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Abstract

A syntax-directed translator first parses
the source-language input into a parse-
tree, and then recursively converts the tree
into a string in the target-language. We
model this conversion by an extended tree-
to-string transducer that have multi-level
trees on the source-side, which gives our
system more expressive power and flexi-
bility. We also define a direct probabil-
ity model and use a linear-time dynamic
programming algorithm to search for the
best derivation. The model is then ex-
tended to the general log-linear frame-
work in order to rescore with other fea-
tures liken-gram language models. We
devise a simple-yet-effective algorithm to
generate non-duplicatebest translations
for n-gram rescoring. Initial experimen-
tal results on English-to-Chinese transla-
tion are presented.
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SD translation schema specifies  translation
(synchronous grammar’ (string relation)

induce\& %}plements

SD translator
(source parser + recursive converter)

Figure 1: The relationship among SD concepts,
adapted from (Aho and Ullman, 1972).
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Figure 2: An example of complex reordering repre-
sented as an STSG rule, which is beyond any SCFG.

from input string to output string. In this context, an
SD translator consists of two components, a source-
language parser and a recursive converter which is
usually modeled as a top-down tree-to-string trans-
ducer (Gecseg and Steinby, 1984). The relationship
among these concepts is illustrated in Fig. 1.

This paper adapts the idea of syntax-directed

The concept ofsyntax-directed (SD) translation translator to statistical machine translation (MT).
was originally proposed in compiling (lrons, 1961;We apply stochastic operations at each node of the
Lewis and Stearns, 1968), where the source prograsource-language parse-tree and search for the best
is parsed into a tree representation that guides tlaerivation (a sequence of translation steps) that con-
generation of the object code. Following Aho andrerts the whole tree into some target-language string
Ullman (1972), aranslation as a set of string pairs, with the highest probability. However, the structural
can be specified by ayntax-directed translation divergence across languages often results in non-
schemgSDTS), which is essentially a synchronoussomorphic parse-trees that is beyond the power of
context-free grammar (SCFG) that generates tw8CFGs. For example, ti&VO)structure in English
languages simultaneously. An SDTS also inducesiatranslated into & SOword-order in Arabic, an in-
translator, a device that performs the transformatiorstance ofcomplex reorderinghot captured by any
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SCFG (Fig. 2). (@) thegunman was [killed] by [the police}
To alleviate the non-isomorphism problem, (syn-

o . parser
chronous) grammars with richer expressive power S

e T
have been proposed whose rules app_ly to larger frag- NPC Up SUNG
ments of the tree. For example, Shieber and Sch- o~ o~ |
abes (1990) introduce synchronous tree-adjoining DT NN VBD VP-C .
grammar (STAG) and Eisner (2003) uses a syn- I I I —
chronous tree-substitution grammar (STSG), which(®)  the gunman was VBN PP
. . . . . . I —
is a restricted version of STAG with no adjunctions. killed  IN NP-C
STSGs and STAGs generate muee relationghan | T
SCFGs, e.g. the non-isomorphic tree pair in Fig. 2. by DT NN
This extra expressive power lies in thetended do- ”"e police
main of locality(EDL) (Joshi and Schabes, 1997), r1, 72 vp
i.e., elementary structures beyond the scope of one- o~
level context-free productions. Besides being lin- VBD VP-C
guistically motivated, the need for EDL is also sup- | — T~
ported by empirical findings in MT that one-level (¢) giangshou was V?N /PP\ )
rules are often inadequate (Fox, 2002; Galley et al., kiled IN NP-C
2004). Similarly, in the tree-transducer terminology, [ T
Graehl and Knight (2004) define extended tree trans- by DT NN
ducers that have multi-level trees on the source-side. trlle po:ice

Since an SD translator separates the source- r3

language analysis from the recursive transformation, NP-C
the domains of locality in these two modules are or- (d) giangshou bei DT/\NN VBlN )
thogonal to each other: in this work, we use a CFG- | | Killed
based Treebank parser but focuses on the extended the police
domain in the recursive converter. Following Gal-
ley et al. (2004), we use a special claserfended rs rq )

tree-to-string transducefxRs for short) with multi-

level left-hand-side (LHS) treés.Since the right- (e) qiangshou bei [jingfand, [jibi]i .
hand-side (RHS) string can be viewed as a flat one-

level tree with the same nonterminal root from LHSigure 3: A synatx-directed translation process for
(Fig. 2), this framework is closely related to STSGsEXample (1).

they both have extended domain of locality on the

source-side, while our framework remains as a CF@) the gunman was killed by the police .

on the target-side. For instance, an equivaldis

rule for the complex reordering in Fig. 2 would be giangshoubei jingfangjibi .

unman] [passive][police] [killed] .
S(xliNP, VP(TQZVB, CEgNP)) — T X1 T3 [g ] [p ][p ] [ ]

While Section 3 will define the model formally, —Figure 3 shows how the translator works. The En-

we first proceed with an example translation fronglish sentence (a) is first parsed into the tree in (b),
English to Chinese (note in particular that the inwhich is then recursively converted into the Chinese

verted phrases between source and target): string in (e) through five steps. First, at the root

_ _ ~ node, we apply the rule; which preserves the top-
__Throughout this paper, we will use LHS and source-sidge\/e| \yord-order and translates the English period
interchangeably (so are RHS and target-side). In accordance . )
with our experiments, we also use English and Chinese as tHato its Chinese counterpart:

source and target languages, opposite to the Foreign-to-English

convention of Brown et al. (1993). (r1) S @1:NP-Cxz5:VP PUNC (\) )— 21 22 »



Then, the rule~; grabs the whole sub-tree for “the the packed representation of the forest restricts the
gunman” and translates it as a phrase: scope of each transfer step to a one-level context-
(rs) NP-C (DT (the) NN (gunman) > giangshou free rule, while our approach decou_ples the source-
language analyzer and the recursive converter, so
Now we get a “partial Chinese, partial English” senthat the latter can have an extended domain of local-
tence fiangshowP .” as shown in Fig. 3 (). Our ity. In addition, our translator also enjoys a speed-
recursion goes on to translate the VP sub-tree. Hegg by this decoupling, with each of the two stages

we use the rules for the passive construction: having a smaller search space. In fact, the recursive
VP transfer step can be done by direar-time algo-
———— rithm (see Section 5), and the parsing step is also
VBD VP-C fast with the modern Treebank parsers, for instance
(r3) W'as a;lzvmp . bei 2y 71 (CoIIin_s, 1999; Charniak, 2000). In cqntrast, their
o~ decodings are reported to be computationally expen-
IN  22:NP-C sive and Chiang (2005) uses aggressive pruning to

b' make it tractable. There also exists a compromise
y between these two approaches, which usksast

which captures the fact that the agent (NP-C, “thgst of parse trees (for a relatively smé)ito approx-
police”) and the verb (VBN, “killed”) are always jmate the full forest (see future work).
inverted between EngIISh and Chinese in a passive Besides, our model, as being linguistically mo-
voice. Finally, we apply rules, andr; which per- tjvated, is also more expressive than the formally
form phrasal translations for the two remaining SUbsyntaX_based models of Chiang (2005) and Wu
trees in (d), respectively, and get the completed Chi{41997). Consider, again, the passive example in rule
nese string in (e). r3. In Chiang’s SCFG, there is only one nonterminal
X, so a corresponding rule would be

(was XU by X®, beiX® x(1) )

2 Previous Work

It is helpful to compare this approach with recent ef-
forts in statistical MT. Phrase-based models (Koehwhich can also pattern-match the English sentence:
et al., 2003; Och and Ney, 2004) are good at learn-
ing local translations that are pairs of (consecutive)
sub-strings, but often insufficient in modeling the reand translate it into Chinese as a passive voice. This
orderings of phrases themselves, especially betweproduces very odd Chinese translation, because here
language pairs with very different word-order. This'was A by B” in the English sentence isot a pas-
is because the generative capacity of these modealise construction. By contrast, our model applies
lies within the realm of finite-state machinery (Ku-rule 5 only if A is a past participle (VBN) ands
mar and Byrne, 2003), which is unable to procesis a noun phrase (NP-C). This example also shows
nested structures and long-distance dependenciegliat, one-level SCFG rule, even if informed by the
natural languages. Treebank as in (Yamada and Knight, 2001), is not
Syntax-based models aim to alleviate this probenough to capture a common construction like this
lem by exploiting the power of synchronous rewrit-which is five levels deep (from VP to “by”).
ing systems. Both Yamada and Knight (2001) and There are also some variations of syntax-directed
Chiang (2005) use SCFGs as the underlying moddtanslators where dependency structures are used
so their translation schemata are syntax-directed as place of constituent trees (Lin, 2004; Ding and
in Fig. 1, but their translators aret both systems Palmer, 2005; Quirk et al., 2005). Although they
do parsing and transformation in a joint search, eshare with this work the basic motivations and simi-
sentially over a packed forest of parse-trees. To thlar speed-up, it is difficult to specify re-ordering in-
end, their translators are ndirectedby a syntac- formation within dependency elementary structures,
tic tree. Although their method potentially consid-so they either resort to heuristics (Lin) or a sepa-
ers more than one single parse-tree as in our casate ordering model for linearization (the other two

| was [asleep] by [sunset]
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works)? Our approach, in contrast, explicitly mod- r r

els the re-ordering of sub-trees within individual . —~
T T
transfer rules. ro T3 2 05
3 Extended Tree-to-String Tranducers /N T4 7’|7
L
In this section, we define the formal machinery of rs
our recursive transformation model as a special case (a) (b)

E;;(F;ifragﬁgusiz: (:r:geeh;fhn? I;nlgr:tneZ;)rCME tzz‘f:igure 4: (a) the derivation in Figure 3; (b) another
Y ! N e Is i ( ) gerviation producing the same output by replacing
non-deleting (N) with regarding to variables in the

. r3 with r4 andr7, which provides another way of
source and target sides (henth the namx®LNS). translating the passive construction:

Definition 1. A 1-xRLNs transducer is a tuple ..y vp (vBD (was) VP-C f1:VBN 25:PP ) )— o5 21
(N, %, A, R) whereN is the set of nonterminal;

is the input alphabet) is the output alphabet, and
R is a set of rules. A rule irR is a tuple(t, s, ¢)
where:

(r7) PP (IN (by)z1:NP-C)— beiz;

tree into a target-language string, with each step ap-

1. t is the LHS tree, whose internal nodes are laplying one tranduction rule. However, it can also
beled by nonterminal symbols, and whose fronbe formalized as a tree, following the notion of
tier nodes are labeled terminals frafor vari-  derivation-treein TAG (Joshi and Schabes, 1997):

ables from a set’ = {x1, z9,...}; o o _
Definition 2. A derivation d, its source and target

2. s € (XY UA)" is the RHS string; projections, noted&(d) andC(d) respectively, are

3. ¢ is a mapping fromt’ to nonterminalsV. recursively defined as follows:

We require each variable € X occursexactlyonce 1. If r = (¢, s, ¢) is a purely lexical rule¢ = 0),
in ¢ andexactly oncen s (linear and non-deleting). thend = r is a derivation, wheré€(d) = t and

We denotep(t) to be theroot symbol of treet. C(d) =s;
When writing these rules, we avoid notational over-
head by introducing a short-hand form from Galley
et al. (2004) that integrates the mapping into the tree,
which is used throughout Section 1. Following TSG
termln:)Iogy (see Figure 2), we qall these \{arlable d = r(dy,....dy) is also a derivation, where
nodes” such as4:NP-C substitution nodessince

. . E(d) = [z; — E(di)]t andC(d) = [x; +—

when applying a rule to a tree, these nodes will be (d))]s
matched with a sub-tree with the same root symbol. e

We also defineéX| to be therank of the rule, i.e., Note that we use a short-hand notatjoni— ;]

the number of variables in it. For example, rulgs o denote the result of substituting eachwith ;

no variable, i.e., it is of rank zero, then it is called a
purely lexical rule which performs a phrasal trans-
lation as in phrase-based models. Rule for in-
stance, can be thought of as a phrase {iag gun-
man,giangsholy.

Informally speaking, a derivation in a transducer Galley et al. (2004) presents a linear-time algo-

is a sequence of steps converting a source-languag@m for automatic extraction of theseRs rules

— from a parallel corpora with word-alignment and
Although hybrid approaches, such as dependency gram- ¢ th id hich will b d
mars augmented with phrase-structure information (Alshawi dearse-trees on the source-sidae, wnich will bé use

al., 2000), can do re-ordering easily. in our experiments in Section 6.

2. If r = (t,s,¢) is a rule, andd; is a (sub-)
derivation with the root symbol of its source
projection matches the corresponding substitu-
tion node inr, i.e., p(€(d;)) = é(z;), then

For example, Figure 4 shows two derivations for
the sentence pair in Example (1). In both cases, the
source projection is the English tree in Figure 3 (b),
and the target projection is the Chinese translation.



4 Probability Models wherec(r) is the count (or frequency) of rulein
41 Direct Model the training data.

Departing from the conventional noisy-channel ap4.2 Log-Linear Model

proach of Brown et al. (1993), our basic model is &ollowing Och and Ney (2002), we extend the direct
directone: model into a general log-linear framework in order

¢* = argmax Pr(c | e) ) to incorporate other features:
(&

: L . . * = P @ Pr(c)? e (9

where e is the English input string and* is the ¢ arglcnax r(ele) r(e)” e )

best Chinese translation according to the translation ) el i
modelPr(c | ¢). We now marginalize over all En- WheréPr(c) is the language model ard "' is the

glish parse treeg (e) that yield the sentenae length penalty term based qgd, the length of the
translation. Parametets 3, and A are the weights
Pr(c|e) = Z Pr(r,c|e) of relevant features. Note that positive prefers
€T (e) longer translations. We use a standard trigram model
— Y Pr(r|e)Pr(c|r) @3 Torbre.
7€T (e)

5 Search Algorithms

Rather than taking the sum, we pick the best tree . . . . .
. . Wefirst present a linear-time algorithm for searching
and factors the search into two separate steps: pa

ing (4) (a well-studied problem) and tree—to—string{ﬁe best derivation under the direct model, and then

translation (5) (Section 5): Zi(tt)(zr;(t:i;;;:;e log-linear case by a new variant of

7% = argmaxPr(7|e) 4) ' ' .
€T (e) 5.1 Direct Model: Memoized Recursion
¢ = argmaxPr(c| 1) (5)  Since our probability model is not based on the noisy

C

_ _ channel, we do not call our search module a “de-
In this sense, our approach can be considered g§der” as in most statistical MT work. Instead, read-
a Viterbi approximation of the computationally ex-ers who speak English but not Chinese can view it as

pensive joint search using (3) directly. Similarly, wezn “encoder” (or encryptor), which corresponds ex-
now marginalize over all derivations actly to ourdirect model.

D(r*) = {d | £(d) = 77} Given a flxeq pgrse-t.ree , We are to sear'c'h

_ . . for the best derivation with the highest probability.

that translates English tree into some Chinese This can be done by a simple top-down traversal
string and apply the Viterbi approximation again tqor depth-first search) from the root of: at each

search for the best derivatiati: noden in 7, try each possible rulewhose English-
¢ = C(d*) = Cargmax Pr(d)) (6) side patterrt(r) matches the subtreef rooted at,
deD(r*) and recursively visit each descendant nogdén 7,;

Assuming different rules in a derivation are ap—that corresponds to a variabledfr). We then col-

Lo ; lect the resulting target-language strings and plug
lied independently, we approximdee(d) as _ . . .
P P y PP (d) them into the Chinese-sid€r) of rule r, getting

Pr(d) = H Pr(r) (7) atranslation for the subtreef. We finally take the
red best of all translations.
where the probabilitr(r) of the ruler is estimated ~ With the extended LHS of our transducer, there
by conditioning on the root symbpl#(r)): may be many different rule§ applicable at one trep
node. For example, consider the VP subtree in
Pr(r) = Pr(t(r),s(r) | p(t(r))) Fig. 3 (c), where bothrs andrg can apply. As a re-

c(r)
2ot p(e(r ) =p(t(r) €(T7)

sult, the number of derivations is exponential in the
size of the tree, since there are exponentially many

(8)



decompositions of the tree for a given set of rulegesults in a very small ratio of unique strings among
This problem can be solved bpemoization(Cor- top-k derivations. To alleviate this problem, deter-
men et al., 2001): we cache each subtree that hasnization techniques have been proposed by Mohri
been visited before, so that every tree node is visiteghd Riley (2002) for finite-state automata and ex-
at mostonce. This results in a dynamic program+ended to tree automata by May and Knight (2006).
ming algorithm that is guaranteed to run@rinpq) These methods eliminate spurious ambiguity by ef-
time wheren is the size of the parse treg,is the fectively transforming the grammar into an equiva-
maximum number of rules applicable to one treéent deterministic form. However, this transforma-
node, andy is the maximum size of an applicabletion often leads to a blow-up in forest size, which is
rule. For a given rule-set, this algorithm runs in timeexponential to the original size in the worst-case.
linear to the length of the input sentence, sipce  So instead of determinization, here we present a
and ¢ are considered grammar constants, and simple-yet-effective extension to the Algorithm 3 of
proportional to the input length. The full pseudo-Huang and Chiang (2005) that guarantees to output
code is worked out in Algorithm 1. A restricted unique translated strings:

version of this algorithm first appears in compiling,
for optimal code generation from expression-trees ;, ihe hypergraph

(Aho and Johnson, 1976). In computational linguisg \hen asking for the next-best derivation of a ver-

tics, the bottom-up version of this algorithm resem- ., keep asking until we get a new string, and
bles thetree parsingalgorithm for TSG by Eisner  inan add it into the hash-table ’

(2003). Similar algorithms have also been proposed

for dependency-based translation (Lin, 2004; Ding 1hiS method should work in general for any
and Palmer, 2005). equivalence relation (say, same derived tree) that can

be defined on derivations.

keep a hash-table of unique strings at each vertex

5.2 Log-linear Model: k-best Search

Under the log-linear model, one still prefers to6 Experiments

search for the globally best derivatidh: Our experiments are on English-to-Chinese trans-
lation, the opposite direction to most of the recent
work in SMT. We are not doing the reverse direction
at this time partly due to the lack of a sufficiently
However, integrating thei-gram model with the good parser for Chinese.
translation model in the search is computationally
very expensive. As a standard alternative, rath&r1
than aiming at the exact best derivation, we seardBur training set is a Chinese-English parallel corpus
for top-k derivations under the direct model usingwith 1.95M aligned sentences (28.3M words on the
Algorithm 1, and then rerank thebest list with the English side). We first word-align them by GIZA++,
language model and length penalty. then parse the English side by a variant of Collins
Like other instances of dynamic programming(1999) parser, and finally apply the rule-extraction
Algorithm 1 can be viewed as a hypergraph searciigorithm of Galley et al. (2004). The resulting rule
problem. To this end, we use an efficient algoset has 24.7MRs rules. We also use the SRI Lan-
rithm by Huang and Chiang (2005, Algorithm 3)guage Modeling Toolkit (Stolcke, 2002) to train a
that solves the generatbest derivations problem Chinese trigram model with Knesser-Ney smooth-
in monotonic hypergraphs. It consists of a normahg on the Chinese side of the parallel corpus.
forward phase for the 1-best derivation and a recur- Our evaluation data consists of 140 short sen-
sive backward phase for the 2nd, 3rd, k" deriva- tences & 25 Chinese words) of the Xinhua portion
tions. of the NIST 2003 Chinese-to-English evaluation set.
Unfortunately, different derivations may have theSince we are translating in the other direction, we
same yield (a problem callespurious ambiguity use the first English reference as the source input
due to multi-level LHS of our rules. In practice, thisand the Chinese as the single reference.

d* = argmax Pr(d)® Pr(C(d))’e M@l (10)
deD(r)

Data Preparation
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Algorithm 1 Top-down Memoized Recursion
1: function TRANSLATE(n)

2: if cache[n] definedthen > this sub-tree visited before?
3 return cache|n)

4: best «— 0

5: for r € R do > try each ruler

6: matched, sublist « PATTERNMATCH(t(r),n) > tree pattern matching
7 if matched then > if matched,sublist contains a list of matched subtrees
8: prob «— Pr(r) > the probability of ruler

9: for n; € sublist do

10: Di, Si < TRANSLATE(7;) > recursively solve each sub-problem
11 prob < prob - p;

12: if prob > best then

13: best < prob

14: str — [z; — s;)s(r) > plug in the results
15:  cache[n] < best, str > caching the best solution for future use
16: return cacheln)] > returns the best string with its prob.

6.2 Initial Results Table 1: BLEU (rln4) score results

We implemented our system as follows: fpr each in- system BLEU
put sentence, we first run Algorithm 1, which returns Pharaoh 255
]Ehe 1;b?st”trtanslellt|;_3n ar}d atlﬁp bun(ils the d_ﬁ:lvatlon direct model (1-best) 503
orest of afl fransiations for this sentence. Tnen We 144.linear model (rescored 5000-best) 23.8
extract the top 5000 non-duplicate translated strings
from this forest and rescore them with the trigram
model and the length penalty.

We compared our system with a state-of-the-agh 1 against the reference. The results are summa-
phrase-based system Pharaoh (Koehn, 2004) on tfiged in Table 1. The rescored translations are better

evaluation data. Since the target language is Chihan the 1-best results from the direct model, but still
nese, we report character-based BLEU score instegfiyhtly worse than Pharaoh.

of word-based to ensure our results are indepen-

dent of Chinese tokenizations (although our lan-

guage models are word-based). The BLEU SCOres  ~onclusion and On-going Work

are based on single reference and up to 4-gram pre-

cisions (rln4). Feature weights of both systems are

tuned on the same data Sefor Pharaoh, we use the This paper presents an adaptation of the clas-

standard minimum error-rate training (Och, 2003)sic syntax-directed translation with linguistically-

and for our system, since there are only two inmotivated formalisms for statistical MT. Currently

dependent features (as we alwaysdix= 1), we we are doing larger-scale experiments. We are also

use a simple grid-based line-optimization along thavestigating more principled algorithms for inte-

language-model weight axis. For a given languageyatingn-gram language models during the search,

model weight3, we use binary search to find the bestather thark-best rescoring. Besides, we will extend

length penalty\ that leads to a length-ratio closestthis work to translating the top parse trees, instead
of committing to the 1-best tree, as parsing errors

T .
In this sense, we are only reporting performances on th§ertainl affect translation gualit
development set at this point. We will report results tuned an y q Y-

tested on separate data sets in the final version of this paper.
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