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Abstract

The identification of genes in biomedi-
cal text typically consists of two stages:
identifying gene mentions and normaliza-
tion of gene names. We have created an
automated process that takes the output
of named entity recognition (NER) sys-
tems designed to identify genes and nor-
malizes them to standard referents. The
system identifies human gene synonyms
from online databases to generate an ex-
tensive synonym lexicon. The lexicon is
then compared to a list of candidate gene
mentions using various string transforma-
tions that can be applied and chained in
a flexible order, followed by exact string
matching or approximate string matching.

Using a gold standard of MEDLINE ab-
stracts manually tagged and normalized
for mentions of human genes, a com-
bined tagging and normalization system
achieved 0.669 F-measure (0.718 preci-
sion and 0.626 recall) at the mention level,
and 0.901 F-measure (0.957 precision and
0.857 recall) at the document level for
documents used for tagger training.

1 Introduction

Gene and protein name identification and recogni-
tion in biomedical text are challenging problems.
A recent competition, BioCreAtIvE, highlighted the

∗ To whom correspondence should be addressed.

two tasks inherent in gene recognition: identifying
gene mentions in text (task 1A) (Yeh et al., 2005)
and normalizing an identified gene list (task 1B)
(Hirschman et al., 2005). This competition resulted
in many novel and useful approaches, but the results
clearly identified that more important work is neces-
sary, especially for normalization, the subject of the
current work.

Compared with gene NER, gene normalization
is syntactically easier because identification of the
textual boundaries of each mention is not required.
However, gene normalization poses significant se-
mantic challenges, as it requires detection of the ac-
tual gene intended, along with reporting of the gene
in a standardized form (Crim et al., 2005). Several
approaches have been proposed for gene normal-
ization, including classification techniques (Crim et
al., 2005; McDonald et al., 2004), rule-based sys-
tems (Hanisch et al., 2005), text matching with dic-
tionaries (Cohen, 2005), and combinations of these
approaches. Integrated systems for gene identifica-
tion typically have three stages: identifying candi-
date mentions in text, identifying the semantic in-
tent of each mention, and normalizing mentions by
associating each mention with a unique gene identi-
fier (Morgan et al., 2004). In our current work, we
focus upon normalization, which is currently under-
explored for human gene names. Our objective is
to create systems for automatically identifying hu-
man gene mentions with high accuracy that can be
used for practical tasks in biomedical literature re-
trieval and extraction. Our current approach relies
on a manually created and tuned set of rules.
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2 Automatically Extracted Synonym
Dictionaries

Even when restricted to human genes, biomedical
researchers mention genes in a highly variable man-
ner, with a minimum of adherence to the gene nam-
ing standard provided by the Human Gene Nomen-
clature Committee (HGNC). In addition, frequent
variations in spelling and punctuation generate ad-
ditional non-standard forms. Extracting gene syn-
onyms automatically from online databases has sev-
eral benefits (Cohen, 2005). First, online databases
contain highly accurate annotations from expert
curators, and thus serve as excellent information
sources. Second, refreshing of specialized lexicons
from online sources provides a means to obtain new
information automatically and with no human in-
tervention. We thus sought a way to rapidly col-
lect as many human gene identifiers as possible.
All the statistics used in this section are from on-
line database holdings last extracted on February 20,
2006.

2.1 Building the Initial Dictionaries

Nineteen online websites and databases were ini-
tially surveyed to identify a set of resources that col-
lectively contain a large proportion of all known hu-
man gene identifiers. After examination of the 19 re-
sources with a limited but representative set of gene
names, we determined that only four databases to-
gether contained all identifiers (excluding resource-
specific identifiers used for internal tracking pur-
poses) used by the 19 resources. We then built an
automated retrieval agent to extract gene synonyms
from these four online databases: The HGNC Ge-
new database, Entrez Gene, Swiss-Prot, and Stan-
ford SOURCE. The results were collected into a sin-
gle dictionary. Each entry in the dictionary con-
sists of a gene identifier and a corresponding offi-
cial HGNC symbol. For data from HGNC, with-
drawn entries were excluded. Retrieving gene syn-
onyms from SOURCE required a list of gene identi-
fiers to query SOURCE, which was compiled by the
retrieval agent from the other sources (i.e., HGNC,
Entrez Gene and Swiss-Prot). In total, there were
333,297 entries in the combined dictionary.

2.2 Rule-Based Filter for Purification

Examination of the initial dictionary showed that
some entries did not fit our definition of a gene iden-
tifier, usually because they were peripheral (e.g., a
GenBank sequence identifier) or were describing a
gene class (e.g., an Enzyme Commission identifier
or a term such as “tyrosine kinase”). A rule-based
filter was imposed to prune these uninformative syn-
onyms. The rules include removing identifiers under
these conditions:

1. Follows the form of a GenBank or EC acces-
sion ID (e.g., 1-2 letters followed by 5-6 dig-
its).

2. Contains at most 2 characters and 1 letter but
not an official HGNC symbol (e.g., P1).

3. Matches a description in the OMIM morbid
list1 (e.g., Tangier disease).

4. Is a gene EC number.2

5. Ends with ‘, family ?’, where ? is a capital letter
or a digit.

6. Follows the form of a DNA clone (e.g., 1-4 dig-
its followed by a single letter, followed by 1-2
digits).

7. Starts with ‘similar to’ (e.g., similar to zinc fin-
ger protein 533).

Our filter pruned 9,384 entries (2.82%).

2.3 Internal Update Across the Dictionaries

We used HGNC-designated human gene symbols as
the unique identifiers. However, we found that cer-
tain gene symbols listed as “official” in the non-
HGNC sources were not always current, and that
other assigned symbols were not officially desig-
nated as such by HGNC. To remedy these issues, we
treated HGNC as the most reliable source and Entrez
Gene as the next most reliable, and then updated our
dictionary as follows:

1ftp://ftp.ncbi.nih.gov/repository/OMIM/morbidmap
2EC numbers are removed because they often represent gene

classes rather than specific instances.
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• In the initial dictionary, some synonyms are
associated with symbols that were later with-
drawn by HGNC. Our retrieval agent extracted
a list of 5,048 withdrawn symbols from HGNC,
and then replaced any outdated symbols in the
dictionary with the official ones. Sixty with-
drawn symbols were found to be ambiguous,
but we found none of them appearing as sym-
bols in our dictionary.

• If a symbol used by Swiss-Prot or SOURCE
was not found as a symbol in HGNC or En-
trez Gene, but was a non-ambiguous synonym
in HGNC or Entrez Gene, then we replaced
it by the corresponding symbol of the non-
ambiguous synonym.

Among the 323,913 remaining entries, 801 entries
(0.25%) had symbols updated. After removing du-
plicate entries (42.19%), 187,267 distinct symbol-
synonym pairs representing 33,463 unique genes
were present. All tasks addressed in this section
were performed automatically by the retrieval agent.

3 Exact String Matching

We initially invoked several string transformations
for gene normalization, including:

1. Normalization of case.

2. Replacement of hyphens with spaces.

3. Removal of punctuation.

4. Removal of parenthesized materials.

5. Removal of stop words3.

6. Stemming, where the Porter stemmer was em-
ployed (Porter, 1980).

7. Removal of all spaces.

The first four transformations are derived from
(Cohen et al., 2002). Not all the rules we ex-
perimented with demonstrated good results for hu-
man gene name normalization. For example, we
found that stemming is inappropriate for this task.
To amend potential boundary errors of tagged men-
tions, or to match the variants of the synonyms, four

3ftp://ftp.cs.cornell.edu/pub/smart/English.stop

mention reductions (Cohen et al., 2002) were also
applied to the mentions or synonyms:

1. Removal of the first character.

2. Removal of the first word.

3. Removal of the last character.

4. Removal of the last word.

To provide utility, a system was built to allow
for transformations and reductions to be invoked
flexibly, including chaining of rules in various se-
quences, grouping of rules for simultaneous invo-
cation, and application of transformations to ei-
ther or both the candidate mention input and the
dictionary. For example, the mention “alpha2C-
adrenergic receptor” in PMID 8967963 matches
synonym “Alpha-2C adrenergic receptor” of gene
ADRA2C after normalizing case, replacing hyphens
by spaces, and removing spaces. Each rule can be
built into an invoked sequence deemed by evaluation
to be optimal for a given application domain.

A normalization step is defined here as the pro-
cess of finding string matches after a sequence of
chained transformations, with optional reductions
of the mentions or synonyms. We call a normal-
ization step safe if it generally makes only minor
changes to mentions. On the contrary, a normaliza-
tion step is called aggressive if it often makes sub-
stantial changes. However, a normalization step safe
for long mentions may not be safe for short ones.
Hence, our system was designed to allow a user to
set optional parameters factoring the minimal men-
tion length and/or the minimal normalized mention
length required to invoke a match.

A normalization system consists of multiple nor-
malization steps in sequence. Transformations are
applied sequentially and a match searched for; if
no match is identified for a particular step, the al-
gorithm proceeds to the next transformation. The
normalization steps and the optional conditions are
well-encoded in our program, which allows for a
flexible system specified by the sequences of the step
codes. Our general principle is to design a normal-
ization system that invokes safe normalization steps
first, and then gradually moves to more aggressive
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ones. As the process lengthens, the precision de-
creases while the recall increases. The balance be-
tween precision and recall desired for a particular
application can be defined by the user.

Specifically, given string s, we use T (s) to de-
note the transformed string. All the 7 transformation
rules listed at the beginning of this subsection are
idempotent, since T (T (s)) = T (s). Two transfor-
mations, denoted by T1 and T2, are called commuta-
tive, if T1(T2(s)) = T2(T1(s)). The first four trans-
formations listed form a set of commutative rules.
Knowledge of these properties helps design a nor-
malization system.

Recall that NER systems, such as those required
for BioCreAtIvE task 1B, consist of two stages. For
our applications of interest, the normalization in-
put is generated by a gene tagger (McDonald and
Pereira, 2005), followed by the normalization sys-
tem described here as the second stage. In the sec-
ond stage, more synonyms do not necessarily imply
better performance, because less frequently used or
less informative synonyms may result in ambigu-
ous matches, where a match is called ambiguous
if it associates a mention with multiple gene iden-
tifiers. For example, from the Swiss-Prot dictio-
nary we know the gene mention ‘MDR1’ in PMID
8880878 is a synonym uniquely representing the
ABCB1 gene. However, if we include synonyms
from HGNC, it results in an ambiguous match be-
cause the TBC1D9 gene also uses the synonym
‘MDR1’.

We investigated the rules separately, designed the
initial normalization procedure, and tuned our sys-
tem at the end. To evaluate the efficacy of our com-
piled dictionary and its sources, we determined the
accuracy of our system with all transformations and
reductions invoked sequentially, and without any ef-
forts to optimize the sequence (see section 6 for eval-
uation details). The goal in this experiment was to
evaluate the effectiveness of each vocabulary source
alone and in combination. Our experimental re-
sults at the mention level are summarized in Ta-
ble 1. The best two-staged system achieved a preci-
sion of 0.725 and recall of 0.704 with an F-measure
of 0.714, by using only HGNC and Swiss-Prot en-
tries.

As errors can be derived from the tagger or the
normalization alone or in combination, we also as-

Table 1: Results of Gene Normalization Using Exact
String Matching

Steps Recall Precision F-measure
(1) HGNC 0.762 0.511 0.611
(2) Entrez Gene 0.686 0.559 0.616
(3) Swiss-Prot 0.722 0.622 0.669
(4) SOURCE 0.743 0.431 0.545

(1)+(2) 0.684 0.564 0.618
(1)+(3) 0.725 0.704 0.714
(2)+(3) 0.665 0.697 0.681

(1)+(2)+(3) 0.667 0.702 0.684
(1)+(2)+(3)+(4) 0.646 0.707 0.675

sessed the performance of our normalization pro-
gram alone by directly normalizing the mentions in
the gold standard file used for evaluation (i.e., as-
suming the tagger is perfect). Our normalization
system achieved 0.824 F-measure (0.958 precision
and 0.723 recall) in this evaluation.

4 Approximate String Matching

Approximate string matching techniques have been
well-developed for entity identification. Given two
strings, a distance metric generates a score that re-
flects their similarity. Various string distance met-
rics have been developed based upon edit-distance,
string tokenization, or a hybrid of the two ap-
proaches (Cohen et al., 2003). Given a gene men-
tion, we consider the synonym(s) with the high-
est score to be a match if the score is higher than
a defined threshold. Our program also allows op-
tional string transformations and provides a user-
defined parameter for determining the minimal men-
tion length for approximate string matching. The
decision on the method chosen may be affected by
several factors, such as the application domain, fea-
tures of the strings representing the entity class, and
the particular data sets used. For gene NER, vari-
ous scoring methods have been favored (Crim et al.,
2005; Cohen et al., 2003; Wellner et al., 2005).

Approximate string matching is usually consid-
ered more aggressive than exact string matching
with transformations; hence, we applied it as the last
step of our normalization sequence. To assess the
usefulness of approximate string matching, we be-
gan with our best dictionary subset in Subsection 3
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(i.e., using HGNC and SwissProt), and applied ap-
proximate string matching as an additional normal-
ization step.
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Figure 1: Performance of Approximate String
Matching for Gene Normalization.

We selected six existing distance metrics that ap-
peared to be useful for human gene normalization:
Jaro, JaroWinkler, SmithWaterman, TFIDF, Un-
smoothedJS, and Jaccard. Our experiment showed
that TFIDF, UnsmoothedJS and Jaccard outper-
formed the others for human gene normalization in
our system, as shown in Figure 1. By incorpo-
rating approximate string matching using either of
these metrics into our system, overall performance
was slightly improved to 0.718 F-measure (0.724
precision and 0.713 recall) when employing a high
threshold (0.95). However, in most scenarios, ap-
proximate matching did not considerably improve
recall and had a non-trivial detrimental effect upon
precision.

5 Ambiguation Analysis

Gene identifier ambiguity is inherent in synonym
dictionaries as well as being generated during nor-
malization steps that transform mention strings.

5.1 Ambiguity in Synonym Dictionaries

If multiple gene identifiers share the same synonym,
it results in ambiguity. Table 2 shows the level of
ambiguity between and among the four sources of
gene identifiers used by our dictionary. The rate
of ambiguity ranges from 0.89% to 2.83%, which
is a rate comparable with that of mouse (1.5%)
and Drosophila (3.6%) identifiers (Hirschman et al.,
2005).
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Figure 2: Distribution of ambiguous synonyms in
the human gene dictionary.

Figure 2 is a log-log plot showing the distribu-
tion of ambiguous synonyms, where the degree is
the number of gene identifiers that a synonym is as-
sociated with. Comparing Figure 2 with (Hirschman
et al., 2005, Figure 3), we noted that on average, hu-
man gene synonyms are less ambiguous than those
of the three model organisms.

Another type of ambiguity is caused by gene sym-
bols or synonyms being common English words or
other biological terms. Our dictionary contains 11
gene symbols identical to common stop words4: T,
AS, DO, ET, IF, RD, TH, ASK, ITS, SHE and
WAS.

5.2 Ambiguous Matches in Gene
Normalization

We call a match ambiguous if it associates a men-
tion with multiple gene identifiers. Although the

4ftp://ftp.cs.cornell.edu/pub/smart/English.stop
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Table 2: Statistics for Dictionary Sources

Dictionary # Symbols # Synonyms Ratio Max. # of Synonyms # with One Ambiguity
per Gene Definition Rate

HGNC 22,838 78,706 3.446 10 77,389 1.67%
Entrez Gene 33,007 109,127 3.306 22 106,034 2.83%
Swiss-Prot 12,470 61,743 4.951 17 60,536 1.95%
SOURCE 17,130 66,682 3.893 13 66,086 0.89%

Total 33,469 181,061 5.410 22 176,157 2.71%

normalization procedure may create ambiguity, if a
mention matches multiple synonyms, it may not be
strictly ambiguous. For example, the gene mention
“M creatine kinase” in PMID 1690725 matches the
synonyms “Creatine kinase M-type” and “Creatine
kinase, M chain” in our dictionary using the TFIDF
scoring method (with score 0.866). In this case, both
synonyms are associated with the CKM gene, so the
match is not ambiguous. However, even if a mention
matches only one synonym, it can be ambiguous, be-
cause the synonym is possibly ambiguous.

Figure 3 shows the result of an experiment con-
ducted upon 200,000 MEDLINE abstracts, where
the degree of ambiguity is the number of gene iden-
tifiers that a mention is associated with. The maxi-
mum, average, and standard deviation of the ambi-
guity degrees are 20, 1.129 and 0.550, respectively.
The overall ambiguity rate of all matched mentions
was 8.16%, and the rate of ambiguity is less than
10% at each step. Successful disambiguation can
increase the true positive match rate and therefore
improve performance but is beyond the scope of the
current investigation.
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Figure 3: Distribution of Ambiguous Genes in
200,000 MEDLINE Abstracts.

6 Application and Evaluation of an
Optimized Normalizer

Finally, we were interested in determining the effec-
tiveness of an optimized system based upon the gene
normalization system described above, and also cou-
pled with a state-of-the-art gene tagger. To de-
termine the optimal results of such a system, we
created a corpus of 100 MEDLINE abstracts that
together contained 1,094 gene mentions for 170
unique genes (also used in the evaluations above).
These documents were a subset of those used to train
the tagger, and thus measure optimal, rather than
typical MEDLINE, performance (data for a gener-
alized evaluation is forthcoming). This corpus was
manually annotated to identify human genes, ac-
cording to a precise definition of gene mentions that
an NER gene system would be reasonably expected
to tag and normalize correctly. Briefly, the definition
included only human genes, excluded multi-protein
complexes and antibodies, excluded chained men-
tions of genes (e.g., “HDAC1- and -2 genes”), and
excluded gene classes that were not normalizable
to a specific symbol (e.g., tyrosine kinase). Docu-
ments were dual-pass annotated in full and then ad-
judicated by a 3rd expert. Adjudication revealed a
very high level of agreement between annotators.

To optimize the rule set for human gene normal-
ization, we evaluated up to 200 cases randomly cho-
sen from all MEDLINE files for each rule, where
invocation of that specific rule alone resulted in a
match. Most of the transformations worked per-
fectly or very well. Stemming and removal of the
first or last word or character each demonstrated
poor performance, as genes and gene classes were
often incorrectly converted to other gene instances
(e.g., “CAP” and “CAPS” are distinct genes). Re-
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moval of stop words generated a high rate of false
positives. Rules were ranked according to their pre-
cision when invoked separately. A high-performing
sequence was “0 01 02 03 06 016 026 036”, with 0
referring to case-insensitivity, 1 being replacement
of hyphens with spaces, 2 being removal of punc-
tuation, 3 being removal of parenthesized materials,
and 6 being removal of spaces; grouped digits indi-
cate simultaneous invocation of each specified rule
in the group. Table 3 indicates the cumulative accu-
racy achieved at each step5. A formalized determi-
nation of an optimal sequence is in progress. Ap-
proximate matching did not considerably improve
recall and had a non-trivial detrimental effect upon
precision.

Table 3: Results of Gene Normalization after Each
Step of Exact String Matching

Steps Recall Precision F-measure
0 0.628 0.698 0.661

01 0.649 0.701 0.674
02 0.654 0.699 0.676
03 0.665 0.702 0.683
06 0.665 0.702 0.683

016 0.718 0.685 0.701
026 0.718 0.685 0.701
036 0.718 0.685 0.701

The normalization sequence “0 01 02 03 06 016
026 036” was then utilized for two separate evalua-
tions. First, we used the actual textual mentions of
each gene from the gold standard files as input into
our optimized normalization sequence, in order to
determine the accuracy of the normalization process
alone. We also used a previously developed CRF
gene tagger (McDonald and Pereira, 2005) to tag the
gold standard files, and then used the tagger’s output
as input for our normalization sequence. This sec-
ond evaluation determined the accuracy of a com-
bined NER system for human gene identification.

Depending upon the application, evaluation can
be determined more significant at either at the men-
tion level (redundantly), where each individual men-
tion is evaluated independently for accuracy, or as in

5The last two steps did not generate new matches using our
gold standard file and therefore the scores were unchanged.
These rule sets may improve performance in other cases.

the case of BioCreAtIvE task 1B, at the document
level (non-redundantly), where all mentions within a
document are considered to be equivalent. For pure
information extraction tasks, mention level accuracy
is a relevant performance indicator. However, for ap-
plications such as information extraction-based in-
formation retrieval (e.g., the identification of docu-
ments mentioning a specific gene), document-level
accuracy is a relevant gauge of system performance.

For normalization alone, at the mention level
our optimized normalization system achieved 0.882
precision, 0.704 recall, and 0.783 F-measure. At
the document level, the normalization results were
1.000 precision, 0.994 recall, and 0.997 F-measure.

For the combined NER system, the performance
was 0.718 precision, 0.626 recall, and 0.669 F-
measure at the mention level. At the document level,
the NER system results were 0.957 precision, 0.857
recall, and 0.901 F-measure. The lower accuracy of
the combined system was due to the fact that both
the tagger and the normalizer introduce error rates
that are multiplicative in combination.

7 Conclusions and Future Work

In this article we present a gene normalization sys-
tem that is intended for use in human gene NER, but
that can also be readily adapted to other biomedi-
cal normalization tasks. When optimized for human
gene normalization, our system achieved 0.783 F-
measure at the mention level.

Choosing the proper normalization steps depends
on several factors, such as (for genes) the organism
of interest, the entity class, the accuracy of identify-
ing gene mentions, and the reliability of the under-
lying dictionary. While the results of our normalizer
compare favorably with previous efforts, much fu-
ture work can be done to further improve the perfor-
mance of our system, including:

1. Performance of identifying gene mentions.
Only approximately 50 percent of gene men-
tions identified by our tagger were normaliz-
able. While this is mostly due to the fact that
the tagger identifies gene classes that cannot
be normalized to a gene instance, a significant
subset of gene instance mentions are not being
normalized.

2. Reliability of the dictionary. Though we have
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investigated a sizable number of gene identifier
sources, the four representative sources used
for compiling our gene dictionary are incom-
plete and often not precise for individual terms.
Some text mentions were not normalizable due
the the incompleteness of our dictionary, which
limited the recall.

3. Disambiguation. A small portion (typi-
cally 7%-10%) of the matches were ambigu-
ous. Successful development of disambigua-
tion tools can improve the performance.

4. Machine-learning. It is likely possible that op-
timized rules can be used as probabilistic fea-
tures for a machine-learning-based version of
our normalizer.

Gene normalization has several potential applica-
tions, such as for biomedical information extraction,
database curation, and as a prerequisite for relation
extraction. Providing a proper synonym dictionary,
our normalization program is amenable to generaliz-
ing to other organisms, and has already proven suc-
cessful in our group for other entity normalization
tasks. An interesting future study would be to deter-
mine accuracy for BioCreAtIvE data once mouse,
Drosophila, and yeast vocabularies are incorporated
into our system.
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