are n-partite cliques for n=4,10. 

 
Figure 6: The 10-bipartite clique. 

  
We clearly expect a clustering algorithm to cut 

the two cliques apart. As we operate on 
unweighted graphs, however, CW is left with two 
choices: producing two clusters or grouping all 
nodes into one cluster. This is largely dependent on 
the random choices in very early iterations - if the 
same class is assigned to several nodes in both 
cliques, it will finally cover the whole graph.  
Figure 7 illustrates on what rate this happens on n-
bipartite-cliques for varying n. 

 
Figure 7: Percentage of obtaining two clusters 
when applying CW on n-bipartite cliques 

 
It is clearly a drawback that the outcome of CW 

is non-deterministic. Only half of the experiments 
with 4-bipartite cliques resulted in separation. 
However, the problem is most dramatic on small 
graphs and ceases to exist for larger graphs as 
demonstrated in figure 7. 

3.2 Small world graphs 

A structure that has been reported to occur in an 
enormous number of natural systems is the small 

world (SW) graph. Space prohibits an in-depth 
discussion, which can be found in (Watts 1999). 
Here, we restrict ourselves to SW-graphs in 
language data. In (Ferrer-i-Cancho and Sole, 
2001), co-occurrence graphs as used in the 
experiment section are reported to possess the 
small world property, i.e. a high clustering co-
efficient and short average path length between 
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arbitrary nodes. Steyvers and Tenenbaum (2005) 
show that association networks as well as semantic 
resources are scale-free SW-graphs: their degree 
distribution follows a power law.  A generative 
model is provided that generates undirected, scale-
free SW-graphs in the following way: We start 
with a small number of fully connected nodes. 
When adding a new node, an existing node v is 
chosen with a probability according to its degree. 
The new node is connected to M nodes in the 
neighborhood of v. The generative model is 
parameterized by the number of nodes n and the 
network's mean connectivity, which approaches 
2M for large n. 

Let us assume that we deal with natural systems 
that can be characterized by small world graphs. If 
two or more of those systems interfere, their 
graphs are joined by merging some nodes, 
retaining their edges. A graph-clustering algorithm 
should split up the resulting graph in its previous 
parts, at least if not too many nodes were merged.  

We conducted experiments to measure CW's 
performance on SW-graph mixtures: We generated 
graphs of various sizes, merged them by twos to a 
various extent and measured the amount of cases 
where clustering with CW leads to the 
reconstruction of the original parts. When 
generating SW-graphs with the Steyvers-
Tenenbaum model, we fixed M to 10 and varied n 
and the merge rate r, which is the fraction of nodes 
of the smaller graph that is merged with nodes of 
the larger graph.  

 
Figure 8: Rate of obtaining two clusters for mix-
tures of SW-graphs dependent on merge rate r.  

 
Figure 8 summarizes the results for equisized 

mixtures of 300, 3,000 and 30,000 nodes and 
mixtures of 300 with 30,000 nodes.   

It is not surprising that separating the two parts 
is more difficult for higher r. Results are not very 

sensitive to size and size ratio, indicating that CW 
is able to identify clusters even if they differ 
considerably in size – it even performs best at the 
skewed mixtures. At merge rates between 20% and 
30%, still more then half of the mixtures are 
separated correctly and can be found when 
averaging CW’s outcome over several runs.  

3.3 Speed issues 

As formally, the algorithm does not converge, it is 
important to define a stop criterion or to set the 
number of iterations. To show that only a few 
iterations are needed until almost-convergence, we 
measured the normalized Mutual Information 
(MI)1 between the clustering in the 50th iteration 
and the clusterings of earlier iterations. This was 
conducted for two unweighted SW-graphs with 
1,000 (1K) and 10,000 (10K) nodes, M=5 and a 
weighted 7-lingual co-occurrence graph (cf. 
section 4.1) with 22,805 nodes and 232,875 edges. 
Table 1 indicates that for unweighted graphs, 
changes are only small after 20-30 iterations. In 
iterations 40-50, the normalized MI-values do not 
improve any more. The weighted graph converges 
much faster due to fewer ties and reaches a stable 
plateau after only 6 iterations. 

 
Iter 1 2 3 5 10 20 30 40 49 

1K 1 8 13 20 37 58 90 90 91 
10K 6 27 46 64 79 90 93 95 96 
7ling 29 66 90 97 99.5 99.5 99.5 99.5 99.5 
Table 1: normalized Mutual Information values for 
three graphs and different iterations in %. 

4 NLP Experiments 

In this section, some experiments with graphs 
originating from natural language data are 
presented. First, we define the notion of co-
occurrence graphs, which are used in sections 4.1 
and 4.3: Two words co-occur if they can both be 
found in a certain unit of text, here a sentence. 
Employing a significance measure, we determine 
whether their co-occurrences are significant or 
random. In this case, we use the log-likelihood 
measure as described in (Dunning 1993). We use 
the words as nodes in the graph. The weight of an 

                                                           
1 defined for two random variables X and Y as (H(X)+H(Y)-
H(X,Y))/max(H(X),H(Y)) with H(X) entropy. A value of 0 
denotes indepenence, 1 is perfect congruence. 
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edge between two words is set to the significance 
value of their co-occurrence, if it exceeds a certain 
threshold. In the experiments, we used sig-
nificances from 15 on. The entirety of words that 
are involved in at least one edge together with 
these edges is called co-occurrence graph (cf. 
Biemann et al. 2004). 

In general, CW produces a large number of 
clusters on real-world graphs, of which the 
majority is very small. For most applications, it 
might be advisable to define a minimum cluster 
size or something alike. 

4.1 Language Separation 

This section shortly reviews the results of 
(Biemann and Teresniak, 2005), where CW was 
first described. The task was to separate a 
multilingual corpus by languages, assuming its 
tokenization in sentences.  

The co-occurrence graph of a multilingual 
corpus resembles the synthetic SW-graphs: Every 
language forms a separate co-occurrence graph, 
some words that are used in more than one 
language are members of several graphs, 
connecting them. By CW-partitioning, the graph is 
split into its monolingual parts. These parts are 
used as word lists for word-based language 
identification. (Biemann and Teresniak, 2005) 
report almost perfect performance on getting 7-
lingual corpora with equisized parts sorted apart as 
well as highly skewed mixtures of two languages.  

In the process, language-ambiguous words are 
assigned to only one language, which did not hurt 
performance due to the high redundancy of the 
task. However, it would have been possible to use 
the soft partitioning to acquire a distribution over 
languages for each word.  

4.2 Acquisition of Word Classes 

For the acquisition of word classes, we use a 
different graph: the second-order graph on 
neighboring co-occurrences. To set up the graph, a 
co-occurrence calculation is performed which 
yields significant word pairs based on their 
occurrence as immediate neighbors. This can be 
perceived as a bipartite graph, figure 9a gives a toy 
example. Note that if similar words occur in both 
parts, they form two distinct nodes. 

This graph is transformed into a second-order 
graph by comparing the number of common right 

and left neighbors for two words. The similarity 
(edge weight) between two words is the sum of 
common neighbors. Figure 9b depicts the second-
order graph derived from figure 9a and its 
partitioning by CW. The word-class-ambiguous 
word “drink” (to drink the drink) is responsible for 
all intra-cluster edges. The hypothesis here is that 
words sharing many neighbors should usually be 
observed with the same part-of-speech and get 
high weights in the second order graph. In figure 9, 
three clusters are obtained that correspond to 
different parts-of-speech (POS).  

 

   
      (a)             (b) 

Figure 9: Bi-partite neighboring co-occurrence 
graph (a) and second-order graph on neighboring 
co-occurrences (b) clustered with CW. 

 
To test this on a large scale, we computed the 

second-order similarity graph for the British 
National Corpus (BNC), excluding the most 
frequent 2000 words and drawing edges between 
words if they shared at least four left and right 
neighbors. The clusters are checked against a 
lexicon that contains the most frequent tag for each 
word in the BNC. The largest clusters are 
presented in table 2 . 

 
size tags:count sample words 

18432 NN:17120 
AJ: 631 

secret, officials, transport, 
unemployment, farm, county, 
wood, procedure, grounds, ... 

4916 AJ: 4208 
V: 343 

busy, grey, tiny, thin, sufficient, 
attractive, vital, ... 

4192 V: 3784 
AJ: 286 

filled, revealed,  experienced, 
learned, pushed, occurred, ... 

3515 NP: 3198 
NN: 255 

White, Green, Jones, Hill, Brown, 
Lee, Lewis, Young, ... 

2211 NP: 1980 
NN: 174 

Ian, Alan, Martin, Tony, Prince, 
Chris, Brian, Harry, Andrew, 

 1 

 1 

 1  1 

 2 

 2 

 4 

 2 

 2 

 1 
1 

 1 
1 

 1 

1 

left right 
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Christ, Steve, ... 
1855 NP: 1670 

NN: 148  
Central, Leeds, Manchester, 
Australia,  Yorkshire, Belfast, 
Glasgow, Middlesbrough,  ... 

Table 2: the largest clusters from partitioning the 
second order graph with CW. 

 
In total, CW produced 282 clusters, of which 26 

exceed a size of 100. The weighted average of 
cluster purity (i.e. the number of predominant tags 
divided by cluster size) was measured at 88.8%, 
which exceeds significantly the precision of 53% 
on word type as reported by Schütze (1995) on a 
related task. How to use this kind of word clusters 
to improve the accuracy of POS-taggers is outlined 
in (Ushioda, 1996).  

4.3 Word Sense Induction 

The task of word sense induction (WSI) is to find 
the different senses of a word. The number of 
senses is not known in advance, therefore has to be 
determined by the method.  

Similar to the approach as presented in (Dorow 
and Widdows, 2003) we construct a word graph. 
While there, edges between words are drawn iff 
words co-occur in enumerations, we use the co-
occurrence graph. Dorow and Widdows construct a 
graph for a target word w by taking the sub-graph 
induced by the neighborhood of w (without w) and 
clustering it with MCL. We replace MCL by CW. 
The clusters are interpreted as representations of 
word senses.  

To judge results, the methodology of (Bordag, 
2006) is adopted: To evaluate word sense 
induction, two sub-graphs induced by the 
neighborhood of different words are merged. The 
algorithm's ability to separate the merged graph 
into its previous parts can be measured in an 
unsupervised way. Bordag defines four measures:  

• retrieval precision (rP): similarity of the 
found sense with the gold standard sense 

• retrieval recall (rR): amount of words that 
have been correctly assigned to the gold 
standard sense 

• precision (P): fraction of correctly found 
disambiguations 

• recall (R): fraction of correctly found 
senses 

We used the same program to compute co-
occurrences on the same corpus (the BNC). 
Therefore it is possible to directly compare our 

results to Bordag’s, who uses a triplet-based 
hierarchical graph clustering approach. The 
method was chosen because of its appropriateness 
for unlabelled data: without linguistic pre-
processing like tagging or parsing, only the 
disambiguation mechanism is measured and not 
the quality of the preprocessing steps. We provide 
scores for his test 1 (word classes separately) and 
test 3 (words of different frequency bands). Data 
was obtained from BNC's raw text; evaluation was 
performed for 45 test words. 

 
% (Bordag, 2006) Chinese Whispers 

POS P R rP rR P R rP rR 

N 87.0 86.7 90.9 64.2 90.0 79.5 94.8 71.3 

V 78.3 64.3 80.2 55.2 77.6 67.1 87.3 57.9 

A 88.6 71.0 88.0 65.4 92.2 61.9 89.3 71.9 

Table 3: Disambiguation results in % dependent on 
word class (nouns, verbs, adjectives)  
 
% (Bordag, 2006) Chinese Whispers 

freq P R rP rR P R rP rR 

high 93.7 78.1 90.3 80.7 93.7 72.9 95.0 73.8 
med 84.6 85.2 89.9 54.6 80.7 83.8 91.0 55.7 

low 74.8 49.5 71.0 41.7 74.1 51.4 72.9 56.2 

Table 4: Disambiguation results in % dependent on 
frequency 

 
Results (tables 3 and 4) suggest that both 

algorithms arrive at about equal overall 
performance (P and R). Chinese Whispers 
clustering is able to capture the same information 
as a specialized graph-clustering algorithm for 
WSI, given the same input. The slightly superior 
performance on rR and rP indicates that CW leaves 
fewer words unclustered, which can be 
advantageous when using the clusters as clues in 
word sense disambiguation. 

5 Conclusion 

Chinese Whispers, an efficient graph-clustering 
algorithm was presented and described in theory 
and practice. Experiments with synthetic graphs 
showed that for small graphs, results can be 
inconclusive due to its non-deterministic nature. 
But while there exist plethora of clustering 
approaches that can deal well with small graphs, 
the power of CW lies in its capability of handling 
very large graphs in reasonable time. The 
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application field of CW rather lies in size regions, 
where other approaches’ solutions are intractable.  

On the NLP data discussed, CW performs 
equally or better than other clustering algorithms. 
As CW – like other graph clustering algorithms – 
chooses the number of classes on its own and can 
handle clusters of different sizes, it is especially 
suited for NLP problems, where class distributions 
are often highly skewed and the number of classes 
(e.g. in WSI) is not known beforehand. 

To relate the partitions, it is possible to set up a 
hierarchical version of CW in the following way: 
The nodes of equal class are joined to hyper-nodes. 
Edge weights between hyper-nodes are set 
according to the number of inter-class edges 
between the corresponding nodes. This results in 
flat hierarchies.  

In further works it is planned to apply CW to 
other graphs, such as the co-citation graph of 
Citeseer, the co-citation graph of web pages and 
the link structure of Wikipedia.  
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Abstract

We present a graph-matching algorithm
for semantic relation assignment. The al-
gorithm is part of an interactive text analy-
sis system. The system automatically ex-
tracts pairs of syntactic units from a text
and assigns a semantic relation to each
pair. This is an incremental learning algo-
rithm, in which previously processed pairs
and user feedback guide the process. Af-
ter each assignment, the system adds to its
database a syntactic-semantic graph cen-
tered on the main element of each pair of
units. A graph consists of the main unit
and all syntactic units with which it is syn-
tactically connected. An edge contains in-
formation both about syntax and about se-
mantic relations for use in further process-
ing. Syntactic-semantic graph matching is
used to produce a list of candidate assign-
ments for 63.75% of the pairs analysed,
and in 57% of situations the correct rela-
tions is one of the system’s suggestions;
in 19.6% of situations it suggests only the
correct relation.

1 Introduction
When analysing texts, it is essential to see how el-
ements of meaning are interconnected. This is an
old idea. The first chronicled endeavour to con-
nect text elements and organise connections between
them goes back to the 5th century B.C. and the work
of Panini1. He was a grammarian who analysed San-
skrit (Misra, 1966). The idea resurfaced forcefully
at several points in the more recent history of lin-
guistic research (Tesnière, 1959; Gruber, 1965; Fill-
more, 1968). Now it has the attention of many re-
searchers in natural language processing, as shown
by recent research in semantic parsing and semantic

1The sources date his work variously between the 5th and
7th century.

role labelling (Baker et al., 1998; Kipper et al., 2000;
Carreras and Marquez, 2004; Carreras and Marquez,
2005; Atserias et al., 2001; Shi and Mihalcea, 2005).

Graph-like structures are a natural way of or-
ganising one’s impressions of a text seen from
the perspective of connections between its simpler
constituents of varying granularity, from sections
through paragraphs, sentences, clauses, phrases,
words to morphemes.

In this work we pursue a well-known and of-
ten tacitly assumed line of thinking: connections at
the syntactic level reflect connections at the seman-
tic level (in other words, syntax carries meaning).
Anecdotal support for this stance comes from the
fact that the grammatical notion of case is the basis
for semantic relations (Misra, 1966; Gruber, 1965;
Fillmore, 1968). Tesnière (1959), who proposes a
grouping of verb arguments into actants and circum-
stances, gives a set of rules to connect specific types
of actants – for example, agent or instrument – to
such grammatical elements as subject, direct object,
indirect object. This idea was expanded to include
nouns and their modifiers through verb nominaliza-
tions (Chomsky, 1970; Quirk et al., 1985).

We work with sentences, clauses, phrases and
words, using syntactic structures generated by a
parser. Our system incrementally processes a text,
and extracts pairs of text units: two clauses, a verb
and each of its arguments, a noun and each of its
modifiers. For each pair of units, the system builds a
syntactic graph surrounding the main element (main
clause, head verb, head noun). It then tries to find
among the previously processed instances another
main element with a matching syntactic graph. If
such a graph is found, then the system maps pre-
viously assigned semantic relations onto the current
syntactic graph. We have a list of 47 relations that
manifest themselves in compound clauses, inside a
simple clause or in noun phrases. The list, a syn-
thesis of a number of relation lists cited in the lit-
erature, has been designed to be general, domain-
independent (Barker et al., 1997a).

Section 2 overviews research in semantic relation
analysis. Section 3 describes the text we used in ex-
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periments, and the semantic relation list. Section 4
looks in detail at the graph-matching heuristic. Sec-
tion 5 describes the experimental setting and shows
how often the heuristic was used when processing
the input text. We show in detail our findings about
syntactic levels (how often graph matching helped
assign a relation between two clauses, a verb and its
arguments, or a noun and its modifier) and about the
accuracy of the suggestion. Discussion and conclu-
sions appear in Section 6.

2 Related Work

Some methods of semantic relation analysis rely on
predefined templates filled with information from
processed texts (Baker et al., 1998). In other meth-
ods, lexical resources are specifically tailored to
meet the requirements of the domain (Rosario and
Hearst, 2001) or the system (Gomez, 1998). Such
systems extract information from some types of syn-
tactic units (clauses in (Fillmore and Atkins, 1998;
Gildea and Jurafsky, 2002; Hull and Gomez, 1996);
noun phrases in (Hull and Gomez, 1996; Rosario et
al., 2002)). Lists of semantic relations are designed
to capture salient domain information.

In the Rapid Knowledge Formation Project (RKF)
a support system was developed for domain experts.
It helps them build complex knowledge bases by
combining components: events, entities and modi-
fiers (Clark and Porter, 1997). The system’s inter-
face facilitates the expert’s task of creating and ma-
nipulating structures which represent domain con-
cepts, and assigning them relations from a relation
dictionary.

In current work on semantic relation analysis, the
focus is on semantic roles – relations between verbs
and their arguments. Most approaches rely on Verb-
Net (Kipper et al., 2000) and FrameNet (Baker et
al., 1998) to provide associations between verbs and
semantic roles, that are then mapped onto the cur-
rent instance, as shown by the systems competing in
semantic role labelling competitions (Carreras and
Marquez, 2004; Carreras and Marquez, 2005) and
also (Gildea and Jurafsky, 2002; Pradhan et al.,
2005; Shi and Mihalcea, 2005).

These systems share two ideas which make them
different from the approach presented here: they all
analyse verb-argument relations, and they all use
machine learning or probabilistic approaches (Prad-
han et al., 2005) to assign a label to a new instance.
Labelling every instance relies on the same previ-
ously encoded knowledge (see (Carreras and Mar-
quez, 2004; Carreras and Marquez, 2005) for an
overview of the systems in the semantic role la-
belling competitions from 2004 and 2005). Pradhan

et al. (2005) combine the outputs of multiple parsers
to extract reliable syntactic information, which is
translated into features for a machine learning ex-
periment in assigning semantic roles.

Our system analyses incrementally pairs of units
coming from three syntactic levels – clause (CL),
intra-clause (or verb-argument, IC), noun-phrase
(NP). There are no training and testing data sets. In-
stead of using previously built resources, the system
relies on previously processed examples to find the
most appropriate relation for a current pair. Because
the system does not rely on previously processed
or annotated data, it is flexible. It allows the user
to customize the process for a specific domain by
choosing the syntactic units of interest and her own
list of relations that best fit the domain.

It is also interesting to assess, using the current
system configuration, the effect of syntactic infor-
mation and incremental learning on semantic analy-
sis. This is described in section 5.

Because of these differences in the type of data
used, and in the learning approach, the results we
obtain cannot be compared to previous approaches.
In order to show that the system does learn, we show
that the number of examples for which it provides
the correct answer increases with the number of ex-
amples previously analysed.

3 Input data and semantic relations

3.1 Input data
We work with a semi-technical text on meteorolog-
ical phenomena (Larrick, 1961), meant for primary
school students. The text gradually introduces con-
cepts related to precipitation, and explains them. Its
nature makes it appropriate for the semantic analy-
sis task in an incremental approach. The system will
mimic the way in which a human reader accumu-
lates knowledge and uses what was written before to
process ideas introduced later in the text.

The text contains 513 sentences, with an average
length of 9.13 words. There are 4686 word tokens
and 969 types. The difference between the num-
ber of types (2850) and tokens (573) in the extracted
pairs (which contain only open-class words) shows
that the same concepts recur, as expected in a didac-
tic text.

The syntactic structures of the input data are
produced by a parser with good coverage and de-
tailed syntactic information, DIPETT (Delisle and
Szpakowicz, 1995). The parser, written in Prolog,
implements a classic constituency English grammar
from Quirk et al. (1985). Pairs of syntactic units
connected by grammatical relations are extracted
from the parse trees. A dependency parser would
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produce a similar output, but DIPETT also provides
verb subcategorization information (such as, for ex-
ample, subject-verb-object or subject-verb-object-
indirect object), which we use to select the (best)
matching syntactic structures.

To find pairs, we use simple structural informa-
tion. If a unit is directly embedded in another unit,
we assume a subordinate relation between them; if
the two units are coordinate, we assume a coordinate
relation. These assumptions are safe if the parse is
correct. A modifier is subordinate to its head noun,
an argument to its head verb, and a clause perhaps to
the main clause in the sentence.

If we conclude that two units should interact, we
seek an appropriate semantic relation to describe this
interaction. The system uses three heuristics to find
one or more semantic relation candidates for the cur-
rent pair.

1. Word match – the system will propose the se-
mantic relation(s) that have previously been as-
signed to a pair containing the same lemmas.

2. Syntactic graph match – we elaborate this
heuristic in Section 4.

3. Marker – the system uses a manually built dic-
tionary of markers (prepositions, coordinators,
subordinators) associated with the semantic re-
lations they indicate. The dictionary contains
325 markers, and a total of 662 marker-relation
associations.

If neither of the three heuristics yield results, the
system will present an empty list, and expect the user
to input the appropriate relation. When at least one
relation is proposed, the user can accept a unique
relation, choose among several options, or supply
a new one. The system records which action took
place, as well as the heuristic that generated the op-
tions presented to the user. The pair is also analysed
to determine the syntactic level from which it came,
to allow for a more detailed analysis of the behaviour
of the system.

3.2 Semantic relations
The list of semantic relations with which we work
is based on extensive literature study (Barker et al.,
1997a). Three lists of relations for three syntactic
levels – inter-clause, intra-clause (case) and noun-
modifier relations – were next combined based on
syntactic and semantic phenomena. The resulting
list is the one used in the experiments we present
in this paper. The relations are grouped by general
similarity into 6 relation classes (H denotes the head
of a base NP, M denotes the modifier).

1. CAUSAL groups relations enabling or oppos-
ing an occurrence. Examples:

cause - H causes M: flu virus;
effect - H is the effect (was caused by) M:

exam anxiety;
purpose - H is for M: concert hall;

2. CONJUNCTIVE includes relations that describe
the conjunction or disjunction of occurrences
(events/act/actions/states/activities), entities or
attributes:

conjunction - both H and M occur or exist
(and nothing more can be said about that
from the point of view of causality or
temporality): running and swimming (are
good for you);

disjunction - either one or both H and M occur
or exist: painting or drawing;

3. PARTICIPANT groups relations between an oc-
currence and its participants or circumstances.
Examples:

agent - M performs H: student protest;
object - M is acted upon by H: metal separa-

tor;
beneficiary - M benefits from H: student dis-

count;

4. SPATIAL groups relations that place an occur-
rence at an absolute or relative point in space.
Examples:

direction - H is directed towards M: outgoing
mail;

location - H is the location of M: home town;
location at - H is located at M: desert storm;

5. TEMPORAL groups relations that place an oc-
currence at an absolute or relative point in time.
Examples:

frequency - H occurs every time M occurs:
weekly game;

time at - H occurs when M occurs: morning
coffee;

time through - H existed while M existed: 2-
hour trip;

6. QUALITY groups the remaining relations be-
tween a verb or noun and its arguments. Exam-
ples:

manner - H occurs as indicated by M: stylish
writing;
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material - H is made of M: brick house;
measure - M is a measure of H: heavy rock;

There is no consensus in the literature on a list of
semantic relations that would work in all situations.
This is, no doubt, because a general list of relations
such as the one we use would not be appropriate for
the semantic analysis of texts in a specific domain,
such as for example medical texts. All the relations
in the list we use were necessary, and sufficient, for
the analysis of the input text.

4 Syntactic-semantic graph-matching

Our system begins operation with a minimum of
manually encoded knowledge, and accumulates in-
formation as it processes the text. This design idea
was adopted from TANKA (Barker et al., 1997b).
The only manually encoded knowledge is a dictio-
nary of markers (subordinators, coordinators, prepo-
sitions). This resource does not affect the syntactic-
semantic graph-matching heuristic.

Because the system gradually accumulates
knowledge as it goes through the input text, it uses a
form of memory-based learning to make predictions
about the semantic relation that fits the current pair.
The type of knowledge that it accumulates consists
of previously analysed pairs, together with the
semantic relation assigned, and a syntactic-semantic
graph centered on each word in a sentence which
appears as the main element in a processed pair.

To process a pair P not encountered previously,
the system builds a graph centered on the main ele-
ment (often the head) of P . This idea was inspired
by Delisle et al. (1993), who used a list of argu-
ments surrounding the main verb together with the
verb’s subcategorization information and previously
processed examples to analyse semantic roles (case
relations). In recent approaches, syntactic informa-
tion is translated into features which, together with
information from FrameNet, WordNet or VerbNet,
will be used with ML tools to make predictions for
each example in the test set (Carreras and Marquez,
2004; Carreras and Marquez, 2005).

Our system builds a (simple) graph surrounding
a head word (which may be a verb – representing
the predicate of a sentence, or representing a clause
– or noun), and matches it with previously analysed
examples.

A graph G(w) centered on word w consists of
the following: a node for w; a set of nodes for
each of the words wi in the sentence with which w
is connected by a grammatical relation (including
situations when w is a modifier/argument); edges
that connect w with each wi, tagged with gram-

matical relation GR (such as subject, object, com-
plement) and connective information Con (preposi-
tions, coordinators, subordinators, or nil). The nodes
also contain part-of-speech information for the cor-
responding word, and other information from the
parser (such as subcategorization structure for the
verb, if it is available).

Graph matching starts with the central node, and
continues with edge matching. If G(w) is the graph
centered on word w whose pairs are currently being
processed, the system selects from the collection of
previously stored graphs, a set of graphs {G(wi)},
which satisfy the following conditions:

• The central nodes match. The matching is
guided by a set of contraints. We choose the
graphs centered on the nodes that satisfy the
most constraints, presented here in the order of
their importance:

– w and wi must have the same part of
speech.

– w and wi have the same syntactic proper-
ties. If w and wi are verbs, they must have
the same subcategorization structure.

– w and wi are the same lemma. We empha-
size that a graph centered on a different
lemma, but with the same subcategoriza-
tion structure is preferred to a graph with
the same lemma, but a different subcate-
gorization structure.

• The edge representing the word pair to which
we want to assign a semantic relation has a
match in G(wi). From all graphs that com-
ply with this constraint, the ones that have the
lowest distance – corresponding to the high-
est matching score – are chosen. The graphs
are matched edge by edge. Two edges match
if the grammatical relation and the connectives
match. Figure 1 shows the formula that com-
putes the distance between two graphs. We
note that edge matching uses only edge infor-
mation – grammatical and connective informa-
tion. Using the node information as is (lemmas
and their part of speech) is too restrictive. We
are looking into using word similarity as a so-
lution of node matching.

If no matching graph has been found, the system
searches for a simpler match, in which the current
word pair is matched against previously processed
pairs, using the same formula as for edge distance,
and preferring the pairs that have the same modifier.

This algorithm will retrieve the set of graphs
{G(wi)}, which give the same score when matched
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Definition of a graph centered on w:

G(w) = {wi, edge(w,wi) or edge(wi, w)|wiappears in sent. S, and is connected to w}

edge(w,wi) = {GRi, Coni} ; GRi ∈ {subject, object, complement, ...}
Coni ∈ {at, in, on,with, for, ...}

Distance metric between two graphs:

dist(G(w1), G(w2)) =
N
∑

k=1

d(edge1k , edge2k); edgeik ∈ G(wi), N is the number of edges in G(wi)

d(edge1k , edge2k)=d({GR1k , Con1k}, {GR2k , Con2k})
=d1(GR1k, GR2k) + d1(Con1k, Con2k)

d1(x, y) =

{

0 : x = y
1 : x 6= y

Figure 1: Distance between two graphs

with the current graph. The set of possible semantic
relations presented to the user consists of the seman-
tic relation on the edge of each G(wi) that matches
the edge (of the current graph) corresponding to the
word pair which we are analysing.

To the sentence:
When you breathe out on a cold day, you make a

cloud.

corresponds the following syntactic graph:

(compl,nil)
(subord,when)out (v, sv)

(compl,nil)

(v,svo)
breathe make

cold

day

you you

(su
bj,n

il)
(subj,nil)

(co
mpl,

on
)

cloud

When we focus on the graph centered on a spe-
cific word, such as breathe, we look only at the node
corresponding to the word breathe, and the nodes
adjacent to it.

To process a pair P = (wH , wM ), the system first
builds G(wH), and then searches through previously
stored graphs for those which have the same center
wH , or have the same part of speech as wH assigned

to its central node. For each graph found, we com-
pute a distance that gives a measure of the match
between the two graphs. The best match will have
the smallest distance.

For example, for the sentence:

Weathermen watch the clouds day and night.

the system builds the following network centered
on the predicate watch2:

cloudweatherman

watch
(v, svo)

(subj,nil)

(c
om

pl
,n

il)

day and night

(co
mpl,n

il)

The system locates among previously stored net-
works those centered around verbs3. For the sen-
tence above, the system uses the following graph,

2The nil value on the edges means that no preposition or
other connective explicitly links the two words or the corre-
sponding syntactic structures.

3If more detailed information is available, the system will
choose only networks associated with verbs that have the same
subcategorisation pattern (svo, svoi and so on).
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built from the immediately preceding sentence in the
text:

Air pilots know that clouds can bring rain, hail,
sleet and snow.

(v, svo)

(subj,nil)
know

air pilots bring

(co
mpl,n

il)
AGENT

OBJE
CT

According to the metric, the networks match and
the pairs (watch, weatherman) and (know, air pi-
lots) match, so the semantic relation for the pair
(know, air pilots) is proposed as a possible relation
for pair (watch, weatherman) .

5 Experiments

The system processes the 513 sentences interac-
tively. It begins by running the DIPETT parser.
Next, it extracts syntactic units (clauses, phrases,
words) and pairs them up according to the informa-
tion in the parse tree. Each unit is represented by
its head word. Next, the system checks if the same
pair of word lemmas has already been processed, to
propose the same relation(s) to the user as options.
If not, the system builds a graph centered on the
head word, and proceeds with the matching on pre-
viously encountered instances, as described in sec-
tion 4. When a set of candidates has been found, the
system goes through a dialogue with the user.

The system generated 2020 pairs from the 513
sentences. The experiment was run in 5 interactive
sessions of approximately 3 hours each. The total
net processing time was 6 hours, 42 minutes and 52
seconds4 . While it would have been instructive to
run the system several times with different users, it
was not feasible. The experiment was run once, with
two cooperating users. They were instructed on the
set of semantic relations, and told how the system
works. They discussed the semantic relation assign-
ment and, once agreed, compared the system’s sug-
gestion with their decision.

DIPETT did not produce a complete parse for all
sentences. When a complete parse (correct or incor-
rect) was not possible, DIPETT produced fragmen-
tary parses. The semantic analyser extracted units
even from tree fragments, although sometimes the
fragments were too small to accommodate any pairs.
Of the 513 input sentences, 441 had a parse tree that
allowed the system to extract pairs.

4The time difference accounts for system processing times,
and user interaction for other steps of the analysis.

# of analyzed examples 1475
level statistics CL IC NP

64 978 433
user actions accept choose supply

459 393 623
avg. # of suggestions 2.81
graph-matching usage 933
level/action statistics CL IC NP
accept 183 (19.61%) 9 141 33
choose 349 (37.41%) 23 314 12
supply 401 (42.98%) 27 316 58

Table 1: Summary of semantic analysis

Of 2020 pairs generated, the users discarded 545
in the dialogue step. An example of an erroneous
pair comes from the sentence:
Tiny clouds drift across like feathers on parade.
The semantic analyser produced the pair
(drift,parade), because of a parsing error: pa-
rade was parsed as a complement of drift, instead
of a post-modifier for feathers. The correct pairing
(feather,parade) is missing, because it cannot be
inferred from the parse tree.

Table 1 gives a summary of the processing statis-
tics. We observe that graph-matching was used to
process a clear majority of the total pairs extracted –
63.25% (933/1475) , leaving the remaining 36.75%
for the other two heuristics and for cases where no
suggestion could be made. In 57.02% of the situa-
tions when graph-matching was used, the system’s
suggestion contained the correct answer (user’s ac-
tion was either accept or choose), and in 19.61% of
the situations a single correct semantic relation was
proposed (user action was accept).

When the system presents multiple suggestions to
the user, including the correct one, the average num-
ber of suggestions is 3.75. The small number of
suggestions shows that the system does not simply
add to the list relations that it has previously encoun-
tered, but it learns from past experience and graph-
matching helps it make good selections. Figure 2
plots the difference between the number of exam-
ples for which the system gives the correct answer
(possibly among other suggestions) and the number
of examples when the user must supply the correct
relation, from the first example processed until the
end of the experiment. We observe a steady increase
in the number of correctly processed examples.

Our system does not differentiate between syntac-
tic levels, but based on the structures of the syntac-
tic units in each pair we can decide which syntactic
level it pertains to. For a more in-depth analysis, we
have separated the results for each syntactic level,
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Figure 2: Difference between the number of situa-
tions in which the user accepts or chooses from the
system’s suggestions, and when it must supply the
correct relation

and present them for comparison in Figure 3.
We observe that the intra-clause level – verbs

and their arguments – makes the best use of graph-
matching, with the curve showing the cumulative
number of situations in which the system makes cor-
rect predictions becoming steeper as more text is
processed. At the same time, the curve that plots the
cumulative number of cases in which the user has to
supply a correct answer begins to level off. As ex-
pected, at the noun-phrase level where the syntactic
structures are very simple, often consisting of only
the noun and its modifier (without even a connec-
tive), the graph-matching algorithm does not help as
much. At the inter-clause level the heuristic helps,
as shown by the marginally higher curve for cumula-
tive accept/choose user actions, compared to supply
actions.

6 Conclusions

We have shown through the results gathered from an
interactive and incremental text processing system
that syntactic-semantic graph-matching can be used
with good results for semantic analysis of texts. The
graph-matching heuristic clearly dominates other
heuristics used, and it learns to make better predic-
tions as more examples accumulate.

Graph-matching is most useful for assigning se-
mantic relations between verbs and their arguments,
but it also gives good results for inter-clause rela-
tions. At the noun-phrase level, we could only tackle
noun-modifier pairs that exhibit a modicum of syn-
tactic structure – a connective. For base NPs there
is practically nothing that syntactic information can
bring to the semantic analysis process.

The graph-matching process could be improved
by bringing into play freely available lexical re-
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3. Intra-clause level (IC)
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4. Noun phrase level
(NP)
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Figure 3: Graph-matching for different syntactic
levels
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sources. For now, the actual words in the graph
nodes are not used at all. We could use WordNet
to compute word similarities, to select closer match-
ing graphs. VerbNet or FrameNet information could
help choose graphs centered on verbs with simi-
lar syntactic behaviour, as captured by Levin’s verb
groups (Levin, 1993) which are the basis of VerbNet.
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Abstract

Véronis (2004) has recently proposed
an innovative unsupervised algorithm for
word sense disambiguation based on
small-world graphs calledHyperLex. This
paper explores two sides of the algorithm.
First, we extend Véronis’ work by opti-
mizing the free parameters (on a set of
words which is different to the target set).
Second, given that the empirical compar-
ison among unsupervised systems (and
with respect to supervised systems) is sel-
dom made, we used hand-tagged corpora
to map the induced senses to a standard
lexicon (WordNet) and a publicly avail-
able gold standard (Senseval 3 English
Lexical Sample). Our results for nouns
show that thanks to the optimization of
parameters and the mapping method, Hy-
perLex obtains results close to supervised
systems using the same kind of bag-of-
words features. Given the information
loss inherent in any mapping step and the
fact that the parameters were tuned for an-
other set of words, these are very interest-
ing results.

1 Introduction

Word sense disambiguation (WSD) is a key en-
abling technology. Supervised WSD techniques are
the best performing in public evaluations, but need
large amounts of hand-tagging data. Existing hand-
annotated corpora like SemCor (Miller et al., 1993),
which is annotated with WordNet senses (Fellbaum,

1998) allow for a small improvement over the simple
most frequent sense heuristic, as attested in the all-
words track of the last Senseval competition (Sny-
der and Palmer, 2004). In theory, larger amounts
of training data (SemCor has approx. 500M words)
would improve the performance of supervised WSD,
but no current project exists to provide such an ex-
pensive resource.

Supervised WSD is based on the “fixed-list of
senses” paradigm, where the senses for a target word
are a closed list coming from a dictionary or lex-
icon. Lexicographers and semanticists have long
warned about the problems of such an approach,
where senses are listed separately as discrete enti-
ties, and have argued in favor of more complex rep-
resentations, where, for instance, senses are dense
regions in a continuum (Cruse, 2000).

Unsupervised WSD has followed this line of
thinking, and tries to induce word senses directly
from the corpus. Typical unsupervised WSD sys-
tems involve clustering techniques, which group to-
gether similar examples. Given a set of induced
clusters (which represent worduses or senses1),
each new occurrence of the target word will be com-
pared to the clusters and the most similar cluster will
be selected as its sense.

Most of the unsupervised WSD work has been
based on the vector space model (Schütze, 1998;
Pantel and Lin, 2002; Purandare and Pedersen,
2004), where each example is represented by a vec-
tor of features (e.g. the words occurring in the
context). Recently, Véronis (Véronis, 2004) has

1Unsupervised WSD approaches prefer the term ’word uses’
to ’word senses’. In this paper we use them interchangeably to
refer to both the induced clusters, and to the word senses from
some reference lexicon.
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proposed HyperLex, an application of graph mod-
els to WSD based on the small-world properties
of cooccurrence graphs. Hand inspection of the
clusters (called hubs in this setting) by the author
was very positive, with hubs capturing the main
senses of the words. Besides, hand inspection of the
disambiguated occurrences yielded precisions over
95% (compared to a most frequent baseline of 73%)
which is an outstanding figure for WSD systems.

We noticed that HyperLex had some free param-
eters and had not been evaluated against a public
gold standard. Besides, we were struck by the few
works where supervised and unsupervised systems
were evaluated on the same test data. In this pa-
per we use an automatic method to map the induced
senses to WordNet using hand-tagged corpora, en-
abling the automatic evaluation against available
gold standards (Senseval 3 English Lexical Sam-
ple S3LS (Mihalcea et al., 2004)) and the automatic
optimization of the free parameters of the method.
The use of hand-tagged corpora for tagging makes
this algorithm a mixture of unsupervised and super-
vised: the method to induce senses in completely
unsupervised, but the mapping is supervised (albeit
very straightforward).

This paper is structured as follows. We first
present the graph-based algorithm as proposed by
Véronis, reviewing briefly the features of small-
world graphs. Section 3 presents our framework for
mapping and evaluating the induced hubs. Section 4
introduces parameter optimization. Section 5 shows
the experiment setting and results. Section 6 ana-
lyzes the results and presents related work. Finally,
we draw the conclusions and advance future work.

2 HyperLex

Before presenting the HyperLex algorithm itself, we
briefly introduce small-world graphs.

2.1 Small world graphs

The small-world nature of a graph can be explained
in terms of itsclustering coefficientandcharacteris-
tic path length. The clustering coefficient of a graph
shows the extent to which nodes tend to form con-
nected groups that have many edges connecting each
other in the group, and few edges leading out of
the group. On the other side, the characteristic path

length represents “closeness” in a graph. See (Watts
and Strogatz, 1998) for further details on these char-
acteristics.

Randomly built graphs exhibit low clustering co-
efficients and are believed to represent something
very close to the minimal possible average path
length, at least in expectation. Perfectly ordered
graphs, on the other side, show high clustering coef-
ficients but also high average path length. According
to Watts and Strogatz (1998), small-world graphs lie
between these two extremes: they exhibit high clus-
tering coefficients, but short average path lengths.

Barabasi and Albert (1999) use the term “scale-
free” to graphs whose degree probability follow a
power-law2. Specifically, scale free graphs follow
the property that the probabilityP (k) that a vertex
in the graph interacts withk other vertices decays as
a power-law, followingP (k) ∼ k−α. It turns out
that in this kind of graphs there exist nodes centrally
located and highly connected, calledhubs.

2.2 The HyperLex algorithm for WSD

The HyperLex algorithm builds a cooccurrence
graph for all pairs of words cooccurring in the con-
text of the target word. Véronis shows that this kind
of graph fulfills the properties of small world graphs,
and thus possess highly connected components in
the graph. The centers or prototypes of these com-
ponents, called hubs, eventually identify the main
word uses (senses) of the target word.

We will briefly introduce the algorithm here,
check (Véronis, 2004) for further details. For each
word to be disambiguated, a text corpus is collected,
consisting of the paragraphs where the word occurs.
From this corpus, a cooccurrence graph for the tar-
get word is built. Nodes in the graph correspond to
the words3 in the text (except the target word itself).
Two words appearing in the same paragraph are said
to cooccur, and are connected with edges. Each edge
is assigned with a weight which measures the rela-
tive frequency of the two words cooccurring. Specif-
ically, let wij be the weight of the edge4 connecting

2Although scale-free graphs are not necessarily small
worlds, a lot of real world networks are both scale-free and
small worlds.

3Following Véronis, we only work on nouns for the time
being.

4Note that the cooccurrence graph is undirected, i.e.wij =

wji
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nodesi andj, then

wij = 1 − max[P (i | j), P (j | i)]

P (i | j) =
freqij

freqj

and P (j | i) =
freqij

freqi

The weight of an edge measures how tightly con-
nected the two words are. Words which always oc-
cur together receive a weight of0. Words rarely
cooccurring receive weights close to1.

Once the cooccurrence graph is built, a simple it-
erative algorithm is executed to obtain its hubs. At
each step, the algorithm finds the vertex with high-
est relative frequency5 in the graph, and, if it meets
some criteria, it is selected as a hub. These criteria
are determined by a set of heuristic parameters, that
will be explained later in Section 4. After a vertex is
selected to be a hub, its neighbors are no longer eli-
gible as hub candidates. At any time, if the next ver-
tex candidate has a relative frequency below a cer-
tain threshold, the algorithm stops.

Once the hubs are selected, each of them is linked
to the target word with edges weighting0, and the
Minimum Spanning Tree(MST) of the whole graph
is calculated and stored.

The MST is then used to perform word sense dis-
ambiguation, in the following way. For every in-
stance of the target word, the words surrounding it
are examined and confronted with the MST. By con-
struction of the MST, words in it are placed under
exactly one hub. Each word in the context receives
a set of scoress, with one score per hub, where all
scores are0 except the one corresponding to the hub
where it is placed. If the scores are organized in a
score vector, all values are0, except, say, thei-th
component, which receives a scored(hi, v), which
is the distance between the hubhi and the node rep-
resenting the wordv. Thus,d(hi, v) assigns a score
of 1 to hubs and the score decreases as the nodes
move away from the hub in the tree.

For a given occurrence of the target word, the
score vectors of all the words in the context are
added, and the hub that receives the maximum score
is chosen.

5In cooccurrence graphs, the relative frequency of a vertex
and its degree are linearly related, and it is therefore possible to
avoid the costly computation of the degree.
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Figure 1: Design for the automatic mapping and evaluation
of HyperLex algorithm against a gold standard (test corpora).

3 Evaluating unsupervised WSD systems

All unsupervised WSD algorithms need some addi-
tion in order to be evaluated. One alternative, as in
(Véronis, 2004), is to manually decide the correct-
ness of the hubs assigned to each occurrence of the
words. This approach has two main disadvantages.
First, it is expensive to manually verify each occur-
rence of the word, and different runs of the algo-
rithm need to be evaluated in turn. Second, it is not
an easy task to manually decide if an occurrence of
a word effectively corresponds with the use of the
word the assigned hub refers to, especially consid-
ering that the person is given a short list of words
linked to the hub. We also think that instead of judg-
ing whether the hub returned by the algorithm is cor-
rect, the person should have independently tagged
the occurrence with hubs, which should have been
then compared to the hub returned by the system.

A second alternative is to evaluate the system ac-
cording to some performance in an application, e.g.
information retrieval (Schütze, 1998). This is a very
attractive idea, but requires expensive system devel-
opment and it is sometimes difficult to separate the
reasons for the good (or bad) performance.

A third alternative would be to devise a method
to map the hubs (clusters) returned by the system
to the senses in a lexicon. Pantel and Lin (2002)
automatically map the senses to WordNet, and then
measure the quality of the mapping. More recently,
the mapping has been used to test the system on
publicly available benchmarks (Purandare and Ped-

91



Default p180 p1800 p6700
value Range Best Range Best Range Best

p1 5 2-3 2 1-3 2 1-3 1
p2 10 3-4 3 2-4 3 2-4 3
p3 0.9 0.7-0.9 0.7 0.5-0.7 0.5 0.3-0.7 0.4
p4 4 4 4 4 4 4 4
p5 6 6-7 6 3-7 3 1-7 1
p6 0.8 0.5-0.8 0.6 0.4-0.8 0.7 0.6-0.95 0.95
p7 0.001 0.0005-0.001 0.0009 0.0005-0.001 0.0009 0.0009-0.003 0.001

Table 1:Parameters of the HyperLex algorithm

ersen, 2004; Niu et al., 2005). See Section 6 for
more details on these systems.

Yet another possibility is to evaluate the induced
senses against a gold standard as a clustering task.
Induced senses are clusters, gold standard senses are
classes, and measures from the clustering literature
like entropy or purity can be used. As we wanted to
focus on the comparison against a standard data-set,
we decided to leave aside this otherwise interesting
option.

In this section we present a framework for au-
tomatically evaluating unsupervised WSD systems
against publicly available hand-tagged corpora. The
framework uses three data sets, called Base corpus,
Mapping corpus and Test corpus:

• TheBase Corpus: a collection of examples of
the target word. The corpus is not annotated.

• TheMapping Corpus: a collection of examples
of the target word, where each corpus has been
manually annotated with its sense.

• TheTest Corpus: a separate collection, also an-
notated with senses.

The evaluation framework is depicted in Figure 1.
The first step is to execute the HyperLex algorithm
over theBase corpusin order to obtain the hubs of
a target word, and the generated MST is stored. As
stated before, theBase Corpusis not tagged, so the
building of the MST is completely unsupervised.

In a second step (left part in Figure 1), we assign a
hub score vector to each of the occurrences of target
word in theMapping corpus, using the MST calcu-
lated in the previous step (following the WSD al-
gorithm in Section 2.2). Using the hand-annotated
sense information, we can compute a mapping ma-
trix M that relates hubs and senses in the following
way. Suppose there arem hubs andn senses for the
target word. Then,M = {mij} 1 ≤ i ≤ m, 1 ≤
j ≤ n, and eachmij = P (sj |hi), that is,mij is the
probability of a word having sensej given that it has

been assigned hubi. This probability can be com-
puted counting the times an occurrence with sense
sj has been assigned hubhi.

This mapping matrix will be used to transform
any hub score vector̄h = (h1, . . . , hm) returned
by the WSD algorithm into a sense score vector
s̄ = (s1, . . . , sn). It suffices to multiply the score
vector byM , i.e., s̄ = h̄M .

In the last step (right part in Figure 1), we apply
the WSD algorithm over theTest corpus, using again
the MST generated in the first step, and returning a
hub score vector for each occurrence of the target
word in the test corpus. We then run theEvaluator,
which uses theM mapping matrix in order to con-
vert the hub score vector into a sense score vector.
The Evaluator then compares the sense with high-
est weight in the sense score vector to the sense that
was manually assigned, and outputs the precision
figures.

Preliminary experiments showed that, similar to
other unsupervised systems, HyperLex performs
better if it sees the test examples when building the
graph. We therefore decided to include a copy of the
training and test corpora in the base corpus (discard-
ing all hand-tagged sense information, of course).
Given the high efficiency of the algorithm this poses
no practical problem (see efficiency figures in Sec-
tion 6).

4 Tuning the parameters

As stated before, the behavior of the HyperLex algo-
rithm is influenced by a set of heuristic parameters,
that affect the way the cooccurrence graph is built,
the number of induced hubs, and the way they are
extracted from the graph. There are 7 parameters in
total:

p1 Minimum frequency of edges (occurrences)
p2 Minimum frequency of vertices (words)
p3 Edges with weights above this value are removed
p4 Context containing fewer words are not processed
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word train test MFS default p180 p1800 p6700
argument 221 111 51.4 51.4 51.4 51.4 51.4
arm 266 133 82.0 82.0 80.5 82.0 82.7
atmosphere 161 81 66.7 67.9 70.4 70.4 67.9
audience 200 100 67.0 69.0 71.0 74.0 77.0
bank 262 132 67.4 69.7 75.0 76.5 75.0
degree 256 128 60.9 60.9 60.9 62.5 63.3
difference 226 114 40.4 40.4 41.2 46.5 49.1
difficulty 46 23 17.4 30.4 30.4 39.1 26.1
disc 200 100 38.0 66.0 75.0 70.0 76.0
image 146 74 36.5 63.5 62.2 67.6 64.9
interest 185 93 41.9 49.5 41.9 47.3 51.6
judgment 62 32 28.1 28.1 28.1 53.1 50.0
organization 112 56 73.2 73.2 73.2 71.4 73.2
paper 232 117 25.6 42.7 39.3 47.9 53.8
party 230 116 62.1 67.2 64.7 65.5 67.2
performance 172 87 32.2 44.8 46.0 54.0 59.8
plan 166 84 82.1 81.0 79.8 81.0 83.3
shelter 196 98 44.9 45.9 49.0 48.0 54.1
sort 190 96 65.6 64.6 64.6 65.6 64.6
source 64 32 65.6 59.4 56.2 62.5 62.5

Average: 54.5 59.9 60.3 63.0 64.6
(Over S2LS) 51.9 56.2 57.5 58.7 60.0

Table 2:Precision figures for nouns over the test corpus (S3LS). The second and third columns show the number of occurrences
in the train and test splits. TheMFScolumn corresponds to the most frequent sense. The rest of columns correspond to different
parameter settings:default for the default setting,p180 for the best combination over180, etc.. The last rows show the micro-
average over the S3LS run, and we also add the results on the S2LS dataset (different sets of nouns) to confirm that the same trends
hold in both datasets.

p5 Minimum number of adjacent vertices a hub must have
p6 Max. mean weight of the adjacent vertices of a hub
p7 Minimum frequency of hubs

Table 1 lists the parameters of the HyperLex al-
gorithm, and the default values proposed for them in
the original work (second column).

Given that we have devised a method to efficiently
evaluate the performance of HyperLex, we are able
to tune the parameters against the gold standard. We
first set a range for each of the parameters, and eval-
uated the algorithm for each combination of the pa-
rameters on a collection of examples of different
words (Senseval 2 English lexical-sample, S2LS).
This ensures that the chosen parameter set is valid
for any noun, and is not overfitted to a small set of
nouns.6 The set of parameters that obtained the best
results in the S2LS run is then selected to be run
against the S3LS dataset.

We first devised ranges for parameters amounting
to 180 possible combinations (p180 column in Ta-
ble 2), and then extended the ranges to amount to
1800 and 6700 combinations (columns p1800 and
p6700).

6In fact, previous experiments showed that optimizing the
parameters for each word did not yield better results.

5 Experiment setting and results

To evaluate the HyperLex algorithm in a standard
benchmark, we applied it to the20 nouns in S3LS.
We use the standard training-test split. Following
the design in Section 3, we used both the training
and test sets as theBase Corpus(ignoring the sense
tags, of course). TheMapping Corpuscomprised
the training split only, and theTest corpusthe test
split only. The parameter tuning was done in a simi-
lar fashion, but on the S2LS dataset.

In Table 2 we can see the number of examples
of each word in the different corpus and the results
of the algorithm. We indicate only precision, as the
coverage is 100% in all cases. The left column,
namedMFS, shows the precision when always as-
signing the most frequent sense (relative to the train
split). This is the baseline of our algorithm as our
algorithm does see the tags in the mapping step (see
Section 6 for further comments on this issue).

Thedefaultcolumn shows the results for the Hy-
perLex algorithm with the default parameters as set
by Véronis, except for the minimum frequency of
the vertices (p2 in Table 1), which according to some
preliminary experiments we set to3. As we can see,
the algorithm with the default settings outperforms
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Figure 2: Dispersion plot of the parameter space for6700

combinations. The horizontal axis shows the similarity of apa-
rameter set w.r.t. the best parameter set using the cosine. The
vertical axis shows the precision in S2LS. The best fitting line
is also depicted.

the MFS baseline by5.4 points average, and in al-
most all words (exceptplan, sortandsource).

The results for the best of180 combinations of the
parameters improve the default setting (0.4 overall),
Extending the parameter space to1800 and6700 im-
proves the precision up to63.0 and64.6, 10.1 over
the MFS (MFS only outperforms HyperLex in the
best setting for two words). The same trend can be
seen on the S2LS dataset, where the gain was more
modest (note that the parameters were optimized for
S2LS).

6 Discussion and related work

We first comment the results, doing some analysis,
and then compare our results to those of Véronis. Fi-
nally we overview some relevant work and review
the results of unsupervised systems on the S3LS
benchmark.

6.1 Comments on the results

The results show clearly that our exploration of the
parameter space was successful, with the widest pa-
rameter space showing the best results.

In order to analyze whether the search in the pa-
rameter space was making any sense, we drew a dis-
persion plot (see Figure 2). In the top right-hand cor-
ner we have the point corresponding to the best per-
forming parameter set. If the parameters were not
conditioning the good results, then we would have
expected a random cloud of points. On the contrary,
we can see that there is a clear tendency for those

default p180 p1800 p6700
hubs defined 9.2±3.8 15.3±5.7 38.6±11.8 77.7±18.7

used 8.4±3.5 14.4±5.3 30.4±9.3 45.2±13.3
senses defined 5.4±1.5 5.4±1.5 5.4±1.5 5.4±1.5

used 2.6±1.2 2.5±1 3.1±1.1 3.2±1.2
senses in test 5.1±1.3 - - -

Table 3:Average number of hubs and senses (along with the
standard deviation) for three parameter settings. Defined means
the number of hubs induced, and used means the ones actually
returned by HyperLex when disambiguating the test set. The
same applies for senses, that is, defined means total number of
senses (equal for all columns), and used means the senses that
were actually used by HyperLex in the test set. The last row
shows the actual number of senses used by the hand-annotators
in the test set.

parameter sets most similar to the best one to obtain
better results, and in fact the best fitting line shows a
clearly ascending slope.

Regarding efficiency, our implementation of Hy-
perLex is extremely fast. Doing the1800 combina-
tions takes 2 hours in a 2 AMD Opteron processors
at 2GHz and 3Gb RAM. A single run (building the
MST, mapping and tagging the test sentences) takes
only 16 sec. For this reason, even if an on-line ver-
sion would be in principle desirable, we think that
this batch version is readily usable.

6.2 Comparison to (V́eronis, 2004)

Compared to Véronis we are inducing larger num-
bers of hubs (with different parameters), using less
examples to build the graphs and obtaining more
modest results (far from the 90’s). Regarding the lat-
ter, our results are in the range of other S3LS WSD
systems (see below), and the discrepancy can be ex-
plained by the way Véronis performed his evaluation
(see Section 3).

Table 3 shows the average number of hubs for
the four parameter settings. The average number
of hubs for the default setting is larger than that of
Véronis (which ranges between 4 and 9 per word),
but quite close to the average number of senses. The
exploration of the parameter space prefers parame-
ter settings with even larger number of hubs, and the
figures shows that most of them are actually used
for disambiguation. The table also shows that, after
the mapping, less than half of the senses are actu-
ally used, which seems to indicate that the mapping
tends to favor the most frequent senses.

Regarding the actual values of the parameters
used (c.f. Table 1), we had to reduce the value
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of some parameters (e.g. the minimum frequency
of vertices) due to the smaller number of of exam-
ples (Véronis used from 1900 to 8700 examples per
word). In theory, we could explore larger parame-
ter spaces, but Table 1 shoes that the best setting for
the 6700 combinations has no parameter in a range
boundary (exceptp5, which cannot be further re-
duced).

All in all, the best results are attained with smaller
and more numerous hubs, a kind of micro-senses.
A possible explanation for this discrepancy with
Véronis could be that he was inspecting by hand
the hubs that he got, and perhaps was biased by the
fact that he wanted the hubs to look more like stan-
dard senses. At first we were uncomfortable with
this behavior, so we checked whether HyperLex was
degenerating into a trivial solution. We simulated
a clustering algorithm returning one hub per exam-
ple, and its precision was40.1, well below the MFS
baseline. We also realized that our results are in
accordance with some theories of word meaning,
e.g. the “indefinitely large set of prototypes-within-
prototypes” envisioned in (Cruse, 2000). We now
think that the idea of having many micro-senses is
very attractive for further exploration, especially if
we are able to organize them into coarser hubs.

6.3 Comparison to related work

Table 4 shows the performance of different systems
on the nouns of the S3LS benchmark. When not re-
ported separately, we obtained the results for nouns
running the official scorer program on the filtered
results, as available in the S3LS web page. The sec-
ond column shows the type of system (supervised,
unsupervised).

We include three supervised systems, the winner
of S3LS (Mihalcea et al., 2004), an in-house system
(kNN-all, CITATION OMITTED) which uses opti-
mized kNN, and the same in-house system restricted
to bag-of-words features only (kNN-bow), i.e. dis-
carding other local features like bigrams or trigrams
(which is what most unsupervised systems do). The
table shows that we are one point from the bag-of-
words classifier kNN-bow, which is an impressive
result if we take into account the information loss of
the mapping step and that we tuned our parameters
on a different set of words. The full kNN system is
state-of-the-art, only 4 points below the S3LS win-

System Type Prec. Cov.
S3LS-best Sup. 74.9 0.99
kNN-all Sup. 70.3 1.0
kNN-bow Sup. 65.7 1.0
HyperLex Unsup(S3LS) 64.6 1.0
Cymfony Unsup(10%-S3LS) 57.9 1.0
Prob0 Unsup. (MFS-S3) 55.0 0.98
MFS - 51.5 1.0
Ciaosenso Unsup (MFS-Sc) 53.95 0.90
clr04 Unsup (MFS-Sc) 48.86 1.0
duluth-senserelate Unsup 47.48 1.0
(Purandare and
Pedersen, 2004)

Unsup (S2LS) - -

Table 4:Comparison of HyperLex and MFS baseline to S3LS
systems for nouns. The last system was evaluated on S2LS.

ner.

Table 4 also shows several unsupervised systems,
all of which except Cymfony and (Purandare and
Pedersen, 2004) participated in S3LS (check (Mi-
halcea et al., 2004) for further details on the sys-
tems). We classify them according to the amount of
“supervision” they have: some have have access to
most-frequent information (MFS-S3 if counted over
S3LS, MFS-Sc if counted over SemCor), some use
10% of the S3LS training part for mapping (10%-
S3LS), and some use the full amount of S3LS train-
ing for mapping (S3LS). Only one system (Duluth)
did not use in any way hand-tagged corpora.

Given the different typology of unsupervised sys-
tems, it’s unfair to draw definitive conclusions from
a raw comparison of results. The system coming
closer to ours is that described in (Niu et al., 2005).
They use hand tagged corpora which does not need
to include the target word to tune the parameters of
a rather complex clustering method which does use
local information (an exception to the rule of unsu-
pervised systems). They do use the S3LS training
corpus for mapping. For every sense the target word,
three of its contexts in the train corpus are gathered
(around 10% of the training data) and tagged. Each
cluster is then related with its most frequent sense.
Only one cluster may be related to a specific sense,
so if two or more clusters map to the same sense,
only the largest of them is retained. The mapping
method is similar to ours, but we use all the avail-
able training data and allow for different hubs to be
assigned to the same sense.

Another system similar to ours is (Purandare and
Pedersen, 2004), which unfortunately was evaluated
on Senseval 2 data. The authors use first and second
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order bag-of-word context features to represent each
instance of the corpus. They apply several clustering
algorithms based on the vector space model, limiting
the number of clusters to 7. They also use all avail-
able training data for mapping, but given their small
number of clusters they opt for a one-to-one map-
ping which maximizes the assignment and discards
the less frequent clusters. They also discard some
difficult cases, like senses and words with low fre-
quencies (10% of total occurrences and 90, respec-
tively). The different test set and mapping system
make the comparison difficult, but the fact that the
best of their combinations beats MFS by 1 point on
average (47.6% vs. 46.4%) for the selected nouns
and senses make us think that our results are more
robust (nearly 10% over MFS).

7 Conclusions and further work

This paper has explored two sides of HyperLex: the
optimization of the free parameters, and the empir-
ical comparison on a standard benchmark against
other WSD systems. We use hand-tagged corpora
to map the induced senses to WordNet senses.

Regarding the optimization of parameters, we
used a another testbed (S2LS) comprising different
words to select the best parameter. We consistently
improve the results of the parameters by Véronis,
which is not perhaps so surprising, but the method
allows to fine-tune the parameters automatically to a
given corpus given a small test set.

Comparing unsupervised systems against super-
vised systems is seldom done. Our results indicate
that HyperLex with the supervised mapping is on
par with a state-of-the-art system which uses bag-
of-words features only. Given the information loss
inherent to any mapping, this is an impressive re-
sult. The comparison to other unsupervised systems
is difficult, as each one uses a different mapping
strategy and a different amount of supervision.

For the future, we would like to look more closely
the micro-senses induced by HyperLex, and see if
we can group them into coarser clusters. We also
plan to apply the parameters to the Senseval 3 all-
words task, which seems well fit for HyperLex: the
best supervised system only outperforms MFS by
a few points in this setting, and the training cor-
pora used (Semcor) is not related to the test corpora

(mainly Wall Street Journal texts).
Graph models have been very successful in some

settings (e.g. the PageRank algorithm of Google),
and have been rediscovered recently for natural lan-
guage tasks like knowledge-based WSD, textual en-
tailment, summarization and dependency parsing.
We would like to test other such algorithms in the
same conditions, and explore their potential to inte-
grate different kinds of information, especially the
local or syntactic features so successfully used by
supervised systems, but also more heterogeneous in-
formation from knowledge bases.
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Abstract

Comparing word contexts is a key compo-
nent of many NLP tasks, but rarely is it
used in conjunction with additional onto-
logical knowledge. One problem is that
the amount of overhead required can be
high. In this paper, we provide a graphi-
cal method which easily combines an on-
tology with contextual information. We
take advantage of the intrinsic graphical
structure of an ontology for representing
a context. In addition, we turn the on-
tology into a metric space, such that sub-
graphs within it, which represent contexts,
can be compared. We develop two vari-
ants of our graphical method for compar-
ing contexts. Our analysis indicates that
our method performs the comparison effi-
ciently and offers a competitive alternative
to non-graphical methods.

1 Introduction

Many natural language problems can be cast as a
problem of comparing “contexts” (units of text). For
example, the local context of a word can be used to
resolve its ambiguity (e.g., Schütze, 1998), assum-
ing that words used in similar contexts are closely
related semantically (Miller and Charles, 1991). Ex-
tending the meaning of context, the content of a
document may reveal which document class(es) it
belongs to (e.g., Xu et al., 2003). In any appli-
cation, once a sensible view of context is formu-
lated, the next step is to choose a representation that
makes comparisons possible. For example, in word

sense disambiguation, a context of an ambiguous
instance can be represented as a vector of the fre-
quencies of words surrounding it. Until recently, the
dominant approach has been a non-graphical one—
context comparison is reduced to a task of measuring
distributional distance between context vectors. The
difference in the frequency characteristics of con-
texts is used as an indicator of the semantic distance
between them.

We present a graphical alternative that combines
both distributional and ontological knowledge. We
begin with the use of a different context represen-
tation that allows easy incorporation of ontological
information. Treating an ontology as a network, we
can represent a context as a set of nodes in the net-
work (i.e., concepts in the ontology), each with a
weight (i.e., frequency). To contrast our work with
that of Navigli and Velardi (2005) and Mihalcea
(2006), the goal is not merely to provide a graph-
ical representation for a context in which the rele-
vant concepts are connected. Rather, contexts are
treated as weighted subgraphs within a larger graph
in which they are connected via a set of paths. By in-
corporating the semantic distance between individ-
ual concepts, the graph (representing the ontology)
becomes a metric space in which we can measure the
distance between subgraphs (representing the con-
texts to be compared).

More specifically, measuring the distance be-
tween two contexts can be viewed as solving a min-
imum cost flow (MCF) problem by calculating the
amount of “effort” required for transporting the flow
from one context to the other. Our method has
the advantage of including semantic information (by
making use of the graphical structure of an ontol-
ogy) without losing distributional information (by
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using the concept frequencies derived from corpus
data).

This network flow formulation, though support-
ing the inclusion of an ontology in context compari-
son, is not flexible enough. The problem is rooted in
the choice of concept-to-concept distance (i.e., the
distance between two concepts, to contrast it from
the overall semantic distance between two contexts).
Certain concept-to-concept distances may result in a
difficult-to-process network which severely compro-
mises efficiency. To remedy this, we propose a novel
network transformation method for constructing a
pared-down network which mimics the structure of
the more precise network, but without the expensive
processing or any significant information loss as a
result of the transformation.

In the remainder of this paper, we first present the
underlying network flow framework, and develop a
more efficient variant of it. We then evaluate the
robustness of our methods on a context comparison
task. Finally, we conclude with an analysis and some
future directions.

2 The Network Flow Method

2.1 Minimum Cost Flow

As a standard example of an MCF problem, consider
the graphical representation of a route map for deliv-
ering fresh produce from grocers (supply nodes) to
homes (demand nodes). The remaining nodes (e.g.,
intersections, gas stations) have neither a supply nor
a demand. Assuming there are sufficient supplies,
the optimal solution is to find the cheapest set of
routes from grocers to homes such that all demands
are satisfied.

Mathematically, let �������
	���
 be a connected
network, where � is the set of nodes, and � is the
set of edges.1 Each edge has a cost ������� � ,
which is the distance of the edge. Each node �����
is associated with a value ������
 such that ��� �!�"�
indicates its available supply ( ������
$#&% ), its demand
( ������
�'(% ), or neither ( ������
)��% ). The goal is to find a
solution for each node � such that all the flow passing
through � satisfies its supply or demand requirement
( ������
 ). The flow passing through node � is captured
by *��+�,�-� such that we can observe the com-

1Most ontologies are hierarchical, thus, in the case of a for-
est, adding an arbitrary root node yields a connected graph.

Figure 1: An illustration of flow entering and exiting node . .
bined incoming flow, /1032�4 57698;:=<?>�*@�BAC	D��
 , from the
entering edges ED��F , as well as the combined outgo-
ing flow, / 0G5�4 H�6B8JI+KJLM> *@���N	POQ
 , via the exiting edgesRTSVU F . (See Figure 1.) If a feasible solution can be
found, the net flow (the difference between the en-
tering and exiting flow) at each node must fulfill the
corresponding supply or demand requirement.

Formally, the MCF problem can be stated as:
Minimize WMXNYZ;[J\ ]^`_ba c�dfehgji

X .Bk=l [ mDZ X .Bk7l [ (1)

subject to

]^`_ba c�dfe�nQoqpNr Z
X .Bk7l [ts ]^vuwa _Gdfeyx3zqr Z

X7{ kB. [|\~} X . [ k��;.|��� (2)

Z X .Bkfl [���� k9� X .Bkfl [ ��� (3)

The constraint specified by (2) ensures that the dif-
ference between the flow entering and exiting each
node � matches its supply or demand ������
 exactly.
The next constraint (3) ensures that the flow is trans-
ported from the supply to the demand but not in
the opposite direction. Finally, selecting route ����	POQ

requires a transportation “effort” of �;���N	PO�
 (cost
of the route) multiplied by the amount of supply
transported *@���N	POQ
 (the term inside the summation
in eqn. (1)). Taking the summation of the effort,�;���N	POQ
��y*j����	POQ
 , of cheapest routes yields the desired
distance between the supply and the demand.

2.2 Semantic Distance as MCF

To cast our context comparison task into this frame-
work, we first represent each context as a vector of
concept frequencies (or a context profile for the re-
mainder of this paper). The profile of one context is
chosen as the supply and the other as the demand.
The concept frequencies of the profiles are normal-
ized, so that the total supply always equals the total
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demand. The cost of the routes between nodes is
determined by a semantic distance measure defined
over any two nodes in the ontology. Now, as in the
grocery delivery domain, the goal is to find the MCF
from supply to demand.

We can treat any ontology as the transport net-
work. A relation (such as hyponymy) between two
concepts � and O is represented by an edge ���N	POQ
 , and
the cost � on each edge can be defined as the seman-
tic distance between the two concepts. This seman-
tic distance can be as simple as the number of edges
separating the concepts, or more sophisticated, such
as Lin’s (1998) information-theoretic measure. (See
Budanitsky and Hirst (2006) for a survey of such
measures).

Numerous methods are possible for converting
the word frequency vector of a context to a concept
frequency vector (i.e., a context profile). One simple
method is to transfer each element in the word vector
(i.e., the frequency of each word) to the correspond-
ing concepts in the ontology, resulting in a vector
of concept frequencies. In this paper, we have cho-
sen a uniform distribution of word frequency counts
among concepts, instead of a weighted distribution
towards the relevant concepts for a particular text.
Since we wish to evaluate the strength of our method
alone without any additional NLP effort, we bypass
the issue of approximating the true distribution of
the concepts via word sense disambiguation or class-
based approximation methods, such as those by Li
and Abe (1998) and Clark and Weir (2002).

To calculate the distance between two profiles, we
need to cast one profile as the supply ( � ) and the
other as the demand ( � ). Note that our distance
is symmetric, so the choice of the supply and the
demand is arbitrary. Next, we must determine the
value of ������
 at each concept node � ; this is just
the difference between the (normalized) supply fre-
quency �N������
 and demand frequency �������D
 :} X . [|\���� X9� [ s��B� X9� [ (4)

This formula yields the net supply/demand, ������
 , at
node � . Recall that our goal is to transport all the sup-
ply to meet the demand—the final step is to deter-
mine the cheapest routes between � and � such that
the constraints in (2) and (3) are satisfied. The total
distance of the routes, or the MCF, �J�q�*�
 in eqn. (1),
is the distance between the two context profiles.

Finally, it is important to note that the MCF for-
mulation does not simply find the shortest paths
from the concept nodes in the supply to those in the
demand. Because a profile is a frequency-weighted
concept vector, some concept nodes are weighted
more heavily than others, and the routes between
such nodes across the two profiles are also weighted
more heavily. Indeed, in eqn. (1), the cost of each
route, ������	POQ
 , is weighted by *@���N	POQ
 (how much sup-
ply, or frequency weight, is transported between
nodes � and O ).

3 Graphical Issues

As alluded to in the introduction, certain concept-
to-concept distances pose a problem to solving the
MCF problem easily. The details are described next.

3.1 Additivity

In theory, our method has the flexibility to incorpo-
rate different concept-to-concept distances. The is-
sue lies in the algorithms for solving MCF problems.
Existing algorithms are greedy—they take a step-
wise “localist” approach on the set of edges connect-
ing the supply and the demand; i.e., at each node,
the cheapest outgoing edge is selected. The assump-
tion is that the concept-to-concept distance function
is additive. Mathematically, for any path from node� to node � , �Q�bOq�;	PO� w
�	y¡y¡y¡¢	q�bOy£Q¤C q	POy£|
�¥ , where �j�¦Oq�
and �§�¨O £ , the distance between nodes � and � is
the sum of the distance of the edges along the path:

© �«ª�¬­X9� k�® [|\°¯w± ²]³|´tµ ©
�«ª�¬­X·¶ ³ k ¶ ³|¸ ² [ (5)

The additivity of a concept-to-concept distance en-
tails that selecting the cheapest edge at each step
(i.e., locally) yields the overall cheapest set of routes
(i.e., globally). Note that some of the most success-
ful concept-to-concept distances proposed in the CL
literature are non-additive (e.g., Lin, 1998; Resnik,
1995). This poses a problem in solving our network
flow problem—the global distance between any con-
cepts, � and � , cannot be correctly determined by the
greedy method.

3.2 Constructing an Equivalent Bipartite
Network

The issue of non-additive distances can be addressed
in the following way. We map the relevant portion
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Figure 2: An illustration of the transformations (left to right) from the original network (a) to the bipartite network (b), and finally,
to the network produced by our transformation (c), given two profiles S and D. Nodes labelled with either “S” or “D” belong to the
corresponding profile. Nodes labelled with “ ¹»º ” or “ ¹y¼ ” are junction nodes (see section 4.2).

of the network into a new network such that the
concept-to-concept distance is preserved, but with-
out the problem introduced by non-additivity. One
possible solution is to construct a complete bipar-
tite graph between the supply nodes and the demand
nodes (the nodes in the two context profiles). We set
the cost of each edge �B½¾	N¿�
 in the bipartite graph to
be the concept-to-concept distance between ½ and ¿
in the original network. Since there is exactly one
edge between any pair of nodes, the non-additivity
is removed entirely. (See Figures 2(a) and 2(b).)
Now, we can apply a network flow solver on the new
graph.

However, one problem arises from performing the
above mapping—there is a processing bottleneck as
a result of the quadratic increase in the number of
edges in the new network. Unfortunately, though
tractable, polynomial complexity is not always prac-
tical. For example, with an average of 900 nodes
per profile, making 120 profile comparisons in addi-
tion to network re-structuring can take as long as 10
days.2 If we choose to use a non-additive distance,
the method described above does not scale up well
for a large number of comparisons. Next, we present
a method to alleviate the complexity issue.

4 Network Transformation

One method of alleviating the bottleneck is to reduce
the processing load from generating a large number

2This is tested on a context comparison task not reported in
this paper. The code is scripted in perl. The experiment was
performed on a machine with two P4 Xeon CPUs running at
3.6GHz, with a 1MB cache and 6GB of memory.

of edges. Instead of generating a complete bipar-
tite network, we generate a network which approx-
imates both the structure of the original network as
well as that of the complete bipartite network. The
goal is to construct a pared-down network such that
(a) a reduction in the number of edges improves effi-
ciency, and (b) the resulting distance distortion does
not hamper performance significantly.

4.1 Path Shape in a Hierarchy

To understand our transformation method, let us fur-
ther examine the graphical properties of an ontology
as a network. In a hierarchical network (e.g., Word-
Net, Gene Ontology, UMLS), calculating the dis-
tance between two concept nodes usually involves
travelling “up” and “down” the hierarchy. The sim-
plest route is a single hop from a child to its parent
or vice versa. Generally, travelling from one node �
to another node O consists of an A-shaped path as-
cending from node � to a common ancestor of � andO , and then descending to node O .

Interestingly, our description of the A-shaped
path matches the design of a number of concept-to-
concept distances. For example, distances that in-
corporate Resnik’s (1995) information content (IC),À~ÁbÂ;Ã �fÄÅ�DÆ�Ç;ÈÉÆ�Ê�Ä?ËN
D
 , such as those of Jiang and Con-
rath (1997) and Lin (1998), consider both the (low-
est) common ancestor as well as the two nodes of
interest in their calculation.

The complete bipartite graph considered in sec-
tion 3.2 directly connects each node s in profile �
to node ¿ in profile � , eliminating the typical A-
shaped path in an ontology. This structure solves the
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non-additivity issue, by generating an edge with the
exact concept-to-concept distance for each potential
node comparison, but, as noted above, is too inef-
ficient. Our solution here is to construct a network
that uses the idea of a pared-down A-shaped path to
mostly avoid non-additivity, but without the ineffi-
ciency of the complete bipartite graph. Thus, as ex-
plained in more detail in the following subsections,
we trade off the exactness of the distance calculation
against the efficiency of the network construction.

4.2 Network Construction

In our network construction, we exploit the general
notion of an A-shaped path between any two nodes,
but replace the “tip” of the A with two nodes. Then
for each node ½ and ¿ in profiles � and � , we gen-
erate an edge from s to an ancestor ÌJÍ of ½ (the
left “branch” of the A), an edge from d to an an-
cestor Ì�Î of ¿ (the right “branch” of the A), and an
edge between ÌtÍ and Ì�Î (the two nodes forming the
“elongated tip” of the A). Each edge has the exact
concept-to-concept distance from the original net-
work, so that the distance between any two nodes½ and ¿ is the sum of three exact distances.

The set of ancestor nodes, Ì|Í and Ì�Î , comprise the
“junction” points at which the supply from � can be
transported across to the nodes in � to satisfy their
demand. The set of junction nodes, Ï Ð , for a pro-
file Ñ , must be selected such that for each node �
in Ñ , Ï¾Ð contains at least one ancestor of � . (See
section 4.4 for details on the junction selection pro-
cess.) The resulting network is constructed by di-
rectly connecting each profile to its corresponding
junction, then connecting the two junctions in the
middle (Figure 2(c)).

The difference between the complete bipartite
network and the transformed network here is that,
instead of connecting each node in � to every node
in � , we connect each node in ÏtÒ to every node
in ÏQÓ . Compare the transformed network in Fig-
ure 2(c) with the complete bipartite network in Fig-
ure 2(b). The complete bipartite component in the
transformed network (the middle portion between
the junction nodes labelled Ï Ò and Ï�Ó ) is consid-
erably smaller in size. Thus, the number of edges
in the transformed network is significantly fewer as
well.

Next, we can proceed to define the cost function

on the transformed network. Observe that each edge�B½¾	N¿�
 , with cost Ô��fÕhËy�­Õ�	qÔ|
 , in the complete bipartite
network, where ½��~� , ¿Ö��� , is now instead repre-
sented by three edges: �­Õ;	q×;Øy
 , �D×�Ø»	q×�ÙÚ
 , and �D×;ÙQ	qÔ|
 ,
where × Ø �ÛÏQÒ and ×;ÙT�ÛÏ Ó . Thus, the transformed
distance between ½ and ¿ , Ô��fÕhËBÜ«ÝfÞDßyØ¢�­Õ;	qÔ|
 , becomes:© �«ª�¬3à·á3â ¯­ã

X9ª k © [|\ © �«ª�¬�X9ª k�ä ã [Qå © �«ª�¬­X ä ã k�ä�æ [Qå © �3ªP¬­X ä�æyk © [ (6)

where ¿Ú��½»çy���N	POQ
 is the precise concept-to-concept
distance between � and O in the original network.
Once we have set up the transformed network, we
can solve the MCF in this network, yielding the dis-
tance between the two (supply and demand) profiles.

4.3 Distance Distortion

Because the distance between nodes ½ and ¿ is now
calculated as the sum of three distances (eqn. (6)),
some distortion may result for non-additive concept-
to-concept distances. To illustrate the distortion ef-
fect, consider Jiang and Conrath’s (1997) distance:© �«ª�¬ èbéDX9� k ¶ [|\ëê�ì X9� [Úå�ê�ì X·¶ [Qsîí�ê�ì Xfï ìtð X9� k ¶ [B[ (7)

where E�ñ�����
 is the information content of a node� , and òVñjóô����	Bõ�
 is the lowest common subsumer
of nodes � and O . This distance measures the dif-
ference in information content between the concepts
and their lowest common subsumers.

After the transformation, the distance is distorted
in the following way. If � and O have no common
junction ancestor, then Ô��=ÕwËvöP÷ à·á«â ¯Pã ����	Bõ�
 becomes:© �«ª�¬ èbébø ùvúGûfü�X .Bkfl [!\ ý ê�ì X9� [Úåþê�ì X ä > [ sîí�ê�ì X ä > [=ÿ»åý ê�ì X·¶ [;åþê�ì X ä è [ sþí�ê�ì X ä è [=ÿ»åý ê�ì X ä > [¾åþê�ì X ä è [tsîí�ê�ì Xfï ìtð X ä > kNä è [B[=ÿ\ ê�ì X9� [Úåîê�ì X·¶ [�sþí�ê�ì Xfï ìtð X ä > kNä è [B[ (8)

where Ì 5 and Ì H are the junction ancestors of� and O , respectively. Otherwise, if � and O
share a common ancestor Ì at the junction, thenÔ��=ÕwË·öP÷ à·á«â ¯Pã ����	Bõ�
 becomes E�ñ�����
�� E�ñ��3õ�
 À�� E�ñ��D×�
 ,
where the term � E�ñ ��ò ñjó �D×;F�	q×NöM
D
 in eqn. (8) is re-
placed by � E�ñ��D×�
 . In either case, the transformation
replaces the lowest common subsumer òVñjóô����	Bõ�

in eqn. (7) with some other common subsumerñjó ����	Bõ�
 ( òVñjóô�D× F 	q× ö 
 or Ì , mentioned above). Un-
less ñjó ����	Bõ�
��¨ò ñjó ����	Bõ�
 , the distance is distorted
by using a less precise quantity, E�ñ �yñjóô����	Bõ�
D
 .

Note that the information content of a concept is
given by its maximum likelihood estimate based on

101



its frequency in a large corpus. An increment in the
frequency of a concept leads to an increment in the
frequency of all its ancestors. Due to the frequency
percolation, concepts with a small depth tend to ac-
cumulate higher counts than those deeper in the hi-
erarchy (note the difference in depth: Ô¾Ê­Ä?Ë���� � 0 F 4 ö 6� ÔQÊ­Ä?Ë��
	 � � 0 F 4 ö 6 ). Thus, we expect the informa-
tion content of a concept to be higher than its an-
cestors, i.e., a concept is more semantically specific
than its ancestors, which is captured by the use of
the negative Á7Â;Ã function in the definition of IC.
The transformed distance is distorted accordingly
( E�ñ �yñjóô����	Bõ�
D
 � E�ñ���òVñjóô����	Bõ�
D
 ).
4.4 Junction Selection

Selection of junction nodes is a key component of
the network transformation. Trivially, a junction
consisting of profile nodes yields a network equiva-
lent to the complete bipartite network. The key is to
select a junction that is considerably smaller in size
than its corresponding profile, hence, cutting down
the number of edges generated, which results in sig-
nificant savings in complexity.

Note that there is a tradeoff between the over-
all computational efficiency and the similarity be-
tween the transformed network and the complete bi-
partite network. The closer the junctions are to the
corresponding profiles, the closer the transformed
network resembles the complete bipartite network.
Though the distance calculation is more accurate,
such a network is also more expensive to process.
On the other hand, there are fewer nodes in a junc-
tion as it approaches the root level, but there is more
distortion in the transformed concept-to-concept dis-
tance. Clearly, it is important to balance the two fac-
tors.

Selecting junction nodes involves finding a
smaller set of ancestor nodes representing the pro-
file nodes in a hierarchy. In other words, the junc-
tion can be viewed as an alternative representation
which is a generalization of the profile nodes. In
addition to the profile nodes, the junction nodes are
also included in the transformed network. They may
provide extra information about the corresponding
context.

Finding a generalization of a profile is explored in
the works of Clark and Weir (2002) and Li and Abe
(1998). Unfortunately, the complexity of these algo-

rithms is quadratic (the former) or cubic (the latter)
in the number of nodes in a network, which is unac-
ceptably expensive for our transformation method.
Note that to ensure every profile node has an ances-
tor node in the junction, the selection process has a
linear lower bound. To keep the cost low, it is best
to keep a linear complexity for the junction selection
process. However, if this is not possible, it should
be significantly less expensive than a quadratic com-
plexity. We will empirically explore the process fur-
ther in section 5.3.

5 Context Comparison

As alluded to earlier, our network flow method pro-
vides an alternative to a purely distributional and
non-graphical approach to context comparison. In
this paper, we will test both variants of our method
(with or without the transformation in section 4) in
a name disambiguation task in which the context
words within a small window surrounding the am-
biguous words are compared. Our preliminary anal-
ysis shows that our general network flow framework
is robust and efficient.

5.1 Name Disambiguation

The goal for name disambiguation is to classify each
ambiguous instance on the basis of its surrounding
context. One approach is to use an unsupervised
method such as clustering. This involves making a
large number of pairwise comparisons between in-
dividual contexts. Given that there is an overhead
to incorporating ontological information, our net-
work flow method does not compute distances as ef-
ficiently as calculating a purely arithmetic distance
such as cosine or Euclidean distance. Our alterna-
tive approach is to use minimal training data. Us-
ing a handful of contexts, we can build a “gold stan-
dard” profile for each sense of an ambiguous name
by using the context words of a small number of
instances. We then compare the context profile of
each instance to the gold standards. Each instance is
given the label of the gold standard profile to which
its context profile is the closest.

5.2 Experimental Setup

In our name disambiguation experiment, we use the
data collected by Pedersen et al. (2005) for their
name discrimination task. This data is taken from
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Name Pairs Baseline 200 (Full) 200 (Trans) 100 (Full) 100 (Trans)
Ronaldo/David Beckham 0.69 0.80 0.88 0.79 0.84
Tajik/Rolf Ekeus 0.74 0.97 0.99 0.98 0.99
Microsoft/IBM 0.59 0.73 0.75 0.73 0.71
Shimon Peres/Slobodan Milosevic 0.56 0.96 0.99 0.97 0.99
Jordan/Egyptian 0.54 0.77 0.76 0.74 0.76
Japan/France 0.51 0.75 0.82 0.75 0.83
Weighted Average 0.53 0.77 0.82 0.76 0.82

Table 1: Name disambiguation results (accuracy/F-measure) at a glance. The baseline is the relative frequency of the majority
name. “200” and “100” give the averaged results (over five different runs) using 200 and 100 randomly selected training instances
per ambiguous name. The weighted average is calculated based on the number of test instances per task. “Full” and “Trans” refer
to the results using the full network (pre-transformation) or the pared-down network (with transformation), respectively.

the Agence France Press English Service portion of
the GigaWord English corpus distributed by the Lin-
guistic Data Consortium. It consists of the contexts
of six pairs of names, including: the names of two
soccer players (Ronaldo and David Beckham); an
ethnic group and a diplomat (Tajik and Rolf Ekeus);
two companies (Microsoft and IBM); two politicians
(Shimon Peres and Slobodan Milosevic); a nation
and a nationality (Jordan and Egyptian); and two
countries (France and Japan). These name pairs are
selected by Pedersen et al. (2005) to reflect a range
of confusability between names.

Each pair of names serves as one of six name
disambiguation tasks. Each name instance con-
sists of a context window of 50 words (25 words
to the left and to the right of the target name),
with the target name obfuscated. For example, for
the task of distinguishing “David Beckham” and
“Ronaldo”, the target name in each instance be-
comes “David BeckhamRonaldo”. The goal is to
recover the correct target name in each instance.

5.3 Junction Selection

We reported earlier that a complete bipartite graph
with 900 nodes is too expensive to process. Our
first attempt is to select a junction on the basis of
the number of nodes it contains. Here, the junctions
we select are simple to find by taking a top-down ap-
proach. We start at the top nine root nodes of Word-
Net (nodes of zero depth) and proceed downwards.
We limit the search within the top two levels because
the second level consists of 158 nodes, while the fol-
lowing level consists of 1307 nodes, which, clearly,
exceeds 900 nodes. Here, we select the junction
which consists of eight of the top root nodes (sil-
bings of entity) and the children of entity, given that

entity is semantically more general than its siblings.3

In our current experiment, we use Jiang and
Conrath’s distance for its ease of analysis. As
shown in section 4.3, only one term in the distance,E�ñ���òVñjó ����	Bõ�
D
 , is replaced because of the use of the
junction nodes. Any change in the performance (in
comparison to our method without the transforma-
tion) can be attributed to the distance distortion as
a result of this term being replaced. The analysis
of experimental results (next section) is made easy
because we can assess the goodness of the trans-
formation given the selected junction—a significant
degradation in performance is an indication that the
junction nodes should be brought closer to the pro-
file nodes, yielding a more precise distance.

6 Results and Analysis

To compare the two variants of our method, we
perform our name disambiguation experiment us-
ing 100 and 200 training instances per ambiguous
name to create the gold standard profiles. See Ta-
ble 1 for the results. Comparing the results using
the full network and the transformed network, ob-
serve that there is very little performance degrada-
tion; in fact, in most cases, there is an increase in
accuracy (the difference is significant, paired t-test
with �
� % ¡`%�� ).
Distance Transformation In Jiang and Conrath’s
formulation, the network transformation replaces
the term � E�ñ ��ò ñjó ����	Bõ 
D
 with � E�ñ��yñjó ����	Bõ 
D
 ,
where ñjó ����	Bõ�
 is some common ancestor of � and

3Note that the complexity of this selection process is linear,
since all profile nodes must be examined to ensure they have an
ancestor in the junction; any profile node of which no junction
node is an ancestor is added to the junction. This process can
only be avoided by using junction nodes of zero depth exclu-
sively.
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O , whose depth is small. Junction nodes with a small
depth distort the distance more than those with a
larger depth. Surprisingly, our experiment indicates
that using such nodes produces equally good or bet-
ter performance. This suggests that selecting a junc-
tion with a larger depth, at least for the data in this
task, is not necessary.

Speed Improvement In comparison to our re-
ported running time on the pre-transformation net-
work (120 comparisons running for 10 days), on
the same machine, making 12,000 comparisons can
now be accomplished within two hours. In terms of
complexity, if we have � profile nodes and O junc-
tion nodes, the number of edges to be processed is� ����� O��q
 . Given that our junctions have signif-
icantly fewer nodes than the original profiles, the
running time is significantly less than quadratic in
the number of profile nodes.

7 Conclusions

We have given an overview of our network flow for-
malism which seamlessly combines distributional
and ontological information. Given a suitable on-
tology, a context vector of word frequencies can
be transformed into a context profile—a frequency
distribution over the concepts in the ontology. In
contrast to traditional non-graphical approaches to
measuring only the distributional distance between
context vectors, we provide a graphical formalism
which incorporates both the semantic distance of the
component nodes as well as the distributional differ-
ences between the context profiles. By taking advan-
tage of the graphical structure of an ontology, our
method allows a systematic and meaningful way of
abstracting over words in a context, and by exten-
sion, a meaningful way of comparing contexts.

One concern with our method in its pre-
transformation form is its inability to incorporate
sophisticated concept-to-concept semantic distances
efficiently. To remedy this, we propose a novel tech-
nique that mimics the structure of the more compu-
tationally intensive network. Our preliminary eval-
uation shows that the transformation does not ham-
per the method’s ability to make fine-grained seman-
tic distinctions, and the computational complexity is
drastically reduced as well. Generally, our network
flow method presents a highly competitive alterna-

tive to a purely distributional and non-graphical ap-
proach.

In our on-going work, we are further exploring
how the choice of junction influences the perfor-
mance of different types of concept-to-concept se-
mantic distances. For example, would a bottom-up
junction selection approach (from the profile nodes
instead of from the root level) result in better per-
formance? In addition, we intend to examine the
graphical properties of the individual profiles as well
as the routes between the concepts across profiles
selected by our network flow methods. Such analy-
ses will help us gain insight into the strengths (and
weaknesses) of taking advantage of a graphical rep-
resentation of contexts as well as treating an ontol-
ogy as a metric space for context comparisons.
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