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Introduction

Welcome to the HLT-NAACL Workshop on Analyzing Conversations in Text and Speech (ACTS). We
received 21 submissions, and due to a rigerous review process, we rejected 11.
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Prosodic Correlates of Rhetorical Relations

Gabriel Murray

University of Edinburgh
Edinburgh EH8 9LW
gabriel . murray@d. ac. uk

Abstract

This paper investigates the usefulness of
prosodic features in classifying rhetori-
cal relations between utterances in meet-
ing recordings. Five rhetorical relations
of contrast, elaboration, summary, ques-
tion and cause are explored. Three train-
ing methods - supervised, unsupervised,
and combined - are compared, and classi-
fication is carried out using support vector
machines. The results of this pilot study
are encouraging but mixed, with pairwise
classification achieving an average of 68%
accuracy in discerning between relation
pairs using only prosodic features, but
multi-class classification performing only
slightly better than chance.

1 Introduction

Rhetorical Structure Theory (RST) (Mann and
Thompson, 1988) attempts to describe a given text
in terms of its coherence, i.e. how it is that the parts
of the text are related to one another and how each
part plays a role. Two adjacent text spans will of-
ten exhibit a nucleus-satellite relationship, where the
satellite plays a role that is relative to the nucleus.
For example, one sentence might make a claim and
the following sentence give evidence for the claim,
with the second sentence being a satellite and the
evidence relation existing between the two spans.
In a text containing many sentences, these nucleus-
satellite pairs can be built up to produce a document-
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wide rhetorical tree. Figure 1 gives an example of a
rhetorical tree for a three-sentence text?.

Theories such as RST have been popular for some
time as a way of describing the multi-levelled rhetor-
ical relations that exist in text, with relevant appli-
cations such as automatic summarization (Marcu,
1997) and natural language generation (Knott and
Dale, 1996). However, implementing automatic
rhetorical parsers has been a problematic area of
research. Techniques that rely heavily on explicit
signals, such as discourse markers, are of limited
use both because only a small percentage of rhetori-
cal relations are signalled explicitly and because ex-
plicit markers can be ambiguous. RST trees are bi-
nary branching trees distinguishing between nuclei
and satellites, and automatically determining nucle-
arity is also far from trivial. Furthermore, there
are some documents which are simply not amenable
to being described by a document-wide rhetorical
tree (Mann and Thompson, 1988). Finally, some-
times more than one relation can hold between two
given units (Moore and Pollack, 1992). Given the
problems of automatically parsing text for rhetori-
cal relations, it seems prohibitively difficult to at-
tempt rhetorical parsing of speech documents - data
which are marked by disfluencies, low information
density, and sometimes little cohesion. For that rea-
son, this pilot study sets out a comparatively mod-
est task: to determine whether one of five relations
holds between two adjacent dialogue acts in meet-
ing speech. All relations are of the form nucleus-
satellite, and the five relation types are contrast,

1Contrast isin fact often realized with amulti-nuclear struc-
ture
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CONTRAST
EVIDENCE 1C
1A 1B

[l love coffee.]'4 [l drink it every morning.]'?

[But my brother has never even tried it.]'

Figure 1: Sample RST tree

elaboration, cause, question and summary. This
work solely investigates the usefulness of prosodic
features in classifying these five relations, rather
than relying on discourse or lexical cues. A central
motivation for this study is the hope that rhetorical
parsing using prosodic features might aid an auto-
matic summarization system.

2 Previous Research

Early work on automatic RST analysis relied heav-
ily on discourse cues to identify relations (Corston-
Oliver, 1998; Knott and Sanders, 1998; Marcu,
1997; Marcu, 1999; Marcu, 2000) (e.g., “however”
signaling an antithesis or contrast relation. As men-
tioned above, this approach is limited by the fact that
rhetorical relations are often not explicitly signalled,
and discourse markers can nevertheless be ambigu-
ous. A novel approach was described in (Marcu and
Echihabi, 2002), which used an unsupervised train-
ing technique, extracting relations that were explic-
itly and unamibiguously signalled and automatically
labelling those examples as the training set. This un-
supervised technique allowed the authors to label a
very large amount of data and pairs of words found
in the nucleus and satellite as the features of inter-
est. The authors reported very encouraging pairwise
classification results using these word-pair features,
though subsequent work using the same bootstrap-
ping technique has fared less well (Sporleder and
Lascarides, to appear 2006).

There is little precedent for applying RST to
speech dialogues, though (Taboada, 2004) describes
rhetorical analyses of Spanish and English spoken

dialogues, with in-depth corpus analyses of dis-
course markers and their corresponding relations.
The work in (Noordman et al., 1999) uses short read
texts to explore the relationship between prosody
and the level of hierarchy in an RST tree. The au-
thors report that higher levels in the hierarchy are
associated with longer pause durations and higher
pitch. Similar results are reported in (den Ouden,
2004), who additionally found significant prosodic
differences between causal and non-causal relations
and between semantic and pragmatic relations.

Litman and Hirschberg (1990) investigated
whether prosodic features could be used to dis-
ambiguate sentential versus discourse instances of
certain discourse markers such as “incidentally.”
Passonneau and Litman (1997) explored the dis-
course structure of spontaneous narrative mono-
logues, with a particular interest in both manual and
automatic segmentation of narratives into coherent
discourse units, using both lexical and prosodic fea-
tures. Grosz and Hirschberg (1992) found that read
AP news stories annotated for discourse structure
in the Grosz and Sidner (1986) framework showed
strong correlations between prosodic features and
both global and local structure. Also in the Grosz
and Sidner framework, Hirschberg and Nakatani
(1996) found that utterances from direction-giving
monologues significantly differed in prosody de-
pending on whether they appeared as segment-intial,
segment-medial or segment-final.

3 Defining the Relations

Following Marcu and Echihabi’s work, we included
contrast, elaboration and cause relations in our re-
search. We chose to exclude condition because it is
always explicitly signalled and therefore trivial for
classification purposes. We also include a summary
relation, which is of particular interest here because
it is hoped that classification of rhetorical relations
will aid an automatic speech summarization system.
As in Segmented Discourse Representation Theory
(SDRT) (Asher and Lascarides, 2004), an alterna-
tive framework for representing text structure, we
included question/answer to our relations list. All
training and testing pairs consist of a nucleus fol-
lowed by a satellite, and the relations are defined as
follows:



e Contrast: The information in the satellite con-
tradicts or is an exception to the information in
the nucleus. Example:

— Speaker 1: You use it as a tool
Speaker 1: Not an end user

e Elaboration: The information from the nu-
cleus is discussed in greater detail in the satel-
lite. Example:

— Speaker 1: The last time | looked at it was
a while ago
Speaker 1: Probably a year ago

e Cause: The situation described in the satellite
results from the situation described in the nu-
cleus. Example:

— Speaker 1: So the GPS has crashed as well
Speaker 1. So the first person has to ask
you where you are

e Summary: The information in the satellite is
semantically equivalent to the information in
the nucleus. It is not necessarily more succinct.
Example:

— Speaker 1. The whole point is that the text
and lattice are isomorphic
Speaker 1. They represent each other
completely

e Question/Answer: The satellite fulfills an in-
formation need explicitly stated in the nucleus.
Example:

— Speaker 1. What does the P stand for any-
way?
Speaker 2: | have no idea

We also took the simplifying step of concentrat-
ing only on dialogue acts which did not internally
contain such relations as defined above, which could
confound the analysis. For example, a dialogue act
might serve as a contrast to the preceding dialogue
act while also containing a cause relation within its
own text span.

4 Experimental Setup

4.1 Corpus Description

All data was taken from the ICSI Meetings corpus
(Janin et al., 2003), a corpus of 75 unrestricted do-
main meetings averaging about an hour in length
each. Both native and non-native English speakers
participate in the meetings. The following experi-
ments used manual meeting transcripts and relied on
manual dialogue act segmentation (Shriberg et al.,
2004). A given meeting can contain between 1000
and 1600 dialogue acts. All rhetorical relation exam-
ples in the training and test sets are pairs of adjacent
dialogue acts.

4.2 Features

Seventy-five prosodic features were extracted in all,
relating to pitch (or FO) contour, pitch variance, en-
ergy, rate-of-speech, pause and duration. To approx-
imate the pitch contour of a dialogue act, we mea-
sure the pitch slope at multiple points within the di-
alogue act, e.g., the overall slope, the slope of the
first 100 and 200 ms, last 100 and 200 ms, first half
and second half of the dialogue act, and each quarter
of the dialogue act. The pitch standard deviation is
measured at the same dialogue act subsections. For
each of the four quarters of the dialogue act, the en-
ergy level is measured and compared to the overall
dialogue act energy level, and the number of silent
frames are totalled for each quarter of the dialogue
act as well. The maximum FO for each dialogue act
is included, as are the length of the dialogue act both
in seconds and in number of words. A very rough
rate-of-speech feature is employed, consisting of the
number of words divided by the length of the dia-
logue act in seconds. We also include a feature of
pause length between the nucleus and the satellite,
as well as a feature indicating whether or not the
speakers of the nucleus and the satellite are the same.
Finally, the cosine similarity of the nucleus feature
vector and satellite feature vector is included, which
constitutes a measurement of the general prosodic
similarity between the two dialogue acts. The moti-
vation for this last feature is that some relations such
as question would be expected to have very differ-
ent prosodic characteristics in the satellite versus the
nucleus, whereas other relations such as summary
might have a nucleus and satellite with very similar



prosody to each other.

While there are certainly informative lexical cues
to be exploited based on previous research, this pilot
study is expressly interested in how efficient prosody
alone is in automatically classifying such rhetorical
relations. For that reason, the feature set is lim-
ited solely to the prosodic characteristics described
above.

4.3 Training Data

Using the PyML machine learning tool?, sup-
port vector machines with polynomial kernels were
trained on multiple training sets described below, us-
ing the default libsvm solver3, a sequential minimal
optimization (SMO) method. Feature normalization
and feature subset selection using recursive feature
elimination were carried out on the data. The fol-
lowing subsections describe the various training ap-
proaches we experimented with.

4.3.1 Manually Annotated Data

For the first experiment, a very small set of manu-
ally labelled relations was constructed. Forty exam-
ples of each relation were annotated, for a total train-
ing set of 200 examples. Each relation has training
examples that are explicitly and non-explicitly sig-
nalled, since we want to discover prosodic cues for
each relation that are not dependent on how lexically
explicit the relation tends to be. The percentage of
either unsignalled or amibiguously signalled rela-
tions across all of the manually-labelled datasets is
about 57%, though this varies very much depending
on the relation. For example, only just over 20% of
questions are unsignalled or ambiguously signalled
whereas nearly 70% of elaborations are unsignalled.

4.3.2 Unsupervised

Following Marcu and Echihabi, we employ a
bootstrapping technique wherein we extract cases
which are explicitly signalled lexically and use those
as our automatically labelled training set. Because
those lexical cues are sometimes ambiguous or mis-
leading, the data will necessarily be noisy, but this
approach allows us to create a large training set with-
out the time and cost of manual annotation. Whereas
Marcu and Echihabi used these templates to extract

2http://pyml .sourceforge.net
3http://www.csie.ntu.edu.tw/ ¢jlin/libsvm/

Satellite

However...
But...

Except...
Although...
Therefore...

As a result...
And so...
Subsequently...
Which...

For Example...
Specifically...
Basically...

In other words...
| mean...

In short...

Relation Nucleus

Contrast

Cause

Elaboration

Summary

Why/What/Where/\Nhen
Who/Did/lIs/Are

QIA

Table 1: Templates for Unsupervised Method

relation examples and learn further lexical infor-
mation about the relation pairs, we are using sim-
ilar templates based on discourse markers but sub-
sequently exploring the extracted relation pairs in
terms of prosodic features. Three hundred examples
of each relation were extracted and automatically la-
belled, for a training set of 1500 examples, more
than ten times the size of the manually labelled train-
ing set. Examples of the explicit lexical cues used to
construct the training set are provided in Table 1:

4.3.3 Combined

Finally, the two training sets discussed above
were combined to create a set of 1700 training ex-
amples.

4.4 Development and Testing Data

For the development set, 35 examples of each rela-
tion were annotated, for a total set size of 175 ex-
amples. We repeatedly tested on the development
set as we increased the prosodic database and exper-
imented with various classifier types. The smaller
final test set consists of 15 examples of each re-
lation, for a total set size of 75 examples. Both
the test set and development set consist of explic-
itly and non-explicitly signalled relations. As men-
tioned above, the percentage of either unsignalled
or amibiguously signalled relations across all of the
manually-labelled datasets is about 57%

Both pairwise and multi-class classification were



Relation Pair Super. Unsuper. Combo
Contrast/Cause 0.60 0.67 0.64
Contrast/Summary 0.63 0.57 0.60
Contrast/Question 0.74 0.73 0.80
Contrast/Elaboration 0.61 0.53 0.56
Cause/Summary 0.59 0.60 0.69
Cause/Question 0.84 0.77 0.81
Cause/Elaboration 0.59 0.54 0.56
Summary/Question 0.59 0.60 0.63
Summary/Elaboration 0.70 0.63 0.70
Elaboration/Question 0.90 0.73 0.84
AVERAGE: 68% 64% 68%

Table 2: Pairwise Results on Development Set

carried out. The former set of experiments simply
aimed to determine which relation pairs were most
confusable with each other; however, it is the lat-
ter multi-class experiments that are most indicative
of the real-world usefulness of rhetorical classica-
tion using prosodic features. Since our goal is to
label meeting transcripts with rhetorical relations as
a preprocessing step for automatic summarization,
multi-class classification must be quite good to be at
all useful.

5 Results

The following subsections give results on a develop-
ment set of 175 relation pairs and on a test set of 75
relation pairs.

5.1 Development Set Results

5.1.1 Pairwise

The pairwise classification results on the devel-
opment set are quite encouraging, showing that
prosodic cues alone can yield an average of 68%
classification success. Because equal class sizes
were used in all data sets, the baseline classification
would be 50%. The manually-labelled training data
resulted in the highest accuracy, with the unsuper-
vised technique performing slightly worse and the
combination approach showing no added benefit to
using manually-labelled data alone. Relation pairs
involving the question relation generally perform the
best, with the single highest pairwise classification
being between elaboration and question. Elabora-
tion is also generally discernible from contrast and
summary.

Cause Contr. Elab. Q/A Summ.

Cause 15 7 11 1 9
Contrast 8 16 9 6 5
Elaboration 6 4 6 2 4
Question 2 8 4 17 10
Summary 4 0 5 9 7

SUCCESS: 34.8%

Table 3: Confusion Matrix for Development Set

Relation Pair Super. Unsuper. Combo
Contrast/Cause 0.67 0.47 0.57
Contrast/Summary 0.60 0.43 0.50
Contrast/Question 0.70 0.73 0.77
Contrast/Elaboration 0.67 0.37 0.77
Cause/Summary 0.67 0.63 0.70
Cause/Question 0.87 0.77 0.80
Cause/Elaboration 0.47 0.57 0.50
Summary/Question 0.43 0.60 0.57
Summary/Elaboration 0.77 0.57 0.57
Elaboration/Question 0.80 0.60 0.57
AVERAGE: 67% 58% 61%

Table 4: Pairwise Results on Test Set

5.1.2 Multi-Class

The multi-class classification on the development
set attained an accuracy of 0.35 using a one-against-
the-rest classification approach, with chance level
classification being 0.20. The confusion matrix in
Table 3 illustrates the difficulty of multi-class classi-
fication; while cause, contrast and question relations
are classified with considerable success, the elabo-
ration relation pairs are often misclassified as cause
and the summary pairs misclassifed as question.

5.2 Test Set Results

5.2.1 Pairwise

The pairwise results on the test set are similar to
those of the development set, with the manually-
labelled training set yielding superior results to the
other two approaches, and relation pairs involving
question and elaboration relations being particularly
discernible. The average accuracy of the super-
vised approach applied to the test set is 67%, which
closely mirrors the results on the development set.
The most confusable pairs are summary/question
and cause/elaboration; the former is quite surpris-
ing in that the question nucleus would be expected
to have a prosody quite distinct from the others.



5.2.2 Multi-Class

The multi-class classification on the test set was
considerably worse than the development set, with a
success rate of only 0.24 (baseline: 0.2).

5.3 Features Analysis

This section details the prosodic characteristics of
the manually labelled relations in the training, de-
velopment, and test sets.

The contrast relation is typically realized with a
low rate-of-speech for the nucleus and high rate-of-
speech for the satellite, little or no pause between
nucleus and satellite, a relatively flat overall FO slope
for the nucleus, and a satellite that increases in en-
ergy from the beginning to the end of the dialogue
act. Of the manually labelled data sets, 74% of the
examples are within a single speaker’s turn.

The cause relation typically has a very high dura-
tion for the nucleus but a large amount of the nucleus
containing silence. The slope of the nucleus is typi-
cally flat and the nuclear rate-of-speech is low. The
satellite has a low rate-of-speech, a large amount of
silence, a high maximum FO and a high duration.
There is typically a long duraton between nucleus
and satellite and the speakers of the nucleus and the
satellite are the same. Of the manually labelled data
sets, nearly 94% of the examples are within a single
speaker’s turn.

The elaboration relation is often realized with a
high nuclear duration, a high satellite duration, a
long pause in-between and a low rate-of-speech for
the satellite. The satellite typically has a high maxi-
mum FO and the speakers of the nucleus and satellite
are the same. 95% of the manually labelled exam-
ples occur within a single speaker’s turn.

With the summary relation, the nucleus typically
has a steep falling overall FO while the nucleus has a
rising overall FO. There is a short pause and a short
duration for both nucleus and satellite. The rate-
of-speech for the satellite is typically very high and
there is little silence. 48% of the manually labelled
examples occur within a single speaker’s turn.

Finally, the question relation has a number of
unique characteristics. The rate-of-speech of the nu-
cleus is very high and there is very little silence.
Surprisingly, these examples do not have canonical
question intonation, instead having a low maximum

FO for the nucleus and a declining slope at the end of
the nucleus. The overall FO for the satellite steeply
declines and there is a high standard deviation. The
energy levels for the second and third quarters of the
satellite are high compared with the average satellite
energy and there is very little silence in the satellite
as awhole. There is little or no pause between satel-
lite and nucleus and both nucleus and satellite have
relatively short durations. The maximum FO for the
satellite is typically low, and the speaker of the satel-
lite is almost always different than the speaker of the
nucleus - 99% of the time.

6 Conclusion

These experiments attempted to classify five rhetor-
ical relations between dialogue acts in meeting
speech using prosodic features. We primarily fo-
cused on pitch contour using numerous features of
pitch slope and variance that intend to approximate
the contour. In addition, we incorporated pause,
energy, rate-of-speech and duration into our fea-
ture set. Using an unsupervised bootstrapping ap-
proach, we automatically labelled a large amount
of training data and compared this approach to us-
ing a very small training set of manually labelled
data. Whereas Marcu and Echihabi used such a
bootstrapping approach to learn additional lexical
information about relation pairs, we used the au-
tomatically labelled examples to learn the prosodic
correlates of the relations. However, even a small
amount of manually-labelled training data outper-
formed the unsupervised method, which is the same
conclusion of Sporleder and Lascarides (Sporleder
and Lascarides, to appear 2006), and a combined
training method gave no additional benefit. One pos-
sible explanation for the poor performance of the
bootstrapping approach is that some of the templates
were inadvertently ambiguous, e.g., “lI mean” can
signal an elaboration or a summary and which can
signal an elaboration or the beginning of a question
relation. Furthermore, one possible drawback in em-
ploying this bootstrapping method is that there may
be a complementary distribution between prosodic
and lexical features. We are using explicit lexical
cues to build an automatically labelled training set,
but such explicitly cued relations may not be prosod-
ically distinct. For example, a question that is sig-



nalled by “Who” or “What” may not have canoni-
cal question intonation since it is lexically signalled.
This relates to a finding of Sporleder and Lascarides,
who report that the unsupervised method of Marcu
and Echihabi only generalizes well to relations that
are already explicitly signalled, i.e. which could be
found just by using the templates themselves.

The pairwise results were quite encouraging, with
the supervised training approach yielding average
accuracies of 68% on the development and test sets.
This illustrates that prosody alone is quite indica-
tive of certain rhetorical relations between dialogue
acts. However, the multi-class classification per-
formance was not far above chance levels. If this
automatic rhetorical analysis is to aid an automatic
summarizaton system, we will need to expand the
prosodic database and perhaps couple this approach
with a limited lexical/discourse approach in order to
improve the multi-class classification accuracy. But
most importantly, if even a small amount of train-
ing data leads to decent pairwise classification using
only prosodic features, then greatly increasing the
amount of manual annotation should provide con-
siderable improvement.
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Abstract

In a context where information retrieval is
extended to spoken “documents” includ-
ing conversations, it will be important to
provide users with the ability to seek in-
formational content, rather than socially
motivated small talk that appears in many
conversational sources. In this paper we
present a preliminary study aimed at auto-
matically identifying “irrelevance” in the
domain of telephone conversations. We
apply a standard machine learning algo-
rithm to build a classifier that detects off-
topic sections with better-than-chance ac-
curacy and that begins to provide insight
into the relative importance of features for

Richardson, TX 75080
yangl@bhit.utdallas.edu

In this paper we investigate one approach for auto-
matically identifying “irrelevance” in the domain of
telephone conversations. Our initial data consist of
conversations in which each utterance is labeled as
being on topic or not. We apply inductive classifier
learning algorithms to identify useful features and
build classifiers to automatically label utterances.

We begin in Section 2 by hypothesizing features
that might be useful for the identification of irrel-
evant regions, as indicated by research on the lin-
guistics of conversational speech and, in particular,
small talk. Next we present our data and discuss our
annotation methodology. We follow this with a de-
scription of the complete set of features and machine
learning algorithms investigated. Section 6 presents
our results, including a comparison of the learned
classifiers and an analysis of the relative utility of

identifying utterances as on topic or not. various features.

2 Linguistics of Conversational Speech

1 Introduction .
Cheepen (Cheepen, 1988) posits that speakers have

There is a growing need to index, search, summawo primary goals in conversationinteractional

rize and otherwise process the increasing amount gbals in which interpersonal motives such as social
available broadcast news, broadcast conversatiomank and trust are primary; aridinsactional goals
meetings, class lectures, and telephone conversahich focus on communicating useful information
tions. While it is clear that users have wide rangin@r getting a job done. In a context where conversa-
goals in the context of information retrieval, we astions are indexed and searched for information, we
sume that some will seek only credible informatiorassume in this paper that users will be interested
about a specific topic and will not be interested in thén the communicated information, rather than the
socially-motivated utterances which appear througtway in which participants interact. Therefore, we
out most conversational sources. For these useessume that utterances with primarily transactional
a search for information about weather should nqiurposes will be most important, while interactional
return conversations containing small talk such astterances can be ignored.

“Nice weather we've been having.” Greetings and partings are the most predictable
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type of interactional speech. They consistently ap-Label | Utterance
pear at the beginning and end of conversations and S 2: [LAUGH] Hi.
follow a fairly formulaic pattern of content (Laver,| S 2: How nice to meet you.
1981). Thus we hypothesize thafitterances near S 1: Itis nice to meet you too.
the beginning or end of conversations are less likely M 2: We have a wonderful topic.
to be relevant. M 1: Yeah.

M 1

T 2

Cheepen also definespeech-in-actionregions : It's not too bad. [LAUGH]

to be segments of conversation that are related fto : Oh, I — I am one hundred percent in
the present physical world or the activity of chaty favor of, uh, computers in the classroom.
ting, e.g. “What lovely weather.” or “It is so nice| T 2: | think they’re a marvelous tool,

to see you.” Since these regions mainly involve educational tool.

participants identifying their shared social situation,

they are not likely to contain transactional contentTable 1: A conversation fragment with annotations:

Further, since speech-in-action segments are disti(8)mall Talk, (M)etaconversation, and On-(T)opic.

guished by their focus on the present, we hypothFhe two speakers are identified as “1” and “2".

esize that:Utterances with present tense verbs are

Iess. likely to be relevant. : _ Third, off-topic detection can be viewed as a seg-
Finally, small talk that is not intended to demar-

¢ 1 hi hv tends to be abbreviated mentation of conversation into relevant and irrele-
E:a_e SOCI% erarchy tends 1o be abbreviated, €.9,nt parts. Thus our work has many similarities to
Nice day” (Laver, 1981). From this we hypothe-

topic segmentation systems, which incorporate cue
words that indicate an abrupt change in topic (e.g.
“so anyway...”), as well as long term variations in
word occurrence statistics (Hearst, 1997; Reynar,
1999; Beeferman et al., 1999, e.g.). Our approach
3 Related Work uses previous and subsequent sentences to approxi-

Three areas of related work in natural language préhate these ideas, but might benefit from a more ex-
cessing have been particularly informative for ouP!iCitly segmentation-based strategy.
resgarch. . 4 Data

First, speech act theory states that with each ut-
terance, a conversant is committing an action, sudh our work we use human-transcribed conversa-
as questioning, critiquing, or stating a fact. This isions from the Fisher data (LDC, 2004). In each con-
quite similar to the notion of transactional and interversation, participants have been given a topic to dis-
actional goals. However, speech acts are generaltyiss for ten minutes. Despite this, participants often
focused on the lower level of breaking apart uttertalk about subjects that are not at all related to the as-
ances and understanding their purpose, whereas wigned topic. Therefore, a convenient way to define
are concerned here with a coarser-grained notion felevance in conversations in this domainsisg-
relevance. Work closer to ours is that of Bates ahents which do not contribute to understanding the
al. (Bates et al., 2005), who defingeeting actsfor  assigned topic This very natural definition makes
recorded meetings. Of their tagspmmentary is the domain a good one for initial study; however,
most similar to our notion of relevance. the idea can be readily extended to other domains.

Second, there has been researchgenerating For example, broadcast debates, class lectures, and
small talk in order to establish rapport between ameetings usually have specific topics of discussion.
automatic system and human user (Bickmore and The primary transactional goal of participants in
Cassell, 2000). Our work complements this by pothe telephone conversations is to discuss the as-
tentially detecting off-topic speech from the humarsigned topic. Since this goal directly involves the
user as an indication that the system should also raet of discussion itself, it is not surprising that par-
spond with interactional language. ticipants often talk about the current conversation or

such as “it”, “there”, and forms of “to be” are less
likely to be relevant.



the choice of topic. There are enough such segments Small Talk| Metaconv.| On-Topic
that we assign them a special region typtstacon- hi topic ,
versation. The purely irrelevant segments we call : [ -
Small Talk, and the remaining segments are defined 'S it you
asOn-Topic. We define utterances as segments of yeah this that
speech that are delineated by periods and/or speaker ? dollars the
changes. An annotated excerpt is shown in Table 1. hello o) and

For the experiments described in this paper, we oh is know
selected 20 conversations: 4 from each of the topics 'm what a
“computers in education”, “bioterrorism”, “terror- in was wouldn
ism”, “pets”, and “censorship”. These topics were my about to
chosen randomly from the 40 topics in the Fisher but talk like
corpus, with the constraint that we wanted to include name for his
topics that could be a part of normal small talk (such how me they
as “pets”) as well as topics which seem farther re- we okay of
moved from small talk (such as “censorship”). texas do 't

Our selected data set consists of slightly more there phone he
than 5,000 utterances. We had 2-3 human annota- well ah uh
tors label the utterances in each conversation, choos- from times um
ing from the 3 labels Metaconversation, Small Talk, are really put
and On-Topic. On average, pairs of annotators here one just

agreed with each other on 86% of utterances. The

main source of annotator disagreement was betweéable 2: The top 20 tokens for distinguishing each
Small Talk and On-Topic regions; in most cases thisategory, as ranked by the feature quality measure
resulted from differences in opinion of when exactly(Lewis and Gale, 1994).

the conversation had drifted too far from the topic to

be relevant. h (Ch 1988; Laver, 1981) implies that
For the 14% of utterances with mismatched Ia§peec (. eepen, N aver: ) ) 'mplies tha

. » . . the following features might be indicative of small
bels, we chose the label that would be “safest” in the T .
talk: (1) position in the conversation, (2) the use of

information retrieval context where small talk might
. resent-tense verbs, and (3) a lack of common helper
get discarded. If any of the annotators thought e \ o y
words such as “it”, “there”, and forms of “to be”.

given utterance was On-Topic, we kept it On-Topic. o o
If there was a disagreement between Metaconver- 10 model the effect of proximity to the beginning

sation and Small Talk. we used Metaconversatior‘?.f the conversation, we attach to each utterance a

Thus, a Small Talk label was only placed if all annofeature that describes its approximate position in the

tators agreed on it conversation. We do not include a feature for prox-
imity to the end of the conversation because our tran-

5 Experimental Setup scriptions include only the first ten minutes of each
recorded conversation.
5.1 Features In order to include features describing verb tense,

As indicated in Section 1, we apply machine learnwe use Brill's part-of-speech tagger (Brill, 1992) .
ing algorithms to utterances extracted from teleEach part of speech (POS) is taken to be a feature,
phone conversations in order to learn classifiers fovhose value is a count of the number of occurrences
Small Talk, Metaconversation, and On-Topic. Wén the given utterance.

represent utterances as feature vectors, basing ouiTo account for the words, we use a bag of words
selection of features on both linguistic insights andnodel with counts for each word. We normalize
earlier text classification work. As described in Secwords from the human transcripts by converting ev-
tion 2, work on the linguistics of conversationalerything to lower case and tokenizing contractions

10



Features \ Values

n word tokens for each word, # occurrences
standard POS tags as in Penn Treebamfér each tag, # occurrences
line number in conversation 0-4, 5-9, 10-19, 20-49;49
utterance type statement, question, fragment
utterance length (number of words) | 1, 2, ..., 20>20

number of laughs laugh count

n word tokens in previous 5 utterancesfor each word, total # occurrences in 5 previous
tags from POS tagger, previous 5 for each tag, total # occurrences in 5 previous
number of words, previous 5 total from 5 previous

number of laughs, previous 5 total from 5 previous

n word tokens, subsequent 5 utterancder each word, total # occ in 5 subsequent
tags from POS tagger, subsequent 5| for each tag, total # occurrences in 5 subsequent
number of words, subsequent 5 total from 5 subsequent
number of laughs, subsequent 5 total from 5 subsequent

Table 3: Summary of features that describe each utterance.

and punctuation. We rank the utility of words ac-ificant percentage of the overall feature set.

cording to the feature quality measure presented in Finally, we note that the conversation topiaist
(Lewis and Gale, 1994) because it was devised faaken to be a feature, as we cannot assume that con-
the task of classifying similarly short fragments ofversations in general will have such labels. The
text (news headlines), rather than long documentsomplete list of features, along with their possible
We then consider the taptokens as features, vary- values, is summarized in Table 3.

ing the number in different experiments. Table 2 _

shows the most useful tokens for distinguishing be2-2  Experiments

tween the three categories according to this metricWe applied several classifier learning algorithms to

Additionally, we include as features the utteranc@Ur data: Naive Bayes, Support Vector Machines
type (statement, question, or fragment), number ¢SVMs), 1-nearest neighbor, and the C4.5 decision
words in the utterance, and number of laughs in thiée€ learning algorithm. We used the implementa-
utterance. tions in the Weka package of machine learning al-
Hprithms (Witten and Frank, 2005), running the al-

Because utterances are long enough to classify i orithms with default settings. In each case, we per
dividually but too short to classify reliably, we not 9 -1ings. n ea ' P
formed 4-fold cross-validation, training on sets con-

only consider features of the current utterance, bup ! : : :
. sisting of three of the conversations in each topic
also those of previous and subsequent utteranc . )
o 5 conversations total) and testing on sets of the re-
More specifically, summed features are calculate

for the five preceding utterances and for the five supraining 1 from each tOp.'C (5 total). Average train-
sequent utterances. The number five was chosen e[l set size was approximately 3800 utterances, of
pir?cally ' v%ich about 700 were Small Talk and 350 Metacon-

o , versation. The average test set size was 1270.
It is important to note that there is some overlap

in features. For instance, the token “?” can be ex Results

tracted as one of the word tokens by Lewis and B

Gale’s feature quality measure; it is also tagged b§-1 Performance of a Learned Classifier

the POS tagger; and it is indicative of the utterancé/e evaluated the results of our experiments ac-
type, which is encoded as a separate feature as welbrding to three criteria: accuracy, error cost, and
However, redundant features do not make up a siglausibility of the annotations produced. In all

11



| Algorithm | % Accuracy| Cohen’s Kappd S M T | <—classified ag
SVM 76.6 0.44 55% | 7% | 38% Small Talk
C4.5 68.8 0.26 21% | 37% | 42% M etaconv.
k-NN 64.1 0.20 8% | 3% | 89% OnTopic
Naive Bayes 58.9 0.27

Table 5: Confusion matrix for 100-word SVM clas-

Table 4: Classification accuracy and Cohen’s Kappgfier.
statistic for each of the machine learning algorithms

we tried, using all features at the 100-words level. ot an appropriate metric for evaluating our re-

sults. If the goal is to eliminate Small Talk regions
T Inter-annotator agreement from conversations, mislabeling On-Topic regions
i as Small Talk potentially results in the elimination

84T . .
of useful material. Table 5 shows a confusion ma-

82 trix for an SVM classifier trained on a data set at the
100-word level. We can see that the classifier is con-
80T servative, identifying 55% of the Small Talk, but in-

correctly labeling On-Topic utterances as Small Talk

1 all features only 8% of the time.
76 4 A Finally, we analyzed (by hand) the test data anno-
e | ine numbers only

tated by the classifiers. We found that, in general,

accuracy (%)

74T the SVM classifiers annotated the conversations in a
| Part of speech tags only . L. .
----- - - - —-— oo —--o—————————-——- Baseline manner similar to the human annotators, transition-

7 ) . . . . . . . : _ _

0 25 50 75 100 125 150 175 200 ing from one label to another relatively infrequently
number of words used as features as illustrated in Table 1. This is in contrast to the

1-nearest neighbor classifiers, which tended to an-

Figure 1: Classification results using SVMs Withnotate in a far more “jumpy” style.

varying numbers of words. 6.2 Relative Utility of Features

_ _ Several of the features we used to describe our
cases our best results were obtained with the SVMrajning and test examples were selected due to the

When evaluated on accuracy, the SVM models wei@aims of researchers such as Laver and Cheepen.
the only ones that exceeded a baseline accuracy W were interested in determining the relative con-
72.8%, which is the average percentage of On-Topigihutions of these various linguistically-motivated
utterances in our data set. Table 4 displays the Ngsatures to our learned classifiers. Figure 1 and Table
merical results using each of the machine learning report some of our findings. Using proximity to the
algorithms. beginning of the conversation (“line numbers”) as a
Figure 1 shows the average accuracy obtainesble feature, the SVM classifier achieved an accu-
with an SVM classifier using all features describedacy of 75.6%. This clearly verifies the hypothesis
in Section 5.1 except part-of-speech features (fahat utterances near the beginning of the conversa-
reasons discussed below), and varying the numbgon have different properties than those that follow.
of words considered. While the best results were ob- On the contrary, when we used only POS tags
tained at the 100-words level, all classifiers demonyg train the SVM classifier, it achieved an accuracy
strated significant improvement in accuracy over thghat falls exactly at the baseline. Moreover, remov-
baseline. The average standard deviation over thefy POS features from the SVM classifierproved
cross-validation runs of the results shown is 6 pefesults (Table 6). This may indicate that detect-
centage points. ing off-topic categories will require focusing on the
From a practical perspective, accuracy alone iwords rather than the grammar of utterances. On

12



| Condition | Accuracy| Kappa| e investigating alternate approaches for detecting

’ All features ‘ 76.6 ‘ 0.44 ‘ Small Talk regions, such as smoothing with a
No word features 75.0 0.19 Hidden Markov Model;
No line numbers 76.9 0.44 e using semi-supervised and active learning tech-
No POS features 77.8 0.46 niques to better utilize the large amount of un-
No utterance type, length, 76.9 0.45 labeled data;
or # laughs
No previous/next info 76.3 021 e running the experiments with automatically
Only word features 77.9 0.46 generated (speech recognized) transcriptions,
. rather than the human-generated transcriptions
Only line numbers 75.6 0.16 o
that we have used to date. Our expectation is
Only POS features 72.8 0.00 . . . )
that such transcripts will contain more noise
Only utterance type, length, 74.1 0.09 i
and thus pose new challenges;
and # laughs

e including prosodic information in the feature
Table 6: Percent accuracy and Cohen’s Kappa statis-  set.
tic for the SVM at the 100-words level when features
were left out or put in individually. Acknowledgements
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Abstract

This paper examines language similarity
in messages over time in an online com-
munity of adolescents from around the
world using three computational meas-
ures: Spearman’s Correlation Coefficient,
Zipping and Latent Semantic Analysis.
Results suggest that the participants’ lan-
guage diverges over a six-week period,
and that divergence is not mediated by
demographic variables such as leadership
status or gender. This divergence may
represent the introduction of more unique
words over time, and is influenced by a
continual change in subtopics over time,
as well as community-wide historical
events that introduce new vocabulary at
later time periods. Our results highlight
both the possibilities and shortcomings of
using document similarity measures to as-
sess convergence in language use.

1 Introduction

While document similarity has been a concern in
computational linguistics for some time, less atten-
tion has been paid to change in similarity across
time. And yet, while historical linguists have long
addressed the issue of divergence or convergence
among language groups over long periods of time,
there has also been increasing interest in conver-
gence (also referred to as entrainment, speech ac-
commodation, or alignment) in other areas of
Linguistics, with the realization that we have little
understanding of change in very short periods of
time, such as months, in a particular conversational
setting, between two people, or in a large group.
The Internet provides an ideal opportunity to ex-
amine questions of this sort since all texts perse-
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vere for later analysis, and the diversity in kinds of
online communities ensures that the influence of
social behavior on language can be examined. Yet
there has been very little work on language similar-
ity in online communities.

In this paper we compare the use of three sepa-
rate tools to measure document or message similar-
ity in a large data set from an online community of
over 3,000 participants from 140 different coun-
tries. Based on a review of related work on corpus
similarity measures and document comparison
techniques (Section 2.2), we chose Spearman’s
Correlation Coefficient, a comparison algorithm
that utilizes GZIP (which we will refer to as “Zip-
ping”) and Latent Semantic Analysis. These three
tools have all been shown effective for document
comparison or corpus similarity, but never to our
knowledge have any of them been used for docu-
ment similarity over time, nor have they been
compared to one another. Even though each of
these tools is quite different in what it specifically
measures and how it is used, and each has been
used by quite different communities of researchers,
they are all fairly well-understood (Section 4).

2 Related Work

In the next sections, we review literature on lan-
guage similarity or convergence. We also review
literature on the three computational tools, Spear-
man’s Correlation Coefficient (SCC), Zipping, and
Latent Semantic Analysis (LSA).

in

2.1 Language Similarity

mediated Communication

Computer-

In dyadic settings, speakers often converge to one
another’s speech styles, not only matching the
choice of referring expressions or other words, but
also structural dimensions such as syntax, sound
characteristics such as accent, prosody, or phonol-
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ogy, or even non-verbal behaviors such as gesture
(Brennan & Clark, 1996; Street & Giles, 1982).

Some scholars suggest that this convergence or
entrainment is based on a conscious need to ac-
commodate to one’s conversational partner, or as a
strategy to maximize communication effectiveness
(Street & Giles, 1982). Others suggest that the
alignment is an automatic response, in which
echoic aspects of speech, gesture and facial expres-
sions are unconscious reactions (Garrod & Ander-
son, 1987; Lakin, Jefferies, Cheng, & Chartrand,
2003). In short, conversational partners tend to
accommodate to each other by imitating or match-
ing the semantic, syntactic and phonological char-
acteristics of their partners (Brennan & Clark,
1996; Garrod & Pickering, 2004).

Many studies have concentrated on dyadic inter-
actions, but large-scale communities also demon-
strate language similarity or convergence. In fact,
speech communities have a strong influence in cre-
ating and maintaining language patterns, including
word choice or phonological characteristics
(Labov, 2001). Language use often plays an impor-
tant role in constituting a group or community
identity (Eckert, 2003). For example, language
‘norms’ in a speech community often result in the
conformity of new members in terms of accent or
lexical choice (Milroy, 1980). This effect has been
quite clear among non-native speakers, who
quickly pick up the vernacular and speech patterns
of their new situation (Chambers, 2001), but the
opposite is also true, with native speakers picking
up speech patterns from non-native speakers (Auer
& Hinskens, 2005)

Linguistic innovation is particularly salient on
the Internet, where words and linguistic patterns
have been manipulated or reconstructed by indi-
viduals and quickly adopted by a critical mass of
users (Crystal, 2001). Niederhoffer & Pennebaker
(2002) found that users of instant messenger tend
to match each other’s linguistic styles. A study of
language socialization in a bilingual chat room
suggests that participants developed particular lin-
guistic patterns and both native and non-native
speakers were influenced by the other (Lam,
2004). Similar language socialization has been
found in ethnographic research of large-scale
online communities as well, in which various ex-
pressions are created and shared by group mem-
bers (Baym, 2000; Cherny, 1999).
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Other research not only confirms the creation of
new linguistic patterns online, and subsequent
adoption by users, but suggests that the strength of
the social ties between participants influences how
patterns are spread and adopted (Paolillo, 2001).
However, little research has been devoted to how
language changes over longer periods of time in
these online communities.

2.2 Computational

Similarity

Measures of Language

The unit of analysis in online communities is the
(e-mail or chat) message. Therefore, measuring
entrainment in online communities relies on as-
sessing whether or not similarity between the mes-
sages of each participant increases over time. Most
techniques for measuring document similarity rely
on the analysis of word frequencies and their co-
occurrence in two or more corpora (Kilgarriff,
2001), so we start with these techniques.

Spearman’s Rank Correlation Coefficient (SCC)
is particularly useful because it is easy to compute
and not dependent on text size. Unlike some other
statistical approaches (e.g. chi-square), SCC has
been shown effective on determining similarity
between corpora of varying sizes, therefore SCC
will serve as a baseline for comparison in this pa-
per (Kilgarriff, 2001).

More recently, researchers have experimented
with data compression algorithms as a measure of
document complexity and similarity. This tech-
nigue uses compression ratios as an approximation
of a document’s information entropy (Baronchelli,
Caglioti, & Loreto, 2005; Benedetto, Caglioti, &
Loreto, 2002). Standard Zipping algorithms have
demonstrated effectiveness in a variety of docu-
ment comparison and classification tasks. Behr et
al. (2003) found that a document and its translation
into another language compressed to approxi-
mately the same size. They suggest that this could
be used as an automatic measure for testing ma-
chine translation quality. Kaltchenko (2004) argues
that using compression algorithms to compute rela-
tive entropy is more relevant than using distances
based on Kolmogorov complexity. Lastly, Ben-
detto et al. (2002) present some basic findings us-
ing GZIP for authorship attribution, determining
the language of a document, and building a tree of
language families from a text written in different
languages. Although Zipping may be a conten-



tious technique, these results present intriguing
reasons to continue exploration of its applications.

Latent Semantic Analysis is another technique
used for measuring document similarity. LSA em-
ploys a vector-based model to capture the seman-
tics of words by applying Singular Value
Decomposition on a term-document matrix
(Landauer, Foltz, & Laham, 1998). LSA has been
successfully applied to tasks such as measuring
semantic similarity among corpora of texts
(Coccaro & Jurafsky, 1998), measuring cohesion
(Foltz, Kintsch, & Landauer, 1998 ), assessing cor-
rectness of answers in tutoring systems (Wiemer-
Hastings & Graesser, 2000) and dialogue act clas-
sification (Serafin & Di Eugenio, 2004).

To our knowledge, statistical measures like
SCC, Zipping compression algorithms, or LSA
have never been used to measure similarity of mes-
sages over time, nor have they been applied to
online communities. However, it is not obvious
how we would verify their performance, and given
the nature of the task — similarity in over 15,000 e-
mail messages — it is impossible to compare the
computational methods to hand-coding. As a pre-
liminary approach, we therefore decided to apply
all three methods in turn to the messages in an
online community to examine change in linguistic
similarity over time, and to compare their results.
Through the combination of lexical, phrasal and
semantic similarity metrics, we hope to gain in-
sight into the questions of whether entrainment
occurs in online communities, and of what compu-
tational measures can be used to measure it.

2.3 The Junior Summit

The Junior Summit launched in 1998 as a closed
online community for young people to discuss how
to use technology to make the world better. 3000
children ages 10 to 16 participated in 1000 teams
(some as individuals and some with friends). Par-
ticipants came from 139 different countries, and
could choose to write in any of 5 languages. After
2 weeks online, the young people divided into 20
topic groups of their own choosing. Each of these
topic groups functioned as a smaller community
within the community of the Junior Summit; after
another 6 weeks, each topic group elected 5 dele-
gates to come to the US for an in-person forum.
The dataset from the Junior Summit comprises
more than 40,000 e-mail messages; however, in the
current paper we look at only a sub-set of these
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data — messages written in English during the 6-
week topic group period. For complete details,
please refer to Cassell & Tversky (2005).

3  The Current Study

In this paper, we examine entrainment among 419
of the 1000 user groups (the ones who wrote in
English) and among the 15366 messages they
wrote over a six-week period (with participants
divided into 20 topic groups, with an average of
20.95 English writers per group). We ask whether
the young people’s language converges over time
in an online community. Is similarity between the
texts that are produced by the young people greater
between adjacent weeks than between the less
proximally-related weeks? Furthermore, what
computational tools can effectively measure trends
in similarity over time?

3.1 Hypotheses

In order to address these questions, we chose to
examine change in similarity scores along two di-
mensions: (1) at the level of the individual; and (2)
across the group as a whole. More specifically, we
examine similarity between all pairs of individuals
in a given topic group over time. We also com-
pared similarity across the entire group at different
time periods.

As depicted below, we first look at pairwise
comparisons between the messages of participants
in a particular topic group within a given time pe-
riod, Ty (one week). For every pair of participants
in a group, we calculated the similarity between
two documents, each comprising all messages for a
participant in the pair. Then we averaged the
scores computed for all topic groups within a time
period Ty and produced P+, the average, pairwise
similarity score for Ty. Our first hypothesis is that
the average, pairwise similarity will increase over
time, such that:

P11 < P12 <Pr3 <Pps <P15<Pre

For our second set of tests, we compared all
messages from a single time period to all messages
of a previous time period within a single topic
group. Our hypothesis was that temporal proximity
would correlate with mean similarity, such that the
messages of two adjacent time periods would ex-
hibit more similarity than those of more distant



time periods. In order to examine this, we perform
two individual hypothesis tests, where My is the
document containing all the messages produced in
time period Ty, and S(X,Y) is the similarity score
for the two documents X and Y.

a) S(My, My1) > S(My, My.2)
b) S(Mk, Mk-l) > S(Mk, Ml)

Finally, we posit that SCC, Zipping and LSA
will yield similar results for these tests.

4  Method

To prepare the data, we wrote a script to remove
the parts of messages that could interfere with
computing their similarity, in particular quoted
messages and binary attachments, which are com-
mon in a corpus of email-like messages. We also
removed punctuation and special characters.

4.1 Spearman’s Correlation Coefficient

SCC is calculated as in Kilgarriff (2001). First, we
compile a list of the common words between the
two documents. The statistic can be calculated on
the n most common words, or on all common
words (i.e. n = total number of common words).
We applied the latter approach, using all the words
in common for each document pair. For each docu-
ment, the n common words are ranked by fre-
guency, with the lowest frequency word ranked 1
and the highest ranked n. For each common word,
d is the difference in rank orders for the word in
each document. SCC a normalized sum of the
squared differences:

63 d"

n(n®-1)

p=1-

The sum is taken over the n most frequent common
words. In the case of ties in rank, where more than
one word in a document occurs with the same fre-
guency, the average of the ranks is assigned to the
tying words. (For example, if words wy, w, and ws
are ranked 5", 6™ and 7" then all three words

would be assigned the same rank of 28+ =6).

42  Zipping

When compressing a document, the resulting com-
pression ratio provides an estimate of the docu-
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ment's entropy. Many compression algorithms
generate a dictionary of sequences based on fre-
guency that is used to compress the document.
Likewise, one can leverage this technique to de-
termine the similarity between two documents by
assessing how optimal the dictionary generated
when compressing one document is when applied
to another document. We used GZIP for compres-
sion, which employs a combination of the LZ77
algorithm and Huffman coding. We based our ap-
proach on the algorithm used by (Benedetto,
Caglioti, & Loreto, 2002), where the cross-entropy

per character is defined as:

length(zip(A+ B)) — length(zip(A))
length(B)

Here, A and B are documents; A+ B is docu-
ment B appended to document A; zip(A) is the
zipped document; and length(A) is the length of the
document. It is important to note that the test
document (B) needs to be small enough that it
doesn't cause the dictionary to adapt to the ap-
pended piece. (Benedetto, Caglioti, & Loreto,
2002) refer to this threshold as the crossover
length. The more similar the appended portion is,
the more it will compress, and vice versa. We ex-
tended the basic algorithm to handle the extremely
varied document sizes found in our data. Our algo-
rithm does two one-way comparisons and returns
the mean score. Each one-way comparison be-
tween two documents, A and B, is computed by
splitting B into 300 character chunks. Then for
each chunk, we calculated the cross entropy per
character when appending the chunk onto A. Each
one-way comparison returns the mean calculation
for every chunk.

We fine-tuned the window size with a small,
hand-built corpus of news articles. The differences
are slightly more pronounced with larger window
sizes, but that trend starts to taper off between
window sizes of 300 and 500 characters. In the
end we chose 300 as our window size, because it
provided sufficient contrast and yet still gave a few
samples from even the smallest documents in our
primary corpus.

4.3 Latent Semantic Analysis (LSA)

For a third approach, we used LSA to analyze the
semantic similarity between messages across dif-
ferent periods of time. We explored three imple-



mentations of LSA: (a) the traditional algorithm
described by Foltz et al (1998 ) with one semantic
space per topic group, (b) the same algorithm but
with one semantic space for all topic groups and
(c) an implementation based on Word Space
(Schutze, 1993) called Infomap. All three were
tested with several settings such as variations in the
number of dimensions and levels of control for
stop words, and all three demonstrated similar re-
sults. For this paper, we present the Infomap re-
sults due to its wide acceptance among scholars as
a successful implementation of LSA.

To account for nuances of the lexicon used in
the Junior Summit data, we built a semantic space
from a subset of this data comprised of 7000 small
messages (under one kb) and 100 dimensions with-
out removing stop words. We then built vectors for
each document and compared them using cosine
similarity (Landauer, Foltz, & Laham, 1998).

5 Results

The tools we employ approach document similarity
quite differently; we therefore compare findings as
a way of triangulating on the nature of entrainment
in the Junior Summit online community.

5.1 Pairwise Comparisons over Time

First, we hypothesized that messages between in-
dividuals in a given topic group would demonstrate
more similarity over time. Our findings did not
support this claim; in fact, they show the opposite.
All three tests show slight convergence between
time period one and two, some variation, and then
divergence between time periods four, five and six.

Spearman’s Correlation Coefficient demon-
strates a steady decline in similarity. As shown in
Figure 1, the differences between time periods
were all significant, Fsi35y = 21.475, p<.001,
where N=1381 (N represents user pairs across all
Six time periods).

Zipping also shows a significant difference be-
tween each time period, Fs 1190 = 39.027, p<.001,
N=1196, demonstrating a similar decline in simi-
larity, although not as unwavering. See Figure 2.

LSA demonstrates the same divergent trend over
time, Fsi4100 = 27.139, p<.001, N=1416, with a
slight spike at T4 and Ts. While the dip at time 3 is
more pronounced than SCC and Zipping, it is still
consistent with the overall findings of the other
measures. See Figure 3.
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Figure 2. Zipping Similarity Scores for all Pairwise
comparisons, T, — Tg
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Figure 3. LSA Similarity Scores for all Pairwise
comparisons, T; — Ts.
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Because of these surprising findings, we exam-
ined the influence of demographic variables, such
as leadership (those chosen as delegates from each
topic group to the in-person forum), gender, and
the particular topic groups the individuals were a
part of. We divided delegate pairs into (a) pairs
where both individuals are delegates; (b) pairs
where both individuals are non-delegates; and (c)
mixed pairs of delegates and non-delegates. Simi-
larly, gender pairs were divided into same-sex
(e.g., male-male, female-female) and mixed-sex



pairs. For topic groups, we re-ran our analyses on
each of the 20 topic groups separately.

Overall, both leaders and gender pairs demon-
strate the same divergent trends as the group as a
whole. However, not all tests showed significant
differences when comparing these pairs.

For instance, Spearman’s Correlation Coeffi-
cient found a significant difference in similarity
between three groups, where Fg.73 = 6.804,
p<.001, n=276, such that delegate-delegate pairs
demonstrate higher similarity scores than non-
delegate pairs and mixed pairs. LSA found the
same result, F(2,280) = 11.122, p<.001 n=283. By
contrast, Zipping did not find this to be the case,
where F,206) = 2.568, p=.079, n=229.

In terms of the potential effect of gender on
similarity scores, Zipping showed a significant dif-
ference between the three groups, F 236 = 3.546,
p<.05, n=239, such that female-female pairs and
mixed-sex pairs demonstrate more similarity than
male-male pairs. LSA found the same relationship,
F.280 = 4.79, p<.005 n=283. By contrast, Spear-
man’s Correlation Coefficient does not show a sig-
nificant between-groups difference, F 73 = .699,
p=.498, n=276.

In terms of differences among the topic groups,
we did indeed find differences such that some topic
groups demonstrated the fairly linear slope with
decreasingly similarity shown above, while others
demonstrated dips and rises resulting in a level of
similarity at T6 quite similar to T1. There is no
neat way to statistically measure the differences in
these slopes, but it does indicate that future analy-
ses need to take topic group into account.

In sum, we did not find leadership or gender to
mediate language similarity in this community.
Topic group, on the other hand, did play a role,
however no topic groups showed increasing simi-
larity across time.

5.2 Similarity and Temporal Proximity

Our second hypothesis concerned the gradual
change of language over time such that temporal
proximity of time periods would correlate with
mean similarity. In other words, we expect that
messages in close time periods (e.g., adjacent
weeks) should be more similar than messages from
more distant time periods. In order to examine
this, we performed two individual tests, in which
our predictions can be described as follows: (a) the

similarity between texts in one time period and
texts in the neighboring time period is greater than
texts in one time period, and texts that came two
periods previously, S(My, My.1) > S(Mk, M-); and
(b) the similarity between texts in one time period
and texts in the neighboring time period is greater
than the similarity between texts in one time pe-
riod, and texts in the very first time period, S(My,
Mi.1) > S(My, My).

As shown in Table 1, SCC and Zipping tests
confirm these hypotheses, while none of the LSA
tests revealed significant differences.

Table 1. Temporal Proximity Similarities SCC,

Zipping, and LSA, n=20 topic groups
S(My,My.1) S(My,My.1) S(Mi,My.2)
> S(Mg,Myp) | > S(My,My) > S(My,My)
SCC | .665>.653t [ .665>.639° | .653 > .639°
ZIP | 628 >.608t [ .628 > .605t [ .608 > .6058
LSA [ 974> 971 [ 9.74>.971 | .97166 < .97168
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Note: *p<.05, °p<.01, Tp<.001, 8p =.0525, one-tailed

6 Discussion

This work presents several novel contributions
to the analysis of text-based messages in online
communities. Using three separate tools, Spear-
man’s Correlation Coefficient, Zipping and Latent
Semantic Analysis measures, we found that across
time, members of an online community diverge in
the language they use. More specifically, a com-
parison of the words contributed by any pair of
users in a particular topic group shows increasing
dissimilarity over the six-week period.

This finding seems counter-intuitive given work
in linguistics and psychology, which shows that
dyads and communities converge, entrain and echo
each other’s lexical choices and communication
styles. Similarly, our own temporal proximity re-
sults appear to indicate convergence, since closer
time periods are more similar than more distant
ones. Finally, previous hand-coding of these data
revealed convergence, for example between boys
and girls on the use of emotion words, between
older and younger children on talk about the future
(Cassell & Tversky, 2005). So we ask, why do our
tools demonstrate this divergent trend?

We believe that one answer comes from the fact
that, while the young people may be discussing a
more restricted range of topics, they are contribut-
ing a wider variety of vocabulary. In order to ex-
amine whether indeed there were more unique



words over time, we first simply manually com-
pared the frequency of words over time and found
that, on the contrary, there are consistently fewer
unique words by T, which suggests convergence.
However, there are also fewer and fewer total
words by the end of the forum. This is due to the
number of participants who left the forum after
they were not elected to go to Boston. If we divide
the unique words by the total words, we find that
the ratio of unique words consistently increases
over time (see Figure 4). It is likely that this ratio
contributes to our results of divergence.

Figure 4. Ratio of Unique to Total Words, T, — T

In order to further examine the role of increasing
vocabulary in the Junior Summit as a whole, we
also created several control groups comprised of
random pairs of users (i.e., users that had never
written to each other), and measured their pairwise
similarity across time. The results were similar to
the experimental groups, demonstrating a slope
with roughly the same shape. This argues for con-
vergence and divergence being affected by some-
thing at a broader, community-level such as an
increase in vocabulary.

This result is interesting for an additional rea-
son. Some users — perhaps particularly non-native
speakers or younger adolescents, may be learning
new vocabulary from other speakers, which they
begin to introduce at later time periods. An in-
creasingly diversified vocabulary could conceiva-
bly result in differences in word frequency among
speakers. This leads us to some key questions: to
what extent does the language of individuals
change over time? Is individual language influ-
enced by the language of the community? This is
heart of entrainment.

In conclusion, we have shown that SCC, Zip-
ping and LSA can be used to assess message simi-
larity over time, although they may be somewhat
blunt instruments for our purposes. In addition,
while Zipping is somewhat contentious and not as
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widely-accepted as SCC or LSA is, we found that
the three tools provide very similar results. This is
particularly interesting given that, while all three
methods take into account word or word-sequence
frequencies, LSA is designed to also take into ac-
count aspects of semantics beyond the surface
level of lexical form.

All in all, these tools not only contribute to ways
of measuring similarity across documents, but can
be utilized in measuring smaller texts, such as
online messages or emails. Most importantly,
these tools remind us how complex and dynamic
everyday language really is, and how much this
complexity must be taken into account when build-
ing computational tools for the analysis of text and
conversation.

6.1 Future Directions

In future work, we intend to find ways to compare
the results obtained from different topic groups and
also to examine differences among individual us-
ers, including re-running our analyses after remov-
ing outliers. We also hope to explore the interplay
between individuals and the community and
changes in language similarity. In other words,
can we find those individuals who may be acquir-
ing new vocabulary? Are there “language leaders”
responsible for language change online?

We also plan to analyze words in terms of their
local contexts, to see if this changes over time and
how it impacts our results. Furthermore, we intend
to go beyond word frequency to classify topic
changes over time to get a better understanding of
the dynamics of the groups (Kaufmann, 1999).

Finally, as we have done in the past with our
analyses of this dataset, we would like to perform a
percentage of hand-coded, human content analysis
to check reliability of these statistical methods.
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You Are What You Say: Using Meeting Participants’ Speech
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Abstract

Our goal is to automatically detect the
functional roles that meeting participants
play, as well as the expertise they bring to
meetings. To perform this task, we build
decision tree classifiers that use a combi-
nation of simple speech features (speech
lengths and spoken keywords) extracted
from the participants’ speech in meetings.
We show that this algorithm results in a
role detection accuracy of 83% on unseen
test data, where the random baseline is
33.3%. We also introduce a simple aggre-
gation mechanism that combines evidence
of the participants’ expertise from multi-
ple meetings. We show that this aggre-
gation mechanism improves the role de-
tection accuracy from 66.7% (when ag-
gregating over a single meeting) to 83%
(when aggregating over 5 meetings).

Introduction

Alexander I. Rudnicky
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
air@cs.cmu.edu

to perform (Banerjee et al., 2005). Another task is
to automatically record the action items being dis-
cussed at meetings, along with details such as when
the action is due, who is responsible for it, etc.

Meeting analysis is a quickly growing field of
study. In recent years, research has focussed on au-
tomatic speech recognition in meetings (Stolcke et
al., 2004; Metze et al., 2004; Hain et al., 2005), ac-
tivity recognition (Rybski and Veloso, 2004), auto-
matic meeting summarization (Murray et al., 2005),
meeting phase detection (Banerjee and Rudnicky,
2004) and topic detection (Galley et al., 2003). Rela-
tively little research has been performed on automat-
ically detecting theroles that meeting participants
play as they participate in meetings. These roles can
be functional (e.g. th&acilitator who runs the meet-
ing, and thescribewho is the designated note taker
at the meeting), discourse based (e.g.pfesenter
and thediscussion participant and expertise related
(e.g. thenardware acquisition expednd thespeech
recognition research expgrtSome roles are tightly
scoped, relevant to just one meeting or even a part
of a meeting. For example, a person can be the fa-
cilitator of one meeting and the scribe of another, or

A multitude of meetings are organized every dayne same person can be a presenter for one part of
around the world to discuss and exchange impophe meeting and a discussion participant for another
tant information, to make decisions and to collabPart. On the other hand, some roles have a broader
oratively solve problems. Our goal is to create sysscope and last for the duration of a project. Thus
tems that automatically understand the discussiofsSingle person may be the speech recognition ex-
at meetings, and use this understanding to assRet in a project and have that role in all meetings
meeting participants in various tasks during and afn that project. Additionally, the same person can
ter meetings. One such task is the retrieval of infoPlay multiple roles, e.g. the scribe can be a speech
mation from previous meetings, which is typicallyr€cognition expert too.

a difficult and time consuming task for the human Automatic role detection has many benefits, espe-
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New York City, New York, June 2006. (©2006 Association for Computational Linguistics



cially when used as a source of constraint for othengs (e.g. (Banerjee et al., 2004)). While a large
meeting understanding components. For examplpart of this data consists of natural meetings (that
detecting the facilitator of the meeting might helpwould have taken place even if they weren’t being
the automatic topic detection module if we knowecorded), a small subset of this data is “scenario
that facilitators officially change topics and move thalriven” — theY2 Scenario Data

discussion from one agenda item to the next. Kno

ing who the speech recognition expert is can helpMeeting#|  Typical scenario

the automatic action item detector: If an actionitemp 1 Hiring Joe: Buy a computer and
regarding speech recognition has been detected hut find office space for him

the responsible persofield has not been detected, 2 Hiring Cindy and Fred: Buy com—
the module may place a higher probability on the puters & find office space for them
speech recognition expert as being the responsible 3 Buy printer for Joe, Cindy and Fred
person for that action item. Additionally, detecting 4 Buy a server machine for Joe,
who is an expert in which field can have benefits of Cindy and Fred

its own. For example, it can be used to automatically 5 Buy desktop and printer for the
direct queries on a particular subject to the persaon meeting leader

deemed most qualified to answer the guestion, etc.

Basic information such as participant role and ex- Table 1: Typical Scenario Instructions

pertise needs to be robustly extracted if it is to be of
use to the more sophisticated stages of understand-The Y2 Scenario Data consists of meetings be-
ing. Accordingly, we have based our role detectiotween groups of 3 or 4 participants. Each group par-
algorithm on simple and highly accurate speech fedicipated in a sequence of up to 5 meetings. Each
tures, as described in section 5.1.2. sequence had an overall scenario — the purchasing
(Banerjee and Rudnicky, 2004) describes the a@f computing hardware and the allocation of office
tomatic detection of discourse roles in meetingsspace for three newly hired employees. Participants
These roles includegresenter (participants who Wwere told to assume that the meetings in the se-
make formal presentations using either slides dtuence were being held one week apart, and that be-
the whiteboard)discussion participanfparticipants tween any two meetings “progress” was made on the
involved in a discussion marked by frequent turréction items decided at each meeting. Participants
changes) observer(participants not speaking, butwere given latitude to come up with their own sto-
nevertheless consuming information during a preies of what “progress” was made between meetings.
sentation or discussion), etc. In this paper we focuit each meeting, participants were asked to review
on automatically detecting tifanctionalandexper- progress since the last meeting and make changes to
tise based roles that participants play in a meetingheir decisions if necessary. Additionally, an extra
In the next section we describe the data that is usé@pic was introduced at each meeting, as shown in
in all our role detection work in this paper. In subsetable 1.
quent sections we describe the role detection algo-In each group of participants, one participant
rithm in more detail, and present evaluation resultsplayed the role of thenanagemwho has control over
the funds and makes the final decisions on the pur-
2 The Y2 Meeting Scenario Data chases. The remaining 2 or 3 participants played the
roles of either théardware acquisition expedr the
Our research work is part of the Cognitive Assistaniuilding facilities expert The role of the hardware
that Learns and Organizes project (CALO, 2003). Axpert was to make recommendations on the buying
goal of this project is to create an artificial assisof computers and printers, and to actually make the
tant that can understand meetings and use this uodrchases once a decision was made to do so. Sim-
derstanding to assist meeting participants during arildrly the role of the building expert was to make
after meetings. Towards this goal, data is being cotfecommendations on which rooms were available to
lected by creating a rich multimodal record of meetfit the new employees into. Despite this role assign-
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ment, all participants were expected to contribute tdata (as described in section 2) the participant play-
discussions on all topics. ing the role of themanageris always the meeting
To make the meetings as natural as possible, thgader. In section 5 we describe our methodology
participants were given control over the evolution ofor automatically detecting the meeting leader.
the story, and were also encouraged to create con-
flicts between the manager’s demands and the advide Expertise
that the experts gave him. For example, managers
sometimes requested that all three employees be piytically each participant in a meeting makes con-
in a single office, but the facilities expert announcedfibutions to the discussions at the meeting (and to
that no 3 person room was available, unless the mafie project or organization in general) based on their
ager was agreeable to pay extra for them. The&¥n expertise or skill set. For example, a project
conflicts led to extended negotiations between tH® build a multi-modal note taking application may
participants. To promote fluency, participants weréclude project members with expertise in speech
instructed to use their knowledge of existing facilifecognition, in video analysis, etc. We defiee-
ties and equipment instead of inventing a completeljertise based rolesas roles based on skills that are
fictitious set of details (such as room numbers). ~ relevantto participants’ contributions to the meeting
The data we use in this paper consists of 8 séliscussions and the project or organization in gen-
quences recorded at Carnegie Mellon University ar@f@l- Note that the expertise role a participant plays
at SRI International between 2004 and 2005. One #f & meeting is potentially dependent on the exper-
these sequences has 4 meetings, the remaining h#9€ roles of the other participants in the meeting,
5 meetings each, for a total of 39 meetings. 4 ofnd that a single person may play different expertise
these sequences had a total of 3 participants ea¢Rles in different meetings, or even within a single
the remaining 4 sequences had a total of 4 partic€eting. For example, a single person may be the
pants each. On average each meeting was 15 misPeech recognition expert” on the note taking appli-
utes long. We partitioned this data into two roughlyf@tion project that simply uses off-the—shelf speech
equal sets, the training set containing 4 meeting sEecognition tools to perform note taking, but a “noise
guences, and the test set containing the remaini,(,‘,@ncellation” expert on the project that is attempting
4 sets. Although a few participants participated ifC improve the in-house speech recognizer. Auto-
multiple meetings, there was no overlap of particimatically detecting each participant's roles can help

pants between the training and the test set. such meeting understanding components as the ac-
tion item detector.
3  Functional Roles Ideally we would like to automatically discover

the roles that each patrticipant plays, and cluster
Meeting participants havieinctional roles that en- these roles into groups of similar roles so that
sure the smooth conduct of the meeting, withthe meeting understanding components can transfer
out regard to the specific contents of the meetingvhat they learn about particular participants to other
These roles may include that of theeeting leader (and newer) participants with similar roles. Such a
whose functions typically include starting the meetrole detection mechanism would need no prior train-
ing, establishing the agenda (perhaps in consulting data about the specific roles that participants
tion with the other participants), making sure theplay in a new organization or project. Currently
discussions remain on—-agenda, moving the discusewever, we have started with a simplified partici-
sion from agenda item to agenda item, etc. Anothgyant role detection task where we do have training
possible functional role is that of a the designatedata pertinent to the specific roles that meeting par-
meeting scribe Such a person may be tasked withicipants play in the test set of meetings. As men-
the job of taking the official notes or minutes for thetioned in section 2, our data consists of people play-
meeting. ing two kinds of expertise—based roles — that of a
Currently we are attempting to automatically dehardware acquisition expert, and that of a building
tect the meeting leader for a given meeting. In oufacilities expert. In the next section we discuss our
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methodology of automatically detecting these roleand Pedersen, 1997), and chose the top 200 high

from the meeting participants’ speech. scoring word—-role pairs. Finally we manually exam-
ined this list of words, and removed additional words
5 Methodology that we deemed to not be relevant to the task (essen-

Given N ¢ lonaitudinal meetinas. w dtially identifying a domain—specific stop list). This
. a sequence ot fohgitudinal MEEUNGs, We Qe 4,064 the list to a total of 180 words. The 5 most
fine our role detection task as a three—way clas

o . ..St'r'e uently occurring words in this list areomputer,
fication problem, where the input to the classifier. d y g P

) right, need, weelandspace Intuitively the goal of
consists of features extracted from the speech of & . . .

) . : : this keyword selection pre—processing step is to save
particular participant over the given meetings, an

. o e decision tree role classifier from having to auto-
the output is a probability distribution over the three_ _.. .

: : matically detect the important words from a much
possible roles. Note that although a single par- ; .
L . : arger set of words, which would require more data
ticipant can simultaneously play both a functiona rain
and an expertise—based role, in the Y2 Scenario

Data each participant plays exactly one of the thre® 1.2 Feature Extraction
roles. We take advantage of this situation to simplity e o0t to the decision tree role classifier is a set

the problem'to the three way cIa35|f|caj[|on defines teatures abstracted from a specific participant’s
above. We induce a decision tree (Quinlan, 198,000 One strategy is to extract exactly one set of
classifier from hand labeled data. In the next suly, .t o5 from all the speech belonging to a partici-
secyc_)n we describe the ;Feps mvo!ved In training thﬁant across all the meetings in the meeting sequence.
deC|S|on_ tree role clgssmer, and in the sul?gequepfowever’ this approach requires a very large num-
§ubsect|on we describe how the trained deC|s_|on treR; of meetings to train. Our chosen strategy is to
is gsed to arrive at a role label for each meeting pa&'amplethe speech output by each participant multi-
ticipant. ple times over the course of the meeting sequence,
classify each such sample, and then aggregate the
evidence over all the samples to arrive at the overall
5.1.1 Keyword List Creation likelihood that a participant is playing a certain role.
One of the sources of information that we wish To perform the sampling, we split each meeting
to employ to perform functional and expertise rolén the meeting sequence into a sequence of contigu-
detection is the words that are spoken by each pawus windows each seconds long, and then compute
ticipant over the course of the meetings. Our apne set of features from each participant’s speech
proach to harness this information source is to usduring each window. The value of is decided
labeled training data to first create a set of word#rough parametric tests (described in section 7.1).
most strongly associated with each of the three rolel,a particular participant was silent during the en-
and then use only these words during the feature efire duration of a particular window, then features
traction phase to detect each participant’s role, as dare extracted from that silence.
scribed in section 5.1.2. Note that in the above formulation, there is no
We created this list of keywords as follows. Giveroverlap (nor gap) between successive windows. In
a training set of meeting sequences, we aggregatadseparate set of experiments we ueegdrlapping
for each role all the speech from all the participant&indows. That is, given a window size, we moved
who had played that role in the training set. We thethe window by a fixed step size (less than the size
split this data into individual words and removedof the window) and computed features from each
stop words- closed class words (mainly articles andsuch overlapping window. The results of these
prepositions) that typically contain less informatiorexperiments were no better than those with non-
pertinent to the task than do nouns and verbs. For a@Verlapping windows, and so for the rest of this pa-
words across all the three roles, we computed the deer we simply report on the results with the non—
gree of association between each word and each @ferlapping windows.
the three roles, using the chi squared method (Yang Given a particular window of speech of a partic-

5.1 Training
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ular participant, we extract the following 2 speectof speech, an@ x 180 features for each of the 180
lengthbased features: keywords, for a total of 362 features. The true output
) o ) label for each such data point is the role of that par-
e Rank of this participant (among this meet+jcinant in the meeting sequence. We used these data
ing’s participants) in terms of the length of hisyqints t0 induce a classifier using the Weka Java im-
speech during this window. Thus, if this partic-niementation (Witten and Frank, 2000) of the C4.5
ipant spoke the longest during the window, Ngecision tree learning algorithm (Quinlan, 1986).
has a feature value af if he spoke for the sec- g c|assifier takes features as described above as
ond longest number of times, he has a featurg, ¢ and outputs class membership probabilities,
value of2, etc. where the classes are the three roles. Note that for

« Ratio of the length of speech of this participant!'® €xperiments in this paper we extract these fea-
in this window to the total length of speecht“res from themanual transcription®of the speech

from all participants in this window. Thus if of the meeting participants. In the future we plan to
a participant spoke for 3 seconds, and the ieerform these experiments using the transcriptions

tal length of speech from all participants in®UtPut by an automatic speech recognizer.

this window was 6 seconds, his feature vaIu% 2 Detecting Roles in Unseen Data
is 0.5. Together with the rank feature above, o _
these two features capture the amount of speedt?-1  Classifying Windows of Unseen Data

contributed by each participant to the window, Detecting the roles of meeting participants in un-
relative to the other participants. seen data is performed as follows: First the unseen
- _ test data is split into windows of the same size as was
~ In addition, for each window of speech of a parysed during the training regime. Then the speech ac-
ticular participant, and for each keyword in our listiyity and keywords based features are extracted (us-
of pre—decided keywords, we extract the followingng the same keywords as was used during the train-
2 features: ing) for each participant in each window. Finally
« Rank of this participant (among this meeting’sthes.e. data pomtg are used as input into the_ trained
. X . decision tree, which outputs class membership prob-
participants) in terms of the number of times_ . .~ L . .
. .. ... abilities for each participant in each window.
this keyword was spoken. Thus if in this win-
dow of time, this participant spoke the keywords.2.2  Aggregating Evidence to Assign One Role

printer more often than any of the other partic- Per Participant

?pants, then his feature value for this keyword s for each participant we get as many proba-
IS 1. bility distributions (over the three roles) as there are
e Ratio of the number of times this participantWindOWS in the test data. The next step is to aggre-
uttered this keyword in this window to the total9ate these probabilities over all the windows and ar-
number of times this keyword was uttered b)}ive ata singl_e role assign.ment per part_icipant. We
all the participants during this window. Thus®MPIoy the simplest possible aggregation method:
if a participant spoke the worprinter 5 times Wg _compute, for each part|C|pant,_ the average prob-
in this window, and in total all participants saig@bility of each role over all the windows, and then
the wordprinter 7 times, then his feature value normalize the three average role probabilities so cal-
for this keyword is5/7. Together with the key- culated, so they still sum to 1. In the future we plan
word rank feature above, these two featuret® experiment with more sophisticated aggregation
capture the number of times each participarmechanismsthatjointly optimize the probabilities of

utters each keyword, relative to the other Ioart_he different participants, instead of computing them
independently.

At this point, we could assign to each participant
Thus for each participant, for each meeting winhis highest probability role. However, we wish to
dow, we extract two features based on the lengthensure that the set of roles that get assigned to the

ticipants.
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participants in a particular meeting are as diverse We then tested this trained role detector on the
as possible (since typically meetings are forums aésting set of meetings. Recall that the test set had
which different people of different expertise con-5 meeting sequences, each consisting ofeetings
vene to exchange information). To ensure such dand a total o0 meeting participants. Over this test
versity, we apply the following heuristic. Once weset we obtained a role detection accuracy of 83%.
have all the average probabilities for all the roles foA “classifier” that randomly assigns one of the three
each participant in a sequence of meetings, we ales to each participant in a meeting (without re-
sign roles to participants iatages At each stage gard to the roles assigned to the other participants in
we consider all participants not yet assigned roleshe same meeting) would achieve a classification ac-
and pick that participant—role pair, sa@y,r), that curacy of 33.3%. Thus, our algorithm significantly
has the highest probability value among all pairs urbeats the random classifier baseline. Note that as
der consideration. We assign participalhe roler, mentioned earlier, the experiments in this paper are
and therdiscount(by a constant multiplicative fac- based on the manually transcribed speech.
tor) the probability value of all participant—role pairs
(pi, ;) Wherep; is a participant not assigned a role7  Further Experiments
yet, andr; = r. This makes it less likely (but not
impossible) that another participant will be assigne
this same role again. This process is repeated untiAs mentioned above, one of the variables to be tuned
all participants have been assigned a role each. during the training phase is the size of the window
over which to extract speech features. We ran a se-
6 Evaluation guence of experiments to optimize this window size,
the results of which are summarized in figure 1. In
We evaluated the algorithm by computing the acctthis set of experiments, we performed the evaluation
racy of the detector’s role predictions. Specificallypn two levels of granularity. The larger granularity
given a meeting sequence we ran the algorithm tevel was the “meeting sequence” granularity, where
assign a role to each meeting participant, and comwe ran the usual evaluation described above. That
puted the accuracy by calculating the ratio of thés, for each participant we first used the classifier to
number of correct assignments to the total numbebtain probability distributions over the 3 roles on
of participants in the sequence. Note that it is alsevery window, and then aggregated these distribu-
possible to evaluate the window—by—window clastions to reach a single role assignment for the par-
sification of the decision tree classifiers; we repoticipant over the entire meeting sequence. This role
results on this evaluation in section 7.1. was compared to the true role of the participant to
To evaluate this participant role detection algomeasure the accuracy of the algorithm. The smaller
rithm, we first trained the algorithm on the traininggranularity level was the “window” level, where af-
set of meetings. The training phase included keyter obtaining the probability distribution over the
word list creation, window size optimization, andthree roles for a particular window of a particu-
the actual induction of the decision tree. On thdar participant, we picked the role with the high-
training data, a window size of 300 seconds resultegst probability, and assigned it to the participort
in the highest accuracy over the training set. The tethat window Therefore, for each window we had
at the root of the induced tree was whether the pa& role assignment that we compared to the true role
ticipant’s rank in terms of speech lengths was 1, inf the participant, resulting in an accuracy value for
which case he was immediately classified aseset- the classifier for every window for every participant.
ing leader That is, the tree learnt that the persorNote that the main difference between evaluation at
who spoke the most in a window was most likelythese two granularity levels is that in the “window”
the meeting leader. Other tests placed high in thgranularity, we did not have any aggregation of evi-
tree included obvious ones such as testing for thdence across multiple windows.
keywordscomputerandprinter to classify a partici- For different window sizes, we plotted the accu-
pant as a hardware expert. racy values obtained on the test set for the two evalu-

5.1 Optimizing the Window Size
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Figure 1:Effect of Different Window Sizes on Detection Ac-
curacy
ticipant. This is especially important because the

roles that a participant plays can change over time;

ation granularities, as shown in figure 1. Notice thatve would like our system to be able to track these
by aggregating the evidence across the windows, tigdanges. In the Y2 Scenario Data that we have used
detection accuracy improves for all window sizesin this current work, the roles do not change from
This is to be expected since in the window granmeeting to meeting. However observe that our evi-
ularity, the classifier has access to only the infordence aggregation algorithm fuses information from
mation contained in a single window, and is thereall the meetings in a specific sequence of meetings
fore more error prone. However by merging the evto arrive at a single role assignment for each partici-
idence from many windows, the accuracy improvegant.
As window sizes increase, detection accuracy at the To quantify the effect of this aggregation we com-
window level improves, because the classifier hagsuted the role detection accuracy using different
more evidence at its disposal to make the decisionumbers of meetings from each sequence. Specif-
However, detection at the meeting sequence levilally, we computed the accuracy of the role detec-
gets steadily worse, potentially because the largéion over the test data using only the last meeting of
the window size, the fewer the data points it has teach sequence, only the last 2 meetings of each se-
aggregate evidence from. These lines will eventuguence, and so on until we used every meeting in ev-
ally meet when the window size equals the size dfry sequence. The results are summarized in figure
the entire meeting sequence. 2. When using only the last meeting in the sequence

A valid concern with these results is the high levelo assign roles to the participants, the accuracy is
of noise, particularly in the aggregated detection a@nly 66.7%, when using the last two meetings, the
curacy over the meeting sequence. One reason fagcuracy is 75%, and using the last three, four or
this is that there are far fewer data points at the meell meetings results in an accuracy of 83%. Thus,
ing sequence level than at the window level. Witithe accuracy improves as we have more meetings to
larger data sets (more meeting sequences as wellegnbine evidence from, as is expected. However
more participants per meeting) these results may stée accuracy levels off at 83% when using three or
bilize. Additionally, given the small amount of data,more meetings, perhaps because there is no new in-
our feature set is quite large, so a more aggressif@rmation to be gained by adding a fourth or a fifth
feature set reduction might help stabilize the resultgneeting.

7.2 Automatic Improvement over Unseen Data 8 Conclusions and Future Work

One of our goals is to create an expertise based rdiethis paper we have discussed our current approach
detector system that improves over time as it has ate detecting the functional and expertise based roles
cess to more and more meetings for a given paof meeting participants. We have induced decision
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Abstract

We investigated automatic action item
detection from transcripts of multi-party
meetings. Unlike previous work (Gruen-
stein et al., 2005), we use a new hierarchi-
cal annotation scheme based on the roles
utterances play in the action item assign-
ment process, and propose an approach
to automatic detection that promises im-
proved classification accuracy while en-
abling the extraction of useful information
for summarization and reporting.

1 Introduction

Action items are specific kinds of decisions common
in multi-party meetings, characterized by the con-
crete assignment of tasks together with certain prop-
erties such as an associated timeframe and reponsi-
ble party. Our aims are firstly to automatically de-
tect the regions of discourse which establish action
items, so their surface form can be used for a tar-
geted report or summary; and secondly, to identify
the important properties of the action items (such as
the associated tasks and deadlines) that would fos-
ter concise and informative semantically-based re-
porting (for example, adding task specifications to a
user’s to-do list). We believe both of these aims are
facilitated by taking into account the roles different
utterances play in the decision-making process — in
short, a shallow notion of discourse structure.
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2 Background

Related Work Corston-Oliver et al. (2004) at-
tempted to identify action items in e-mails, using
classifiers trained on annotations of individual sen-
tences within each e-mail. Sentences were anno-
tated with one of a set of “dialogue” act classes; one
class Task included any sentence containing items
that seemed appropriate to add to an ongoing to-
do list. They report good inter-annotator agreement
over their general tagging exercise (v > 0.8), al-
though individual figures for the Task class are not
given. They then concentrated on Task sentences,
establishing a set of predictive features (in which
word n-grams emerged as “highly predictive”) and
achieved reasonable per-sentence classification per-
formance (with f-scores around 0.6).

While there are related tags for dialogue act tag-
ging schema — like DAMSL (Core and Allen, 1997),
which includes tags such as Action-Directive
and Commit, and the ICSI MRDA schema
(Shriberg et al., 2004) which includes a commit
tag — these classes are too general to allow iden-
tification of action items specifically. One compa-
rable attempt in spoken discourse took a flat ap-
proach, annotating utterances as action-item-related
or not (Gruenstein et al., 2005) over the ICSI and
ISL meeting corpora (Janin et al., 2003; Burger et
al., 2002). Their inter-annotator agreement was low
(K .36). While this may have been partly due
to their methods, it is notable that (Core and Allen,
1997) reported even lower agreement (k = .15) on
their Commit dialogue acts. Morgan et al. (forth-
coming) then used these annotations to attempt auto-

Proceedings of the Analyzing Conversations in Text and Speech (ACTS) Workshop at HLT-NAACL 2006, pages 31-34,
New York City, New York, June 2006. (©2006 Association for Computational Linguistics



matic classification, but achieved poor performance
(with f-scores around 0.3 at best).

Action Items Action items typically embody the
transfer of group responsibility to an individual.
This need not be the person who actually performs
the action (they might delegate the task to a subor-
dinate), but publicly commits to seeing that the ac-
tion is carried out; we call this person the owner of
the action item. Because this action is a social ac-
tion that is coordinated by more than one person,
its initiation is reinforced by agreement and uptake
among the owner and other participants that the ac-
tion should and will be done. And to distinguish
this action from immediate actions that occur during
the meeting and from more vague future actions that
are still in the planning stage, an action item will be
specified as expected to be carried out within a time-
frame that begins at some point after the meeting and
extends no further than the not-too-distant future. So
an action item, as a type of social action, often com-
prises four components: a task description, a time-
frame, an owner, and a round of agreement among
the owner and others. The related discourse tends to
reflect this, and we attempt to exploit this fact here.

3 Baseline Experiments

We applied Gruenstein et al. (2005)’s flat annotation
schema to transcripts from a sequence of 5 short re-
lated meetings with 3 participants recorded as part
of the CALO project. Each meeting was simulated
in that its participants were given a scenario, but
was not scripted. In order to avoid entirely data-
or scenario-specific results (and also to provide an
acceptable amount of training data), we then added
a random selection of 6 ICSI and 1 ISL meetings
from Gruenstein et al. (2005)’s annotations. Like
(Corston-Oliver et al., 2004) we used support vec-
tor machines (Vapnik, 1995) via the classifier SVM-
light (Joachims, 1999). Their full set of features are
not available to us, but we experimented with com-
binations of words and n-grams and assessed classi-
fication performance via a 5-fold validation on each
of the CALO meetings. In each case, we trained
classifiers on the other 4 meetings in the CALO se-
quence, plus the fixed ICSI/ISL training selection.
Performance (per utterance, on the binary classifica-
tion problem) is shown in Table 1; overall f-score
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figures are poor even on these short meetings. These
figures were obtained using words (unigrams, after
text normalization and stemming) as features — we
investigated other discriminative classifier methods,
and the use of 2- and 3-grams as features, but no
improvements were gained.

Mtg. | Utts | Al Utts. | Precision | Recall | F-Score
1 191 22 0.31 0.50 0.38
2 156 27 0.36 0.33 0.35
3 196 18 0.28 0.55 0.37
4 212 15 0.20 0.60 0.30
5 198 9 0.19 0.67 0.30

Table 1: Baseline Classification Performance

4 Hierarchical Annotations

Two problems are apparent: firstly, accuracy is
lower than desired; secondly, identifying utterances
related to action items does not allow us to ac-
tually identify those action items and extract their
properties (deadline, owner etc.). But if the ut-
terances related to these properties form distinct
sub-classes which have their own distinct features,
treating them separately and combining the results
(along the lines of (Klein et al., 2002)) might al-
low better performance, while also identifying the
utterances where each property’s value is extracted.
Thus, we produced an annotation schema which
distinguishes among these four classes. The first
three correspond to the discussion and assignment
of the individual properties of the action item (task
description, timeframe and owner); the fi-
nal agreement class covers utterances which ex-
plicitly show that the action item is agreed upon.
Since the task description subclass ex-
tracts a description of the task, it must include any
utterances that specify the action to be performed,
including those that provide required antecedents for
anaphoric references. The owner subclass includes
any utterances that explicitly specify the responsible
party (e.g. “T’ll take care of that”, or “John, we’ll
leave that to you”), but not those whose function
might be taken to do so implicitly (such as agree-
ments by the responsible party). The t imeframe
subclass includes any utterances that explicitly refer
to when a task may start or when it is expected to
be finished; note that this is often not specified with



a date or temporal expression, but rather e.g. “by
the end of next week,” or “before the trip to Aruba”.
Finally, the agreement subclass includes any ut-
terances in which people agree that the action should
and will be done; not only acknowledgements by the
owner themselves, but also when other people ex-
press their agreement.

A single utterance may be assigned to more than
one class: “John, you need to do that by next
Monday” might count as owner and t ime frame.
Likewise, there may be more than one utterance of
each class for a single action item: John’s response
“OK, I’ll do that” would also be classed as owner
(as well as agreement). While we do not require
all of these subclasses to be present for a set of ut-
terances to qualify as denoting an action item, we
expect any action item to include most of them.

We applied this annotation schema to the same
12 meetings. Initial reliability between two anno-
tators on the single ISL meeting (chosen as it pre-
sented a significantly more complex set of action
items than others in this set) was encouraging. The
best agreement was achieved on t ime f rame utter-
ances (x .86), with owner utterances slightly
less good (between k = .77), and agreement and
description utterances worse but still accept-
able (x = .73). Further annotation is in progress.

S Experiments

We trained individual classifiers for each of the utter-
ance sub-classes, and cross-validated as before. For
agreement utterances, we used a naive n-gram
classifier similar to that of (Webb et al., 2005) for di-
alogue act detection, scoring utterances via a set of
most predictive n-grams of length 1-3 and making a
classification decision by comparing the maximum
score to a threshold (where the n-grams, their scores
and the threshold are automatically extracted from
the training data). For owner, timeframe and
task description utterances, we used SVMs
as before, using word unigrams as features (2- and
3-grams gave no improvement — probably due to the
small amount of training data). Performance var-
ied greatly by sub-class (see Table 2), with some
(e.g. agreement) achieving higher accuracy than the
baseline flat classifications, but others being worse.
As there is now significantly less training data avail-
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able to each sub-class than there was for all utter-
ances grouped together in the baseline experiment,
worse performance might be expected; yet some
sub-classes perform better. The worst performing
class is owner. Examination of the data shows
that owner utterances are more likely than other
classes to be assigned to more than one category;
they may therefore have more feature overlap with
other classes, leading to less accurate classification.
Use of relevant sub-strings for training (rather than
full utterances) may help; as may part-of-speech in-
formation — while proper names may be useful fea-
tures, the name tokens themselves are sparse and
may be better substituted with a generic tag.

Class Precision | Recall | F-Score
description 0.23 0.41 0.29

owner 0.12 0.28 0.17
timeframe 0.19 0.38 0.26
agreement 0.48 0.44 0.40

Table 2: Sub-class Classification Performance

Even with poor performance for some of the sub-
classifiers, we should still be able to combine them
to get a benefit as long as their true positives cor-
relate better than their false positives (intuitively, if
they make mistakes in different places). So far we
have only conducted an initial naive experiment, in
which we combine the individual classifier decisions
in a weighted sum over a window (currently set to
5 utterances). If the sum over the window reaches
a given threshold, we hypothesize an action item,
and take the highest-confidence utterance given by
each sub-classifier in that window to provide the
corresponding property. As shown in Table 3, this
gives reasonable performance on most meetings, al-
though it does badly on meeting 5 (apparently be-
cause no explicit agreement takes place, while our
manual weights emphasized agreement).! Most en-
couragingly, the correct examples provide some use-
ful “best” sub-class utterances, from which the rele-
vant properties could be extracted.

These results can probably be significantly im-
proved: rather than sum over the binary classifica-
tion outputs of each classifier, we can use their con-
fidence scores or posterior probabilities, and learn

! Accuracy here is currently assessed only over correct de-

tection of an action item in a window, not correct assignment of
all sub-classes.



Mtg. | Als | Correct | False+ | False- | F-Score
1 3 2 1 1 0.67
2 4 1 0 3 0.40
3 5 2 1 3 0.50
4 4 4 0 0 1.00
5 3 0 1 3 0.00

Table 3: Combined Classification Performance

the combination weights to give a more robust ap-
proach. There is still a long way to go to evaluate
this approach over more data, including the accu-
racy and utility of the resulting sub-class utterance
hypotheses.

6 Discussion and Future Work

So accounting for the structure of action items ap-
pears essential to detecting them in spoken dis-
course. Otherwise, classification accuracy is lim-
ited. We believe that accuracy can be improved, and
the detected utterances can be used to provide the
properties of the action item itself. An interesting
question is how and whether the structure we use
here relates to discourse structure in more general
use. If a relation exists, this would shed light on the
decision-making process we are attempting to (be-
gin to) model, and might allow us to use other (more
plentiful) annotated data.

Our future efforts focus on annotating more meet-
ings to obtain large training and testing sets. We also
wish to examine performance when working from
speech recognition hypotheses (as opposed to the
human transcripts used here), and the best way to in-
corporate multiple hypotheses (either as n-best lists
or word confusion networks). We are actively inves-
tigating alternative approaches to sub-classifier com-
bination: better performance (and a more robust and
trainable overall system) might be obtained by using
a Bayesian network, or a maximum entropy classi-
fier as used by (Klein et al., 2002). Finally, we are
developing an interface to a new large-vocabulary
version of the Gemini parser (Dowding et al., 1993)
which will allow us to use semantic parse informa-
tion as features in the individual sub-class classifiers,
and also to extract entity and event representations
from the classified utterances for automatic addition
of entries to calendars and to-do lists.
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Abstract

In email conversational analysis, it is of-
ten useful to trace the the intents behind
each message exchange. In this paper,
we consider classification of email mes-
sages as to whether or not they contain
certain intents or email-acts, such as “pro-
pose a meeting” or “commit to a task”.
We demonstrate that exploiting the con-
textual information in the messages can
noticeably improve email-act classifica-
tion. More specifically, we describe a
combination of n-gram sequence features
with careful message preprocessing that is
highly effective for this task. Compared
to a previous study (Cohen et al., 2004),
this representation reduces the classifica-
tion error rates by 26.4% on average. Fi-
nally, we introduce Ciranda: a new open
source toolkit for email speech act predic-
tion.

William W. Cohen
Machine Learning Department
Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh PA
wcohen@cs.cmu.edu

In a previous work, Cohen et al. (2004) used text
classification methods to detect “email speech acts”.
Based on the ideas from Speech Act Theory (Searle,
1975) and guided by analysis of several email cor-
pora, they defined a set of “email acts” (e.Be-
guest Deliver, Propose Commi) and then classified
emails as containing or not a specific act. Cohen et
al. (2004) showed that machine learning algorithms
can learn the proposed email-act categories reason-
ably well. It was also shown that there is an accept-
able level of human agreement over the categories.

A method for accurate classification of email into
such categories would have many potential appli-
cations. For instance, it could be used to help
users track the status of ongoing joint activities, im-
proving task delegation and coordination. Email
speech acts could also be used to iteratively learn
user’s tasks in a desktop environment (Khoussainov
and Kushmerick, 2005). Email acts classification
could also be applied to predict hierarchy positions
in structured organizations or email-centered teams
(Leusky, 2004); predicting leadership positions can
be useful to analyze behavior in teams without an

1 Introduction explicitly assigned leader.

One important use of work-related email is negoti- By using only single words as features, Cohen et
ating and delegating shared tasks and subtasks. db(2004) disregarded a very important linguistic as-
provide intelligent email automated assistance, it ipect of the speech act inference task: the textual
desirable to be able to automatically detectitiient context. For instance, the specific sequence of to-
of an email message—for example, to determine Kens “Can you give me” can be more informative to
the email contains a request, a commitment by thdetect aRequestact than the words “can”, “you”,
sender to perform some task, or an amendment to agive” and “me” separately. Similarly, the word se-
earlier proposal. Successfully adding such a semaguence “l will call you” may be a much stronger in-
tic layer to email communication is still a challengedication of aCommitact than the four words sep-
to current email clients. arately. More generally, because so many specific
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sequence of words (or n-grams) are inherently as- Several possible verbs/nouns were not considered
sociated with the intent of an email message, oneere (such aRefuseGreet andRemind, either be-
would expect that exploiting this linguistic aspectcause they occurred very infrequently in the corpus,
of the messages would improve email-act classifer because they did not appear to be important for
cation. task-tracking. The most common verbs found in the
In the current work we exploit the linguistic as-labeled datasets weBeliver, RequestCommit and
pects of the problem by a careful combination of nPropose and the most common nouns wevieet-
gram feature extraction and message preprocessiiigg anddeliveredDatgabbreviated adDatahence-
After preprocessing the messages to detect entitigeyth).
punctuation, pronouns, dates and times, we gener-In our modeling, a single email message may have
ate a new feature set by extracting all possible termultiple verbsnounspairs.
sequences with a length of 1, 2, 3, 4 or 5 tokens.
Using this n-gram based representation in classi- @
fication experiments, we obtained a relative average
drop of 26.4% in error rate when compared to the w
original Cohen et al. (2004) paper. Also, ranking
the most “meaningful” n-grams based on Informa-

tion Gain score (Yang and Pedersen, 1997) revealed % @

an impressive agreement with the linguistic intuition
behind the email speech acts.
We finalize this work introducingCiranda an

open source package for Email Speech Act predic-

tion. Among other features, Ciranda provides an
easy interface for feature extraction and feature se-
lection, outputs the prediction confidence, and al-

/ CDghery >
lows retraining using several learning algorithms. @

2 “Email-Acts” Taxonomy and

Applications

A taxonomy of speech acts applied to email com-
munication (email-acts) is described and motivate[s_ligure 1: Taxonomy of email-acts used in experi-

in (Cohen et al.,, 2004). The taxonomy was divideg,c s Shaded nodes are the ones for which a clas-
into verbsandnouns and each email message is rePifier was constructed

resented by one or more verb-noun pairs. For exam-
ple, an email proposing a meeting and also request-Cohen et al. (2004) showed that machine learn-
ing a project report would have the lab&leopose  ing algorithms can learn the proposed email-act cat-
MeetingandRequesData. egories reasonably well. It was also shown that
The relevant part of the taxonomy is shown in Figthere is an acceptable level of human agreement
ure 1. Very briefly, aRequestasks the recipient to over the categories. In experiments using different
perform some activity; #roposemessage proposeshuman annotators, Kappa values between 0.72 and
a joint activity (i.e., asks the recipient to perform0.85 were obtained. The Kappa statistic (Carletta,
some activity and commits the sender)Cammit 1996) is typically used to measure the human inter-
message commits the sender to some future counsder agreement. Its values ranges from -1 (com-
of action;Data is information, or a pointer to infor- plete disagreement) to +1 (perfect agreement) and
mation, delivered to the recipient; and/eetingis a it is defined as (A-R)/(1-R), where A is the empiri-
joint activity that is constrained in time and (usually)cal probability of agreement on a category, and R is
space. the probability of agreement for two annotators that
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label documents at random (with the empirically obfrom “doesn’t to “does not and from “d” to “

served frequency of each label). would'.
Any sequence of one or more numbers was re-
3 The Corpus placed by the symbol [tumbet”. The pattern

_ N “[numbef:[numbef” was replaced with fhoun”.
The CSpaceemail corpus used in this paper con—rpeq expressions pm or an? were replaced by

tains approximately 15,000 email messages col-[pm]n. “ wwhh]” denoted the wordswhy, where
lected from a management course at Carnegie M%hq what or wher!. The words 1, we, you he,
lon University. This corpus originated from work- gq of they were replaced by [‘pe,rsoﬂf’. Days

ing groups who signed agreements to make certajl} ine week (Monday Tuesday ..., Sundag) and
parts of their email accessible to researchers. In thﬂﬁeir short versions (i.e.Mon, Tug Wed ..., Suri)
course, 277 MBA students, organized in approXiyere replaced by[tiay”. The words ‘fter, before
mately 50 teams of four to six members, ran simg, during’ were replaced by [aaaftef’. The pro-

ulated companies in different market scenarios ove[, ns ‘me her, him, usor thent were substituted by
a 14-week period (Kraut et al., ). The email tends m[me]”. The typical filename types.toc, .xIs, .txt,

be very task-oriented, with many instances of tas!bdf rtf and.ppt’ were replaced by ffiletypg”. A

delegation and negotiation. list with some of these substitutions is illustrated in
Messages were mostly exchanged with membetigpje 1.

of the same team. Accordingly, we partitioned the

corpus into subsets according to the teams. The 1Fymbol | Pattern

team dataset has 351 messages total, while the 2F‘¥3Tﬂbe} ﬁ]ngnfsgﬁ[erﬁﬁb(gtn”mbers

3F2, 4F4 and 11F1 teams have, respectively, 341jwwhh | “why, where, who, what, or when”

443, 403 and 176 messages. All 1716 message$a) the strings "Monday, Tuesday, ..., or Sunday”
labeled di to the t in Ei dayl the strings “Mon, Tue, Wed, ..., or Sun

were labeled according to the taxonomy In Figure pm} the strings “P.M., PM, A.M. or AM”

1. me the pronouns “me, her, him, us or them”

persof | the pronouns “l, we, you, he, she or they”
aaaftef | the strings “after, before or during”
4 N-gram Features filetypd | the strings “.doc, .pdf, .ppt, .txt, or .xIs”

In this section we detail the preprocessing step antiable 1: Some PreProcessing Substitution Patterns
the feature selection applied to all email acts.

For the Commitact only, references to the first
person were removed from the symbpérsofn —
Before extracting the n-grams features, a sequent®., [persof was used to replace “he, she or they”.
of preprocessing steps was applied to all email medhe rationale is that n-grams containing the pronoun
sages in order to emphasize the linguistic aspects df are typically among the most meaningful for this
the problem. Unless otherwise mentioned, all preact (as shall be detailed in Section 4.2).
processing procedures were applied to all acts.

Initially, forwarded messages quoted inside emal
messages were deleted. Also, signature files amdter preprocessing the 1716 email messages, n-
quoted text from previous messages were removeglam sequence features were extracted. In this pa-
from all messages using a technique described elgger, n-gram features are all possible sequences of
where (Carvalho and Cohen, 2004). A similar cleanength 1 (unigrams or 1-gram), 2 (bigram or 2-
ing procedure was executed by Cohen et al. (2004ram), 3 (trigram or 3-gram), 4 (4-gram) and 5 (5-

Some types of punctuation marks (“,;:.)(J[") weregram) terms. After extracting all n-grams, the new
removed, as were extra spaces and extra padataset had more than 347500 different features. It
breaks. We then perform some basic substitutiongould be interesting to know which of these n-grams
such as: from’m” to “ ant, from “’re” to “ are’, are the “most meaningful” for each one of email
from “lI” to * will”, from “won’t” to “will not”, speech acts.

4.1 Preprocessing

4.2 Most Meaningful N-grams
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1-gram | 2-gram [ 3-gram [ 4-gram [ 5-gram

? do [person [persom need to [wwhh| do [person think [wwhh| do [person think ?
please ? [personh [wwhh] do [person do [persom need to let [me] know [wwhh] [person
[wwhh] | could[person let [m¢g know and let[me know a call[numbef-[numbe}
could | [personplease would [persor call [numbef-[numbef give [m¢ a call [numbef

do ? thanks do [persof think would be able to please give givéme a call

can are[persofn are[persotmeeting | [person think [person need [personwould be able to
of can[perso | could[person please let [mg know [wwhh| take a look at it
[me need to do [persoineed do [person think ? [person think [person need to

Table 2: Request Act:Top eight N-grams Selected by Information Gain.

One possible way to accomplish this is using The top features associated with tii@ataact in
some feature selection method. By computing th@able 3 are also closely related to its general intu-
Information Gain score (Forman, 2003; Yang andtion. Here the idea is delivering or requesting some
Pedersen, 1997) of each feature, we were able tlata: a table inside the message, an attachment, a
rank the most “meaningful’ n-gram sequence fodocument, a report, a link to a file, a url, etc. And
each speech act. The final rankings are illustratéddeed, it seems to be exactly the case in Table 3:
in Tables 2 and 3. some of the top 4-grams indicate the presence of an

Table 2 shows the most meaningful n-grams foattachment (e.g., “forwarded message begins here”),
the Requestct. The top features clearly agree withsome features suggest the address or link where afile
the linguistic intuition behind the idea ofRequest can be found (e.g., “in my public directory” or “in
email act. This agreement is present not only ithe etc directory”), some features request an action
the frequent 1g features, but also in the 2-gram$o access/read the data (e.g., “please take a look”)
3-grams, 4-grams and 5-grams. For instance, seand some features indicate the presence of data in-
tences such as “What do you think ?” or “let meside the email message, possibly formatted as a table
know what you ..." can be instantiations of the toge.g., ‘{datd [hour [numbe} [numbe}” or “[datd
two 5-grams, and are typically used indicating a refday] [numbej [day]”).

guest in email communication.
Table 3 illustrates the top fifteen 4-grams for all FTom Table 3, thé>roposeact seems closely re-

email speech acts selected by Information Gain. THat€d to theMeetingact. In fact, by checking the
Commitact reflects the general idea of agreeing tifP€led dataset, most of tizoposas were associ-
do some task, or to participate in some meeting. Agted WlthMeetmgs. _Some qf the features that are not
we can see, the list with the top 4-grams reflects tHaecessarily associated wiMeetingare “ [person
intuition of commitment very well. When acceptingVould like to”, “please let me know” and “was hop-
or committing to a task, it is usual to write emailsind [Person could”.

using “Tomorrow is good for me” or “l will put the - e peliver email speech act is associated with
document under your door” or *I think | can finish 1,4 |arge sets of actions: delivery of data and deliv-
this task by 7 or even “I will try o bring this t0- gy of information in general. Because of this gener-
morrow”. The list even has some other interestingiy, s not straightforward to list the most meaning-
4-grams that can be easily associated to very Specifig n_grams associated with this act. Table 3 shows
commitment situations, such as “I will bring copies”; \ariety of features that can be associated with a
and “I will be there”. Deliver act. As we shall see in Section 5, tBe-

~ Another act in Table 3 that visibly agrees withjjer act has the highest error rate in the classifica-
its linguistic intuition is Meeting The 4-grams tion task.

listed are usual constructions associated with ei-

ther negotiating a meeting time/locationd&y at In summary, selecting the top n-gram features
[hourl[pm]”), agreeing to meet (“is good fdmg”)  via Information Gain revealed an impressive agree-
or describing the goals of the meeting (“to go ovement with the linguistic intuition behind the differ-
the”). ent email speech acts.
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Request

Commit

Meeting

[wwhh| do [person think
do [persom need to
and let[me know

call [numbe}-[numbet

would be able to
[persom think [persof need
let [me] know [wwhh|
do [person think ?
[persofneed to get
? [persom need to

is good for[me
is fine with [m¢
i will see [person
i think i can
i will put the
i will try to
i will be there
will look for [person
$[numbef per person
am done with the

[day] at [hour] [pm|
on [day] at [houf
[persom can meet at
[persom meet afhou
will be in the
is good for[me
to meet afhour
at[hout in the
[person will see [person
meet afhour in

a copy of our at[houn i will [numbef at [hour [pm]
do [persom have any [day] is fine with to go over the
[persomget a chance each of us will [personwill be in

[meg] know [wwhh| i will bring copies let's plan to meet
that would be great i will do the meet afhour} [pm]
dData Propose Deliver

— forwarded message beging
forwarded message begins he
is in my public
in my public directory

[persom have placed the
please take a look
[day [hour [numbet [numbe}
[numbe} [day] [numbet [hour
[datg [day [numbe} [dayl
in our game directory
in the etc directory
the file name is
is in our game
fyi — forwarded message
just put the file

my public directory under

=

[personwould like to
would like to meet
please lefme know
to meet with[person
[persom meet afhouf
would [personlike to
[persom can meet tomorrow
an hour or so
meet afhour in
like to get together
[hour [pm] in the
[after] [houd or [after]
[person will be available
think [persorn can meet
was hopingperson could

e

do [persof want to

forwarded message begins here
[numbe} [numbet [numbe} [numbet
is good for[me
if [persom have any
if fine with me
in my public directory
[personwill try to
is in my public
will be able to
just wanted to let
[pm] in the lobby
[person will be able
please take a look
can meetin the
[dayl at[houd is
in the commons at

Table 3: Top 4-grams Selected by Information Gain

5 Experiments

Using all n-gram features, we performed 5-fol
crossvalidation tests over the 1716 email messag

Linear SVM
lustrated in Figure 2.

Figure 2 shows the test error rate of four dif-
ferent experiments (bars) for all email acts.
first bar denotes the error rate obtained by Cohe
et al. (2004) in a 5-fold crossvalidation experimentr
also using linear SVM. Their dataset had 1354 emal]
messages, and only 1-gram features were extracte

gram features with 1716 messages), with the differ-

_ o _ ence that the emails went through the preprocessing
Here we describe how the classification experimentsocedure previously described.

on the email speech acts dataset were carried Ut fourth bar shows the error rate when all 1-

ram, 2-gram and 3-gram features are used and the
q lassifi | ,Ief716 messages go through the preprocessing proce-
was used as classifier. Results are il o The |ast bar illustrates the error rate when all

n-gram features (i.e., 1g+2g+3g+4g+5q) are used in

The

addition to preprocessing in all 1716 messages.

In all acts, a consistent improvement in 1-gram
ﬂerformance is observed when more data is added,
e., a drop in error rate from the first to the sec-
Ond bar. Therefore, we can conclude that Cohen et
. (2004) could have obtained better results if they

The second bar illustrates the error rate obtainqgad used more labeled data.

using only 1-gram features with additional data. In
this case, we used 1716 email messages. The thir
bar represents the the same as the second bar I(1

c{k comparison between the second and third bars
rfi\_/eals the extent to which preprocessing seems to
elp classification based on 1-grams only. As we

'We used the LIBSVM implementation (Chang and Lin,C&N S€€, no significant performance difference can
be observed: for most acts the relative difference is

2001) with default parameters.
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Figure 2: Error Rate 5-fold Crossvalidation Experiment

very small, and in one or maybe two acts some smdlkeve this was caused by the insufficient amount of
improvement can be noticed. labeled data in these tests; and the 4-gram and 5-

: gram features are likely to improve the performance
A much larger performance improvement can b . i .
f this system if more labeled data becomes avail-

seen between the fourth and third bars. This reﬂec?sD

. able.
the power of the contextual features: using all 1-
grams, 2-grams a'md 3-grams is considerably more Precision versus recall curves of tRequesact
ppwgrful thgn using only 1-gram features. Thlsclassification task are illustrated in Figure 3. The
significant difference can be observed in all aCtS%'urve on the top shows tiReequeshct performance

Compared to the original values from (Cohen e hen the preprocessing step cues and n-arams bro-
al., 2004), we observed a relative error rate drop o prep g step 9 P

24.7% in theRequeshct, 33.3% in thommitact, posed in Section 4 are applied. For the bottom curve,

. only 1g features were used. These two curves corre-
23.7% for theDeliver act, 38.3% for thePropose spond to the second bar (bottom curve) and forth bar
act, 9.2% forMeetingand 29.1% in thelData act. P

L2 ) top curve) in Figure 2. Figure 3 clearly shows that
In average, a relative improvement of 26.4% in erro L : .
rate oth recall and precision are improved by using the

contextual features.
We also considered adding the 4-gram and 5-gram
features to the best system. As pictured in the last To summarize, these results confirm the intuition
bar of Figure 2, this addition did not seem to im-that contextual information (n-grams) can be very
prove the performance and, in some cases, everetiective in the task of email speech act classifica-
small increase in error rate was observed. We bé&on.
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Abstract

We introduce a novel topic segmentation
approach that combines evidence of topic
shifts from lexical cohesion with linguistic
evidence such as syntactically distinct fea-
tures of segment initial and final contribu-
tions. Our evaluation shows that this hy-
brid approach outperforms state-of-the-art
algorithms even when applied to loosely
structured, spontaneous dialogue. Further
analysis reveals that using dialogue ex-
changes versus dialogue contributions im-
proves topic segmentation quality.

1 Introduction

In this paper we explore the problem of topic
segmentation of dialogue. Use of topic-based mod-
els of dialogue has played a role in information
retrieval (Oard et al., 2004), information extraction
(Baufaden, 2001), and summarization (Zechner,
2001), just to name a few applications. However,
most previous work on automatic topic segmenta-
tion has focused primarily on segmentation of ex-
pository text. This paper presents a survey of the
state-of-the-art in topic segmentation technology.
Using the definition of topic segment from (Pas-
sonneau and Litman, 1993) applied to two different
dialogue corpora, we present an evaluation includ-
ing a detailed error analysis, illustrating why ap-
proaches designed for expository text do not gen-
eralize well to dialogue.

We first demonstrate a significant advantage of
our hybrid, supervised learning approach called
Museli, a multi-source evidence integration ap-
proach, over competing algorithms. We then ex-
tend the basic Museli algorithm by introducing an
intermediate level of analysis based on Sinclair and
Coulthard’s notion of a dialogue exchange (Sin-
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clair and Coulthard, 1975). We show that both our
baseline and Museli approaches obtain a signifi-
cant improvement when using perfect, hand-
labeled dialogue exchanges, typically in the order
of 2-3 contributions, as the atomic discourse unit in
comparison to using the contribution as the unit of
analysis. We further evaluate our success towards
automatic classification of exchange boundaries
using the same Museli framework.

2  Defining Topic

In the most general sense, the challenge of topic
segmentation can be construed as the task of find-
ing locations in the discourse where the focus
shifts from one topic to another. Thus, it is not pos-
sible to address topic segmentation of dialogue
without first addressing the question of what a
“topic” is. We began with the goal of adopting a
definition of topic that meets three criteria. First, it
should be reproducible by human annotators. Sec-
ond, it should not rely heavily on domain-specific
knowledge or knowledge of the task structure. Fi-
nally, it should be grounded in generally accepted
principles of discourse structure.

The last point addresses a subtle, but important,
criterion necessary to adequately serve down-
stream applications using our dialogue segmenta-
tion. Topic analysis of dialogue concerns itself
mainly with thematic content. However, bounda-
ries should be placed in locations that are natural
turning points in the discourse. Shifts in topic
should be readily recognizable from surface char-
acteristics of the language.

With these goals in mind, we adopted a defini-
tion of “topic” that builds upon Passonneau and
Litman’s seminal work on segmentation of mono-
logue (Passonneau and Litman, 1993). They found
that human annotators can successfully accomplish
a flat monologue segmentation using an informal
notion of speaker intention.

Proceedings of the Analyzing Conversations in Text and Speech (ACTS) Workshop at HLT-NAACL 2006, pages 42-49,
New York City, New York, June 2006. (©2006 Association for Computational Linguistics



Dialogue is inherently hierarchical in structure.
However, a flat segmentation model is an adequate
approximation. Passonneau and Litman’s pilot
studies confirmed previously published results
(Rotondo, 1984) that human annotators cannot re-
liably agree on a hierarchical segmentation of
monologue. Using a stack-based hierarchical
model of discourse, Flammia (1998) found that
90% of all information-bearing dialogue turns re-
ferred to the discourse purpose at the top of the
stack.

We adopt a flat model of topic segmentation
based on discourse segment purpose, where a shift
in topic corresponds to a shift in purpose that is
acknowledged and acted upon by both conversa-
tional participants. We place topic boundaries on
contributions that introduce a speaker’s intention to
shift the purpose of the discourse, while ignoring
expressed intentions to shift discourse purposes
that are not taken up by the other participant. We
adopt the dialogue contribution as the basic unit of
analysis, refraining from placing topic boundaries
within a contribution. This decision is analogous to
Hearst’s (Hearst, 1994, 1997) decision to shift the
TextTiling induced boundaries to their nearest ref-
erence paragraph boundary.

We evaluated the reproducibility of our notion
of topic segment boundaries by assessing inter-
coder reliability over 10% of the corpus (see Sec-
tion 5.1). Three annotators were given a 10 page
coding manual with explanation of our informal
definition of shared discourse segment purpose as
well as examples of segmented dialogues. Pair-
wise inter-coder agreement was above 0.7 for all
pairs of annotators.

3 Previous Work

Existing topic segmentation approaches can be
loosely classified into two types: (1) lexical cohe-
sion models, and (2) content-oriented models. The
underlying assumption in lexical cohesion models
is that a shift in term distribution signals a shift in
topic (Halliday and Hassan, 1976). The best known
algorithm based on this idea is TextTiling (Hearst,
1997). In TextTiling, a sliding window is passed
over the vector-space representation of the text. At
each position, the cosine correlation between the
upper and lower regions of the sliding window is
compared with that of the peak cosine correlation
values to the left and right of the window. A seg-
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ment boundary is predicted when the magnitude of
the difference exceeds a threshold.

One drawback to relying on term co-occurrence
to signal topic continuity is that synonyms or re-
lated terms are treated as thematically-unrelated.
One proposed solution to this problem is Latent
Semantic Analysis (LSA) (Landauer and Dumais,
1997). Two LSA-based algorithms for segmenta-
tion are described in (Foltz, 1998) and (Olney and
Cai, 2005). Foltz’s approach differs from
TextTiling mainly in its use of an LSA-based vec-
tor space model. Olney and Cai address a problem
not addressed by TextTiling or Foltz’s approach,
which is that cohesion is not just a function of the
repetition of thematically-related terms, but also a
function of the presentation of new information in
reference to information already presented. Their
orthonormal basis approach allows for segmenta-
tion based on relevance and informativity.

Content-oriented models, such as (Barzilay and
Lee, 2004), rely on the re-occurrence of patterns of
topics over multiple realizations of thematically
similar discourses, such as a series of newspaper
articles about similar events. Their approach util-
izes a hidden Markov model where states corre-
spond to topics and state transition probabilities
correspond to topic shifts. To obtain the desired
number of topics (states), text spans of uniform
length (individual contributions, in our case) are
clustered. Then, state emission probabilities are
induced using smoothed cluster-specific language
models. Transition probabilities are induced by
considering the proportion of documents in which
a contribution assigned to the source cluster (state)
immediately precedes a contribution assigned to
the target cluster (state). Following an EM-like
approach, contributions are reassigned to states
until the algorithm converges.

4 Overview of Museli Approach

We cast the segmentation problem as a binary
classification problem where each contribution is
classified as NEW_TOPIC if it introduces a new
topic and SAME_TOPIC otherwise. In our hybrid
Museli approach, we combined lexical cohesion
with features that have the potential to capture
something about the linguistic style that marks
shifts in topic. Table 1 lists our features.



Feature Description

Lexical Cosine correlation of adjacent

Cohesion regions in the discourse. Term
vectors of adjacent regions are
stemmed and stopwords are re-
moved.

Word- Unigrams in previous and cur-

unigram rent contributions

Word-bigram |Bigrams in previous and current

contributions

Punctuation

Punctuation of previous and cur-
rent contributions.

Contribution

Part-of- POS-Bigrams in previous and
Speech (POS) |current contributions.
Bigram
Time Time difference between previ-
Difference ous and current contribution,
normalized by:
(X = MIN)/ (MAX - MIN),
where X corresponds to this time
difference and MIN & MAX are
with respect to the whole corpus.
Content Binary-valued, is there a non-

stopword term in the current
contribution?

Contribution

Number of words in the current

Length contribution, normalized by:
(X=MIN) / (MAX — MIN).

Previous Binary-valued, was the speaker

Agent* of the previous contribution the

student or the tutor?

Table 1. Museli Features.

We found that using a Naive Bayes classifier
with an attribute selection wrapper using the chi-
square test for ranking attributes performed better
than other state-of-the-art machine learning algo-
rithms on our task, perhaps because of the evi-
dence integration oriented nature of the problem.
We conducted our evaluation using 10-fold cross-
validation, being careful not to include instances
from the same dialogue in both the training and
test sets on any fold to avoid biasing the trained
model with idiosyncratic communicative patterns
associated with individual dialogue participants.

To capitalize on differences in conversational
behavior between participants assigned to different

! The current contribution’s agent is implicit in the fact that
we learn separate models for each agent-role (student & tutor).
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roles in the conversation (i.e., student and tutor),
we learn separate models for each role. This deci-
sion is motivated by observations that participants
with different speaker-roles, each with different
goals in the conversation, introduce topics with a
different frequency, introduce different types of
topics, and may introduce topics in a different style
that displays their status in the conversation. For
instance, a tutor may be more likely to introduce
new topics with a contribution that ends with an
imperative. A student may be more likely to intro-
duce new topics with a contribution that ends with
a wh-question. Dissimilar agent-roles also occur in
other domains such as Travel Agent and Customer
in flight booking scenarios.

Using the complete set of features enumerated
above, we perform feature selection on the training
data for each fold of the cross-validation sepa-
rately, training a model with the top 1000 features,
and applying that trained model to the test data.
Examples of high ranking features output by our
chi-squared feature selection wrapper confirm our
intuition that initial and final contributions of a
segment are marked differently. Moreover, the
highest ranked features are different for our two
speaker-roles. Some features highly-correlated
with student-initiated segments are am_trying,
should, what_is, and PUNCT_question, which re-
late to student questions and requests for informa-
tion. Some features highly-correlated with tutor-
initiated segments include ok_lets, do, see what,
and BEGIN_VERB (the POS of the first word in
the contribution is VERB), which characterize im-
peratives, and features such as now, next, and first,
which characterize instructional task ordering.

5 Evaluation

We evaluate Museli in comparison to the best
performing state-of-the-art approaches, demon-
strating that our hybrid Museli approach out-
performs all of these approaches on two different
dialogue corpora by a statistically significant mar-
gin (p < .01), in one case reducing the probability
of error, as measured by Py (Beeferman et al.,
1999), to about 10%.

5.1

We used two different dialogue corpora from the
educational domain for our evaluation. Both cor-
pora constitute of dialogues between a student and

Experimental Corpora



a tutor (speakers with asymmetric roles) and both
were collected via chat software. The first corpus,
which we call the Olney & Cai corpus, is a set of
dialogues selected randomly from the same corpus
Olney and Cai obtained their corpus from (Olney
and Cai, 2005). The dialogues discuss problems
related to Newton’s Three Laws of Motion. The
second corpus, the Thermo corpus, is a locally col-
lected corpus of thermodynamics tutoring dia-
logues, in which tutor-student pairs work together
to solve an optimization task. Table 2 shows cor-
pus statistics from both corpora.

Olney & Cai Thermo
Corpus Corpus

#Dialogues 42 22
Conts./Dialogue 195.40 217.90
Conts./Topic 24.00 13.31
Topics/Dialogue 8.14 16.36
Words/Cont. 28.63 5.12
Student Conts. 4113 1431
Tutor Conts. 4094 3363

Table 2. Evaluation Corpora Statistics

Both corpora seem adequate for attempting to
harness systematic differences in how speakers
with asymmetric roles may initiate or close topic
segments. The Thermo corpus is particularly ap-
propriate for addressing the research question of
how to automatically segment natural, spontaneous
dialogue. The exploratory task is more loosely
structured than many task-oriented domains inves-
tigated in the dialogue community, such as flight
reservation or meeting scheduling. Students can
interrupt with questions and tutors can digress in
any way they feel may benefit the completion of
the task. In the Olney and Cai corpus, the same 10
physics problems are addressed in each session and
the interaction is almost exclusively a tutor initia-
tion followed by student response, evident from the
nearly equal number of student and tutor contribu-
tions.

5.2

We evaluate Museli against the following four
algorithms: (1) Olney and Cai (Ortho), (2) Barzilay
and Lee (B&L), (3) TextTiling (TT), and (4) Foltz.

As opposed to the other baseline algorithms,
(Olney and Cai, 2005) applied their orthonormal
basis approach specifically to dialogue, and prior
to this work, report the highest numbers for topic

Baseline Approaches
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segmentation of dialogue. Barzilay and Lee’s ap-
proach is the state of the art in modeling topic
shifts in monologue text. Our application of B&L
to dialogue attempts to harness any existing and
recognizable redundancy in topic-flow across our
dialogues for the purpose of topic segmentation.

We chose TextTiling for its seminal contribution
to monologue segmentation. TextTiling and Foltz
consider lexical cohesion as their only evidence of
topic shifts. Applying these approaches to dialogue
segmentation sheds light on how term distribution
in dialogue differs from that of expository mono-
logue text (e.g. news articles). The Foltz and Ortho
approaches require a trained LSA space, which we
prepared the same way as described in (Olney and
Cai, 2005). Any parameter tuning for approaches
other than our Museli was computed over the en-
tire test set, giving baseline algorithms the maxi-
mum advantage.

In addition to these approaches, we include
segmentation results from three degenerate ap-
proaches: (1) classifying all contributions as
NEW_TOPIC (ALL), (2) classifying no contribu-
tions as NEW_TOPIC (NONE), and (3) classifying
contributions as NEW_TOPIC at uniform intervals
(EVEN), separated by the average reference topic
length (see Table 2).

As a means for comparison, we adopt two
evaluation metrics: P, and f-measure. An extensive
argument in support of P’s robustness (if k is set
to % the average reference topic length) is pre-
sented in (Beeferman, et al. 1999). P, measures the
probability of misclassifying two contributions a
distance of k contributions apart, where the classi-
fication question is are the two contributions part
of the same topic segment or not? P is the likeli-
hood of misclassifying two contributions, thus
lower Py values are preferred over higher ones. It
equally captures the effect of false-negatives and
false-positives and favors predictions that that are
closer to the reference boundaries. F-measure pun-
ishes false positives equally, regardless of their
distance to reference boundaries.

5.3

Table 3 shows our evaluation results. Note that
lower values of Py are preferred over higher ones.
The opposite is true of F-measure. In both cor-
pora, the Museli approach performed significantly
better than all other approaches (p < .01).

Results



Olney and Cai Thermo Corpus
Corpus
Pk F Pk F
NONE 0.4897 -- 0.4900 --
ALL 0.5180 -- 0.5100 --
EVEN 0.5117 -- 0.5131 --
TT 0.6240 | 0.1475 | 0.5353 | 0.1614
B&L 0.6351 | 0.1747 | 0.5086 | 0.1512
Foltz 0.3270 | 0.3492 | 0.5058 | 0.1180
Ortho 0.2754 | 0.6012 | 0.4898 | 0.2111
Museli 0.1051 | 0.8013 | 0.4043 | 0.3693
Table 3. Results on both corpora
5.4  Error Analysis

Results for all approaches are better on the Ol-
ney and Cai corpus than the Thermo corpus. The
Thermo corpus differs profoundly from the Olney
and Cai corpus in ways that very likely influenced
the performance. For instance, in the Thermo cor-
pus each dialogue contribution is on average 5
words long, whereas in the Olney and Cai corpus
each dialogue contribution contains an average of
28 words. Thus, the vector space representation of
the dialogue contributions is more sparse in the
Thermo corpus, which makes shifts in lexical co-
herence less reliable as topic shift indicators.

In terms of Py, TextTiling (TT) performed worse
than the degenerate algorithms. TextTiling meas-
ures the term overlap between adjacent regions in
the discourse. However, dialogue contributions are
often terse or even contentless. This produces
many islands of contribution-sequences for which
the local lexical coherence is zero. TextTiling
wrongly classifies all of these as starts of new top-
ics. A heuristic improvement to prevent TextTiling
from placing topic boundaries at every point along
a sequence of contributions failed to produce a sta-
tistically significant improvement.

The Foltz and the Ortho approaches rely on LSA
to provide strategic semantic generalizations capa-
ble of detecting shifts in topic. Following (Olney
and Cai, 2005), we built our LSA space using dia-
logue contributions as the atomic text unit. In cor-
pora such as the Thermo corpus, however, this may
not be effective due to the brevity of contributions.

Barzilay and Lee’s algorithm (B&L) did not
generalize well to either dialogue corpus. One rea-
son could be that probabilistic methods, such as
their approach, require that reference topics have
significantly different language models, which was

46

not true in either of our evaluation corpora. We
also noticed a number of instances in the dialogue
corpora where participants referred to information
from previous topic segments, which consequently
may have blurred the distinction between the lan-
guage models assigned to different topics.

6 Dialogue Exchanges

Although results are reliably better than our
baseline algorithms in both corpora, there is much
room for improvement, especially in the more
spontaneous Thermo corpus. We believe that an
improvement can come from a multi-layer segmen-
tation approach, where a first pass segments a dia-
logue into dialogue exchanges and a second classi-
fier assigns topic shifts based on exchange initial
contributions. Dialogue is hierarchical in nature.
Topic and topic shift comprise only one of the
many lenses through which dialogue behaves in
seemingly structured ways. Thus, it seems logical
that exploiting more fine-grained sub-parts of dia-
logue than our definition of topic might help us do
better at predicting shifts in topic. One such sub-
part of dialogue is the notion of dialogue exchange,
typically between 2-3 contributions.

Stubbs (1983) motivates the definition of an ex-
change with the following observation. In theory,
there is no limit to the number of possible re-
sponses to the clause “Is Harry at home?””. How-
ever, constraints are imposed on the interpretation
of the contribution that follows it: yes or no. Such a
constraint is central to the concept of a dialogue
exchange. Informally, an exchange is made from
an initiation, for which the possibilities are open-
ended, followed by dialogue contributions that are
pre-classified and thus increasingly restricted. A
contribution is part of the next exchange when the
constraint on its communicative act is lifted.

Sinclair and Coulthard (1975) introduce a more
formal definition of exchange with their Initiative-
Response-Feedback or IRF structure. An initiation
produces a response and a response happens as
direct consequence to an initiation. Feedback
serves to close an exchange. Sinclair and Coulthard
posit that if exchanges constitute the minimal unit
of interaction, IRF is a primary structure of interac-
tive discourse in general.

To measure the benefits of exchange boundaries
in detecting topic shift in dialogue, we coded the
Thermo corpus with exchanges following Sinclair



and Coulthard’s IRF structure. The coder who la-
beled dialogue exchanges had no knowledge of our
definition of topic or our intention to do topic-
analyses of the corpus. Any correlation between
exchange boundaries and topic boundaries is not a
bias introduced during the hand-labeling process.

7  Topic Segmentation with Exchanges

In our corpus, as we believe is true in domain-
general dialogue, knowledge of an exchange-
boundary increases the probability of a topic-
boundary significantly. One way to quantify this
relation is with the following observation. In our
experimental Thermo corpus, there are 4794 dia-
logue contributions, 360 topic shifts, and 1074 ex-
change shifts. Using maximum likelihood estima-
tion, the likelihood of being correct if we say that a
randomly chosen contribution is a topic shift is
0.075 (# topic shifts / # contributions). However,
the likelihood of being correct if we have prior
knowledge that an exchange-shift also occurs in
that contribution is 0.25. Thus, knowledge that the
contribution introduces a new exchange increases
our confidence that it also introduces a new topic.
More importantly, the probability that a contribu-
tion does not mark a topic shift, given that it does
not mark an exchange-shift, is 0.98. Thus, ex-
changes show great promise in narrowing the
search-space of tentative topic shifts.

In addition to possibly narrowing the space of
tentative topic-boundaries, exchanges are helpful
in that they provide more coarse-grain building
blocks for segmentation algorithms that rely on
term-distribution as a proxy for dialogue coher-
ence, such as TextTiling (Hearst, 1994, 1997), the
Foltz algorithm (Foltz, 1998), Orthonormal Basis
(Olney and Cai, 2005), and Barzilay and Lee’s
content modeling approach (Barzilay and Lee,
2004). At the heart of all these approaches is the
assumption that a change in term distribution sig-
nals a shift in topic. When applied to dialogue, the
major weakness of these approaches is that contri-
butions are often times contentless: terse and ab-
sent of thematically meaningful terms. Thus, a
more coarse-grained discourse unit is needed.

8 Barzilay and Lee with Exchanges

Barzilay and Lee (2004) offer an attractive
frame work for constructing a context-specific
Hidden Markov Model (HMM) of topic drift. In
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our initial evaluation, we used dialogue contribu-
tions as the atomic discourse unit. Using contribu-
tions, our application of Barzilay and Lee’s algo-
rithm for segmenting dialogue fails at least in part
because the model learns states that are not the-
matically meaningful, but instead relate to other
systematic phenomena in dialogue, such as fixed
expressions and discourse cues. Figure 1 shows the
cluster (state) size distribution in terms of the per-
centage of the total discourse units (exchanges vs.
contributions) in the Thermo corpus assigned to
each cluster. In the horizontal axis, clusters (states)
are sorted by size from largest to smallest.

%of Total Discourse Units per Cluster
(clusters sorted by size, largest-to-smallest)

80%
70%

60%
50%
40%
30%
20%
10%

0%

% of Discourse Units in Cluster

9 10 11 12 13 14 15 16

6 7 8

Cluster Rank

‘ —#— CONTRIBUTIONS —&— EXCHANGES ‘

Figure 1. Exchanges produce a more evenly dis-
tributed cluster size distribution.

The largest cluster contains 70% of all contribu-
tions in the corpus. The second largest cluster only
generates 10% of the contributions. In contrast,
when using exchanges as the atomic unit, the clus-
ter size distribution is less skewed and corresponds
more closely to a topic analysis performed by a
domain expert. In this analysis, the number of de-
sired cluster (states), which is an input to the algo-
rithm, was set to 16, the same number identified in
a domain expert’s analysis of the Thermo corpus.
Examples of such topics include high-level ones
such as greeting, setup initialization, and general
thermo concepts, as well as task-specific ones like
sensitivity analysis and regeneration.

A closer examination of the clusters (states) con-
firms our intuition that systematic topic-
independent phenomena in dialogue, coupled with
the terse nature of contributions in spontaneous
dialogue, leads to an overly skewed cluster size
distribution. Examining the terms with the highest
emission probabilities, the largest states contain



topical terms like cycle, efficiency, increase, qual-
ity, plot, and turbine intermixed with terms like
think, you, right, make, yeah, fine, and ok. Also the
sets of topical terms in these larger states do not
seem coherent with respect to the expert induced
topics. This suggests that thematically ambiguous
fixed expressions blur the distinction between the
different topic-centered language models, produc-
ing an overly heavy-tailed cluster size distribution.

One might argue that a possible solution to this
problem would be to remove these fixed expres-
sions as part of pre-processing. However, that re-
quires knowledge of the particular domain and
knowledge of the interaction style characteristic to
the context. We believe that a more robust solution
is to use exchanges as the atomic unit of discourse.

9 Evaluation with Exchanges

To show the value of dialogue exchanges in
topic segmentation, in this section we re-formulate
our problem from classifying contributions into
NEW_TOPIC and SAME_TOPIC to classifying
exchange initial contributions into NEW_TOPIC
and SAME_TOPIC. For all algorithms, we con-
sider only predictions that coincide with hand-
coded exchange initial contributions. We show
that, except for our own Museli approach, using
exchange boundaries improves segmentation qual-
ity across all algorithms (p < .05) when compared
to their respective counterparts that ignore ex-
changes. Using exchanges gives the Museli ap-
proach a significant advantage based on F-measure
(p < .05), but only a marginally significant advan-
tage based on Py These results confirm our intui-
tion that what gives our Museli approach an advan-
tage over baseline algorithms is its ability to har-
ness the lexical, syntactic, and phrasal cues that
mark shifts in topic. Given that shift-in-topic corre-
lates highly with shift-in-exchange, these features
are discriminatory in both respects.

Of the degenerate strategies in section 5.2, only
ALL lends itself to our reformulation of the topic
segmentation problem. For the ALL heuristic, we
classify all exchange initial contributions into
NEW_TOPIC. This degenerate heuristic alone
produces better results than all algorithms classify-
ing utterances (Table 4). In our implementation of
TextTiling (TT) with exchanges, we only consider
predictions on contributions that coincide with ex-
change initial contributions, while ignoring predic-

48

tions made on contributions that do not introduce a
new exchange. Consistent with our evaluation
methodology from Section 5, we optimized the
window size using the entire corpus and found an
optimal window size of 13 contributions. Without
exchanges, the optimal window size was 6 contri-
butions. The higher optimal window-size hints to
the possibility that by using exchange initial con-
tributions an approach based on lexical cohesion
may broaden its horizon without losing precision.

Thermo Corpus Thermo Corpus
(Contributions) (Exchanges)
Py F Py F
NONE 0.4900 |- N/A --
ALL 0.5100 |- 0.4398  |0.3809
EVEN 05132 |- N/A --
TT 0.5353 |0.1614 |0.4328 |0.3031
B&L 0.5086 |0.1512 |0.3817 0.3840
Foltz 0.5058 |0.1180 |0.4242 0.3296
Ortho |0.4898 |0.2111 |0.4398  |0.3813
Museli 10.4043 |0.3693 |0.3737 0.3897

Table 4. Results using perfect exchange boundaries

In this version of B&L, we use exchanges to
build the initial clusters (states) and the final
HMM. B&L with exchanges significantly im-
proves over B&L with contributions, in terms of
both P, and F-measure (p < .005) and significantly
improves over our ALL heuristic (where all ex-
change initial contributions introduce a new topic)
in terms of Py (p < .0005). Thus, its use of ex-
changes goes beyond merely narrowing the space
of possible NEW_TOPIC contributions: it also
uses these more coarse-grained discourse units to
build a more thematically-motivated topic model.

Foltz’s and Olney and Cai’s (Ortho) approach
both use an LSA space trained on the dialogue
corpus. Instead of training the LSA space with in-
dividual contributions, we train the LSA space us-
ing exchanges. We hope that by training the space
with more contentful text units LSA might capture
more topically-meaningful semantic relations. In
addition, only exchange initial contributions where
used for the logistic regression training phase.
Thus, we aim to learn the regression equation that
best discriminates between exchange initial contri-
butions that introduce a topic and those that do not.
Both Foltz and Ortho improve over their non ex-
change counterparts, but neither improves over the
ALL heuristic by a significant margin.



For Museli with exchanges, we tried both train-
ing the model using only exchange initial contribu-
tions, and applying our previous model to only ex-
change initial contributions. Training our models
using only exchange initial contributions produced
slightly worse results. We believe that the reduc-
tion of the amount of training data prevents our
models from learning good generalizations. Thus,
we trained our models using contributions (as in
Section 5) and consider predictions only on ex-
change initial contributions. The Museli approach
offers a significant advantage over TT in terms of
P« and F-measure. Using perfect-exchanges, it is
not significantly better than Barzilay and Lee. It is
significantly better than Foltz’s approach based on
F-measure and significantly better than Olney and
Cai based on Py (p < .05).

These experiments used hand coded exchange
boundaries. We also evaluated our ability to
automatically predict exchange boundaries. On the
Thermo corpus, Museli was able to predict ex-
change boundaries with precision = 0.48, recall =
0.62, f-measure = 0.53, and Py = 0.14.

10 Conclusions and Current Directions

In this paper we addressed the problem of auto-
matic topic segmentation of spontaneous dialogue.
We demonstrated with an empirical evaluation that
state-of-the-art approaches fail on spontaneous dia-
logue because term distribution alone fails to pro-
vide adequate evidence of topic shifts in dialogue.

We have presented a supervised learning algo-
rithm for topic segmentation of dialogue called
Museli that combines linguistic features signaling a
contribution’s function with local context indica-
tors. Our evaluation on two distinct corpora shows
a significant improvement over the state-of-the-art
algorithms. We have also demonstrated that a sig-
nificant improvement in performance of state-of-
the-art approaches to topic segmentation can be
achieved when dialogue exchanges, rather than
contributions, are used as the basic unit of dis-
course. We demonstrated promising results in
automatically identifying exchange boundaries.
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Abstract

We present a system for analyzing conver-
sational data. The system includes state-of-
the-art natural language processing compo-
nents that have been modified to accom-
modate the unique nature of conversational
data. In addition, we leverage the added
richness of conversational data by analyz-
ing various aspects of the participants and
their relationships to each other. Our tool
provides users with the ability to easily
identify topics or persons of interest, in-
cluding who talked to whom, when, entities
that were discussed, etc. Using this tool,
one can also isolate more complex net-
works of information: individuals who may
have discussed the same topics but never
talked to each other. The tool includes a Ul
that plots information over time, and a se-
mantic graph that highlights relationships
of interest.

1 Introduction

The ability to extract and summarize content from
data is a fundamental goal of computational lin-
guistics. As such, a number of tools exist to auto-
matically  categorize, cluster, and extract
information from documents. However, these tools
do not transfer well to data sources that are more
conversational in nature, such as multi-party meet-
ings, telephone conversations, email, chat rooms,
etc. Given the plethora of these data sources, there
is a need to be able to quickly and accurately ex-
tract and process pertinent information from these
sources without having to cull them manually.
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Much of the work on computational analysis of
dialogue has focused on automatic topic segmenta-
tion of conversational data, and in particular, using
features of the discourse to aid in segmentation
(Galley et al, 2003; Stolcke et al., 1999;
Hirschberg & Hakatani, 1996.). Detailed discourse
and conversational analytics have been the focus of
much linguistic research and have been used by the
computational community for creating models of
dialogue to aid in natural language understanding
and generation (Allen & Core, 1997; Carletta et al.,
1997; van Deemter et al., 2005; Walker et al.,
1996). However, there has been much less focus on
computational tools that can aid in either the analy-
sis of conversations themselves, or in rendering
conversational data in ways such that it can be
used with traditional data mining techniques that
have been successful for document understanding.

This current work is most similar to the NITE
XML Toolkit (Carletta & Kilgour, 2005) which
was designed for annotating conversational data.
NITE XML is system in which transcripts of con-
versations are viewable and time aligned with their
audio transcripts. It is especially useful for adding
annotations to multi-modal data formats. NITE
XML is not analysis tool, however. Annotations
are generally manually added. In this paper, we
present a Conversational Analysis Tool (ChAT)
which integrates several language processing tools
(topic segmentation, affect scoring, named entity
extraction) that can be used to automatically anno-
tate conversational data. The processing compo-
nents have been specially adapted to deal with
conversational data.

ChAT is not an annotation tool, however, it is
analysis tool. It includes a Ul that combines a vari-
ety of data sources onto one screen that enables
users to progressively explore conversational data.
For example, one can explore who was present in a
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given conversation, what they talked about, and the
emotional content of the data. The data can be
viewed by time slice or in a semantic graph. The
language processing components in ChAT are ver-
satile in that they were developed in modular, open
designs so that they can be used independently or
be integrated into other analytics tools. We present
ChAT architecture and processing components in
Section 2. In section 3 we present the Ul , with a
discussion following in section 4.

2 ChAT Architecture

ChAT is a text processing tool designed to aid in
the analysis of any kind of threaded dialogue, in-
cluding meeting transcripts, telephone transcripts,
usenet groups, chat room, email or blogs. Figure 1
illustrates the data processing flow in ChAT.

Ingest Engine User Interface
Central Processing Engine

I I 1

Processing Components - -
Topic Segmentation
Affect

Participant
Information

Named Entity
Extraction

Figure 1: ChAT Architecture.

Data is ingested via an ingest engine, then the
central processing engine normalizes the format
(time stamp, speaker ID, utterance; one utterance
per line). Processing components are called by the
central processing engine which provides the input
to each component, and collects the output to send
to the UI.

We designed the system to be general enough to
handle multiple data types. Thus, with the excep-
tion of the ingest engine, the processing compo-
nents are domain and source independent. For
example, we did not want the topic segmentation
to rely on features specific to a dataset, such as
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acoustic information from transcripts. Addition-
ally, all processing components have been built as
independent plug-ins to the processing engine: The
input of one does not rely on the output of the oth-
ers. This allows for a great deal of flexibility in
that a user can choose to include or exclude vari-
ous processes to suit their needs, or even exchange
the components with new tools. We describe each
of the processing components in the next section.

2.1 Ingest Engine

The ingest engine is designed to input multiple
data sources and transform them into a uniform
structure which includes one utterance per line,
including time stamp and participant information.
So far, we have ingested three data sources. The
ICSI meeting corpus (Janin et al., 2003) is a corpus
of text transcripts of research meetings. There are
75 meetings in the corpus, lasting 30 minutes to
1.5 hours in duration, with 5-8 participants in each
meeting. A subset of these meetings were hand
coded for topic segments (Galley, et al., 2003). We
also used telephone transcripts from the August 14,
2003 power grid failure that resulted in a regional
blackout'. These data consist of files containing
transcripts of multiple telephone conversations be-
tween multiple parties. Lastly, we employed a chat
room dataset that was built in-house by summer
interns who were instructed to play a murder mys-
tery game over chat. Participants took on a charac-
ter persona as their login and content was based on
a predefined scenario, but all interactions were un-
scripted beyond that.

1http://energycommerce.house.gov/lOS/Hearings/09032003hearinglOGl/hearing
.htm



Figure 2. Plot of WindowDiff evaluation metric for LCseg and WLM on meeting corpus. p-value =

0.032121 for two-sample equal variance t-test.

2.2 Topic Segmentation

The output of the ingest process is a list of utter-
ance that include a time (or sequence) stamp, a
participant name, and an utterance. Topic segmen-
tation is then performed on the utterances to chunk
them into topically cohesive units. Traditionally,
algorithms for segmentation have relied on textual
cues (Hearst, 1997; Miller et al. 1998; Beeferman
et al, 1999; Choi, 2000). These techniques have
proved useful in segmenting single authored
documents that are rich in content and where there
is a great deal of topic continuity. Topic segmenta-
tion of conversational data is much more difficult
due to often sparse content, intertwined topics, and
lack of topic continuity.

Topic segmentation algorithms generally rely on
a lexical cohesion signal that requires smoothing in
order to eliminate noise from changes of word
choices in adjoining statements that do not indicate
topic shifts (Hearst, 1997; Barzilay and Elhadad,
1997). Many state of the art techniques use a slid-
ing window for smoothing (Hearst, 1997; Miller et
al. 1998; Galley et al., 2003). We employ a win-
dowless method (WLM) for calculating a suitable
cohesion signal which does not rely on a sliding
window to achieve the requisite smoothing for an
effective segmentation. Instead, WLM employs a
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constrained minimal-spanning tree (MST) algo-
rithm to find and join pairs of elements in a se-
guence. In most applications, the nearest-neighbor
search used by an MST involves an exhaustive,
O(N2), search throughout all pairs of elements.
However since WLM only requires information on
the distance between adjoining elements in the se-
guence the search space for finding the two closest
adjoining elements is linear, O(N), where N is the
number of elements in the sequence. We can there-
fore take advantage of the hierarchical summary
structure that an MST algorithm affords while not
incurring the performance penalty.

Of particular interest for our research was the
success of WLM on threaded dialogue. We evalu-
ated WLM’s performance on the ICSI meeting
corpus (Janin et al, 2003) by comparing our seg-
mentation results to the results obtained by imple-
menting LCSeg (Galley et al., 2003). Using the 25
hand segmented meetings, our algorithm achieved
a significantly better segmentation for 20 out of 25
documents. Figure 2 shows the hypothesized seg-
ments from the two algorithms on the ICSI Meet-
ing Corpus.

Topic segmentation of conversational data can
be aided by employing features of the discourse or
speech environment, such as acoustic cues, etc.
(Stolcke et al., 1999; Galley et al., 2003). In this
work, we have avoided using data dependent (the



integration of acoustic cues for speech transcripts,
for example) features to aid in segmentation be-
cause we wanted our system to be as versatile as
possible. This approach provides the best segmen-
tation possible for a variety of data sources, regard-
less of data type.

2.3 Named Entity Extraction

In addition to topics, ChAT also has integrated
software to extract the named entities. We use
Cicero Lite from the Language Computer Corpora-
tion (LCC) for our entity detection (for a product
description and evaluation, see Harabagiu et al.,
2003). Using a combination of semantic represen-
tations and statistical approaches, Cicero Lite iso-
lates approximately 80 entity types. ChAT
currently makes use of only a handful of these
categories, but can easily be modified to include
more. Because named entity extraction relies on
cross-utterance dependencies, the main processing
engine sends all utterance from a conversation at
once rather than an utterance at a time.

2.4  Sentiment Analysis

In addition to topic and entity extraction, conversa-
tions can also be analyzed by who participated in
them and their relationship to one another and their
attitude toward topics they discuss. In an initial
attempt to capture participant attitude, we have
included a sentiment analysis, or affect, compo-
nent. Sentiment analysis is conducted via a lexical
approach. The lexicon we employed is the General
Inquirer (GI) lexicon developed for content analy-
ses of textual data (Stone, 1977). It includes an
extensive lexicon of over 11,000 hand coded word
stems, and 182 categories, but our implementation
is limited to positive (POS) and negative (NEG)
axes. In ChAT, every utterance is scored for the
number of positive and negative words it contains.
We make use of this data by keeping track of the
affect of topics in general, as well as the general
mood of the participants.

2.5 Participant Roles

Analyzing conversations consists of more than
analyzing the topics within them. Inherent to the
nature of conversational data are the participants.
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Using textual cues, one can gain insight into the
relationships of participants to each other and the
topics. In ChAT we have integrated several simple
metrics as indicators of social dynamics amongst
the participants. Using simple speaker statistics,
such as number of utterances, number of words,
etc., we can gain insight to the level of engagement
of participants in the conversation. Features we use
include:

e The number of utterance

e Proportion of questions versus state-

ments

Proportion of “unsolicited” statements
(ones not preceded by a question mark)

Additionally, we use the same lexical resources
as we use for sentiment analysis for indications of
personality type. We make use of the lexical cate-
gories of strong, weak, power cooperative, and
power conflict as indicators of participant roles in
the conversational setting. Thus far, we have not
conducted any formal evaluation on the sentiment
analysis with this data, but our initial studies of our
pos and neg categories show a 73% agreement
with hand tagged positive and negative segments
on a different data set.

3  User Interface

As described in Section 2 on ChAT architecture,
the processing components are independent of the
Ul, but we do have a built-in Ul that incorporates
the processing components that is designed to aid
in analyzing conversations.
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Figure 3. Screen shot of the main Ul for ChAT

est.

The components of the system are all linked
through the X-axis, representing time, as seen in
Figure 3. Depending on the dataset, positions along
the time axis are based on either the time stamp or
sequential position of the utterance. The default
time range is the whole conversation or chat room
session, but a narrower range can be selected by
dragging in the interval panel at the top of the UI.
Note that all of the values for each of the compo-
nents are recalculated based on the selected time
interval. Figure 4 shows that a time selection re-
sults in a finer grained subset of the data, allowing
one to drill down to specific topics of inter-
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The number of utterance for a given time frame
is indicated by the number inside the box corre-
sponding to the time frame. The number is recalcu-
lated as different time frames are selected.

3.1.1 Topics

The central organizing unit in the Ul is topics. The
topic panel, detailed in Figure 5, consists of three
parts: the color key, affect scores, and topic labels.
Once a data file is imported into the Ul, topic seg-
mentation is performed on the dataset according to
the processes outline in Section 3.2. Topic labels
are assigned to each topic chunk. Currently, we use
the most prevalent word tokens as the label, and
the user can control the number of words per label.
Each topic segment is assigned a color, which is
indicated by the color key. The persistence of a
color throughout the time axis indicates which
topic is being discussed at any given time. This
allows a user to quickly see the distribution of top-
ics of a meeting, for example. It also allows a user
to quickly see the participants who discussed a
given topic.

Topics (27)
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Figure 5. Topic Labels in the Topic Panel.

3.1.2 Affect

Affect scores are computed for each topic by
counting the number of POS or NEG affect words
in each utterance that comprises a topic within the
selected time interval. Affect is measured by the
proportion of POS to NEG words in the selected
time frame. If the proportion is greater than 0, the
score is POS (represented by a +), if it is less than
0, it is NEG (-). The degree of sentiment is indi-
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cated by varying shades of color on the + or -
symbol.

Note that affect is computed for both topics and
participants. An affect score on the topic panel in-
dicates overall affect contained in the utterances
present in a given time frame, whereas the affect
score in the participant panel indicates overall af-
fect in a given participant’s utterances for that time
frame.

3.1.3 Participants

The participant panel (Figure 6) consists of three
parts: speaker labels, speaker contribution bar, and
affect score. The speaker label is displayed in al-
phabetical order and is grayed out if there are no
utterances containing the topic in the selected time
frame. The speaker contribution bar, displayed as a
horizontal histogram, shows the speaker’s propor-
tion of utterances during the time frame. Non ques-
tion utterances are displayed in red while
utterances containing questions are displayed in
green as seen. For example, in Figure 6, we can see
that speaker meO11 did most of the talking (and
was generally negative), but speaker me018 had a

higher proportion of questions.

Iz; =+ wireless

Participants (6)
=+ [ Ife008

[_Imn014
[_Imn017

Entities (Top 10)

Figure 6. Participant Panel.

3.1.4 Named Entities

In the current implementation, the named entity
panel consists of only list of entity labels present in
a given time frame. We do not list each named en-
tity because of space constraints, but plan to inte-
grate a scroll bar so that we can display individual
entities as opposed to the category labels.



3.2 Semantic Graph

Data that is viewed in the main Ul can be sent to a
semantic graph for further analysis. The graph al-
lows a user to choose to highlight the relationships
associated with a topic, participant, or individual
named entity. The user selects objects of interest
from a list (see Figure 7), then the graph function
organizes a graph according to the chosen object,
see Figure 8, that extracts the information from the
time-linked view and represent it in a more abstract
view that denotes relationships via links and nodes.

—

& v ocasann

[Low || coew

Figure 7. Semantic Graph Node Selection.

The semantic graph can help highlight relation-
ships that might be hard to view in the main UI.
For example, Figure 8 represents a subset of the
Blackout data in which three participants, indicated
by blue, all talked about the same named entity,
indicated by green, but never talked to each other,
indicated by the red conversation nodes.

Figure 8. Graph of the Relationship between Three Par-
ticipants.

4  Discussion

In this paper, we have presented ChAT, a system
designed to aid in the analysis of any kind of
threaded dialogue. Our system is designed to be
flexible in that the Ul and processing components
work with multiple data types. The processing
components can be used independently, or within
the Ul. The Ul aids users in in-depth analysis of
individual conversations. The components can be
run independent of the Ul and in batch, resulting in
an xml document containing the original tran-
scripts and the metadata added by the processing
components. This functionality allows the data to
be manipulated by traditional text mining tech-
niques, or to be viewed in any other visualization.
We have not performed user evaluation on the
interface. Our topic segmentation performs better
than the current state of the art, and named-entity
extraction we have integrated is commercial grade.
We are currently working on an evaluation of the
affect scoring. While our topic segmentation is
good, we are working to improve the labels we use
for the topics. Most importantly, we plan on ad-
dressing the usefulness of the Ul with user studies.
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Abstract

This paper presents a pragmatic approach to Dis-
course Representation Theory (DRT) in an attempt
to address the pragmatic limitations of DRT (Werth

is no place in [DRT] for participant roles, setting,

background knowledge, purposes, even inferences’
(Werth 1999: 65). In general terms, we can say that
the pragmatic dimension supplements semantic con-
tent by using context and cognitive states of agents

1999; Simons 2003). To achieve a more prag-
matic DRT model, this paper extends standard DRT
framework to incorporate more pragmatic elements
such as representing agents’ cognitive states and the
complex process through which agents recognize
utterances employing the linguistic content in form-
ing mental representations of other agent’s cogni-
tive states. The paper gives focus to the usually
ignored link in DRT literature between speaker be-
liefs and the linguistic content, and between the lin-
guistic content and hearer’s beliefs.

in dialogue. The discipline of pragmatics is, there-
fore, concerned with the process by which agents
infer information about elements of another agents’
cognitive state such as their beliefs and intentions.
Thus, this paper focuses on extending standard DRT
pragmatically to model agents’ cognitive states in
the pragmatic context of dialogue.

2 A More Pragmatic DRT

This section presents a more pragmatic DRT focus-
ing on the relationship between speaker generation
and the linguistic content, and between the linguistic
content and hearer recognition. Figure 1 represents
Developments in dynamic semantics, resulting ithe link between our representation of the speaker’s
DRT, have led to a framework suitable for the repeognitive state, the speaker’s linguistic content and
resentation of linguistic phenomena (van Eijck anthe hearer’s cognitive state or DRS (Discourse Rep-
Kamp 1997). This is specifically due to the fact thatresentation Structure). This relationship has not to
recognizing the importance of context, DRT conceneur knowledge been explored in the literature and
trates on updating the context with the processing afeserves investigation.
each utterance. In addition, DRT can also be viewed Generally speaking, to generate an utterance,
as an agent’s mental model of the world and not jushere would be some discrepancy between the
a representation of the discourse. It is for these reapeaker’s beliefs and the speaker’s beliefs about the
sons that DRT holds great potential for incorporatindpearer’s beliefs. The discrepancy leads to an utter-
more pragmatic phenomena. ance, i.e. linguistic content. The linguistic content
However, despite the suitability of DRT for repre-is the window the hearer has onto the speaker’s state
senting linguistic phenomena, some pragmatic limef mind. It is what influences hearegecognition
itations have been noted in the literature. SimonBy analysis of the linguistic content provided by the
(2003) remarks that DRT is a theory of semanspeaker, the hearer can propose a hypothesis regard-
tics and not pragmatics. Werth remarks that ‘therang the speaker’s state of mind.

1 Introduction
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iyou iyou
attitude(i, ‘BEL’, drs1) attitude(i, ‘BEL’, drs3)

drsl:B drs3:B

Speaker Generation; — g'né’:";t:,cscu?gre;r:c —  Hearer Recognition:
attitude(i, ‘INT’, drs2) P attitude(you, ‘INT’, drs4)

drsZ:E drs4:E

Figure 1: Speaker DRS, Linguistic Content and Hearer DRS

2.1 New DR-Structures link between an agent’s intentions and the linguistic
form uttered. What is proposed is that the intention
The DRT representation introduced here extendsrS be designed to include the linguistic content
standard DRT language and structure resulting in govided within utterances.
suitable pragmatic-based framework for represent- Tg further enhance the link between agents’ cog-
ing this pragmatic link. Separate DRSs are creatggltive states and the linguistic content of their ut-
to represent each agent. DRSs get updated with eaglhiances, the intention DRS contains the rich prag-
new utterance. Each DRS representing an agenkgatic information offered by explicitly marking the
cognitive state includes the two personal referenggesupposition (given information) and the assertion
markers ‘i’ and ‘you'. When ‘i is used in a DRS, it (new information) of the current utterance. The in-
refers to the agent’s self within that DRS; i.e. if th&ention DRS is a separate DRS from the belief DRS.
agent is the speaker, then ‘i’ refers to the speaker ifhe peliefs of an agent give the motivation for mak-
the entire DRS. To refer to the other agent, 'you' isng an utterance, and the intention DRS represents
used. To follow from the speaker’s example, ‘you'inthe speaker’s intended message. The recognition
this case refers to the hearer. To account for ageni§f an utterance gives the hearer an insight into the
cognitive states and their meta-beliefs, a sub—DR%em's beliefs. Depending upon the particular dia-
representing the agent’s cognitive state calledthe |ogue represented, the intention DRS could have the
lief DRSis created to include the speaker’s beliefgpeaker's intention, the hearer’s intentions or both.
about the hearer’s beliefs. Additionally, a new DRShe intention DRS functions as ti@mediate con-
for representing weaker beliefs calladceptancés  text the one containing the utterance being gener-
introduced. The same level of embedding offeredted or recognized. The belief and acceptance DRSs
to belief DRSs is introduced in acceptance DRS$ynction asbackground contextontaining informa-
Acceptance DRS includes the speaker’s acceptanggn pertaining to the dialogue and not just the cur-
DRS as well as what the speaker takes the hearerfgnt ytterance. This division of labour context-wise
accept. Provided the speaker has sufficient informgs yseful in that the information represented in the
tion, the speaker can also have the embedded DRRention DRS directly feeds into the speaker’s ut-
within the acceptance DRS that represents what thgrance, and is then inferred by the hearer through
hearer takes the speaker to accept. the linguistic content. The hearer’s intention DRS
In addition to expanding the belief DRS, eachincludes the inferred speaker intentions in uttering
agent’s cognitive state containsiatention DRSIn-  the current utterance. This gives the flexibility of
tention in the sense used here refers to the agenbsing able to model information that the hearer has
goals in making an utterance, which are representéaferred but has not yet decided to accept or believe
by the corresponding dialogue act marked in thand is, therefore, not yet included in either the belief
intention DRS. The hearer’s intention DRS repreor acceptance DRS. For instance, while the hearer
sents the recognized utterance and contains elememexample (1) has recognized S1’s utterance, he has
of utterance-making generally associated with pragrot yet accepted S1’s utterance. This motivates sep-
matics such as the function of an utterance, its digrating the representation of beliefs from intentions.
logue act. This pragmatic enriching strengthens the
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D S1: Bob’s trophy wife is cheating on him. larly, the belief DRS contains space for the speaker’s
H1: When did Bob get married? beliefs about the hearer’s beliefs, drs5. The intention
DRS contains the linguistic content of the utterance

that the speaker is about to make, drs6, as well as the
In addition to the three DRSs introduced above, ifelevant dialogue acts.

order to make the link between speaker generation,

2.2 Extending DRT Language

linguistic content, and hearer recognition more ex- fyoutm
plicit, labels ‘label,,’, ,, an integer, are introduced. _
The labels mark the distinction between presupposi- drep| 2 gelou, ACCEPT, dis3)

drs3:

tion and assertion, and the distinction between weak
and strong beliefs. Furthermore, the labels can be

attitude(i, ACCEPT’, drs2)

used to refer to a particular predicate by another a“i‘udeg"BEL”de“)
complex predicate. The labels increase the expres- b tn??r(y?m)
sive power from an essentially first-order formal- b3: puppy(P)
ism to a higher-order formalism. Presuppositions 9L drsa atiitude(you, ‘BEL, drs5)

are marked by a presupposition labe},”p Simi-
larly, DRSs inside the main speaker or hearer DRS
are labeled ‘drs. Assertions are marked by ,a
to strengthen the connections between the linguistic

b5: tom(t)

drs5: b6: mary(m)

attitude(i, ‘INT’, drs6)

P
form (in the separation between presupposition and [
. . . . drs6: .
assertion) and the representation of beliefs. Believed T atpwnve)
. . - . . : buy(t,m,al) inform(i,you,a2)
information labeled ‘R’ inside a belief DRS or ac-

cepted information labeled,,¢inside an acceptance
DRS can be either presupposed or asserted inside the
intention DRS. Thus, the labels in the intention DRS

can only be ‘p’ or ‘a’. In Figure 2, there are essentially three levels of
Conditionsreferring to attitudes (acceptance, beembeddingn a main DRS. If we look at the belief
liefs, and intentions) have been added to the epBRS, the first embedded DRS is the agent’s own be-
tended semantics of DRT. Figure 2 shows three emef DRS. Level two is the agent’s beliefs about the
bedded DRSs, acceptance DRS, drs2, belief DRgther agent’s beliefs DRS. Level three is inserted
drs4, and intention DRS, drs6 representing: when necessary and represents the agent’s beliefs
about the other agent’s beliefs about the agent’s be-
liefs DRS. DRSs of the same level of embedding
have similar status. For example, the agent’s accep-
DRSs are referred to by the attitude describing thentance and belief DRSs have equal status. However,
For example, attitude(i,'BEL’, drs4) refers to thethe only discourse referents in common are the ones
DRS containing the speaker’s beliefs, using the lan the main DRS’s universe. Each equal-level em-
bel for the belief DRS, drs4. Other conditionsbedding has its own set of discourse referents, as
are allowed to employ ‘i’ as an argument. Atti-well as its own conditions.
tude(i,'accept’, drs2) refers to the DRS containing Discourse referents of same and higher levels of
the speaker’s acceptance DRS, using the label fembedding are accessible to lower levels of embed-
the acceptance DRS, drs2. Attitude(i,'INT’, drs6)ding and are therefore not represented in the lower
refers to the DRS containing the speaker’s intentiokevel embedding universe. This does not entail that
in uttering example (2), using the label for the intenwhen a lower level embedding makes use of a dis-
tion DRS, drs6. The speaker’s acceptance DRS cooeurse referent introduced in a higher level embed-
tains an embedded DRS for the hearer’s acceptandimg the agent and other agent share the same inter-
DRS, drs2. In this case, it is empty, as no weakly baial or external anchors. For example, when talking
lieved propositions have been introduced yet. Simabout a rabbit, the speaker’s representation of rabbit

Figure 2: A's initial Cognitive State

2) A: Tom is buying Mary a puppy.
B: That's sweet.
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will be: bl:.rabbit(x), whereas the speaker’s reprebeen the aim of this paper to achieve this by (a) ex-
sentation of the hearer’s beliefs will be b2:rabbit(x)panding DRT structure to incorporate the pragmatic
This is to replace Kamp and Reyle’s (1993) use oéxtensions introduced in this paper, (b) representing
different discourse referents, where a new discourglee complex process of speakers recognizing utter-
referent is used every time the same object or irences and using the linguistic information in form-
dividual is referred to in a new sentence (e.g. raling mental representations of hearers’ mental repre-
bit(x), then rabbit(y)). The aim is to avoid havingsentations, (c) enhancing the link between speaker
to overtly use the x=y rule every time the same ralbeliefs, and between the linguistic content and the
bit is referred to. The principles behind the equatiotinguistic content and hearer’s beliefs and (d) putting
predicate are still in place; i.e. every time rabbit isall these extensions and enhancements to the prag-
referred to, it is bound to the rabbit already in thematic side of DRT in a computational model.
context. However, we bind it to the previous proper- While the work presented in this paper offers a
ties of rabbit already in context through attaching imore pragmatic approach to DRT, there is still more
to the same discourse referent, rabbit(x). work to be done on making DRT more pragmatic.
Both Kamp and Reyle’s and our representatiodhe possibility of extending the present treatment
face revision when it transpires that the agents it9 include more agents remains for future work.
dialogue have different referents in mind. For exin addition, future work can employ the intention
ample, both the speaker and hearer might be talkifgRS introduced in this paper, in order to enhance
about ‘rabbit’. However, they might have a differ-the complexity of the pragmatic representation of
ent ‘rabbit’ in mind, and assume the other particispeakefhearer intentions. For instance, embedding
pant is thinking of the rabbit they have in mind. Theturn-taking acts within the intention DRS and relat-
speaker might have a grey rabbit in mind, wheredsg them to agents’ beliefs and intentions should be
the hearer has a white rabbit in mind. In this casetraightforward. It is also hoped that future work
Kamp and Reyle’s revision would consist of deletingvill address more aspects of context than the two
x=y predicate, and any previous equation predicaetailed and implemented in this paper, namely, the
that may have been introduced each time rabbit wag@mediate and background context. Furthermore,
referred to. In our representation, the revision takefe sample implementation of the extensions sug-
place by changing the other agent’s discourse refegested in this paper serves as an example of how the
ent, b2:rabbit(x) becomes label2:rabbit(y). extensions to DRT can be implemented. One way
Furthermore, the previous pragmatic extensior@f developing this implementation is to incorporate
to standard DRT have been implemented comput#-into a dialogue system which aims to achieve a
tionally to approximate a computational model ofmore balanced approach to the semaipiagmatic
communication and to enable us to see whether tfifgterface in representing linguistic phenomena.
extended DRT works logically. The implementation
r_elates thg Ilng_wstlc content of utteranc.es to the b??eferences
liefs and intentions of the agents. The implementa- _ _
ton operates wih a specifc dialogue, which can b7, 506 Reve, . 195Kiom Dscouse o o0 1
modified, within a restricted domain. It seems rea- guage, Formal Logic and Discourse Representation Theory
sonable to conclude on the basis of the implementa- Boston, Dordrecht: Kluwer.

tion that the conceptual and formal proposals madgn Eijck, J. and Kamp, H. 1997. ‘Representing Discourse in

provide a basis for further development. Context’. In: J. van Benthem and A. Ter Meulen (Eds.).
Handbook of Logic and Languagep. 179-237. Amster-
dam: Elsevier.

3 Conclusion and Further Extensions . - _
Simons, M. 2003. ‘Presupposition and Accommodation: Un-

. . . .. derstanding the Stalnakerian PicturBhilosophical Studies
This paper pushes the treatment of linguistic 115 n, 251278,

phenomena in DRT more towards pragmatics, _

by bringing more pragmatic elements to théNerth, P. 1999.Text Worlds: Representing Conceptual Space
. . L. in Discourse New York: Longman.

semanti¢pragmatic interface which is DRT. It has
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Abstract

This research is aimed at understanding the
dynamics of collaborative multi-party dis-
course across multiple communication mo-
dalities. Before we can truly make significant
strides in devising collaborative communica-
tion systems, there is a need to understand
how typical users utilize computationally sup-
ported communications mechanisms such as
email, instant messaging, video conferencing,
chat rooms, etc., both singularly and in con-
junction with traditional means of communi-
cation such as face-to-face meetings,
telephone calls and postal mail. Attempting to
understand an individual’s communications
profile with access to only a single modality is
challenging at best and often futile. Here, we
discuss the development of RACE — Retro-
spective Analysis of Communications Events
— a test-bed prototype to investigate issues re-
lating to multi-modal multi-party discourse.
We also examine future avenues of research
for further enhancing our prototype and inves-
tigating this area.

1 Introduction

Communication is the heart of what makes us so-
cial creatures. Today, we have a myriad of tech-
nologies that allow us to communicate in ways our
forefathers could never have imagined. Computa-
tionally supported modalities such as email and
instant messaging have had immeasurable effect on
the way we work, play and generally interact with

62

those in our lives. Being able to understand how
individuals communicate, the methods they use,
their personal preferences etc., and are all part of a
field called anthroposemiotics'. This field looks to
uncover the mystery behind how we communicate
with ourselves (intrapersonal communication),
with others (interpersonal communication), within
groups (group dynamics) and across cultures
(cross-cultural communication). While there is a
great deal of literature in these fields, there are few
operational applications that allow for true hands-
on investigation.

Perhaps nowhere is the application of this
field more important than in the field of intelli-
gence analysis. Intelligence analysts must make
sound judgments, coherently constructed from
scattered heterogeneous fragments of information
while being faced with significant time constraints.
The information they use is rarely complete, often
unreliable and usually temporally and spatially
diverse. These dimensions need to be aligned and
the information understood to enable the analyst to
recognize sequences of inter-related events and
hypothesize about future actions.

Our aim has been to aid the analyst by
researching, designing and implementing a test-bed
for the investigation of collaborative, multi-party
discourse. The focus is on reducing the complexity
of analyzing communications data through a triage
process; from a large corpus to a small handful of
relevant conversations to finally a highly detailed
view of one or two conversations, with incorpo-
rated socio-behavioral dimensions. Below we pre-
sent our design methodology and discuss the latest
version of the prototype.

! http://en.wikipedia.org/wiki/Human communication
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2  Method

The design methodology we used included a
review of the literature, followed by in-depth focus
group discussions with working analysts to deter-
mine requirements. Following the group session, a
participatory design process was used to gather
more information from our user group, leading to a
set of sketches that were used in the initial proto-
type implementation. From these an initial proto-
type was created. The test-bed is currently in its
second phase of implementation that includes the
integration of components developed under other
auspices into the RACE environment. These in-
clude indicators of affect and social roles. Finally,
we have built and collected a number of data
sources that we intend to use to evaluate the sys-
tem. We describe these stages in the following sec-
tions.

2.1 Prior Art

This effort began with a thorough literature
review across the fields of ubiquitous computing,
visualization, multi-party discourse and communi-
cations theory. A number of research systems with
similarities to our goal were reviewed in order to
be able to understand the landscape and determine
where specific opportunities may lie. Here we dis-
cuss some of the systems (mainly research proto-
types) that are available for reviewing
communications data.

As both Internet communications and com-
plex graphics capabilities have become more per-
vasive in modern computing, there has been much
interest in visualizing conversations. Due to the
ease of data capture with computationally sup-
ported communications, such communication mo-
dalities as email, chat, and forum/newsgroup
threads appear to be the most researched. Several
systems have represented vast, multi-threaded
newsgroup or forum posts such as USENET.
‘Loom’ can represent the activity patterns of indi-
viduals relative to one another, helping to charac-
terize individuals’ participation and roles (Donath
et al, 1999). In another view, linked posts are
graphed to represent threads, characterizing the
newsgroup as a whole. ‘Discourse Diagrams’ de-
scribes newsgroups with semantic graphs of related
concepts, and also graphs people’s connectedness
to one another in social networks (Sack, 2000).
‘Conversation ~ Thumbnails’ wuses an over-
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view/detail display to contextualize a user’s post in
the group as a whole while it is being composed
(Wattenberg and Millen, 2003). ‘PeopleGarden’
represents each individual participant as a compos-
ite of their history of posting. Having all partici-
pants represented in the same screen provides
insight into the dynamics of the group as a whole
across its recorded history, although there is no
way to track connections between individuals or
threading (Xiong and Donath, 1999).

In RACE, the topics of a multitude of con-
versations are explored by an analyst looking for
both episodic and social information. Through an
iterative filtering process, the analyst examines
individual conversations. Like the newsgroup visu-
alizations above, the goals are (in addition to a
general desire to understand what is going on) to
determine an individual’s social role and dynamic
of the group, but the concept of “conversations” is
more granular. Whereas the newsgroup visualiza-
tions may represent hundreds or even thousands of
users and conversation threads, the detailed visu-
alization in RACE’s final screen represents a sin-
gle discourse with as few as two people. Thus, the
systems above deal with a higher level of abstrac-
tion and do not convey information on “lurkers”
who may read but not post, emotional qualities of
contributions, or the temporal information present
in synchronous communication. RACE has the
additional goals of denoting presence, affect, and
what Viegas and Donath call “negotiation of con-
versational synchrony” (1999).

Research on chat room conversation has
produced some interesting visualizations that start
to deal with these concepts. The ‘Babble’ system
both facilitates and visualizes synchronous and
asynchronous chat (Erickson and Laff, 2001). Us-
ers are represented as colored dots on a social
proxy called a ‘cookie’. The more interactions they
have with the system, whether posting or only
reading, the more central they become in the visu-
alization. With inactivity, the dots move slowly
back out to the periphery of the cookie, conveying
information about presence and activity level.
‘Chat Circles’ is designed for synchronous chat
and creates a strong sense of location by situating
participants (represented as colored circles) in a
large 2D space and only allowing them to see the
text posted by others positioned nearby (Viegas
and Donath, 1999). The circles expand to encom-
pass posted text and shrink when ample time to



read the utterance has passed. Even people who are
idling or only listening are represented spatially so
others can see them. People can position their cir-
cles to avoid the ‘noise’ of unrelated conversations
(as one could do at a cocktail party) or signify
whom they are addressing. Each post leaves a cu-
mulative translucent trace, indicating how long the
poster has been there and how active they have
been. Thus, group dynamics such as a group con-
versation fragmenting into smaller ones, relative
verbosity, and relative position are available for
interpretation.

While each of the systems above is designed
for a particular modality, RACE integrates email,
instant messaging, text messaging, phone conver-
sations and teleconferences, in-person meetings in
addition to chat or newsgroup participation. The
goal is to get a more holistic sense of an individual
throughout their discrete conversations and com-
munication methods. As a post-hoc analysis tool,
RACE aids the analyst by adding system interpre-
tations of affect and social dynamics to the infor-
mation represented in the prior art. It should be
noted that this effort violates one of Erickson’s six
claims about social visualization: “Portray actions,
not interpretation... users understand the context
better than the system ever will” (2003). We agree
in theory, but the needs of our analysts differ from
those of a contributor to the conversation. Content-
driven interpretations of group dynamics, affect,
and social role complement full-text transcripts of
the conversations, providing shortcuts to insight.
Below we discuss further the requirements of our
user group.

2.2 Requirements Elicitation

To ensure our research was applicable to our or-
ganization’s missions and fulfilled the require-
ments and expectations of our user group, we
enlisted the help of four analysts to determine spe-
cific requirements. These were to be our subject
matter experts (SME’s). Through interactions with
our SME’s we determined that while it is important
to being able to understand a single conversation in
time, it is just as, if not more, important to be able
to comprehend the stream of conversations that
occurs over longer periods, related to the same
topic. For example, it is important to be able to
intercept, process, and analyze a discussion be-
tween two individuals talking about making a
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homemade bomb, but it is even more important to
place such a discussion within the context of the
set of communications leading to an understanding
of the overarching plot. Such review can provide
additional information that could be invaluable to
the analyst. Other requirements identified as part of
these sessions included:

* The system should allow the analyst to get
back to original source documents and be able
to review the provenance.

* The system should allow the analyst to anno-
tate the communication events.

* Consider the use of color for note taking and
marking modalities.

* The system should allow the analyst to high-
light conversation fragments (i.e., small parts
of a larger conversation that are considered
important).

* The system should provide basic translation
mechanisms for foreign language support as
well as provide some form of lexicon for terms
that fall outside an analyst’s field of expertise.

* The system should be able to import and ex-
port conversation fragments using common
formats. The system should allow multiple
analysts to work collaboratively within the
same workspace.

* The system should allow the analyst to cus-
tomize the environment to their preferences.

In addition to an informal list of requirements, a
great deal of brainstorming was performed during
this session. Following a participatory design proc-
ess, system designers worked with SME’s to put
together a work process and some initial sketches
of the overall system that could be fed into the im-
plementation stage.

The process was designed so that the analyst
could (Figure 1) interact with the conversation
corpus available to them (potentially produced as a
result of a search), viewing the conversations as
dots, clustered around major topics. This view
could be filtered based on time period, participants
involved and communications modality used.
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Figure 1: Sketch of the Corpus View.

On selecting a subset of conversations to
review further (Figure 2) the analyst moves
through to a second screen (the sequence view)
where they can analyze the conversations in rela-
tion to when they occurred (the view is reminiscent
of Microsoft Project’s Gant view).
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Figure 2: Sketch of the Sequence View.

While icons and text will continue to de-
pict the modality the conversation utilized, the fo-
cus at this level is of fusing the conversations to
build a sequenced stream of communications traf-
fic so the underlying thread or purpose can be un-
derstood. Finally (Figure 3), conversations of
specific interest to the analyst can be pursued in
further detail in a third screen, called the ‘detail
view’. Here, the full transcript is displayed and can
be ‘played’ utterance by utterance in real time. As
each utterance is reached, a text-to-speech engine
speaks the words, while a number of visual repre-
sentations indicate social constructs such as social
roles and the dynamics between the individuals.
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Figure 3: Sketch of the Detail View.

2.3 Implemented Prototype

Using a participatory design process, in-
formed by the sketches and requirements of our
analysts and the limitations of current research sys-
tems, we implemented a three-screen prototype
analytical environment that allows a user to visual-
ize a large corpus of communications events
(Figure 4).

Figure 4: Analyst using the RACE Environment,

The environment can run on three screens simulta-
neously, be split across three panes (useful for per-
forming analysis on large displays like wall-
mounted plasma displays) or on a single screen
with the use of a window manager seen in the top
right of each view.

For the ‘corpus view’ (left hand screen,
Figure 5) we customized some commercially
available visualization software to present the con-
versation corpus, clustered by topic. Zooming in to
individual items brings up metadata about that spe-
cific conversation. The different modalities may
also be represented by different icons or colors,



depending on the type of style sheet loaded. Filters
currently available include the modality used, the
participants involved and the time/date the conver-
sation occurred (and shortcuts to selecting all or
none, or the current inverse are also available).
Finally, a navigation window ensures the user does
not get lost when interacting with a massive data
that is topically diverse.

Figure 5: The Corpus View.

The ‘sequence view’ (Figure 6) is where
we envision the majority of an analyst’s time will
be spent. It is here that they will review, in detail, a
small subset of conversations that they found of
interest in the corpus space. For example, in their
exploration of the visualization, the analyst may
find a group of discussions about a particular
chemical substance. Knowing that this is relevant
to a study they are performing, they simply drag a
box around that subset and immediately those con-
versations are shown in the sequence view. Each
conversation has an independent time line and can
be zoomed out to show the entire conversation or
zoomed in to see the individual utterances (these
may also be accessed using tool-tips). The conver-
sation titles on the left hand side of the screen can
be unexpanded to show all the participants in-
volved. Clicking on the participant opens a dialog
box containing known information about that indi-
vidual (including any known aliases and other
names they may use online). A global timeline at
the bottom of the screen shows where each conver-
sation falls in sequence.
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Once an important conversation is uncov-
ered through the triage process, it can be selected
for deeper investigation in the details view (Figure
7). This view can enable the analyst to see beyond
the individual utterances. Utilizing other research
performed at the Pacific Northwest National Labo-
ratory, the details view enables the analyst to gain
insight into an individual’s opinion on the topics
discussed. The transcript is color-coded to show
the seven dimensions of affect (expression, power,
ethics, attainment, skill, accomplishment and
transactions), while a graph representation allows
the analyst to compare individuals’ affect against
each other. In order to ingest the text in different
ways, a ‘text-to-speech’ engine can be used to have
the computer ‘speak’ the transcript. As it steps
through the utterances, a group dynamics graphic
(based on Erickson’s Social Proxy) shows how the
individuals relate to each other, highlighting those
involved in the conversation and those that are
idle. This view also provides a hierarchical view of
the topics discussed with the ability to trigger a
multi-dimensional visualization that maps partici-
pants to topics.
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3 Evaluation and Data Sets

In addition to the prototype system, an evalua-
tion plan was developed. The current dataset being
used to demonstrate the system was synthesized
from news reports about the London bombings of
7th July 2005. The evaluation will use a new
dataset build up from telephone transcripts from
the regional August 14, 2003 blackout® to ensure
any analysts used that were involved in the devel-
opment of the prototype will not benefit from any
potential learning effects. This data is made up of
several participants involved in many different
conversations. These characteristics are exactly
what RACE was designed for. Another dataset is a
transcript of a murder mystery held on a chat room.
While there was only space for characters to inter-
act, there are many different threads of conversa-
tion going on at once. This data set will be useful
for exploring the social dynamic part of RACE.
We hope to show who the conversational “drivers”
were and explore what characteristics give some-
one away as hiding details they do not want other
characters to discover.

4 Summary & Further Work

The ultimate goal of the RACE project is to
assist analysts as they try to extract meaning from
a myriad of sources. To this end, we started by
talking with analysts themselves. This is in recog-
nition of the fact that no matter how powerful a
tool might seem to its developers, it is useless un-

2 http://www.nerc.com/~filez/blackout.html
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less the end users actually adopt it. By working
with analysts every step of the way, we are keeping
that goal in sight.

RACE’s design as a test bed enables other re-
search to get in front of the analyst sooner. The
quick insertion of the text affect work illustrates
the capability to make functionality available to the
user for evaluation. Showing an analyst a concrete
example of an idea allows them to get a better un-
derstanding of it and an easier way to elicit feed-
back for future work.

While this is an exciting first step, there are
many avenues of crucial research still to be per-
formed. In many fields, having access to all the
communications events that occurred is rare. Re-
search needs to be performed to determine how
best to enable the analyst to fill in these blanks.
Potential approaches include hypothesized infer-
ence or the use placeholders.

Currently, the prototype analytical envi-
ronment only processes and displays textual tran-
scripts of communication events. This decision
was made to handle textual content first so to en-
sure proof of principle prior to expending effort on
the more challenging aspect of fusing video, audio,
still images and text (VAST). Some effort has been
expended on looking for suitable design metaphors
that could aid an analyst in making sense of such
diverse media (e.g., video production user inter-
faces such as Final Cut Pro) but more research,
design and evaluation is required.

More effort needs to be expended on un-
derstanding how best to fuse different modalities
of communication. Currently, a time-shifting ap-
proach is used to normalize an asynchronous email
thread with similar-topic synchronous communica-
tions (e.g., telephone call, instant messaging ses-
sion). This approach works but needs to be refined
in order to be successful. At one level, the modal-
ity used is irrelevant — it is the essence of the event
that is of primary concern. Being able to boil down
the associated threads into one specific stream
(e.g., multiple conversations across a number of
modalities, all around the topic of plotting to ex-
plode a device at a particular location) is crucial in
being able to support the analytical tradecraft and
allow analysts to provide actionable intelligence to
their superiors.

Conversations rarely keep to one single
focused topic, and this can cause problems in the
cluster visualization type approach used so far.



Topic segmentation is a difficult research area and
not one that we intend to pursue. There are at least
three projects currently on the way at our institu-
tion that deal with this area and this work intends
to utilize the fruits of those labors.

Finally, there are many elements of multi-
party discourse that exist outside linguistic bounda-
ries. The words we use, how often we make an
utterance, etc., all speak to who we are as individu-
als. While some of this is obvious and can be ob-
served with just a cursory review of a transcript of
the source material, other elements are discrete and
hidden. For example, conversational statistics can
be recorded and used to determine an individual’s
level of engagement in a topic. Detection of fa-
miliarity (e.g., either by specific words not cur-
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Mkhan30 Next weekend, I believe we should do another test run. This time we wil all have backpacks with o
weights in them roughly equivalent to the weight of the bombs.

Jamaican19 Ok, which day do you want to do this?

Mkhan3o Sunday wil work, although I believe we should do an additional test run later on during the week so
we can an idea of what the crowd is going to be like on the lines.

Delinquent18 Ok, good idea

Cricketlover22 Sunday works for me

Jamaican19 Me too
Ok great. It wil be just like last time. Hasib, Shehzad and I wil meet at 8:00 and travel to Luton

Mkan30 together in my car. We wil meet up with you, Germaine at the train station. From Luton we wil all
fravel to King's Cross station and at King’s Cross station we will go our separate ways.
MNow this is just a test run. Hasib and Germaine use this to your advantage to prepare yourself for

Cricketlover2z the day of the attack. Remember to look as least suspicious as possible. Act like you are normal
ridler.

Jamaican19 1 wil do so i

Deli Don't worry Allah is on our side and we will finally show the British government that there

iquent18 . N ok .

occupation of Iraq is only the return of colonialism of the old empire.

Cricketlover22 Ok, I will see all of you on Sunday. Fi Amanullah
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