1

Discriminative machine learning methods have im

Computational Challenges in Parsing by Classification

Joseph Turian and I. Dan Melamed
{lastname}@cs.nyu.edu
Computer Science Department
New York University
New York, New York 10003

Abstract

This paper presents a discriminative
parser that does not use a generative
model in any way, yet whose accu-
racy still surpasses a generative base-
line. The parser performs feature selec-
tion incrementally during training, as op-
posed toa priori, which enables it to
work well with minimal linguistic clever-
ness. The main challenge in building this
parser was fitting the training data into
memory. We introduce gradient sampling,
which increased training speed 100-fold.
Our implementation is freely available at
http://nlp.cs.nyu.edu/parser/.

Introduction

trial and error with diferent hyper-parameter values
and types of features.

In the present work, we make progress towards
overcoming these obstacles. We propose a flexible,
well-integrated method for training discriminative
parsers, demonstrating techniques that might also
be useful for other structured learning problems.
The learning algorithm projects the hand-provided
atomic features into a compound feature space and
performs incremental feature selection from this
large feature space. We achieve higher accuracy than
a generative baseline, despite not using the standard
trick of including an underlying generative model.
Our training regime does model selection without
ad-hoc smoothing or frequency-based feature cut-
offs, and requires no heuristics to optimize the single
hyper-parameter.

We discuss the computational challenges we over-
came to build this parser. The mairffatiulty is that
the training data fitin memory only using an indirect

éepresentatioﬁ,so the most costly operation during

proved accuracy on many NLP tasks, including™"" ~>>" .)
POS-tagging, shallow parsing, relation extraction@ining is accessing the features of a particular ex-

and machine translation. However, only limited adgmple. We show how to train a parséieetively un-

vances have been made on full syntactic constitueﬂ?r thesz con(j|t|ons. _Ne_allsc(; show ?OW to sEesd up
parsing. Successful discriminative parsers have us g'ning by using a principied sampling metho '_(0
generative models to reduce training time and raiestimate thg loss gradlen_ts used in feature selection.
accuracy above generative baselines (Coliins & S2 describes the parsing algorith§8 presents

Roark, 2004: Henderson, 2004: Taskar et al., 2004tjje learning method and techniques used to reduce

However, relying upon information from a gener—_tra'r_"ng time.§4 pre_sent§ experiments with dls_crlm—
inative parsers built using these methogs. dis-

ative model might limit the potential of these ap-
proaches to realize the accuracy gains achieved bysimilar memory limitations exist in other large-scale NLP
discriminative methods on other NLP tasks. Anothejgsks. Syntax-driven SMT systems are typically trained on

. . R . an order of magnitude more sentences than English parsers,
difficulty is that discriminative parsing approaChe%nd unsupervised estimation methods can generate an arbitrary
can be very task-specific and require quite a bit afumber of negative examples (Smith & Eisner, 2005).

17

Workshop on Computationally Hard Problemsand Joint Inference in Speech and Language Propeggsd 7—24,
New York City, New York, June 200822006 Association for Computational Linguistics

cusses possible issues in scaling to larger exam@e Training Method
sets. _
3.1 General Setting

2 Parsing Algorithm From each training inferendec | we generate the

The following terms will help to explain our work. tUPI€ ¢X(i), (i), b(i)). X(i) is a feature vector de-

A spanis a range over contiguous words in the inSCrPingi, with each element if0, 1). The observed
—-1,+1} is determined by whether

put. Spangrossif they overlap but neither contains Y-Valuey(i) € { w
the other. Aritemis a (sparlabel) pair. Astateis a IS @ CorTect inference or not. Some training exam-
partial parse, i.e. a set of items, none of whose spaRi€S might be more |mportflnt than others, so each is
cross. A parsénferenceis a (stateitem) pair, i.e. a 9Iven aninitial biad(i) e R*.

state and a (consequent) item to be added to it. The QUr goal during training is to induce a real-valued
frontier of a state consists of the items with no parinférence scoring function (hypothesid)(i; @),
ents yet. Thehildrenof an inference are the frontier Which is a linear model parameterized by a vector
items below the item to be inferred, and theadof @ Of reals:

an in'ference is the child item chosen by_head rules h(i; @) = @ - X(i) = Z at - X (i) 2)
(Collins, 1999, pp. 238-240). A parpathis a se- i

guence of parse inferences. For some input sentenlg

and training parse tree, a state@@rectif the parser) . . .
. ") : -value ofi and the magnitude gives the confidence
can infer zero or more additional items to obtain th . -~
in this prediction.

training parse tree and an inference is correct if | . - L
The training procedure optimizesto minimize
leads to a correct state. :
. .) the expected risk:
Now, given input sentencewe compute:

R(l; @) = L(I; @) + Q(a) (3)
p=arg min[z I(i)]

_ (1) In principle, L can be any loss function, but in the
peP(9) |iep

present work we use the log-loss (Collins et al.,
whereP(s) are possible parses of the sentence, anghp2):

the loss (or cost)| of parsep is summed over the , , ,
inferencesi that lead to the parse. To finp, the L(lie) = Z (@) = Zb(')"f(:“('?“)))
parsing algorithm considers a sequence of states. i€l i€l

The initial state contains terminal items, whose lawhere:

bels are the POS tags given by Ratnaparkhi (1996). o(u) = In(1+ expp)) (5)
The parser considers a set of (bottom-up) inferences

. ; and themargin of inferencei under the current
at each state. Each inference results in a successor

state to be placed on the agenda. The loss functicr>rr110de|a IS

| can consider arbitrary properties of the input and u(i; @) = y() - h(i; @) (6)

parse staté,which precludes a tractable dynamic . . o . .

programming solution to Equation 1. Therefore, Wé:or a particular choice o, I(i) in Equation 1 is

do standard agenda-based parsing, but instead c&mputed according to Equation 4 usiy(@ = +1

. . andb(i) = 1.

items our agenda stores entire states, as per moreQ in Equation 3 i lari hich |

general best-first search over parsing hypergraphs (@) in Equation 3 is a regularizer, w ICh penal-

(Klein & Manning, 2001). Each time we pop a statdZ€S overly complex models to reduce overfitting and

from the agendd, computes a loss for the bottom-generalIzatlon error. We use thiepenalty:

up inferences generated from that state. If the loss Qa) = Z Aol (7)
f

of the popped state exceeds that of the current best

complgte parse, search is done and we have fOUMereﬂ is the, parameter that controls the strength
the optimal parse. of the regularizer. This choice of objectifis mo-
2|.e. we make no context-free assumptions. tivated by Ng (2004), who suggests that, given a

gchf is a feature. The sign df(i; @) predicts the

18

learning setting where the number of irrelevant feakisting 1 Training algorithm.
tures is exponential in the number of training exam- 1: procedure Train(l)

ples, we can nonetheless leafieetively by build- 2: ensemble— 0

ing decision trees to minimize th&-regularized 3: h(i) < O foralli €
log-loss. Conversely, Ng (2004) suggests that most: forT=1...00do

of the learning algorithms commonly used by dis- 5: S « priority samplel
criminative parsersvill overfit when exponentially 6: extractX(i) for alli € S
many irrelevant features are presént. 7 build decision tre¢ usingS

Learning over an exponential feature space is thes: percolate every € | to a leaf node it
very setting we have in mindA priori, we define 9 for eachleaf f int do
only a setA of simple atomic features (se€4). 10: choosear to minimizeR
However, the learner inducesompoundfeatures, 11: addas to h(i) for all i in this leaf

each of which is a conjunction of possibly negated
atomic features. Each atomic feature can have thr&/mine the accuracy of the parser on a held-out de-
values (yesg/don't care), so the size of the com-Vvelopment set using the previousvalue (before it
pound feature space i$3 exponential in the num- Was decreased), and can stop training when this ac-
ber of atomic features. It was also exponential ifuracy plateaus. In this way, instead of choosing the
the number of training examples in our experiment@€st1 heuristically, we can optimize it during a sin-
(A ~ [1]). gle training run (Turian & Melamed, 2005).

We use an ensemble of confidence-rated deci- OUr Stratégy for optimizing to minimize the ob-

sion trees (Schapire & Singer, 1999) to represeht jecting(Equation 3) is a variant (_)f ;tee_pest _descent
Each node in a decision tree corresponds to a corfferkins et al., _2003). Each training iteration has
pound feature, and the leaves of the decision treS§Veral steps. First, we choose some new compound
keep track of the parameter values of the compourf§iatures that have high magnitude gradient with re-
features they represent. To score an inference usif§ect t0 the objective function. We do this by build-

a decision tree, we percolate the inference down {§9 & new decision tree, whose leaves represent the
a leaf and return that leaf’s confidence. The overafleW compound fegt_urésSecondz we confidence-
score given to an inference by the whole ensembl@te each leaf to minimize the objective over the ex-
is the sum of the confidences returned by the trees #NPles that percolate down to that leaf. Finally, we

the ensemble. append the decision tree to the ensemble and up-
date parameter vectaraccordingly. In this manner,
3.2 Boostingfi-Regularized Decision Trees compound feature selection is performed incremen-

- . _ . tally duringtraining, as opposed @priori.
Listing 1 presents our training algorithm. (Sampling 14, p,iiq each decision tree, we begin with a root
will be explained in§3.3. Until then, assume that node, and we recursively split nodes by choosing a

the sampleS is the entire training sdt) Atthe be- giing feature that will allow us to decrease the
ginning of training, the ensemble is empty,= 0, objective. We have:

and thef; parameten is set toco. We train until the aL(l; @) _ Z (i) duli:) .
i€l

objective cannot be further reduced for the current

. o P ou(i;a) @
choice ofi. We then relax the regularization penalty o u(i; @) o
by decreasing and continuing training. We also de-Where: .

ou(i; @) . .
T . . = y(i) - Xt (i) 9)
3|nclud|ng_the foIIc_)w_lng Iearnlng algorithms: Oat

o unregularized logistic regression ___ We define thaveightof an example under the cur-
e |ogistic regression with afy, penalty (i.e. a Gaussian prior) .
« SVMs using most kernels rent model agl.(') L
o multilayer neural nets trained by backpropagation .. _ Lha) .]
* the perceptron algorithm wis @) = ou(i; @) = b() 1+expu(i; @) (10)

4Turian and Melamed (2005) show that that decision treesap-
plied to parsing have higher accuracy and training speed tharPAny given compound feature can appear in more than one
decision stumps. tree.

19

and: 3.3 Sampling for Faster Feature Selection

Yer- o\ — L
Wi(lie) = Z: w(i; @) (11) Building a decision tree using the entire example set
X ()~ Ly(i)=y | can be very expensive, which we will demonstrate
o) . in §4.2. However, feature selection can leetive
Combining Equations 8-11 givés: even if we don’t examine every example. Since the
oL weight of high-margin examples can be several or-
- Wf—l _ W?—l (12) g g g p

ders of magnitude lower than that of low-margin ex-
amples (Equation 10), the contribution of the high-
margin examples to feature weights (Equation 11)
oL will be insignificant. Therefore, we can ignore most
G = max(O, ‘% B ’l) (13) examples during feature selection as long as we have
r%md estimates of feature weights, which in turn give

. . N . 0od estimates of the loss gradients (Equation 12).
penalty term is undefined at = 0. This discontinu- g 9 (Eq)

ity is why ¢1 regularization tends to produce sparse As ShO_W_” in Step 1.5 of L'?t”.‘g L, befqre building
models. IfG; = 0, then the objectivR s at its min- each decision tree we use priority sampling fizld

imum with respect to parametef;. Otherwise G¢ et aII., 2005) éo ctlootshe a smalll sub_ser:tof Fhe et;< i
is the magnitude of the gradient of the objective a mpies according fo the example WeIghts given by

we adjust; in the appropriate direction. t _ecurrent classifier, and the tree is built using only
: . : . this subset. We make the sample small enough that
The gain of splitting nodd using some atomic . . . T
. . its entire atomic feature matrix will fit in memory.
featurea is defined as o - o
To optimize decision tree building, we compute and
Gi(@) = Gipa + Gip-a (14) cache the sample’s atomic feature matrix in advance
: . Step 1.6).
We allow nodef to be split only by atomic features (Step)) L .
Even if the sample is missing important informa-

athat increase the gain, i.6(a) > Gj. If no such tion i teration. the traini d .
feature exists, thefi becomes a leaf node of the de- lon In one iteration, the training procedure IS capa-

cision tree andrs becomes one of the values to be_ble Of_ recovering it from sam_ples used |n1 sub_seque_nt
lferations. Moreover, even if a sample’s gain esti-

optimized during the parameter update step. Othe _ .
wise, we choose atomic featuaed split nodef: mates are inaccurate and the feature selectlgn step
) chooses irrelevant compound features, confidence
a = argmaxG:(a) (15) updates are based upon the entire training set and
ach the regularization penalty will prevent irrelevant fea-
This split creates child nodesa dandf A-a&. 1fno tures from having their parameters move away from
root node split has positive gain, then training hagero.
converged for the current choice &if parameten.
Parameter update is done sequentially on only tt®4 The Training Set

most recently added compound features, which cor- o _ _ _
respond to the leaves of the new decision tree. Aft&pUr training set contains all inferences considered

the entire tree is built, we percolate examples dowif €Very state along the correct path for each gold-
to their appropriate leaf nodes. We then choose f&iandard parse tree (Sagae & Lavie, 2005his
each leaf nodé the parametat; that minimizes the Method of generating training examples does not re-
objectiveR over the examples in that leaf. DecisiondUiré & working parser and can be run prior to any
trees ensure that these compound features are nf{@ining. The downside of this approach is that it
tually exclusive, so they can be directly optimizedninimizes the error of the parser aprrect states

independently of each other using a line search ov@lY- It does not account for compounded error or
the objectiveR. teach the parser to recover from mistakes gracefully.

oat

We define theyain G; of featuref as:

Equation 13 has this form because the gradient of t

6Sincea is fixed during a particular training iteration ahds Since parsing is done deterministically right-to-left, there can
fixed throughout training, we omit parametelrsa) henceforth. be no more than one correct inference at each state.

20

Turian and Melamed (2005) observed that unifeatures over.2 Extraction is 100-1000 times more
form example biaseb(i) produced lower accuracy expensive than a single test, but is necessary during
as training progressed, because the induced clasdecision tree building (Step 1.7) because we need
fiers minimized theexample-wiseerror. Since we the entire vectorX(i) to accumulate inferences in
aim to minimize the state-wise error, we express thishildren nodes. Essentially, for each inferenteat
bias by assigning every trainirgfateequal value, falls in some nodd, we accumulatev(i) in W}’(A')a
and—for the examples generated from that state-fer all a with X(i) = 1. After all the inferences in a
sharing half the value uniformly among the neganode have been accumulated, we try to split the node
tive examples and the other half uniformly amondEquation 15). The negative child weights are each

the positive examples. determined ayv!, =W/ -W/ _.

Although there areD(n?) possible spans over a4 Experiments
frontier containingn items, we reduce this to the _
O(n) inferences that cannot have more than 5 chil/Ve follow Taskar et al. (2004) and Turian and
dren. With no restriction on the number of childrenMeélamed (2005) in training and testing en 15
there would beO(n?) bottom-up inferences at eachWword sentences in the English _Penn Treebank (T_ay-
state. However, only 0.57% of non-terminals in thd0r €t al., 2003). We used sections 02-21 for train-

preprocessed development set have more than fif#g: Section 22 for development, and section 23,
children. for testing. We use the same preprocessing steps as

Turian and Melamed (2005): during both training

Like Turian and Melamed (2005), we parallelizeand testing, the parser is given text POS-tagged by
training by inducing 26 label classifiers (one forthe tagger of Ratnaparkhi (1996), with capitalization
each non-terminal label in the Penn Treebank). Pastripped and outermost punctuation removed.
allelization might not uniformly reduce training time For reasons given in Turian and Melamed (2006),
because dierent label classifiers train atfférent items are inferred bottom-up right-to-left. As men-
rates. However, parallelization uniformly reducesioned in §2, the parser cannot infer any item that
memoryusage because each label classifier traingosses an item already in the state. To ensure the
only on inferences whose consequent item has thparser does not enter an infinite loop, no two items
label. Even after parallelization, the atomic featurén a state can have both the same span and the same
matrix cannot be cached in memory. We can storbel. Given these restrictions, there were roughly 40
the training inferences in memory using onlyian million training examples. These were partitioned
directrepresentation. More specifically, for each in-among the constituent label classifiers.
ferencei in the training set, we cache in memory Our atomic feature sef contains features of
several values: a pointerto a tree cut, ity-value the form “is there an item in groug whose la-
y(i), its biasb(i), and its confidencé(i) under the belheadwor¢headtagheadtagclassis ‘X’?”. Pos-
current model. We cach€i) throughout training be- sible values of ‘X’ for each predicate are collected
cause it is needed both in computing the gradient éfom the training data. Some examples of possible
the objective during decision tree building (Step 1.7yalues forJ include the lash child items, the firsh
as well as subsequent minimization of the objectivieft context items, all right context items, and the ter-
over the decision tree leaves (Step 1.10). We updateinal items dominated by the non-head child items.
the confidences at the end of each training iteratioBpace constraints prevent enumeration of the head-
using the newly added tree (Step 1.11). tagclasses and atomic feature templates, which are

The most costly operation during training is to ac- °Extraction need not take theiia approach of performingy

. . different tests, and can be optimized by using knowledge about
cess the feature values X(i). An atomic feature . \-iure of the atomic feature templates,

testdetermines the valuX,(i) for a single atomic °The predicate headtagclass is a supertype of the headtag.
featurea by examining the tree cut pointed to by in-Given our compound features, these are not strictly neces-

. . sary, but they accelerate training. An example is “proper noun,”
ferencei. Alternately, we can perform atomic fea’which contains the POS tags given to singular and plural proper
ture extraction i.e. determineall non-zero atomic nouns.

21

Figure 1 F; score of our parser on the developmenTable 1 PARSEVAL results of parsers on the test
set of the Penn Treebank, using orlyL5 word sen- set, using onl 15 word sentences.

tences. The dashed line indicates the percemtPof F1 % Rec. % Prec. %
example weight lost due to sampling. The bottonTyrian and Melamed (2005) 87.13 86.47 87.80
x-axis shows the number of non-zero parameters igjke| (2004) 88.30 8785 88.75
each parser, summed over all label classifiers. Taskar et al. (2004) 89.12 89.10 89.14
training time (days) our parser 89.40 89.26 89.55

0.5 1.0 2.5 5.4

35%

91%

Table 2 Profile of anNP training iteration, given

£30% in seconds, using an AMD Opteron 242 (64-bit,

1 90%

g 2% f 189% % 1.6Ghz). Steps refer to Listing 1.

‘; 20% | 188% g Step Description mean stddev %
AR {87% = 15 Sample 15s 0.07s 0.7%
% 10% ¢ {86% & 1.6 Extraction 38.2s 0.13s 18.6%
2 5%} { 85% 1.7 Buildtree 127.6s 27.60s 62.3%
0% P — ‘ 84% 1.8 Percolation 31.4s 491s 15.3%
b toljiumber o‘zf.iSn zero paramitKers e 1.9-11 Leaf updates 6.2s 1.75s 3.0%
1.5-11 Total 204.9s 32.6s 100.0%

instead provided at the URL given in the abstract.
These templates gave 1.1 millionfigrent atomic 2004)1° the only one that we were able to train and

features. We experimented with smaller feature set@st under exactly the same experimental conditions
but found that accuracy was lower. Charniak an§including the use of POS tags from Ratnaparkhi

Johnson (2005) use linguistically more sophisticated996)). Table 1 shows the PARSEVAL results of

features, and Bod (2003) and Kudo et al. (2005) ud@ese four parsers on the test set.

sub-tree features, all of which we plan to try in fu—4'2 Efficiency
ture work.

We evaluated our parser using the standard PARO% of non-terminals in the Penn Treebank are
SEVAL measures (Black et al., 1991): labelled'Ps. Consequently, the bottleneck in training is
precision, labelled recall, and labelled F-measur@duction of theNP classifier. It was trained on
(Prec., Rec., andiFrespectively), which are based1-65 million examples. Each example had an aver-
on the number of non-terminal items in the parserdgde of 440 non-zero atomic features (stddev 123),
output that match those in the gold-standard pars&® the direct representation of each example re-
The solid curve Figure 1 shows the accuracy ofiuires a minimum 440 sizeof(int) = 1760 bytes,
the parser over the development set as training prghd the entire atomic feature matrix would re-
gressed. The parser exceeded 89% F-measure @¢ire 1760 bytes 1.65 million = 2.8 GB. Con-
ter 2.5 days of training. The peak F-measure wadersely, an indirectly represent inference requires
90.55%, achieved at 5.4 days using 6.3K actiyB0 more 32 bytes: two floats (the cached confi-
parameters. We omit details given by Turian andenceh(i) and the bias terni(i)), a pointer to a
Melamed (2006) in favor of a longer discussion irfree cut), and a bool (they-value y(i)). Indi-

§4.2. rectly storing the entire example set requires only
32 bytes 1.65 million = 53 MB plus the treebank
4.1 Test Set Results and tree cuts, a total of 400 MB in our implementa-

To situate our results in the literature, we comparﬂon-

our results to those reported by Taskar et al. (2004) We used a sample size|& = 100 000 examples
and Turian and Melamed (2005) for their discrimi-to build each decision tree, 16.5 times fewer than
native parsers, which were also trained and tested &€ entire example set. The dashed curve in Figure 1
< 15 word sentences. We also compare our parsedgiye| (2004) is a “clean room” reimplementation of the
to a representative non-discriminative parser (Bikekollins (1999) model with comparable accuracy.

22

shows the percent afP example weight lost due 100 timesas long as it does currently.
to sampling. As training progresses, fewer examples Our decision tree ensembles contain over two or-
are informative to the model. Even though we ignoréers of magnitude more compound features than
94% of examples during feature selection, samplinghose in Turian and Melamed (2005). Our overall
loses less than 1% of the example weight after a dayaining time was roughly equivalent to theirs. This
of training. ratio corroborates the above estimate.

The NP classifier used in our final parser was
an ensemble containing 2316 trees, which tooE Discussion
five days to build. Overall, there were 96871 de-
cision tree leaves, only 2339 of which were nonTheNP classifier was trained only on the 1.65 mil-
zero. There were an average of 40.4 (7.4 stdion NP examples inthe 9753 training sentences with
dev) decision tree splits between the root of & 15 words (168.8 examplgentence). The number
tree and a non-zero leaf, and nearly all nonof examples generated is quadratic in the sentence

zero leaves were conjunctions of atomic fealength, so there are 41.7 milliafP examples in all
ture negations(e.g. -(some child item is a verb) 39832 training sentences of the whole Penn Tree-
—(some child item is a preposition)). The non-zerdank (1050 exampl¢sentence), 25 times as many
leaf confidences were quite small in magnitud@s we are currently using.
(0.107 mean, 0.069 stddev) but the training exam- The time complexity of each step in the train-
ple margins over the entire ensemble were nonethig loop (Steps 1.5-11) is linear over the number
less quite high: 11.7 mean (2.92 stddev) for corre@f examples used by that step. When we scale up
inferences, 30.6 mean (11.2 stddev) for incorrect irfo the full treebank, feature selection will not re-
ferences. quire a sample 25 times larger, so it will no longer
Table 2 profiles aiP training iteration, in which be the bottleneck in training. Instead, each itera-
one decision tree is created and added to tH®n will be dominated by choosing leaf confidences
NP ensemble. Feature selection in our algorithnand then updating the cached example confidences,
(Steps 1.5-1.7) takes5k38.2+127.6 = 167.3s, far which would require 25 (314s+ 6.2s) = 940s per
faster than in nize approaches. If we didn’t do sam-iteration. These steps are crucial to the current train-
pling but had 2.8GB to spare, we could eliminate thég algorithm, because it is important to have exam-
extraction step (Step 1.6) and instead cache the gple confidences that are current with respect to the
tire atomic feature matrix before the loop. Howevernodel. Otherwise, we cannot determine the exam-
tree building (Step 1.7) scales linearly in the numbeples most poorly classified by the current model, and
of examples, and would take $6127.6s= 21054s will have no basis for choosing an informative sam-
using the entire example set. If we didn’t do sample.
pling and couldn’t cache the atomic feature matrix, We might try to save training time by building
tree building would also require repeatedly performmanydecision trees over a single sample and then
ing extraction. The number of individual feature ex-updating the confidences of the entire example set
tractions needed to build a single decision tree is thasing all the new trees. But, if this confidence up-
sum over the internal nodes of the number of exanttate is done using feature tests, then we have merely
ples that percolate down to that node. There are ateferred the cost of the confidence update over the
average of 40.8 (7.8 stddev) internal nodes in eaantire example set. The amount of training done on
tree and most of the examples fall in nearly all of particular sample is proportional to the time sub-
them. This property is caused by the lopsided treesequently spent updating confidences over the entire
induced unde¥; regularization. A conservative es-example set. To spend less time doing confidence
timate is that each decision tree requires 25 extraopdates, we must use a training regime thaduls
tions times the number of examples. So extractiolinear with respect to the training time. For exam-
would add at least 2616.5 - 382s = 157575s0n ple, Riezler (2004) reports that tife regularization
top of 2105.40s, and hence building each decisiaerm drives many of the model's parameters to zero
tree would take at least (15754 210540)/167.3 ~ during conjugate gradient optimization, which are

23

then pruned before subsequent optimization stepsttee model to other structured learning tasks, such as
avoid numerical instability. Instead of building de-syntax-driven SMT.

cision tree(s) at each iteration, we could perfarm

best feature selection followed by parallel optimizaReferences

tion of the objective over the sample. Bikel, D. M. (2004). Intricacies of Collins’ parsing model.

The main limitation of our work so far is that Computational Linguistics , ,
lack, E., Abney, S., Flickenger, D., Gdaniec, C., Grishman,

we can do training reasonably qu'Ck!y only on ShOI‘?R_, Harrison, P., et al. (1991). A procedure for quantitatively
sentences, because a sentence witlvords gen- comparing the syntactic coverage of English grammars. In

eratesO(n?) training inferences in total. Although SPeech and Natural Language. _
. Bod, R. (2003). An fficient implementation of a new DOP
generating training examples in advance without a,,04el. InEACL.

working parser (Sagae & Lavie, 2005) is much fastea:_harniak, E., & Johnson, M. (2005). Coarse-to-fine n-best pars-
than using inference (Collins & Roark, 2004; Hen- ing and MaxEnt discriminative reranking. ACL.

. . : ollins, M. (1999).Head-driven statistical models for natural
derson, 2004; Taskar et al., 2004), our training tlmglanguage parsingDoctoral dissertation,

can probably be decreased further by choosing @iiins, M., & Roark, B. (2004). Incremental parsing with the

parsing strategy with a lower branching factor. Like perceptron algorithm. I1ACL.

; ollins, M., Schapire, R. E., & Singer, Y. (2002). Logistic re-
our work, Ratnaparkhi (1999) and Sage_le and_LaV@gression, AdaBoost and Bregman distanddachine Learn-
(2005) generate examplefitine, but their parsing ing, 48(1-3).
strategies are essentially shift-reduce so each sewifield, N., Lund, C., & Thorup, M. (2005). Prior-

n ner n®(n) trainina examoles. ity sampling estimating arbitrary subset sums.(http:
tence gene ates o Q()ta g examples //arxiv.org/abs/cs.DS/0509026)

] Henderson, J. (2004). Discriminative training of a neural net-
6 Conclusion work statistical parser. IACL.
Klein, D., & Manning, C. D. (2001). Parsing and hypergraphs.
Our work has made advances in both accuracy ar&df‘d'W_TT-s . 3. & Isozaki, H. (2005). Boosting-based
.. udo, T., Suzuki, J., sozaki, H. . Boosting-base
training speed of dlscrlmln.atlve. parsing. .As far as parse reranking with subtree featuresAfL.
we know, we present the first discriminative parsemg, A. Y. (2004). Feature selectiofy, vs. £, regularization, and
that surpasses a generative baseline on constituergtational invariance. fiCML. .
parsing without using a generative component, arfgfkins: S., Lacker, K., & Theiler, J. (2003). Grafting: Fast,
! . o . O incremental feature selection by gradient descent in function
it does so with minimal linguistic cleverness. space Journal of Machine Learning Reseatch
The main bottleneck in our setting was memoryR€=1tn€=1par:<fllzi,N| AN I_|(31996)- A maximum entropy part-of-speech
. .~ _tagger. In .
We _COl_Jld store the examples in memory only uSIn%atnaparkhi, A. (1999). Learning to parse natural language
an indirect representation. The most costly opera-with maximum entropy modelsviachine Learning34(1-3).
tion during training was accessing the features of Biezler, S. (2004). Incremental feature selectiod,afegular-
particular example from this indirect representation, z2tion for relaxed maximum-entropy modeling. BMNLP.
. . Sagae, K., & Lavie, A. (2005). A classifier-based parser with
We showeq how to train a parseffectively u_ndgr linear run-time complexity. IMWPT.
these conditions. In particular, we used principledchapire, R. E., & Singer, Y. (1999). Improved boosting using
sampling to estimate loss gradients and reduce théc’_tr‘r:'dﬁ”:egaé?d preg"?(tz'%g%")""cé"“i '-ef_‘r”'”gt3_’7(3t)_- Tl
. . . . mitn, N. A., Isher, J. . contrastive estimation: Ifrain-
_number of feature extractions. This gpproxmatlor?mg log-linear models on unlabeled data AGL.
increased the speed of feature selection 100-fold. Taskar, B., Klein, D., Collins, M., Koller, D., & Manning, C.
We are exploring methods for scaling training_{(z?o“k MMaX'margl\'A“ p;fss'”%- '5'_\’”;'-2003) The Pern T
. . 9y or, A., Marcus, M., antorini, b. . e renn lree-
_Up to larger .exam'ple sets. We are alsf) '”Ves_t'ga bank: an overview. In A. Abe# (Ed.), Treebanks: Building
ing the relationship between sample size, trainingand using parsed corpor&chap. 1).
time, classifier complexity, and accuracy. In addiTulrian,.fJ-, & Mellrc'iivn\wlgt# I. D. (2005). Constituent parsing by
. . classification. .
tion, we shall make some Stand?'rd IrT‘provemem:lsﬁrian,J.,&Melamed,I.D. (2006). Advances in discriminative
to our parser. Our parser should infer its own POSparsing. InaCL.
tags. A shift-reduce parsing strategy will generate
fewer examples, and might lead to shorter training
time. Lastly, we plan to give the model linguistically

more sophisticated features. We also hope to apply

24

