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Abstract

We demonstrate that bootstrapping a gene
name recognizer for FlyBase curation
from automatically annotated noisy text is
more effective than fully supervised train-
ing of the recognizer on more general
manually annotated biomedical text. We
present a new test set for this task based on
an annotation scheme which distinguishes
gene names from gene mentions, enabling
a more consistent annotation. Evaluating
our recognizer using this test set indicates
that performance on unseen genes is its
main weakness. We evaluate extensions
to the technique used to generate training
data designed to ameliorate this problem.

1 Introduction

The biomedical domain is of great interest to in-
formation extraction, due to the explosion in the
amount of available information. In order to deal
with this phenomenon, curated databases have been
created in order to assist researchers to keep up with
the knowledge published in their field (Hirschman et
al., 2002; Liu and Friedman, 2003). The existence
of such resources in combination with the need to
perform information extraction efficiently in order
to promote research in this domain, make it a very
interesting field to develop and evaluate information
extraction approaches.

Named entity recognition (NER) is one of the
most important tasks in information extraction. It
has been studied extensively in various domains,
including the newswire (Tjong Kim Sang and

De Meulder, 2003) domain and more recently the
biomedical domain (Blaschke et al., 2004; Kim et
al., 2004). These shared tasks aimed at evaluat-
ing fully supervised trainable systems. However,
the limited availability of annotated material in most
domains, including the biomedical, restricts the ap-
plication of such methods. In order to circum-
vent this obstacle several approaches have been pre-
sented, among them active learning (Shen et al.,
2004) and rule-based systems encoding domain spe-
cific knowledge (Gaizauskas et al., 2003).

In this work we build on the idea of bootstrapping,
which has been applied by Collins & Singer (1999)
in the newsire domain and by Morgan et al. (2004)
in the biomedical domain. This approach is based on
creating training material automatically using exist-
ing domain resources, which in turn is used to train
a supervised named entity recognizer.

The structure of this paper is the following. Sec-
tion 2 describes the construction of a new test set
to evaluate named entity recognition for Drosophila
fly genes. Section 3 compares bootstrapping to the
use of manually annotated material for training a su-
pervised method. An extension to the evaluation of
NER appear in Section 4. Based on this evaluation,
section 5 discusses ways of improving the perfor-
mance of a gene name recognizer bootstrapped on
FlyBase resources. Section 6 concludes the paper
and suggests some future work.

2 Building a test set

In this section we present a new test set created to
evaluate named entity recognition for Drosophila fly
genes. To our knowledge, there is only one other
test set built for this purpose, presented in Morgan et
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al. (2004), which was annotated by two annotators.
The inter-annotator agreement achieved was 87% F-
score between the two annotators, which according
to the authors reflects the difficulty of the task.

Vlachos et al (2006) evaluated their system on
both versions of this test set and obtained signifi-
cantly different results. The disagreements between
the two versions were attributed to difficulties in ap-
plying the guidelines used for the annotation. There-
fore, they produced a version of this dataset resolv-
ing the differences between these two versions using
revised guidelines, partially based on those devel-
oped for ACE (2004). In this work, we applied these
guidelines to construct a new test set, which resulted
in their refinement and clarification.

The basic idea is that gene names (<gn>) are an-
notated in any position they are encountered in the
text, including cases where they are not referring to
the actual gene but they are used to refer to a differ-
ent entity. Names of gene families, reporter genes
and genes not belonging to Drosophila are tagged as
gene names too:

• the <gn>faf</gn> gene

• the <gn>Toll</gn> protein

• the <gn>string</gn>-<gn>LacZ</gn>
reporter genes

In addition, following the ACE guidelines, for
each gene name we annotate the shortest surround-
ing noun phrase. These noun phrases are classified
further into gene mentions (<gm>) and other men-
tions (<om>), depending on whether the mentions
refer to an actual gene or not respectively. Most of
the times, this distinction can be performed by look-
ing at the head noun of the noun phrase:

• <gm>the <gn>faf</gn> gene</gm>

• <om>the <gn>Reaper</gn> protein</om>

However, in many cases the noun phrase itself
is not sufficient to classify the mention, especially
when the mention consists of just the gene name, be-
cause it is quite common in the biomedical literature
to use a gene name to refer to a protein or to other
gene products. In order to classify such cases, the
annotators need to take into account the context in
which the mention appears. In the following exam-
ples, the word of the context that enables us to make

Morgan et al. new dataset
abstracts 86 82

tokens 16779 15703
gene-names 1032 629

unique 347 326
gene-names

Table 1: Statistics of the datasets

the distinction between gene mentions (<gm>) and
other mentions is underlined:

• ... ectopic expression of
<gm><gn>hth</gn></gm> ...

• ... transcription of
<gm><gn>string</gn></gm> ...

• ... <om><gn>Rols7</gn></om> localizes ...

It is worth noticing as well that sometimes more
than one gene name may appear within the same
noun phrase. As the examples that follow demon-
strate, this enables us to annotate consistently cases
of coordination, which is another source of disagree-
ment (Dingare et al., 2004):

• <gm><gn>male-specific lethal-1</gn>,
<gn>-2</gn> and <gn>-3</gn> genes</gm>

The test set produced consists of the abstracts
from 82 articles curated by FlyBase1. We used the
tokenizer of RASP2 (Briscoe and Carroll, 2002) to
process the text, resulting in 15703 tokens. The size
and the characteristics of the dataset is comparable
with that of Morgan et al (2004) as it can be observed
from the statistics of Table 1, except for the num-
ber of non-unique gene-names. Apart from the dif-
ferent guidelines, another difference is that we used
the original text of the abstracts, without any post-
processing apart from the tokenization. The dataset
from Morgan et al. (2004) had been stripped from
all punctuation characters, e.g. periods and commas.
Keeping the text intact renders this new dataset more
realistic and most importantly it allows the use of
tools that rely on this information, such as syntactic
parsers.

The annotation of gene names was performed
by a computational linguist and a FlyBase curator.

1www.flybase.net
2http://www.cogs.susx.ac.uk/lab/nlp/rasp/
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We estimated the inter-annotator agreement in two
ways. First, we calculated the F-score achieved be-
tween them, which was 91%. Secondly, we used the
Kappa coefficient (Carletta, 1996), which has be-
come the standard evaluation metric and the score
obtained was 0.905. This high agreement score
can be attributed to the clarification of what gene
name should capture through the introduction of
gene mention and other mention. It must be men-
tioned that in the experiments that follow in the rest
of the paper, only the gene names were used to eval-
uate the performance of bootstrapping. The identifi-
cation and the classification of mentions is the sub-
ject of ongoing research.

The annotation of mentions presented greater dif-
ficulty, because computational linguists do not have
sufficient knowledge of biology in order to use the
context of the mentions whilst biologists are not
trained to identify noun phrases in text. In this ef-
fort, the boundaries of the mentions where defined
by the computational linguist and the classification
was performed by the curator. A more detailed de-
scription of the guidelines, as well as the corpus it-
self in IOB format are available for download3.

3 Bootstrapping NER

For the bootstrapping experiments presented in this
paper we employed the system developed by Vla-
chos et al. (2006), which was an improvement of the
system of Morgan et al. (2004). In brief, the ab-
stracts of all the articles curated by FlyBase were
retrieved and tokenized by RASP (Briscoe and Car-
roll, 2002). For each article, the gene names and
their synonyms that were recorded by the curators
were annotated automatically on its abstract using
longest-extent pattern matching. The pattern match-
ing is flexible in order to accommodate capitaliza-
tion and punctuation variations. This process re-
sulted in a large but noisy training set, consisting
of 2,923,199 tokens and containing 117,279 gene
names, 16,944 of which are unique. The abstracts
used in the test set presented in the previous section
were excluded. We used them though to evaluate the
performance of the training data generation process
and the results were 73.5% recall, 93% precision and
82.1% F-score.

3www.cl.cam.ac.uk/users/av308/Project Index/node5.html

Training Recall Precision F-score
std 75% 88.2% 81.1%

std-enhanced 76.2% 87.7% 81.5%
BioCreative 35.9% 37.4% 36.7%

Table 2: Results using Vlachos et al. (2006) system

This material was used to train the HMM-based
NER module of the open-source toolkit LingPipe4.
The performance achieved on the corpus presented
in the previous section appears in Table 2 in the row
“std”. Following the improvements suggested by
Vlachos et al. (2006), we also re-annotated as gene-
names the tokens that were annotated as such by the
data generation process more than 80% of the time
(row “std-enhanced”), which slightly increased the
performance.

In order to assess the usefulness of this bootstrap-
ping method, we evaluated the performance of the
HMM-based tagger if we trained it on manually an-
notated data. For this purpose we used the anno-
tated data from BioCreative-2004 (Blaschke et al.,
2004) task 1A. In that task, the participants were re-
quested to identify which terms in a biomedical re-
search article are gene and/or protein names, which
is roughly the same task as the one we are deal-
ing with in this paper. Therefore we would expect
that, even though the material used for the anno-
tation is not drawn from the exact domain of our
test data (FlyBase curated abstracts), it would still
be useful to train a system to identify gene names.
The results in Table 2 show that this is not the case.
Apart from the domain shift, the deterioration of the
performance could also be attributed to the differ-
ent guidelines used. However, given that the tasks
are roughly the same, it is a very important result
that manually annotated training material leads to
so poor performance, compared to the performance
achieved using automatically created training data.
This evidence suggests that manually created re-
sources, which are expensive, might not be useful
even in slightly different tasks than those they were
initially designed for. Moreover, it suggests that
the use of semi-supervised or unsupervised methods
for creating training material are alternatives worth-
exploring.

4http://www.alias-i.com/lingpipe/
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4 Evaluating NER

The standard evaluation metric used for NER is the
F-score (Van Rijsbergen, 1979), which is the har-
monic average of Recall and Precision. It is very
successful and popular, because it penalizes systems
that underperform in any of these two aspects. Also,
it takes into consideration the existence multi-token
entities by rewarding systems able to identify the
entity boundaries correctly and penalizing them for
partial matches. In this section we suggest an exten-
sion to this evaluation, which we believe is mean-
ingful and informative for trainable NER systems.

Two are the main expectations from trainable sys-
tems. The first one is that they will be able to iden-
tify entities that they have encountered during their
training. This is not as easy as it might seem, be-
cause in many domains token(s) representing en-
tity names of a certain type can appear as common
words or representing an entity name of a different
type. Using examples from the biomedical domain,
“to” can be a gene name but it is also used as a prepo-
sition. Also gene names are commonly used as pro-
tein names, rendering the task of distinguishing be-
tween the two types non-trivial, even if examples of
those names exist in the training data. The second
expectation is that trainable systems should be able
to learn from the training data patterns that will al-
low it to generalize to unseen named entities. Im-
portant role in this aspect of the performance play
the features that are dependent on the context and
on observations on the tokens. The ability to gener-
alize to unseen named entities is very significant be-
cause it is unlikely that training material can cover
all possible names and moreover, in most domains,
new names appear regularly.

A common way to assess these two aspects is to
measure the performance on seen and unseen data
separately. It is straightforward to apply this in tasks
with token-based evaluation, such as part-of-speech
tagging (Curran and Clark, 2003). However, in the
case of NER, this is not entirely appropriate due
to the existence of multi-token entities. For exam-
ple, consider the case of the gene-name “head inhi-
bition defective”, which consists of three common
words that are very likely to occur independently of
each other in a training set. If this gene name ap-
pears in the test set but not in the training set, with

a token-based evaluation its identification (or not)
would count towards the performance on seen to-
kens if the tokens appeared independently. More-
over, a system would be rewarded or penalized for
each of the tokens. One approach to circumvent
these problems and evaluate the performance of a
system on unseen named entities, is to replace all
the named entities of the test set with strings that
do not appear in the training data, as in Morgan et
al. (2004). There are two problems with this eval-
uation. Firstly, it alters the morphology of the un-
seen named entities, which is usually a source of
good features to recognize them. Secondly, it affects
the contexts in which the unseen named entities oc-
cur, which don’t have to be the same as that of seen
named entities.

In order to overcome these problems, we used the
following method. We partitioned the correct an-
swers and the recall errors according to whether the
named entity at question have been encountered in
the training data as a named entity at least once. The
precision errors are partitioned in seen and unseen
depending on whether the string that was incorrectly
annotated as a named entity by the system has been
encountered in the training data as a named entity
at least once. Following the standard F-score defi-
nition, partially recognized named entities count as
both precision and recall errors.

In examples from the biomedical domain, if “to”
has been encountered at least once as a gene name in
the data but an occurrence of in the test dataset is er-
roneously tagged as a gene name, this will count as a
precision error on seen named entities. Similarly, if
“to” has never been encountered in the training data
as a gene name but an occurrence of it in the test
dataset is erroneously tagged as a common word,
this will count as a recall error on unseen named en-
tities. In a multi-token example, if “head inhibition
defective” is a gene name in the test dataset and it
has been seen as such in the training data but the
NER system tagged (erroneously) “head inhibition”
as a gene name (which is not the training data), then
this would result in a recall error on seen named en-
tities and a precision error on unseen named entities.

5 Improving performance

Using this extended evaluation we re-evaluated the
named entity recognition system of Vlachos et
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Recall Precision F-score # entities
seen 95.9% 93.3% 94.5% 495

unseen 32.3% 63% 42.7% 134
overall 76.2% 87.7% 81.5% 629

Table 3: Extended evaluation

al. (2006) and Table 3 presents the results. The big
gap in the performance on seen and unseen named
entities can be attributed to the highly lexicalized
nature of the algorithm used. Tokens that have not
been seen in the training data are passed on to a mod-
ule that classifies them according to their morphol-
ogy, which given the variety of gene names and their
overlap with common words is unlikely to be suffi-
cient. Also, the limited window used by the tagger
(previous label and two previous tokens) does not
allow the capture of long-range contexts that could
improve the recognition of unseen gene names.

We believe that this evaluation allows fair com-
parison between the data generation process that
creating the training data and the HMM-based tag-
ger. This comparison should take into account the
performance of the latter only on seen named enti-
ties, since the former is applied only on those ab-
stracts for which lists of the genes mentioned have
been compiled manually by the curators. The re-
sult of this comparison is in favor of the HMM,
which achieves 94.5% F-score compared to 82.1%
of the data generation process, mainly due to the im-
proved recall (95.9% versus 73.5%). This is a very
encouraging result for bootstrapping techniques us-
ing noisy training material, because it demonstrates
that the trained classifier can deal efficiently with the
noise inserted.

From the analysis performed in this section, it
becomes obvious that the system is rather weak in
identifying unseen gene names. The latter contribute
31% of all the gene names in our test dataset, with
respect to the training data produced automatically
to train the HMM. Each of the following subsec-
tions describes different ideas employed to improve
the performance of our system. As our baseline,
we kept the version that uses the training data pro-
duced by re-annotating as gene names tokens that
appear as part of gene names more than 80% of
times. This version has resulted in the best perfor-
mance obtained so far.

Training Recall Precision F-score cover
bsl 76.2% 87.7% 81.5% 69%
sub 73.6% 83.6% 78.3% 69.6%

bsl+sub 82.2% 83.4% 82.8% 79%

Table 4: Results using substitution

5.1 Substitution

A first approach to improve the overall performance
is to increase the coverage of gene names in the
training data. We noticed that the training set
produced by the process described earlier contains
16944 unique gene names, while the dictionary of
all gene names from FlyBase contains 97227 entries.
This observation suggests that the dictionary is not
fully exploited. This is expected, since the dictio-
nary entries are obtained from the full papers while
the training data generation process is applied only
to their abstracts which are unlikely to contain all of
them.

In order to include all the dictionary entries in
the training material, we substituted in the training
dataset produced earlier each of the existing gene
names with entries from the dictionary. The pro-
cess was repeated until each of the dictionary entries
was included once in the training data. The assump-
tion that we take advantage of is that gene names
should appear in similar lexical contexts, even if the
resulting text is nonsensical from a biomedical per-
spective. For example, in a sentence containing the
phrase “the sws mutant”, the immediate lexical con-
text could justify the presence of any gene name in
the place “sws”, even though the whole sentence
would become untruthful and even incomprehensi-
ble. Although through this process we are bound
to repeat errors of the training data, we expect the
gains from the increased coverage to alleviate their
effect. The resulting corpus consisted of 4,062,439
tokens containing each of the 97227 gene names of
the dictionary once. Training the HMM-based tag-
ger with this data yielded 78.3% F-score (Table 4,
row “sub”). 438 out of the 629 genes of the test set
were seen in the training data.

The drop in precision exemplifies the importance
of using naturally occurring training material. Also,
59 gene names that were annotated in the training
data due to the flexible pattern matching are not in-
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Training Recall Precision F unseen
score F score

bsl 76.2% 87.7% 81.5% 42.7%
bsl-excl 80.8% 81.1% 81% 51.3%

Table 5: Results excluding sentences without enti-
ties

cluded anymore since they are not in the dictionary,
which explains the drop in recall. Given these ob-
servations, we trained HMM-based tagger on both
versions of the training data, which consisted of
5,527,024 tokens, 218,711 gene names, 106,235 of
which are unique. The resulting classifier had seen
in its training data 79% of the gene names in the
test set (497 out of 629) and it achieved 82.8% F-
score (row “bsl+sub” in Table 4). It is worth point-
ing out that this improvement is not due to amelio-
rating the performance on unseen named entities but
due to including more of them in the training data,
therefore taking advantage of the high performance
on seen named entities (93.7%). Direct comparisons
between these three versions of the system on seen
and unseen gene names are not meaningful because
the separation in seen and seen gene names changes
with the the genes covered in the training set and
therefore we would be evaluating on different data.

5.2 Excluding sentences not containing entities

From the evaluation of the dictionary based tagger in
Section 3 we confirmed our initial expectation that
it achieves high precision and relatively low recall.
Therefore, we anticipate most mistakes in the train-
ing data to be unrecognized gene names (false neg-
atives). In an attempt to reduce them, we removed
from the training data sentences that did not contain
any annotated gene names. This process resulted
in keeping 63,872 from the original 111,810 sen-
tences. Apparently, such processing would remove
many correctly identified common words (true neg-
atives), but given that the latter are more frequent in
our data we expect it not to have significant impact.
The results appear in Table 5.

In this experiment, we can compare the perfor-
mances on unseen data because the gene names that
were included in the training data did not change.
As we expected, the F-score on unseen gene names
rose substantially, mainly due to the improvement in

recall (from 32.3% to 46.2%). The overall F-score
deteriorated, which is due to the drop in precision.
An error analysis showed that most of the precision
errors introduced were on tokens that can be part
of gene names as well as common words, which
suggests that removing from the training data sen-
tences without annotated entities, deprives the clas-
sifier from contexts that would help the resolution
of such cases. Still though, such an approach could
be of interest in cases where we expect a significant
amount of novel gene names.

5.3 Filtering contexts

The results of the previous two subsections sug-
gested that improvements can be achieved through
substitution and exclusion of sentences without en-
tities, attempting to include more gene names in the
training data and exclude false negatives from them.
However, the benefits from them were hampered be-
cause of the crude way these methods were applied,
resulting in repetition of mistakes as well as exclu-
sion of true negatives. Therefore, we tried to fil-
ter the contexts used for substitution and the sen-
tences that were excluded using the confidence of
the HMM based tagger.

In order to accomplish this, we used the “std-
enhanced” version of the HMM based tagger to re-
annotate the training data that had been generated
automatically. From this process, we obtained a sec-
ond version of the training data which we expected
to be different from the original one by the data gen-
eration process, since the HMM based tagger should
behave differently. Indeed, the agreement between
the training data and its re-annotation by the HMM
based tagger was 96% F-score. We estimated the
entropy of the tagger for each token and for each
sentence we calculated the average entropy over all
its tokens. We expected that sentences less likely
to contain errors would be sentences on which the
two versions of the training data would agree and
in addition the HMM based tagger would annotate
with low entropy, an intuition similar to that of co-
training (Blum and Mitchell, 1998). Following this,
we removed from the dataset the sentences on which
the HMM-based tagger disagree with the annota-
tion of the data generation process, or it agreed with
but the average entropy of their tokens was above
a certain threshold. By setting this threshold at
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Training Recall Precision F-score cover
filter 75.6% 85.8% 80.4% 65.5%

filter-sub 80.1% 81% 80.6% 69.6%
filter-sub 83.3% 82.8% 83% 79%

+bsl

Table 6: Results using filtering

0.01, we kept 72,534 from the original 111,810 sen-
tences, which contained 61798 gene names, 11,574
of which are unique. Using this dataset as training
data we achieved 80.4% F-score (row “filter” in Ta-
ble 6). Even though this score is lower than our
baseline (81.5% F-score), this filtered dataset should
be more appropriate to apply substitution because it
would contain fewer errors.

Indeed, applying substitution to this dataset re-
sulted in better results, compared to applying it to
the original data. The performance of the HMM-
based tagger trained on it was 80.6% F-score (row
“filter-sub” in Table 6) compared to 78.3% (row
“sub” in Table 4). Since both training datasets
contain the same gene names (the ones contained
in the FlyBase dictionary), we can also compare
the performance on unseen data, which improved
from 46.7% to 48.6%. This improvement can be
attributed to the exclusion of some false negatives
from the training data, which improved the recall on
unseen data from 42.9% to 47.1%. Finally, we com-
bined the dataset produced with filtering and substi-
tution with the original dataset. Training the HMM-
based tagger on this dataset resulted in 83% F-score,
which is the best performance we obtained.

6 Conclusions - Future work

In this paper we demonstrated empirically the effi-
ciency of using automatically created training mate-
rial for the task of Drosophila gene name recogni-
tion by comparing it with the use of manually an-
notated material from the broader biomedical do-
main. For this purpose, a test dataset was created
using novel guidelines that allow more consistent
manual annotation. We also presented an informa-
tive evaluation of the bootstrapped NER system that
revealed that indicated its weakness in identifying
unseen gene names. Based on this result we ex-
plored ways to improve its performance. These in-

cluded taking fuller advantage of the dictionary of
gene names from FlyBase, as well as filtering out
likely mistakes from the training data using confi-
dence estimations from the HMM-based tagger.

Our results point out some interesting directions
for research. First of all, the efficiency of bootstrap-
ping calls for its application in other tasks for which
useful domain resources exist. As a complement
task to NER, the identification and classification of
the mentions surrounding the gene names should
be tackled, because it is of interest to the users of
biomedical IE systems to know not only the gene
names but also whether the text refers to the actual
gene or not. This could also be useful to anaphora
resolution systems. Future work for bootstrapping
NER in the biomedical domain should include ef-
forts to incorporate more sophisticated features that
would be able to capture more abstract contexts. In
order to evaluate such approaches though, we be-
lieve it is important to test them on full papers which
present greater variety of contexts in which gene
names appear.
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