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Abstract 

Integrating information from different 
stages of an NLP processing pipeline can 
yield significant error reduction. We dem-
onstrate how re-ranking can improve name 
tagging in a Chinese information extrac-
tion system by incorporating information 
from relation extraction, event extraction, 
and coreference. We evaluate three state-
of-the-art re-ranking algorithms (MaxEnt-
Rank, SVMRank, and p-Norm Push Rank-
ing), and show the benefit of multi-stage 
re-ranking for cross-sentence and cross-
document inference. 

1 Introduction 

In recent years, re-ranking techniques have been 
successfully applied to enhance the performance 
of NLP analysis components based on generative 
models. A baseline generative model produces N-
best candidates, which are then re-ranked using a 
rich set of local and global features in order to 
select the best analysis. Various supervised learn-
ing algorithms have been adapted to the task of re-
ranking for NLP systems, such as MaxEnt-Rank 
(Charniak and Johnson, 2005; Ji and Grishman, 
2005), SVMRank (Shen and Joshi, 2003), Voted 
Perceptron (Collins, 2002; Collins and Duffy, 
2002; Shen and Joshi, 2004), Kernel Based Meth-
ods (Henderson and Titov, 2005), and RankBoost 
(Collins, 2002; Collins and Koo, 2003; Kudo et al., 
2005). 

These algorithms have been used primarily 
within the context of a single NLP analysis com-
ponent, with the most intensive study devoted to 

improving parsing performance. The re-ranking 
models for parsing, for example, normally rely on 
structures generated within the baseline parser 
itself. Achieving really high performance for some 
analysis components, however, requires that we 
take a broader view, one that looks outside a sin-
gle component in order to bring to bear knowl-
edge from the entire NL analysis process.  In this 
paper we will demonstrate the potential of this 
approach in enhancing the performance of Chi-
nese name tagging within an information extrac-
tion application.  

Combining information from other stages in the 
analysis pipeline allows us to incorporate informa-
tion from a much wider context, spanning the en-
tire document and even going across documents.  
This will give rise to new design issues; we will 
examine and compare different re-ranking algo-
rithms when applied to this task.  

We shall first describe the general setting and 
the special characteristics of re-ranking for name 
tagging. Then we present and evaluate three re-
ranking algorithms – MaxEnt-Rank, SVMRank 
and a new algorithm, p-Norm Push Ranking – for 
this problem, and show how an approach based on 
multi-stage re-ranking can effectively handle fea-
tures across sentence and document boundaries. 

2 Prior Work 

2.1 Ranking 

We will describe the three state-of-the-art super-
vised ranking techniques considered in this work. 
Later we shall apply and evaluate these algorithms 
for re-ranking in the context of name tagging. 

Maximum Entropy modeling (MaxEnt) has 
been extremely successful for many NLP classifi-
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cation tasks, so it is natural to apply it to re-
ranking problems. (Charniak and Johnson, 2005) 
applied MaxEnt to improve the performance of a 
state-of-art parser; also in (Ji and Grishman, 2005) 
we used it to improve a Chinese name tagger.  

Using SVMRank, (Shen and Joshi, 2003) 
achieved significant improvement on parse re-
ranking. They compared two different sample 
creation methods, and presented an efficient train-
ing method by separating the training samples into 
subsets.  

The last approach we consider is a boosting-
style approach. We implement a new algorithm 
called p-Norm Push Ranking (Rudin, 2006). This 
algorithm is a generalization of RankBoost 
(Freund et al. 1998) which concentrates specifi-
cally on the top portion of a ranked list. The pa-
rameter “p” determines how much the algorithm 
concentrates at the top.  

2.2 Enhancing Named Entity Taggers 

There have been a very large number of NE tagger 
implementations since this task was introduced at 
MUC-6 (Grishman and Sundheim, 1996).  Most 
implementations use local features and a unifying 
learning algorithm based on, e.g., an HMM, Max-
Ent, or SVM. Collins (2002) augmented a baseline 
NE tagger with a re-ranker that used only local, 
NE-oriented features.  Roth and Yih (2002) com-
bined NE and semantic relation tagging, but 
within a quite different framework (using a linear 
programming model for joint inference). 

3 A Framework for Name Re-Ranking 

3.1 The Information Extraction Pipeline 

The extraction task we are addressing is that of the 
Automatic Content Extraction (ACE)1 evaluations. 
The 2005 ACE evaluation had 7 types of entities, 
of which the most common were PER (persons), 
ORG (organizations), LOC (natural locations) and 
GPE (‘geo-political entities’ – locations which are 
also political units, such as countries, counties, 
and cities).  There were 6 types of semantic rela-
tions, with 18 subtypes.  Examples of these rela-
tions are “the CEO of Microsoft” (an 
organization-affiliation relation), “Fred’s wife” (a 
                                                           
1 The ACE task description can be found at 
http://www.itl.nist.gov/iad/894.01/tests/ace/ 

personal-social relation), and “a military base in 
Germany” (a located relation). And there were 8 
types of events, with 33 subtypes, such as “Kurt 
Schork died in Sierra Leone yesterday” (a Die 
event), and “Schweitzer founded a hospital in 
1913” (a Start-Org event). 
  To extract these elements we have developed a 
Chinese information extraction pipeline that con-
sists of the following stages: 
• Name tagging and name structure parsing 

(which identifies the internal structure of some 
names); 

• Coreference resolution, which links "men-
tions" (referring phrases of selected semantic 
types) into "entities": this stage is a combina-
tion of high-precision heuristic rules and 
maximum entropy models; 

• Relation tagging, using a K-nearest-neighbor 
algorithm to identify relation types and sub-
types; 

• Event patterns, semi-automatically extracted 
from ACE training corpora. 

3.2 Hypothesis Representation and Genera-
tion 

Again, the central idea is to apply the baseline 
name tagger to generate N-Best multiple hypothe-
ses for each sentence; the results from subsequent 
components are then exploited to re-rank these 
hypotheses and the new top hypothesis is output 
as the final result. 

In our name re-ranking model, each hypothesis 
is an NE tagging of the entire sentence. For ex-
ample, “<PER>John</PER> was born in 
<GPE>New York</GPE>.” is one hypothesis 
for the sentence “John was born in New York”. 

We apply a HMM tagger to identify four named 
entity types: Person, GPE, Organization and Loca-
tion. The HMM tagger generally follows the 
Nymble model (Bikel et al, 1997), and uses best-
first search to generate N-Best hypotheses. It also 
computes the “margin”, which is the difference 
between the log probabilities of the top two hy-
potheses.  This is used as a rough measure of con-
fidence in the top hypothesis. A large margin 
indicates greater confidence that the first hypothe-
sis is correct. The margin also determines the 
number of hypotheses (N) that we will store. Us-
ing cross-validation on the training data, we de-
termine the value of N required to include the best 

50



hypothesis, as a function of the margin.  We then 
divide the margin into ranges of values, and set a 
value of N for each range, with a maximum of 30. 

To obtain the training data for the re-ranking 
algorithm, we separate the name tagging training 
corpus into k folders, and train the HMM name 
tagger on k-1 folders. We then use the HMM to 
generate N-Best hypotheses H = {h1, h2,…,hN} for 
each sentence in the remaining folder.  Each hi in 
H is then paired with its NE F-measure, measured 
against the key in the annotated corpus. 

We define a “crucial pair” as a pair of hypothe-
ses such that, according to F-Measure, the first 
hypothesis in the pair should be more highly 
ranked than the second. That is, if for a sentence, 
the F-Measure of hypothesis hi is larger than that 
of hj, then (hi, hj) is a crucial pair. 

3.3 Re-Ranking Functions 

We investigated the following three different for-
mulations of the re-ranking problem: 

• Direct Re-Ranking by Score 
For each hypothesis hi, we attempt to learn a scor-
ing function f : H  R, such that f(hi) > f(hj) if the 
F-Measure of hi is higher than the F-measure of hj. 

• Direct Re-Ranking by Classification 
For each hypothesis hi, we attempt to learn f : H 

 {-1, 1}, such that f(hi) = 1 if hi has the top F-
Measure among H; otherwise f(hi) = -1. This can 
be considered a special case of re-ranking by 
score. 

• Indirect Re-Ranking Function 
For each “crucial” pair of hypotheses (hi, hj), we 
learn f : H × H  {-1, 1}, such that f(hi, hj) = 1 if 
hi is better than hj; f (hi, hj) = -1 if hi is worse than 
hj. We call this “indirect” ranking because we 
need to apply an additional decoding step to pick 
the best hypothesis from these pair-wise compari-
son results. 

4 Features for Re-Ranking 

4.1 Inferences From Subsequent Stages 

Information extraction is a potentially symbiotic 
pipeline with strong dependencies between stages 
(Roth and Yih, 2002&2004; Ji and Grishman, 
2005). Thus, we use features based on the output 

of four subsequent stages – name structure parsing, 
relation extraction, event patterns, and coreference 
analysis – to seek the best hypothesis.  

We included ten features based on name struc-
ture parsing to capture the local information 
missed by the baseline name tagger such as details 
of the structure of Chinese person names. 

The relation and event re-ranking features are 
based on matching patterns of words or constitu-
ents.  They serve to correct name boundary errors 
(because such errors would prevent some patterns 
from matching).  They also exert selectional pref-
erences on their arguments, and so serve to correct 
name type errors.  For each relation argument, we 
included a feature whose value is the likelihood 
that relation appears with an argument of that se-
mantic type (these probabilities are obtained from 
the training corpus and binned).  For each event 
pattern, a feature records whether the types of the 
arguments match those required by the pattern. 

Coreference can link multiple mentions of 
names provided they have the same spelling 
(though if a name has several parts, some may be 
dropped) and same semantic type. So if the 
boundary or type of one mention can be deter-
mined with some confidence, coreference can be 
used to disambiguate other mentions, by favoring 
hypotheses which support more coreference. To 
this end, we incorporate several features based on 
coreference, such as the number of mentions re-
ferring to a name candidate.  

Each of these features is defined for individual 
name candidates; the value of the feature for a 
hypothesis is the sum of its values over all names 
in the hypothesis. The complete set of detailed 
features is listed in (Ji and Grishman, 2006). 

4.2 Handling Cross-Sentence Features by 
Multi-Stage Re-Ranking 

Coreference is potentially a powerful contributor 
for enhancing NE recognition, because it provides 
information from other sentences and even docu-
ments, and it applies to all sentences that include 
names. For a name candidate, 62% of its corefer-
ence relations span sentence boundaries.  How-
ever, this breadth poses a problem because it 
means that the score of a hypothesis for a given 
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sentence may depend on the tags assigned to the 
same names in other sentences.2 

Ideally, when we re-rank the hypotheses for one 
sentence S, the other sentences that include men-
tions of the same name should already have been 
re-ranked, but this is not possible because of the 
mutual dependence. Repeated re-ranking of a sen-
tence would be time-consuming, so we have 
adopted an alternative approach. Instead of incor-
porating coreference evidence with all other in-
formation in one re-ranker, we apply two re-
rankers in succession.  
   In the first re-ranking step, we generate new 
rankings for all sentences based on name structure, 
relation and event features, which are all sentence-
internal evidence.  Then in a second pass, we ap-
ply a re-ranker based on coreference between the 
names in each hypothesis of sentence S and the 
mentions in the top-ranking hypothesis (from the 
first re-ranker) of all other sentences.3  In this way, 
the coreference re-ranker can propagate globally 
(across sentences and documents) high-confidence 
decisions based on the other evidence. In our final 
MaxEnt Ranker we obtained a small additional 
gain by further splitting the first re-ranker into 
three separate steps: a name structure based re-
ranker, a relation based re-ranker and an event 
based re-ranker; these were incorporated in an 
incremental structure.   

4.3 Adding Cross-Document Information 

The idea in coreference is to link a name mention 
whose tag is locally ambiguous to another men-
tion that is unambiguously tagged based on local 
evidence.  The wider a net we can cast, the greater 
the chance of success.  To cast the widest net pos-
sible, we have used cross-document coreference 
for the test set. We cluster the documents using a 
cross-entropy metric and then treat the entire clus-
ter as a single document.      

We take all the name candidates in the top N 
hypotheses for each sentence in each cluster T to 
construct a “query set” Q. The metric used for the 
clustering is the cross entropy H(T, d) between the 
distribution of the name candidates in T and 

                                                           
2 For in-document coreference, this problem could be avoided if the tagging of 
an entire document constituted a hypothesis, but that would be impractical … a 
very large N would be required to capture sufficient alternative taggings in an 
N-best framework. 
3 This second pass is skipped for sentences for which the confidence in the top 
hypothesis produced by the first re-ranker is above a threshold. 

document d. If H(T, d) is smaller than a threshold 
then we add d to T. H(T, d) is defined by: 

∑
∈

×−=
Qx

xdprobxTprobdTH ),(log),(),( . 

We built these clusters two ways: first, just 
clustering the test documents; second, by aug-
menting these clusters with related documents 
retrieved from a large unlabeled corpus (with 
document relevance measured using cross-
entropy). 

5 Re-Ranking Algorithms 

We have been focusing on selecting appropriate 
ranking algorithms to fit our application. We 
choose three state-of-the-art ranking algorithms 
that have good generalization ability. We now 
describe these algorithms. 

5.1 MaxEnt-Rank 

5.1.1  Sampling and Pruning 
 
Maximum Entropy models are useful for the task 
of ranking because they compute a reliable rank-
ing probability for each hypothesis.  We have tried 
two different sampling methods – single sampling 
and pairwise sampling.  

The first approach is to use each single hy-
pothesis hi as a sample. Only the best hypothesis 
of each sentence is regarded as a positive sample; 
all the rest are regarded as negative samples. In 
general, absolute values of features are not good 
indicators of whether a hypothesis will be the best 
hypothesis for a sentence; for example, a co-
referring mention count of 7 may be excellent for 
one sentence and poor for another.  Consequently, 
in this single-hypothesis-sampling approach, we 
convert each feature to a Boolean value, which is 
true if the original feature takes on its maximum 
value (among all hypotheses) for this hypothesis.  
This does, however, lose some of the detail about 
the differences between hypotheses. 

In pairwise sampling we used each pair of hy-
potheses (hi, hj) as a sample. The value of a fea-
ture for a sample is the difference between its 
values for the two hypotheses.  However, consid-
ering all pairs causes the number of samples to 
grow quadratically (O(N2)) with the number of 
hypotheses, compared to the linear growth with 
best/non-best sampling. To make the training and 
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test procedures more efficient, we prune the data 
in several ways.  

We perform pruning by beam setting, removing 
candidate hypotheses that possess very low prob-
abilities from the HMM, and during training we 
discard the hypotheses with very low F-measure 
scores. Additionally, we incorporate the pruning 
techniques used in (Chiang 2005), by which any 
hypothesis with a probability lower thanαtimes 
the highest probability for one sentence is dis-
carded. We also discard the pairs very close in 
performance or probability. 
 
5.1.2 Decoding 
 
If f is the ranking function, the MaxEnt model 
produces a probability for each un-pruned “cru-
cial” pair: prob(f(hi, hj) = 1), i.e., the probability 
that for the given sentence, hi is a better hypothe-
sis than hj. We need an additional decoding step to 
select the best hypothesis. Inspired by the caching 
idea and the multi-class solution proposed by 
(Platt et al. 2000), we use a dynamic decoding 
algorithm with complexity O(n) as follows. 

We scale the probability values into three types: 
CompareResult (hi, hj) = “better” if prob(f(hi, hj) = 
1) >δ1, “worse” if prob(f(hi, hj) = 1) <δ2, and 
“unsure” otherwise, where δ1≥δ2. 4  

 
Prune 

for i = 1 to n 
Num = 0; 
for j = 1 to n and j≠i 

If CompareResult(hi, hj) = “worse” 
Num++; 

    if Num>βthen discard hi from H 
 

Select 
Initialize: i = 1, j = n 
while (i<j) 

if CompareResult(hi, hj) = “better” 
discard hj from H; 
j--; 

else if CompareResult(hi, hj) = “worse” 
discard hi from H; 
i++; 

else break; 
 

                                                           
4 In the final stage re-ranker we useδ1=δ2 so that we don’t generate the 
output of “unsure”, and one hypothesis is finally selected. 

Output 
If the number of remaining hypotheses in H is 1, 
then output it as the best hypothesis; else propa-
gate all hypothesis pairs into the next re-ranker. 

5.2 SVMRank 

We implemented an SVM-based model, which 
can theoretically achieve very low generalization 
error. We use the SVMLight package (Joachims, 
1998), with the pairwise sampling scheme as for 
MaxEnt-Rank. In addition we made the following 
adaptations: we calibrated the SVM outputs, and 
separated the data into subsets. 

To speed up training, we divided our training 
samples into k subsets. Each subset contains N(N-
1)/k pairs of hypotheses of each sentence.  

In order to combine the results from these dif-
ferent SVMs, we must calibrate the function val-
ues; the output of an SVM yields a distance to the 
separating hyperplane, but not a probability. We 
have applied the method described in (Shen and 
Joshi, 2003), to map SVM’s results to probabili-
ties via a sigmoid. Thus from the kth SVM, we get 
the probability for each pair of hypotheses: 

)1),(( =jik hhfprob , 
namely the probability of hi being better than hj. 
Then combining all k SVMs’ results we get: 
       ∏ ==

k
jikji hhfprobhhZ )1),((),( . 

So the hypothesis hi with maximal value is cho-
sen as the top hypothesis:  

∏
j

ji
h

hhZ
i

)),((maxarg . 

5.3 P-Norm Push Ranking 

The third algorithm we have tried is a general 
boosting-style supervised ranking algorithm called 
p-Norm Push Ranking (Rudin, 2006). We de-
scribe this algorithm in more detail since it is quite 
new and we do not expect many readers to be fa-
miliar with it.  

The parameter “p” determines how much em-
phasis (or “push”) is placed closer to the top of the 
ranked list, where p≥1. The p-Norm Push Ranking 
algorithm generalizes RankBoost (take p=1 for 
RankBoost). When p is set at a large value, the 
rankings at the top of the list are given higher pri-
ority (a large “push”), at the expense of possibly 
making misranks towards the bottom of the list. 

53



Since for our application, we do not care about the 
rankings at the bottom of the list (i.e., we do not 
care about the exact rank ordering of the bad hy-
potheses), this algorithm is suitable for our prob-
lem. There is a tradeoff for the choice of p; larger 
p yields more accurate results at the very top of 
the list for the training data. If we want to consider 
more than simply the very top of the list, we may 
desire a smaller value of p. Note that larger values 
of p also require more training data in order to 
maintain generalization ability (as shown both by 
theoretical generalization bounds and experi-
ments). If we want large p, we must aim to choose 
the largest value of p that allows generalization, 
given our amount of training data. When we are 
working on the first stage of re-ranking, we con-
sider the whole top portion of the ranked list, be-
cause we use the rank in the list as a feature for 
the next stage. Thus, we have chosen the value 
p1=4 (a small “push”) for the first re-ranker. For 
the second re-ranker we choose p2=16 (a large 
“push”). 

The objective of the p-Norm Push Ranking al-
gorithm is to create a scoring function f: H R 
such that for each crucial pair (hi, hj), we shall 
have f(hi) > f(hj). The form of the scoring function 
is f(hi) = ∑αkgk(hi), where gk is called a weak 
ranker: gk : H  [0,1]. The values of αk are de-
termined by the p-Norm Push algorithm in an it-
erative way.  

The weak rankers gk are the features described 
in Section 4. Note that we sometimes allow the 
algorithm to use both gk and g’k(hi)=1-gk(hi) as 
weak rankers, namely when gk has low accuracy 
on the training set; this way the algorithm itself 
can decide which to use.  

As in the style of boosting algorithms, real-
valued weights are placed on each of the training 
crucial pairs, and these weights are successively 
updated by the algorithm. Higher weights are 
given to those crucial pairs that were misranked at 
the previous iteration, especially taking into ac-
count the pairs near the top of the list. At each 
iteration, one weak ranker gk is chosen by the al-
gorithm, based on the weights. The coefficient αk 
is then updated accordingly.  

6 Experiment Results 

6.1 Data and Resources 

We use 100 texts from the ACE 04 training corpus 
for a blind test. The test set included 2813 names: 
1126 persons, 712 GPEs, 785 organizations and 
190 locations. The performance is measured via 
Precision (P), Recall (R) and F-Measure (F). 

The baseline name tagger is trained from 2978 
texts from the People’s Daily news in 1998 and 
also 1300 texts from ACE training data.  

The 1,071,285 training samples (pairs of hy-
potheses) for the re-rankers are obtained from the 
name tagger applied on the ACE training data, in 
the manner described in Section 3.2. 

We use OpenNLP5 for the MaxEnt-Rank ex-
periments. We use SVMlight (Joachims, 1998) for 
SVMRank, with a linear kernel and the soft mar-
gin parameter set to the default value. For the p-
Norm Push Ranking, we apply 33 weak rankers, 
i.e., features described in Section 4. The number 
of iterations was fixed at 110, this number was 
chosen by optimizing the performance on a devel-
opment set of 100 documents. 

6.2 Effect of Pairwise Sampling 

We have tried both single-hypothesis and pairwise 
sampling (described in section 5.1.1) in MaxEnt-
Rank and p-Norm Push Ranking. Table 1 shows 
that pairwise sampling helps both algorithms. 
MaxEnt-Rank benefited more from it, with preci-
sion and recall increased 2.2% and 0.4% respec-
tively. 

 
Model P R F 
Single Sampling 89.6 90.2 89.9MaxEnt-

Rank Pairwise Sampling 91.8 90.6 91.2
Single Sampling 91.4 89.6 90.5p-Norm 

Push Pairwise Sampling 91.2 90.8 91.0
 

Table 1. Effect of Pairwise Sampling 

6.3 Overall Performance 

In Table 2 we report the overall performance for 
these three algorithms. All of them achieved im-
provements on the baseline name tagger. MaxEnt 
yields the highest precision, while p-Norm Push 
Ranking with p2 = 16 yields the highest recall. 

A larger value of “p” encourages the p-Norm 
Push Ranking algorithm to perform better near the 
top of the ranked list. As we discussed in section 

                                                           
5 http://maxent.sourceforge.net/index.html 
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5.3, we use p1 = 4 (a small “push”) for the first re-
ranker and p2 = 16 (a big “push”) for the second 
re-ranker. From Table 2 we can see that p2 = 16 
obviously performed better than p2 = 1. In general, 
we have observed that for p2 ≤16, larger p2 corre-
lates with better results. 
 

Model P R F 
Baseline  87.4 87.6 87.5
MaxEnt-Rank 91.8 90.6 91.2
SVMRank 89.5 90.1 89.8
p-Norm Push Ranking (p2 =16) 91.2 90.8 91.0
p-Norm Push Ranking  
(p2 =1, RankBoost) 

89.3 89.7 89.5

 
Table 2. Overall Performance  

The improved NE results brought better per-
formance for the subsequent stages of information 
extraction too. We use the NE outputs from Max-
Ent-Ranker as inputs for coreference resolver and 
relation tagger. The ACE value6 of entity detec-
tion (mention detection + coreference resolution) 
is increased from 73.2 to 76.5; the ACE value of 
relation detection is increased from 34.2 to 34.8. 

6.4 Effect of Cross-document Information 

As described in Section 4.3, our algorithm incor-
porates cross-document coreference information. 
The 100 texts in the test set were first clustered 
into 28 topics (clusters). We then apply cross-
document coreference on each cluster. Compared 
to single document coreference, cross-document 
coreference obtained 0.5% higher F-Measure, us-
ing MaxEnt-Ranker, improving performance for 
15 of these 28 clusters. 

These clusters were then extended by selecting 
84 additional related texts from a corpus of 15,000 
unlabeled Chinese news articles (using a cross-
entropy metric to select texts). 24 clusters gave 
further improvement, and an overall 0.2% further 
improvement on F-Measure was obtained.  

6.5 Efficiency 

Model Training Test 
MaxEnt-Rank 7 hours 55 minutes
SVMRank 48 hours 2 hours 
p-Norm Push Ranking 3.2 hours 10 minutes

 

Table 3. Efficiency Comparison 
                                                           
6 The ACE04 value scoring metric can be found at: 
http://www.nist.gov/speech/tests/ace/ace04/doc/ace04-evalplan-v7.pdf 

In Table 3 we summarize the running time of 
these three algorithms in our application. 

7 Discussion 

We have shown that the other components of an 
IE pipeline can provide information which can 
substantially improve the performance of an NE 
tagger, and that these improvements can be real-
ized through a variety of re-ranking algorithms.  
MaxEnt re-ranking using binary sampling and p-
Norm Push Ranking proved about equally effec-
tive.7  p-Norm Push Ranking was particularly ef-
ficient for decoding (about 10 documents / 
minute), although no great effort was invested in 
tuning these procedures for speed. 

We presented methods to handle cross-sentence 
inference using staged re-ranking and to incorpo-
rate additional evidence through document clus-
tering. 

An N-best / re-ranking strategy has proven ef-
fective for this task because with relatively small 
values of N we are already able to include highly-
rated hypotheses for most sentences.  Using the 
values of N we have used throughout (dependent 
on the margin of the baseline HMM, but never 
above 30), the upper bound of N-best performance 
(if we always picked the top-scoring hypothesis) 
is 97.4% recall, 96.2% precision, F=96.8%. 

Collins (2002) also applied re-ranking to im-
prove name tagging. Our work has addressed both 
name identification and classification, while his 
only evaluated name identification.  Our re-ranker 
used features from other pipeline stages, while his 
were limited to local features involving lexical 
information and 'word-shape' in a 5-token window.  
Since these feature sets are essentially disjoint, it 
is quite possible that a combination of the two 
could yield even further improvements. His boost-
ing algorithm is a modification of the method in 
(Freund et al., 1998), an adaptation of AdaBoost, 
whereas our p-Norm Push Ranking algorithm can 
emphasize the hypotheses near the top, matching 
our objective. 

Roth and Yih (2004) combined information 
from named entities and semantic relation tagging, 
adopting a similar overall goal but using a quite 
different approach based on linear programming.  

                                                           
7 The features were initially developed and tested using the MaxEnt re-ranker, 
so it is encouraging that they worked equally well with the p-Norm Push 
Ranker without further tuning. 
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They limited themselves to name classification, 
assuming the identification given.  This may be a 
natural subtask for English, where capitalization is 
a strong indicator of a name, but is much less use-
ful for Chinese, where there is no capitalization or 
word segmentation, and boundary errors on name 
identification are frequent. Expanding their ap-
proach to cover identification would have greatly 
increased the number of hypotheses and made 
their approach slower.  In contrast, we adjust the 
number of hypotheses based on the margin in or-
der to maintain efficiency while minimizing the 
chance of losing a high-quality hypothesis. 

In addition we were able to capture selectional 
preferences (probabilities of semantic types as 
arguments of particular semantic relations as 
computed from the corpus), whereas Roth and Yih 
limited themselves to hard (boolean) type con-
straints. 
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