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Abstract

A syntax-directed translator first parses
the source-language input into a parse-
tree, and then recursively converts the tree
into a string in the target-language. We
model this conversion by an extended tree-
to-string transducer that have multi-level
trees on the source-side, which gives our
system more expressive power and flexi-
bility. We also define a direct probabil-
ity model and use a linear-time dynamic
programming algorithm to search for the
best derivation. The model is then ex-
tended to the general log-linear frame-
work in order to rescore with other fea-
tures liken-gram language models. We
devise a simple-yet-effective algorithm to
generate non-duplicatek-best translations
for n-gram rescoring. Initial experimen-
tal results on English-to-Chinese transla-
tion are presented.

1 Introduction

The concept ofsyntax-directed (SD) translation
was originally proposed in compiling (Irons, 1961;
Lewis and Stearns, 1968), where the source program
is parsed into a tree representation that guides the
generation of the object code. Following Aho and
Ullman (1972), atranslation, as a set of string pairs,
can be specified by asyntax-directed translation
schema(SDTS), which is essentially a synchronous
context-free grammar (SCFG) that generates two
languages simultaneously. An SDTS also induces a
translator, a device that performs the transformation

induces implements

SD translator
(source parser + recursive converter)

specifies translation
(string relation)

SD translation schema
(synchronous grammar)

Figure 1: The relationship among SD concepts,
adapted from (Aho and Ullman, 1972).
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Figure 2: An example of complex reordering repre-
sented as an STSG rule, which is beyond any SCFG.

from input string to output string. In this context, an
SD translator consists of two components, a source-
language parser and a recursive converter which is
usually modeled as a top-down tree-to-string trans-
ducer (Ǵecseg and Steinby, 1984). The relationship
among these concepts is illustrated in Fig. 1.

This paper adapts the idea of syntax-directed
translator to statistical machine translation (MT).
We apply stochastic operations at each node of the
source-language parse-tree and search for the best
derivation (a sequence of translation steps) that con-
verts the whole tree into some target-language string
with the highest probability. However, the structural
divergence across languages often results in non-
isomorphic parse-trees that is beyond the power of
SCFGs. For example, theS(VO)structure in English
is translated into aVSOword-order in Arabic, an in-
stance ofcomplex reorderingnot captured by any
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SCFG (Fig. 2).
To alleviate the non-isomorphism problem, (syn-

chronous) grammars with richer expressive power
have been proposed whose rules apply to larger frag-
ments of the tree. For example, Shieber and Sch-
abes (1990) introduce synchronous tree-adjoining
grammar (STAG) and Eisner (2003) uses a syn-
chronous tree-substitution grammar (STSG), which
is a restricted version of STAG with no adjunctions.
STSGs and STAGs generate moretree relationsthan
SCFGs, e.g. the non-isomorphic tree pair in Fig. 2.
This extra expressive power lies in theextended do-
main of locality(EDL) (Joshi and Schabes, 1997),
i.e., elementary structures beyond the scope of one-
level context-free productions. Besides being lin-
guistically motivated, the need for EDL is also sup-
ported by empirical findings in MT that one-level
rules are often inadequate (Fox, 2002; Galley et al.,
2004). Similarly, in the tree-transducer terminology,
Graehl and Knight (2004) define extended tree trans-
ducers that have multi-level trees on the source-side.

Since an SD translator separates the source-
language analysis from the recursive transformation,
the domains of locality in these two modules are or-
thogonal to each other: in this work, we use a CFG-
based Treebank parser but focuses on the extended
domain in the recursive converter. Following Gal-
ley et al. (2004), we use a special class ofextended
tree-to-string transducer(xRs for short) with multi-
level left-hand-side (LHS) trees.1 Since the right-
hand-side (RHS) string can be viewed as a flat one-
level tree with the same nonterminal root from LHS
(Fig. 2), this framework is closely related to STSGs:
they both have extended domain of locality on the
source-side, while our framework remains as a CFG
on the target-side. For instance, an equivalentxRs
rule for the complex reordering in Fig. 2 would be

S(x1:NP, VP(x2:VB, x3:NP))→ x2 x1 x3

While Section 3 will define the model formally,
we first proceed with an example translation from
English to Chinese (note in particular that the in-
verted phrases between source and target):

1Throughout this paper, we will use LHS and source-side
interchangeably (so are RHS and target-side). In accordance
with our experiments, we also use English and Chinese as the
source and target languages, opposite to the Foreign-to-English
convention of Brown et al. (1993).

(a) the gunman was [killed]1 by [the police]2 .

parser⇓

(b)

S

NP-C

DT

the

NN

gunman

VP

VBD

was

VP-C

VBN

killed

PP

IN

by

NP-C

DT

the

NN

police

PUNC

.

r1, r2 ⇓

(c) qiangshou

VP

VBD

was

VP-C

VBN

killed

PP

IN

by

NP-C

DT

the

NN

police

◦

r3 ⇓

(d) qiangshou bei

NP-C

DT

the

NN

police

VBN

killed
◦

r5 ⇓ r4 ⇓

(e) qiangshou bei [jingfang]2 [jibi ]1 ◦

Figure 3: A synatx-directed translation process for
Example (1).

(1) the gunman was killed by the police .

qiangshou
[gunman]

bei
[passive]

jingfang
[police]

jibi
[killed]

◦

.

Figure 3 shows how the translator works. The En-
glish sentence (a) is first parsed into the tree in (b),
which is then recursively converted into the Chinese
string in (e) through five steps. First, at the root
node, we apply the ruler1 which preserves the top-
level word-order and translates the English period
into its Chinese counterpart:

(r1) S (x1:NP-Cx2:VP PUNC (.) )→ x1 x2 ◦
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Then, the ruler2 grabs the whole sub-tree for “the
gunman” and translates it as a phrase:

(r2) NP-C ( DT (the) NN (gunman) )→ qiangshou

Now we get a “partial Chinese, partial English” sen-
tence “qiangshouVP ◦” as shown in Fig. 3 (c). Our
recursion goes on to translate the VP sub-tree. Here
we use the ruler3 for the passive construction:

(r3)

VP

VBD

was

VP-C

x1:VBN PP

IN

by

x2:NP-C

→ bei x2 x1

which captures the fact that the agent (NP-C, “the
police”) and the verb (VBN, “killed”) are always
inverted between English and Chinese in a passive
voice. Finally, we apply rulesr4 andr5 which per-
form phrasal translations for the two remaining sub-
trees in (d), respectively, and get the completed Chi-
nese string in (e).

2 Previous Work

It is helpful to compare this approach with recent ef-
forts in statistical MT. Phrase-based models (Koehn
et al., 2003; Och and Ney, 2004) are good at learn-
ing local translations that are pairs of (consecutive)
sub-strings, but often insufficient in modeling the re-
orderings of phrases themselves, especially between
language pairs with very different word-order. This
is because the generative capacity of these models
lies within the realm of finite-state machinery (Ku-
mar and Byrne, 2003), which is unable to process
nested structures and long-distance dependencies in
natural languages.

Syntax-based models aim to alleviate this prob-
lem by exploiting the power of synchronous rewrit-
ing systems. Both Yamada and Knight (2001) and
Chiang (2005) use SCFGs as the underlying model,
so their translation schemata are syntax-directed as
in Fig. 1, but their translators arenot: both systems
do parsing and transformation in a joint search, es-
sentially over a packed forest of parse-trees. To this
end, their translators are notdirectedby a syntac-
tic tree. Although their method potentially consid-
ers more than one single parse-tree as in our case,

the packed representation of the forest restricts the
scope of each transfer step to a one-level context-
free rule, while our approach decouples the source-
language analyzer and the recursive converter, so
that the latter can have an extended domain of local-
ity. In addition, our translator also enjoys a speed-
up by this decoupling, with each of the two stages
having a smaller search space. In fact, the recursive
transfer step can be done by a alinear-time algo-
rithm (see Section 5), and the parsing step is also
fast with the modern Treebank parsers, for instance
(Collins, 1999; Charniak, 2000). In contrast, their
decodings are reported to be computationally expen-
sive and Chiang (2005) uses aggressive pruning to
make it tractable. There also exists a compromise
between these two approaches, which uses ak-best
list of parse trees (for a relatively smallk) to approx-
imate the full forest (see future work).

Besides, our model, as being linguistically mo-
tivated, is also more expressive than the formally
syntax-based models of Chiang (2005) and Wu
(1997). Consider, again, the passive example in rule
r3. In Chiang’s SCFG, there is only one nonterminal
X, so a corresponding rule would be

〈 was X(1) by X(2), beiX(2) X(1) 〉

which can also pattern-match the English sentence:

I was [asleep]1 by [sunset]2 .

and translate it into Chinese as a passive voice. This
produces very odd Chinese translation, because here
“was A by B” in the English sentence isnot a pas-
sive construction. By contrast, our model applies
rule r3 only if A is a past participle (VBN) andB
is a noun phrase (NP-C). This example also shows
that, one-level SCFG rule, even if informed by the
Treebank as in (Yamada and Knight, 2001), is not
enough to capture a common construction like this
which is five levels deep (from VP to “by”).

There are also some variations of syntax-directed
translators where dependency structures are used
in place of constituent trees (Lin, 2004; Ding and
Palmer, 2005; Quirk et al., 2005). Although they
share with this work the basic motivations and simi-
lar speed-up, it is difficult to specify re-ordering in-
formation within dependency elementary structures,
so they either resort to heuristics (Lin) or a sepa-
rate ordering model for linearization (the other two
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works).2 Our approach, in contrast, explicitly mod-
els the re-ordering of sub-trees within individual
transfer rules.

3 Extended Tree-to-String Tranducers

In this section, we define the formal machinery of
our recursive transformation model as a special case
of xRs transducers (Graehl and Knight, 2004) that
has only one state, and each rule is linear (L) and
non-deleting (N) with regarding to variables in the
source and target sides (henth the name 1-xRLNs).

Definition 1. A 1-xRLNs transducer is a tuple
(N, Σ, ∆,R) whereN is the set of nonterminals,Σ
is the input alphabet,∆ is the output alphabet, and
R is a set of rules. A rule inR is a tuple(t, s, φ)
where:

1. t is the LHS tree, whose internal nodes are la-
beled by nonterminal symbols, and whose fron-
tier nodes are labeled terminals fromΣ or vari-
ables from a setX = {x1, x2, . . .};

2. s ∈ (X ∪∆)∗ is the RHS string;

3. φ is a mapping fromX to nonterminalsN .

We require each variablexi ∈ X occursexactly once
in t andexactly oncein s (linear and non-deleting).

We denoteρ(t) to be theroot symbol of tree t.
When writing these rules, we avoid notational over-
head by introducing a short-hand form from Galley
et al. (2004) that integrates the mapping into the tree,
which is used throughout Section 1. Following TSG
terminology (see Figure 2), we call these “variable
nodes” such asx2:NP-C substitution nodes, since
when applying a rule to a tree, these nodes will be
matched with a sub-tree with the same root symbol.

We also define|X | to be therank of the rule, i.e.,
the number of variables in it. For example, rulesr1

andr3 in Section 1 are both of rank 2. If a rule has
no variable, i.e., it is of rank zero, then it is called a
purely lexical rule, which performs a phrasal trans-
lation as in phrase-based models. Ruler2, for in-
stance, can be thought of as a phrase pair〈the gun-
man,qiangshou〉.

Informally speaking, a derivation in a transducer
is a sequence of steps converting a source-language

2Although hybrid approaches, such as dependency gram-
mars augmented with phrase-structure information (Alshawi et
al., 2000), can do re-ordering easily.

r1

r2 r3

r4 r5

r1

r2 r6

r4 r7

r5

(a) (b)

Figure 4: (a) the derivation in Figure 3; (b) another
derviation producing the same output by replacing
r3 with r6 and r7, which provides another way of
translating the passive construction:
(r6) VP ( VBD (was) VP-C (x1:VBN x2:PP ) )→ x2 x1

(r7) PP ( IN (by)x1:NP-C )→ beix1

tree into a target-language string, with each step ap-
plying one tranduction rule. However, it can also
be formalized as a tree, following the notion of
derivation-treein TAG (Joshi and Schabes, 1997):

Definition 2. A derivation d, its source and target
projections, notedE(d) andC(d) respectively, are
recursively defined as follows:

1. If r = (t, s, φ) is a purely lexical rule (φ = ∅),
thend = r is a derivation, whereE(d) = t and
C(d) = s;

2. If r = (t, s, φ) is a rule, anddi is a (sub-)
derivation with the root symbol of its source
projection matches the corresponding substitu-
tion node inr, i.e., ρ(E(di)) = φ(xi), then
d = r(d1, . . . , dm) is also a derivation, where
E(d) = [xi 7→ E(di)]t and C(d) = [xi 7→
C(di)]s.

Note that we use a short-hand notation[xi 7→ yi]t
to denote the result of substituting eachxi with yi

in t, wherexi ranges over all variables int.

For example, Figure 4 shows two derivations for
the sentence pair in Example (1). In both cases, the
source projection is the English tree in Figure 3 (b),
and the target projection is the Chinese translation.

Galley et al. (2004) presents a linear-time algo-
rithm for automatic extraction of thesexRs rules
from a parallel corpora with word-alignment and
parse-trees on the source-side, which will be used
in our experiments in Section 6.
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4 Probability Models

4.1 Direct Model

Departing from the conventional noisy-channel ap-
proach of Brown et al. (1993), our basic model is a
directone:

c∗ = argmax
c

Pr(c | e) (2)

where e is the English input string andc∗ is the
best Chinese translation according to the translation
modelPr(c | e). We now marginalize over all En-
glish parse treesT (e) that yield the sentencee:

Pr(c | e) =
∑

τ∈T (e)

Pr(τ, c | e)

=
∑

τ∈T (e)

Pr(τ | e) Pr(c | τ) (3)

Rather than taking the sum, we pick the best treeτ∗

and factors the search into two separate steps: pars-
ing (4) (a well-studied problem) and tree-to-string
translation (5) (Section 5):

τ∗ = argmax
τ∈T (e)

Pr(τ | e) (4)

c∗ = argmax
c

Pr(c | τ∗) (5)

In this sense, our approach can be considered as
a Viterbi approximation of the computationally ex-
pensive joint search using (3) directly. Similarly, we
now marginalize over all derivations

D(τ∗) = {d | E(d) = τ∗}

that translates English treeτ into some Chinese
string and apply the Viterbi approximation again to
search for the best derivationd∗:

c∗ = C(d∗) = C(argmax
d∈D(τ∗)

Pr(d)) (6)

Assuming different rules in a derivation are ap-
plied independently, we approximatePr(d) as

Pr(d) =
∏

r∈d

Pr(r) (7)

where the probabilityPr(r) of the ruler is estimated
by conditioning on the root symbolρ(t(r)):

Pr(r) = Pr(t(r), s(r) | ρ(t(r)))

=
c(r)

∑

r′:ρ(t(r′))=ρ(t(r)) c(r′)
(8)

wherec(r) is the count (or frequency) of ruler in
the training data.

4.2 Log-Linear Model

Following Och and Ney (2002), we extend the direct
model into a general log-linear framework in order
to incorporate other features:

c∗ = argmax
c

Pr(c | e)α · Pr(c)β · e−λ|c| (9)

wherePr(c) is the language model ande−λ|c| is the
length penalty term based on|c|, the length of the
translation. Parametersα, β, andλ are the weights
of relevant features. Note that positiveλ prefers
longer translations. We use a standard trigram model
for Pr(c).

5 Search Algorithms

We first present a linear-time algorithm for searching
the best derivation under the direct model, and then
extend it to the log-linear case by a new variant of
k-best parsing.

5.1 Direct Model: Memoized Recursion

Since our probability model is not based on the noisy
channel, we do not call our search module a “de-
coder” as in most statistical MT work. Instead, read-
ers who speak English but not Chinese can view it as
an “encoder” (or encryptor), which corresponds ex-
actly to ourdirectmodel.

Given a fixed parse-treeτ∗, we are to search
for the best derivation with the highest probability.
This can be done by a simple top-down traversal
(or depth-first search) from the root ofτ∗: at each
nodeη in τ∗, try each possible ruler whose English-
side patternt(r) matches the subtreeτ∗η rooted atη,
and recursively visit each descendant nodeηi in τ∗η
that corresponds to a variable int(r). We then col-
lect the resulting target-language strings and plug
them into the Chinese-sides(r) of rule r, getting
a translation for the subtreeτ∗η . We finally take the
best of all translations.

With the extended LHS of our transducer, there
may be many different rules applicable at one tree
node. For example, consider the VP subtree in
Fig. 3 (c), where bothr3 andr6 can apply. As a re-
sult, the number of derivations is exponential in the
size of the tree, since there are exponentially many
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decompositions of the tree for a given set of rules.
This problem can be solved bymemoization(Cor-
men et al., 2001): we cache each subtree that has
been visited before, so that every tree node is visited
at mostonce. This results in a dynamic program-
ming algorithm that is guaranteed to run inO(npq)
time wheren is the size of the parse tree,p is the
maximum number of rules applicable to one tree
node, andq is the maximum size of an applicable
rule. For a given rule-set, this algorithm runs in time
linear to the length of the input sentence, sincep

and q are considered grammar constants, andn is
proportional to the input length. The full pseudo-
code is worked out in Algorithm 1. A restricted
version of this algorithm first appears in compiling
for optimal code generation from expression-trees
(Aho and Johnson, 1976). In computational linguis-
tics, the bottom-up version of this algorithm resem-
bles thetree parsingalgorithm for TSG by Eisner
(2003). Similar algorithms have also been proposed
for dependency-based translation (Lin, 2004; Ding
and Palmer, 2005).

5.2 Log-linear Model: k-best Search

Under the log-linear model, one still prefers to
search for the globally best derivationd∗:

d∗ = argmax
d∈D(τ∗)

Pr(d)α Pr(C(d))βe−λ|C(d)| (10)

However, integrating then-gram model with the
translation model in the search is computationally
very expensive. As a standard alternative, rather
than aiming at the exact best derivation, we search
for top-k derivations under the direct model using
Algorithm 1, and then rerank thek-best list with the
language model and length penalty.

Like other instances of dynamic programming,
Algorithm 1 can be viewed as a hypergraph search
problem. To this end, we use an efficient algo-
rithm by Huang and Chiang (2005, Algorithm 3)
that solves the generalk-best derivations problem
in monotonic hypergraphs. It consists of a normal
forward phase for the 1-best derivation and a recur-
sive backward phase for the 2nd, 3rd, . . . ,kth deriva-
tions.

Unfortunately, different derivations may have the
same yield (a problem calledspurious ambiguity),
due to multi-level LHS of our rules. In practice, this

results in a very small ratio of unique strings among
top-k derivations. To alleviate this problem, deter-
minization techniques have been proposed by Mohri
and Riley (2002) for finite-state automata and ex-
tended to tree automata by May and Knight (2006).
These methods eliminate spurious ambiguity by ef-
fectively transforming the grammar into an equiva-
lent deterministic form. However, this transforma-
tion often leads to a blow-up in forest size, which is
exponential to the original size in the worst-case.

So instead of determinization, here we present a
simple-yet-effective extension to the Algorithm 3 of
Huang and Chiang (2005) that guarantees to output
unique translated strings:

• keep a hash-table of unique strings at each vertex
in the hypergraph
• when asking for the next-best derivation of a ver-

tex, keep asking until we get a new string, and
then add it into the hash-table

This method should work in general for any
equivalence relation (say, same derived tree) that can
be defined on derivations.

6 Experiments

Our experiments are on English-to-Chinese trans-
lation, the opposite direction to most of the recent
work in SMT. We are not doing the reverse direction
at this time partly due to the lack of a sufficiently
good parser for Chinese.

6.1 Data Preparation

Our training set is a Chinese-English parallel corpus
with 1.95M aligned sentences (28.3M words on the
English side). We first word-align them by GIZA++,
then parse the English side by a variant of Collins
(1999) parser, and finally apply the rule-extraction
algorithm of Galley et al. (2004). The resulting rule
set has 24.7MxRs rules. We also use the SRI Lan-
guage Modeling Toolkit (Stolcke, 2002) to train a
Chinese trigram model with Knesser-Ney smooth-
ing on the Chinese side of the parallel corpus.

Our evaluation data consists of 140 short sen-
tences (< 25 Chinese words) of the Xinhua portion
of the NIST 2003 Chinese-to-English evaluation set.
Since we are translating in the other direction, we
use the first English reference as the source input
and the Chinese as the single reference.
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Algorithm 1 Top-down Memoized Recursion
1: function TRANSLATE(η)
2: if cache[η] definedthen . this sub-tree visited before?
3: return cache[η]

4: best← 0
5: for r ∈ R do . try each ruler
6: matched, sublist← PATTERNMATCH(t(r), η) . tree pattern matching
7: if matched then . if matched,sublist contains a list of matched subtrees
8: prob← Pr(r) . the probability of ruler
9: for ηi ∈ sublist do

10: pi, si ← TRANSLATE(ηi) . recursively solve each sub-problem
11: prob← prob · pi

12: if prob > best then
13: best← prob

14: str ← [xi 7→ si]s(r) . plug in the results

15: cache[η]← best, str . caching the best solution for future use
16: return cache[η] . returns the best string with its prob.

6.2 Initial Results

We implemented our system as follows: for each in-
put sentence, we first run Algorithm 1, which returns
the 1-best translation and also builds the derivation
forest of all translations for this sentence. Then we
extract the top 5000 non-duplicate translated strings
from this forest and rescore them with the trigram
model and the length penalty.

We compared our system with a state-of-the-art
phrase-based system Pharaoh (Koehn, 2004) on the
evaluation data. Since the target language is Chi-
nese, we report character-based BLEU score instead
of word-based to ensure our results are indepen-
dent of Chinese tokenizations (although our lan-
guage models are word-based). The BLEU scores
are based on single reference and up to 4-gram pre-
cisions (r1n4). Feature weights of both systems are
tuned on the same data set.3 For Pharaoh, we use the
standard minimum error-rate training (Och, 2003);
and for our system, since there are only two in-
dependent features (as we always fixα = 1), we
use a simple grid-based line-optimization along the
language-model weight axis. For a given language-
model weightβ, we use binary search to find the best
length penaltyλ that leads to a length-ratio closest

3In this sense, we are only reporting performances on the
development set at this point. We will report results tuned and
tested on separate data sets in the final version of this paper.

Table 1: BLEU (r1n4) score results

system BLEU
Pharaoh 25.5
direct model (1-best) 20.3
log-linear model (rescored 5000-best) 23.8

to 1 against the reference. The results are summa-
rized in Table 1. The rescored translations are better
than the 1-best results from the direct model, but still
slightly worse than Pharaoh.

7 Conclusion and On-going Work

This paper presents an adaptation of the clas-
sic syntax-directed translation with linguistically-
motivated formalisms for statistical MT. Currently
we are doing larger-scale experiments. We are also
investigating more principled algorithms for inte-
gratingn-gram language models during the search,
rather thank-best rescoring. Besides, we will extend
this work to translating the topk parse trees, instead
of committing to the 1-best tree, as parsing errors
certainly affect translation quality.
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