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Abstract 

In this paper, we construct a biomedical 
semantic role labeling (SRL) system that 
can be used to facilitate relation extraction. 
First, we construct a proposition bank on 
top of the popular biomedical GENIA 
treebank following the PropBank annota-
tion scheme. We only annotate the predi-
cate-argument structures (PAS’s) of thirty 
frequently used biomedical predicates and 
their corresponding arguments. Second, 
we use our proposition bank to train a 
biomedical SRL system, which uses a 
maximum entropy (ME) model. Thirdly, 
we automatically generate argument-type 
templates which can be used to improve 
classification of biomedical argument 
types. Our experimental results show that 
a newswire SRL system that achieves an 
F-score of 86.29% in the newswire do-
main can maintain an F-score of 64.64% 
when ported to the biomedical domain. 
By using our annotated biomedical corpus, 
we can increase that F-score by 22.9%. 
Adding automatically generated template 
features further increases overall F-score 
by 0.47% and adjunct arguments (AM) F-
score by 1.57%, respectively. 

1 Introduction 

The volume of biomedical literature available has 
experienced unprecedented growth in recent years. 
The ability to automatically process this literature 
would be an invaluable tool for both the design and 
interpretation of large-scale experiments. To this 
end, more and more information extraction (IE) 
systems using natural language processing (NLP) 
have been developed for use in the biomedical 
field. A key IE task in the biomedical field is ex-
traction of relations, such as protein-protein and 
gene-gene interactions. 

Currently, most biomedical relation-extraction 
systems fall under one of the following three ap-
proaches: cooccurence-based (Leroy et al., 2005), 
pattern-based (Huang et al., 2004), and machine-
learning-based. All three, however, share the same 
limitation when extracting relations from complex 
natural language. They only extract the relation 
targets (e.g., proteins, genes) and the verbs repre-
senting those relations, overlooking the many ad-
verbial and prepositional phrases and words that 
describe location, manner, timing, condition, and 
extent. The information in such phrases may be 
important for precise definition and clarification of 
complex biological relations. 

The above problem can be tackled by using se-
mantic role labeling (SRL) because it not only rec-
ognizes main roles, such as agents and objects, but 
also extracts adjunct roles such as location, manner, 
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timing, condition, and extent. The goal of SRL is 
to group sequences of words together and classify 
them with semantic labels. In the newswire domain, 
Morarescu et al. (2005) have demonstrated that 
full-parsing and SRL can improve the performance 
of relation extraction, resulting in an F-score in-
crease of 15% (from 67% to 82%). This significant 
result leads us to surmise that SRL may also have 
potential for relation extraction in the biomedical 
domain. Unfortunately, no SRL system for the 
biomedical domain exists. 

In this paper, we aim to build such a biomedical 
SRL system. To achieve this goal we roughly im-
plement the following three steps as proposed by 
Wattarujeekrit et al., (2004): (1) create semantic 
roles for each biomedical verb; (2) construct a 
biomedical corpus annotated with verbs and their 
corresponding semantic roles (following defini-
tions created in (1) as a reference resource;) (3) 
build an automatic semantic interpretation model 
using the annotated text as a training corpus for 
machine learning. In the first step, we adopt the 
definitions found in PropBank (Palmer et al., 2005), 
defining our own framesets for verbs not in Prop-
Bank, such as “phosphorylate”. In the second step, 
we first use an SRL system (Tsai et al., 2005) 
trained on the Wall Street Journal (WSJ) to auto-
matically tag our corpus. We then have the results 
double-checked by human annotators. Finally, we 
add automatically-generated template features to 
our SRL system to identify adjunct (modifier) ar-
guments, especially those highly relevant to the 
biomedical domain. 

2 Biomedical Proposition Bank  

As proposition banks are semantically annotated 
versions of a Penn-style treebank, they provide 
consistent semantic role labels across different syn-
tactic realizations of the same verb (Palmer et al., 
2005). The annotation captures predicate-argument 
structures based on the sense tags of polysemous 
verbs (called framesets) and semantic role labels 
for each argument of the verb. Figure 1 shows the 
annotation of semantic roles, exemplified by the 
following sentence: “IL4 and IL13 receptors acti-
vate STAT6, STAT3 and STAT5 proteins in the 
human B cells.” The chosen predicate is the word 
“activate”; its arguments and their associated word 
groups are illustrated in the figure. 

 

 
Figure 1. A Treebank Annotated with Semantic 
Role Labels 

Since proposition banks are annotated on top of 
a Penn-style treebank, we selected a biomedical 
corpus that has a Penn-style treebank as our corpus. 
We chose the GENIA corpus (Kim et al., 2003), a 
collection of MEDLINE abstracts selected from 
the search results with the following keywords: 
human, blood cells, and transcription factors. In the 
GENIA corpus, the abstracts are encoded in XML 
format, where each abstract also contains a 
MEDLINE UID, and the title and content of the 
abstract. The text of the title and content is seg-
mented into sentences, in which biological terms 
are annotated with their semantic classes. The 
GENIA corpus is also annotated with part-of-
speech (POS) tags (Tateisi et al., 2004), and co-
references (Yang et al., 2004). 

The Penn-style treebank for GENIA, created by 
Tateisi et al. (2005), currently contains 500 ab-
stracts. The annotation scheme of the GENIA 
Treebank (GTB), which basically follows the Penn 
Treebank II (PTB) scheme (Bies et al., 1995), is 
encoded in XML. However, in contrast to the WSJ 
corpus, GENIA lacks a proposition bank. We 
therefore use its 500 abstracts with GTB as our 
corpus. To develop our biomedical proposition 
bank, BioProp, we add the proposition bank anno-
tation on top of the GTB annotation. 

2.1 Important Argument Types 

In the biomedical domain, relations are often de-
pendent upon locative and temporal factors 
(Kholodenko, 2006). Therefore, locative (AM-
LOC) and temporal modifiers (AM-TMP) are par-
ticularly important as they tell us where and when 
biomedical events take place. Additionally, nega-
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tive modifiers (AM-NEG) are also vital to cor-
rectly extracting relations. Without AM-NEG, we 
may interpret a negative relation as a positive one 
or vice versa. In total, we use thirteen modifiers in 
our biomedical proposition bank. 

2.2 Verb Selection 

We select 30 frequently used verbs from the mo-
lecular biology domain given in Table 1. 

express trigger encode 
associate repress enhance 
interact signal increase 
suppress activate induce 
prevent alter Inhibit 

modulate affect Mediate 
phosphorylate bind Mutated 
transactivate block Reduce 

transform decrease Regulate 
differentiated promote Stimulate 

Table 1. 30 Frequently Biomedical Verbs 

Let us examine a representative verb, “activate”. 
Its most frequent usage in molecular biology is the 
same as that in newswire. Generally speaking, “ac-
tivate” means, “to start a process” or “to turn on.” 
Many instances of this verb express the action of 
waking genes, proteins, or cells up. The following 
sentence shows a typical usage of the verb “acti-
vate.”  
[NF-kappaB

 Arg1
] is [not

 AM-NEG
] [activated

predicate
] [upon tetra-

cycline removal
AM-TMP

] [in the NIH3T3 cell line
AM-LOC

]. 

3 Semantic Role Labeling on BioProp 

In this section, we introduce our BIOmedical Se-
MantIc roLe labEler, BIOSMILE. Like POS tag-
ging, chunking, and named entity recognition, SRL 
can be formulated as a sentence tagging problem. 
A sentence can be represented by a sequence of 
words, a sequence of phrases, or a parsing tree; the 
basic units of a sentence are words, phrases, and 
constituents arranged in the above representations, 
respectively. Hacioglu et al. (2004) showed that 
tagging phrase by phrase (P-by-P) is better than 
word by word (W-by-W). Punyakanok et al., (2004) 
further showed that constituent-by-constituent (C-
by-C) tagging is better than P-by-P. Therefore, we 
choose C-by-C tagging for SRL. The gold standard 
SRL corpus, PropBank, was designed as an addi-
tional layer of annotation on top of the syntactic 
structures of the Penn Treebank. 

SRL can be broken into two steps. First, we 
must identify all the predicates. This can be easily 
accomplished by finding all instances of verbs of 
interest and checking their POS’s. 

Second, for each predicate, we need to label all 
arguments corresponding to the predicate. It is a 
complicated problem since the number of argu-
ments and their positions vary depending on a 
verb’s voice (active/passive) and sense, along with 
many other factors.  

In this section, we first describe the maximum 
entropy model used for argument classification. 
Then, we illustrate basic features as well as spe-
cialized features such as biomedical named entities 
and argument templates.  

3.1 Maximum Entropy Model 

The maximum entropy model (ME) is a flexible 
statistical model that assigns an outcome for each 
instance based on the instance’s history, which is 
all the conditioning data that enables one to assign 
probabilities to the space of all outcomes. In SRL, 
a history can be viewed as all the information re-
lated to the current token that is derivable from the 
training corpus. ME computes the probability, 
p(o|h), for any o from the space of all possible out-
comes, O, and for every h from the space of all 
possible histories, H. 

The computation of p(o|h) in ME depends on a 
set of binary features, which are helpful in making 
predictions about the outcome. For instance, the 
node in question ends in “cell”, it is likely to be 
AM-LOC. Formally, we can represent this feature 
as follows: 
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Here, current_node_ends_in_cell(h) is a binary 
function that returns a true value if the current 
node in the history, h, ends in “cell”. Given a set of 
features and a training corpus, the ME estimation 
process produces a model in which every feature f i 
has a weight αi. Following Bies et al. (1995), we 
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The probability is calculated by multiplying the 
weights of the active features (i.e., those of f i (h,o) 
= 1).  αi is estimated by a procedure called Gener-
alized Iterative Scaling (GIS) (Darroch et al., 
1972). The ME estimation technique guarantees 
that, for every feature, f i, the expected value of αi 
equals the empirical expectation of αi in the train-
ing corpus. We use Zhang’s MaxEnt toolkit and 
the L-BFGS (Nocedal et al., 1999) method of pa-
rameter estimation for our ME model. 
BASIC FEATURES 

 Predicate – The predicate lemma 
 Path – The syntactic path through the parsing tree from 

the parse constituent be-ing classified to the predicate 
 Constituent type 
 Position – Whether the phrase is located before or after 

the predicate 
 Voice – passive: if the predicate has a POS tag VBN, 

and its chunk is not a VP, or it is preceded by a form of 
“to be” or “to get” within its chunk; otherwise, it is ac-
tive 

 Head word – calculated using the head word table de-
scribed by (Collins, 1999) 

 Head POS – The POS of the Head Word 
 Sub-categorization – The phrase structure rule that ex-

pands the predicate’s parent node in the parsing tree 
 First and last Word and their POS tags 
 Level – The level in the parsing tree 

PREDICATE FEATURES 
 Predicate’s verb class 
 Predicate POS tag 
 Predicate frequency 
 Predicate’s context POS 
 Number of predicates 

FULL PARSING FEATURES 
 Parent’s, left sibling’s, and right sibling’s paths, con-

stituent types, positions, head words and head POS 
tags 

 Head of PP parent – If the parent is a PP, then the head 
of this PP is also used as a feature 

COMBINATION FEATURES 
 Predicate distance combination 
 Predicate phrase type combination 
 Head word and predicate combination 
 Voice position combination 

OTHERS 
 Syntactic frame of predicate/NP 
 Headword suffixes of lengths 2, 3, and 4 
 Number of words in the phrase 
 Context words & POS tags 

Table 2. The Features Used in the Baseline Argu-
ment Classification Model 

3.2 Basic Features 

Table 2 shows the features that are used in our 
baseline argument classification model. Their ef-

fectiveness has been previously shown by (Pradhan 
et al., 2004; Surdeanu et al., 2003; Xue et al., 
2004). Detailed descriptions of these features can 
be found in (Tsai et al., 2005). 

3.3 Named Entity Features 

In the newswire domain, Surdeanu et al. (2003) 
used named entity (NE) features that indicate 
whether a constituent contains NEs, such as per-
sonal names, organization names, location names, 
time expressions, and quantities of money. Using 
these NE features, they increased their system’s F-
score by 2.12%. However, because NEs in the 
biomedical domain are quite different from news-
wire NEs, we create bio-specific NE features using 
the five primary NE categories found in the 
GENIA ontology1: protein, nucleotide, other or-
ganic compounds, source and others. Table 3 illus-
trates the definitions of these five categories. When 
a constituent exactly matches an NE, the corre-
sponding NE feature is enabled.  
 NE Definition 

Protein Proteins include protein groups, families, 
molecules, complexes, and substructures.  

Nucleotide A nucleic acid molecule or the compounds 
that consist of nucleic acids. 

Other organic 
compounds 

Organic compounds exclude protein and 
nucleotide. 

Source 
Sources are biological locations where 
substances are found and their reactions 
take place.  

Others 
The terms that are not categorized as 
sources or substances may be marked up, 
with 

Table 3. Five GENIA Ontology NE Categories 

3.4 Biomedical Template Features 

Although a few NEs tend to belong almost exclu-
sively to certain argument types (such as “…cell” 
being mainly AM-LOC), this information alone is 
not sufficient for argument-type classification. For 
one, most NEs appear in a variety of argument 
types. For another, many appear in more than one 
constituent (node in a parsing tree) in the same 
sentence. Take the sentence “IL4 and IL13 recep-
tors activate STAT6, STAT3 and STAT5 proteins 
in the human B cells,” for example. The NE “the 
human B cells” is found in two constituents (“the 

                                                           
1 http://www-tsujii.is.s.u-tokyo.ac.jp/~genia/topics/Corpus/ 

genia-ontology.html  
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human B cells” and “in the human B cells”) as 
shown in figure 1. Yet only “in the human B cells” 
is an AM-LOC because here “human B cells” is 
preceded by the preposition “in” and the deter-
miner “the”. Another way to express this would be 
as a template—<prep> the <cell>.” We believe 
such templates composed of NEs, real words, and 
POS tags may be helpful in identifying constitu-
ents’ argument types. In this section, we first de-
scribe our template generation algorithm, and then 
explain how we use the generated templates to im-
prove SRL performance. 

Template Generation (TG) 

Our template generation (TG) algorithm extracts 
general patterns for all argument types using the 
local alignment algorithm. We begin by pairing all 
arguments belonging to the same type according to 
their similarity. Closely matching pairs are then 
aligned word by word and a template that fits both 
is created. Each slot in the template is given con-
straint information in the form of either a word, NE 
type, or POS. The hierarchy of this constraint in-
formation is word > NE type > POS. If the argu-
ments share nothing in common for a given slot, 
the TG algorithm will put a wildcard in that posi-
tion. Figure 2 shows an aligned pair arguments. 
For this pair, the TG algorithm generated the tem-
plate “AP-1 CC PTN” (PTN: protein name) be-
cause in the first position, both arguments have 
“AP-1;” in the second position, they have the same 
POS “CC;” and in the third position, they share a 
common NE type, “PTN.” The complete TG algo-
rithm is described in Algorithm 1. 

AP-1/PTN/NN and/O/CC NF-AT/PTN/NN 
AP-1/PTN/NN or/O/CC NFIL-2A/PTN/NN 

Figure 2. Aligned Argument Pair 

Applying Generated Templates 

The generated templates may match exactly or par-
tially with constituents. According to our observa-
tions, the former is more useful for argument 
classification. For example, constituents that per-
fectly match the template “IN a * <cell>” are 
overwhelmingly AM-LOCs. Therefore, we only 
accept exact template matches. That is, if a con-
stituent exactly matches a template t, then the fea-
ture corresponding to t will be enabled. 

Algorithm 1 Template Generation 
Input: Sentences set S = {s1, . . . , sn}, 
Output: A set of template T = {t1, . . . , tk}. 
 
1: T = {}; 
2: for each sentence si from s1 to sn-1 do 
3:    for each sentence sj from si to sn do 
4:        perform alignment on si and sj, then 
5:          pair arguments according to similarity; 
6:        generate common template t from argument pairs; 
7:        T←T∪t; 
8:    end; 
9: end; 
10: return T; 

4 Experiments 

4.1 Datasets 

In this paper, we extracted all our datasets from 
two corpora, the Wall Street Journal (WSJ) corpus 
and the BioProp, which respectively represent the 
newswire and biomedical domains. The Wall 
Street Journal corpus has 39,892 sentences, and 
950,028 words. It contains full-parsing information, 
first annotated by Marcus et al. (1997), and is the 
most famous treebank (WSJ treebank). In addition 
to these syntactic structures, it was also annotated 
with predicate-argument structures (WSJ proposi-
tion bank) by Palmer et al. (2005).  

In biomedical domain, there is one available 
treebank for GENIA, created by Yuka Tateshi et al. 
(2005), who has so far added full-parsing informa-
tion to 500 abstracts. In contrast to WSJ, however, 
GENIA lacks any proposition bank. 

Since predicate-argument annotation is essential 
for training and evaluating statistical SRL systems, 
to make up for GENIA’s lack of a proposition 
bank, we constructed BioProp. Two biologists with 
masters degrees in our laboratory undertook the 
annotation task after receiving computational lin-
guistic training for approximately three months.  

We adopted a semi-automatic strategy to anno-
tate BioProp. First, we used the PropBank to train 
a statistical SRL system which achieves an F-score 
of over 86% on section 24 of the PropBank. Next, 
we used this SRL system to annotate the GENIA 
treebank automatically. Table 4 shows the amounts 
of all adjunct argument types (AMs) in BioProp. 
The detail description of can be found in (Babko-
Malaya, 2005).  
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Type Description # Type Description # 
NEG negation 

marker 
103 ADV general  

purpose 
307

LOC location 389 PNC purpose 3
TMP time 145 CAU cause 15
MNR manner 489 DIR direction 22
EXT extent 23 DIS discourse 

connectives 
179

   MOD modal verb 121

Table 4. Subtypes of the AM Modifier Tag 

4.2 Experiment Design 

Experiment 1: Portability 

Ideally, an SRL system should be adaptable to the 
task of information extraction in various domains 
with minimal effort. That is, we should be able to 
port it from one domain to another. In this experi-
ment, we evaluate the cross-domain portability of 
our SRL system. We use Sections 2 to 21 of the 
PropBank to train our SRL system. Then, we use 
our system to annotate Section 24 of the PropBank 
(denoted by Exp 1a) and all of BioProp (denoted 
by Exp 1b). 

Experiment 2: The Necessity of BioProp 

To compare the effects of using biomedical train-
ing data vs. using newswire data, we train our SRL 
system on 30 randomly selected training sets from 
BioProp (g1,.., g30) and 30 from PropBank (w1,.., 
w30), each having 1200 training PAS’s. We then 
test our system on 30 400-PAS test sets from Bio-
Prop, with g1 and w1 being tested on test set 1, g2 
and w2 on set 2, and so on. Then we add up the 
scores for w1-w30 and g1-g30, and compare their 
averages. 

Experiment 3: The Effect of Using Biomedical-
Specific Features 

In order to improve SRL performance, we add do-
main specific features. In Experiment 3, we inves-
tigate the effects of adding biomedical NE features 
and argument template features composed of 
words, NEs, and POSs. The dataset selection pro-
cedure is the same as in Experiment 2. 

5 Results and Discussion 

All experimental results are summarized in Table 5. 
For argument classification, we report the preci-

sion (P), recall (R) and F-scores (F). The details 
are illustrated in the following paragraphs. 

Configuration Training Test P R F 
Exp 1a PropBank PropBank 90.47 82.48 86.29
Exp 1b PropBank BioProp 75.28 56.64 64.64
Exp 2a PropBank BioProp 74.78 56.25 64.20
Exp 2b BioProp BioProp 88.65 85.61 87.10
Exp 3a BioProp BioProp 88.67 85.59 87.11
Exp 3b BioProp BioProp 89.13 86.07 87.57

Table 5. Summary of All Experiments 

Exp 1a Exp 1b Role 
P R F P R F 

+/-(%)

Overall 90.47 82.48 86.29 75.28 56.64 64.64 -21.65
ArgX 91.46 86.39 88.85 78.92 67.82 72.95 -15.90
Arg0 86.36 78.01 81.97 85.56 64.41 73.49   -8.48
Arg1 95.52 92.11 93.78 82.56 75.75 79.01 -14.77
Arg2 87.19 84.53 85.84 32.76 31.59 32.16 -53.68
AM 86.76 70.02 77.50 62.70 32.98 43.22 -34.28
-ADV 73.44 52.32 61.11 39.27 26.34 31.53 -29.58
-DIS 81.71 48.18 60.62 67.12 48.18 56.09 -4.53
-LOC 89.19 57.02 69.57 68.54 2.67 5.14 -64.43
-MNR 67.93 57.86 62.49 46.55 22.97 30.76 -31.73
-MOD 99.42 92.5 95.84 99.05 88.01 93.2 -2.64
-NEG 100 91.21 95.40 99.61 80.13 88.81 -6.59
-TMP 88.15 72.83 79.76 70.97 60.36 65.24 -14.52

Table 6. Performance of Exp 1a and Exp 1b 

Experiment 1 

Table 6 shows the results of Experiment 1. The 
SRL system trained on the WSJ corpus obtains an 
F-score of 64.64% when used in the biomedical 
domain. Compared to traditional rule-based or 
template-based approaches, our approach suffers 
acceptable decrease in overall performance when 
recognizing ArgX arguments. However, Table 6 
also shows significant decreases in F-scores from 
other argument types. AM-LOC drops 64.43% and 
AM-MNR falls 31.73%. This may be due to the 
fact that the head words in PropBank are quite dif-
ferent from those in BioProp. Therefore, to achieve 
better performance, we believe it will be necessary 
to annotate biomedical corpora for training bio-
medical SRL systems. 

Experiment 2 

Table 7 shows the results of Experiment 2. When 
tested on BioProp, BIOSMILE (Exp 2b) outper-
forms the newswire SRL system (Exp 2a) by 
22.9% since the two systems are trained on differ-
ent domains. This result is statistically significant. 

Furthermore, Table 7 shows that BIOSMILE 
outperforms the newswire SRL system in most 
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argument types, especially Arg0, Arg2, AM-ADV, 
AM-LOC, AM-MNR.  

Exp 2a Exp 2b Role 
P R F P R F 

+/-(%)

Overall 74.78 56.25 64.20 88.65 85.61 87.10 22.90
ArgX 78.40 67.32 72.44 91.96 89.73 90.83 18.39
Arg0 85.55 64.40 73.48 92.24 90.59 91.41 17.93
Arg1 81.41 75.11 78.13 92.54 90.49 91.50 13.37
Arg2 34.42 31.56 32.93 86.89 81.35 84.03 51.10
AM 61.96 32.38 42.53 81.27 76.72 78.93 36.40
-ADV 36.00 23.26 28.26 64.02 52.12 57.46 29.20
-DIS 69.55 51.29 59.04 82.71 75.60 79.00 19.96
-LOC 75.51 3.23 6.20 80.05 85.00 82.45 76.25
-MNR 44.67 21.66 29.17 83.44 82.23 82.83 53.66
-MOD 99.38 88.89 93.84 98.00 95.28 96.62 2.78
-NEG 99.80 79.55 88.53 97.82 94.81 96.29 7.76
-TMP 67.95 60.40 63.95 80.96 61.82 70.11 6.16

Table 7. Performance of Exp 2a and Exp 2b 

The performance of Arg0 and Arg2 in our sys-
tem increases considerably because biomedical 
verbs can be successfully identified by BIOSMILE 
but not by the newswire SRL system. For AM-
LOC, the newswire SRL system scored as low as 
76.25% lower than BIOSMILE. This is likely due 
to the reason that in the biomedical domain, many 
biomedical nouns, e.g., organisms and cells, func-
tion as locations, while in the newswire domain, 
they do not. In newswire, the word “cell” seldom 
appears. However, in biomedical texts, cells repre-
sent the location of many biological reactions, and, 
therefore, if a constituent node on a parsing tree 
contains “cell”, this node is very likely an AM-
LOC. If we use only newswire texts, the SRL sys-
tem will not learn to recognize this pattern. In the 
biomedical domain, arguments of manner (AM-
MNR) usually describe how to conduct an experi-
ment or how an interaction arises or occurs, while 
in newswire they are extremely broad in scope. 
Without adequate biomedical domain training cor-
pora, systems will easily confuse adverbs of man-
ner (AM-MNR), which are differentiated from 
general adverbials in semantic role labeling, with 
general adverbials (AM-ADV). In addition, the 
performance of the referential arguments of Arg0, 
Arg1, and Arg2 increases significantly. 

Experiment 3 

Table 8 shows the results of Experiment 3. The 
performance does not significantly improve after 
adding NE features. We originally expected that 
NE features would improve recognition of AM 
arguments such as AM-LOC. However, they failed 

to ameliorate the results since in the biomedical 
domain most NEs are just matched parts of a con-
stituent. This results in fewer exact matches. Fur-
thermore, in matched cases, NE information alone 
is insufficient to distinguish argument types. For 
example, even if a constituent exactly matches a 
protein name, we still cannot be sure whether it 
belongs to the subject (Arg0) or object (Arg1). 
Therefore, NE features were not as effective as we 
had expected. 

NE (Exp 3a) Template (Exp 3b) Role 
P R F P R F 

+/-(%)

Overall 88.67 85.59 87.11 89.13 86.07 87.57 0.46
ArgX 91.99 89.70 90.83 91.89 89.73 90.80 -0.03
Arg0 92.41 90.57 91.48 92.19 90.59 91.38 -0.1
Arg1 92.47 90.45 91.45 92.42 90.44 91.42 -0.03
Arg2 86.93 81.3 84.02 87.08 81.66 84.28 0.26
AM 81.30 76.75 78.96 82.96 78.18 80.50 1.54
-ADV 64.11 52.23 57.56 65.66 55.60 60.21 2.65
-DIS 82.51 75.42 78.81 83.00 75.79 79.23 0.42
-LOC 80.07 85.09 82.50 84.24 85.48 84.86 2.36
-MNR 83.50 82.19 82.84 84.56 84.14 84.35 1.51
-MOD 98.14 95.28 96.69 98.00 95.28 96.62 -0.07
-NEG 97.66 94.81 96.21 97.82 94.81 96.29 0.08
-TMP 81.14 62.06 70.33 83.10 63.95 72.28 1.95

Table 8. Performance of Exp 3a and Exp 3b 

6 Conclusions and Future Work 

In Experiment 3b, we used the argument templates 
as features. Since ArgX’s F-score is close to 90%, 
adding the template features does not improve its 
score. However, AM’s F-score increases by 1.54%. 
For AM-ADV, AM-LOC, and AM-TMP, the in-
crease is greater because the automatically gener-
ated templates effectively extract these AMs.  

In Figure 3, we compare the performance of ar-
gument classification models with and without ar-
gument template features. The overall F-score 
improves only slightly. However, the F-scores of 
main adjunct arguments increase significantly. 

The contribution of this paper is threefold. First, 
we construct a biomedical proposition bank, Bio-
Prop, on top of the popular biomedical GENIA 
treebank following the PropBank annotation 
scheme. We employ semi-automatic annotation 
using an SRL system trained on PropBank, thereby 
significantly reducing annotation effort. Second, 
we create BIOSMILE, a biomedical SRL system, 
which uses BioProp as its training corpus. Thirdly, 
we develop a method to automatically generate 
templates that can boost overall performance, es-
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pecially on location, manner, adverb, and temporal 
arguments. In the future, we will expand BioProp 
to include more verbs and will also integrate an 
automatic parser into BIOSMILE. 

 
Figure 3. Improvement of Template Features 
Overall and on Several Adjunct Types 

Acknowledgement 
We would like to thank Dr. Nianwen Xue for his 
instruction of using the WordFreak annotation tool. 
This research was supported in part by the National 
Science Council under grant NSC94-2752-E-001-
001 and the thematic program of Academia Sinica 
under grant AS94B003. Editing services were pro-
vided by Dorion Berg. 

References  
Babko-Malaya, O. (2005). Propbank Annotation 

Guidelines. 
Bies, A., Ferguson, M., Katz, K., MacIntyre, R., 

Tredinnick, V., Kim, G., et al. (1995). Bracketing 
Guidelines for Treebank II Style Penn Treebank 
Project  

Collins, M. J. (1999). Head-driven Statistical Models 
for Natural Language Parsing. Unpublished Ph.D. 
thesis, University of Pennsylvania. 

Darroch, J. N., & Ratcliff, D. (1972). Generalized 
Iterative Scaling for Log-Linear Models. The Annals 
of Mathematical Statistics. 

Hacioglu, K., Pradhan, S., Ward, W., Martin, J. H., & 
Jurafsky, D. (2004). Semantic Role Labeling by 
Tagging Syntactic Chunks. Paper presented at the 
CONLL-04. 

Huang, M., Zhu, X., Hao, Y., Payan, D. G., Qu, K., & 
Li, M. (2004). Discovering patterns to extract 

protein-protein interactions from full texts. 
Bioinformatics, 20(18), 3604-3612. 

Kholodenko, B. N. (2006). Cell-signalling dynamics in 
time and space. Nat Rev Mol Cell Biol, 7(3), 165-176. 

Kim, J. D., Ohta, T., Tateisi, Y., & Tsujii, J. (2003). 
GENIA corpus--semantically annotated corpus for 
bio-textmining. Bioinformatics, 19 Suppl 1, i180-182. 

Leroy, G., Chen, H., & Genescene. (2005). An 
ontology-enhanced integration of linguistic and co-
occurrence based relations in biomedical texts. 
Journal of the American Society for Information 
Science and Technology, 56(5), 457-468. 

Marcus, M. P., Santorini, B., & Marcinkiewicz, M. A. 
(1997). Building a large annotated corpus of English: 
the Penn Treebank. Computational Linguistics, 19. 

Morarescu, P., Bejan, C., & Harabagiu, S. (2005). 
Shallow Semantics for Relation Extraction. Paper 
presented at the IJCAI-05. 

Nocedal, J., & Wright, S. J. (1999). Numerical 
Optimization: Springer. 

Palmer, M., Gildea, D., & Kingsbury, P. (2005). The 
proposition bank: an annotated corpus of semantic 
roles. Computational Linguistics, 31(1). 

Pradhan, S., Hacioglu, K., Kruglery, V., Ward, W., 
Martin, J. H., & Jurafsky, D. (2004). Support vector 
learning for semantic argument classification. 
Journal of Machine Learning  

Punyakanok, V., Roth, D., Yih, W., & Zimak, D. (2004). 
Semantic Role Labeling via Integer Linear 
Programming Inference. Paper presented at the 
COLING-04. 

Surdeanu, M., Harabagiu, S. M., Williams, J., & 
Aarseth, P. (2003). Using Predicate-Argument 
Structures for Information Extraction. Paper 
presented at the ACL-03. 

Tateisi, Y., & Tsujii, J. (2004). Part-of-Speech 
Annotation of Biology Research Abstracts. Paper 
presented at the LREC-04. 

Tateisi, Y., Yakushiji, A., Ohta, T., & Tsujii, J. (2005). 
Syntax Annotation for the GENIA corpus. 

Tsai, T.-H., Wu, C.-W., Lin, Y.-C., & Hsu, W.-L. 
(2005). Exploiting Full Parsing Information to Label 
Semantic Roles Using an Ensemble of ME and SVM 
via Integer Linear Programming. . Paper presented at 
the CoNLL-05. 

Wattarujeekrit, T., Shah, P. K., & Collier, N. (2004). 
PASBio: predicate-argument structures for event 
extraction in molecular biology. BMC Bioinformatics, 
5, 155. 

Xue, N., & Palmer, M. (2004). Calibrating Features for 
Semantic Role Labeling. Paper presented at the 
EMNLP-04. 

Yang, X., Zhou, G., Su, J., & Tan., C. (2004). 
Improving Noun Phrase Coreference Resolution by 
Matching Strings. Paper presented at the IJCNLP-04. 

64


