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Abstract 

With the rising influence of the Gene On-
tology, new approaches have emerged 
where the similarity between genes or 
gene products is obtained by comparing 
Gene Ontology code annotations associ-
ated with them. So far, these approaches 
have solely relied on the knowledge en-
coded in the Gene Ontology and the gene 
annotations associated with the Gene On-
tology database. The goal of this paper is 
to demonstrate that improvements to these 
approaches can be obtained by integrating 
textual evidence extracted from relevant 
biomedical literature. 

1 Introduction 

The establishment of similarity between genes and 
gene products through homology searches has be-
come an important discovery procedure that biolo-
gists use to infer structural and functional 
properties of genes and gene products–see Chang 
et al. (2001) and references therein. With the rising 
influence of the Gene Ontology1 (GO), new ap-
proaches have emerged where the similarity be-
tween genes or gene products is obtained by 
comparing GO code annotations associated with 
them. The Gene Ontology provides three orthogo-
nal networks of functional genomic concepts struc-

                                                           
1 http://www.geneontology.org. 

tured in terms of semantic relationships such as 
inheritance and meronymy, which encode biologi-
cal process (BP), molecular function (MF) and cel-
lular component (CC) properties of genes and gene 
products. GO code annotations explicitly relate 
genes and gene products in terms of participation 
in the same/similar biological processes, presence 
in the same/similar cellular components and ex-
pression of the same/similar molecular functions. 
Therefore, the use of GO code annotations in es-
tablishing gene and gene product similarity pro-
vides significant added functionality to methods 
such as BLAST (Altschul et al. 1997) and FASTA 
(Pearson and Lipman 1988) where gene and gene 
product similarity is calculated using string-based 
heuristics to select maximal segment pair align-
ments across gene and gene product sequences to 
approximate the Smith-Waterman algorithm 
(Smith and Waterman 1981). 

Three main GO-based approaches have emerged 
so far to compute gene and gene product similarity. 
One approach assesses GO code similarity in terms 
of shared hierarchical relations within each gene 
ontology (BP, MF, or CC) (Lord et al. 2002, 2003; 
Couto et al. 2003; Azuaje et al. 2005).  For exam-
ple, the relative semantic closeness of two biologi-
cal processes would be determined by the 
informational specificity of the most immediate 
parent that the two biological processes share in 
the BP ontology. The second approach establishes 
GO code similarity by leveraging associative rela-
tions across the three gene ontologies (Bodenreider 
et al. 2005). Such associative relations make pre-
dictions such as which cellular component is most 
likely to be the location of a given biological proc-
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ess and which molecular function is most likely to 
be involved in a given biological process. The third 
approach computes GO code similarity by combin-
ing hierarchical and associative relations (Posse et 
al. 2006). 

Several studies within the last few years 
(Andrade et al. 1997, Andrade 1999, MacCallum et 
al. 2000, Chang at al. 2001) have shown that the 
inclusion of evidence from relevant scientific lit-
erature improves homology search. It is therefore 
highly plausible that literature evidence can also 
help improve GO-based approaches to gene and 
gene product similarity. Sanfilippo et al. (2004) 
propose a method for integrating literature evi-
dence within an early version of the GO-based 
similarity algorithm presented in Posse et al. 
(2006). However, no effort has been made so far in 
evaluating the potential contribution of textual evi-
dence extracted from relevant biomedical literature 
for GO-based approaches to the computation of 
gene and gene product similarity. The goal of this 
paper is to address this gap with specific reference 
to the assessment of protein similarity. 

2 Background 

GO-based similarity methods that focus on meas-
uring intra-ontological relations have adopted the 
information theoretic treatment of semantic simi-
larity developed in Natural Language Process-
ing−see Budanitsky (1999) for an extensive 
survey. An example of such a treatment is given by 
Resnik (1995), who defines semantic similarity 
between two concept nodes c1 c2 in a graph as the 
information content of the least common su-
perordinate (lcs) of c1 and c2, as shown in (1). The 
information content of a concept node c, IC(c), is 
computed as -log p(c) where p(c) indicates the 
probability of encountering instances of c in a spe-
cific corpus. 

(1)     
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Jiang and Conrath (1997) provide a refinement of 
Resnik’s measure by factoring in the distance from 
each concept to the least common superordinate, as 
shown in (2).2

                                                           
2 Jiang and Conrath (1997) actually define the distance be-
tween two concepts nodes c1 c2, e.g.     
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Lin (1998) provides a slight variant of Jiang’s and 
Conrath’s measure, as indicated in (3).  
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The information theoretic approach is very well 
suited to assess GO code similarity since each gene 
subontology is formalized as a directed acyclic 
graph. In addition, the GO database3 includes nu-
merous curated GO annotations which can be used 
to calculate the information content of each GO 
code with high reliability. Evaluations of this 
methodology have yielded promising results. For 
example, Lord et al. (2002, 2003) demonstrate that 
there is strong correlation between GO-based simi-
larity judgments for human proteins and similarity 
judgments obtained through BLAST searches for 
the same proteins. Azuaje et al. (2005) show that 
there is a strong connection between the degree of 
GO-based similarity and the expression correlation 
of gene products. 

As Bodenreider et al. (2005) remark, the main 
problem with the information theoretic approach to 
GO code similarity is that it does not take into ac-
count associative relations across the gene ontolo-
gies. For example, the two GO codes 0050909 
(sensory perception of taste) and 0008527 (taste 
receptor activity) belong to different gene ontolo-
gies (BP and MF), but they are undeniably very 
closely related. The information theoretic approach 
would simply miss associations of this kind as it is 
not designed to capture inter-ontological relations.  

Bodenreider et al. (2005) propose to recover as-
sociative relations across the gene ontologies using 
a variety of statistical techniques which estimate 
the similarity of two GO codes inter-ontologically 
in terms of the distribution of the gene product an-
notations associated with the two GO codes in the 
GO database. One such technique is an adaptation 
of the vector space model frequently used in In-
formation Retrieval (Salton et al. 1975), where 

                                                                                           
For ease of exposition, we have converted Jiang’s and Con-
rath’s semantic distance measure to semantic similarity by 
taking its inverse, following Pedersen et al. (2005). 
3 http://www.godatabase.org/dev/database.  
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each GO code is represented as a vector of gene-
based features weighted according to their distribu-
tion in the GO annotation database, and the simi-
larity between two GO codes is computed as the 
cosine of the vectors for the two codes. 

The ability to measure associative relations 
across the gene ontologies can significantly aug-
ment the functionality of the information theoretic 
approach so as to provide a more comprehensive 
assessment of gene and gene product similarity. 
However, in spite of their complementarities, the 
two GO code similarity measures are not easily 
integrated. This is because the two measures are 
obtained through different methods, express dis-
tinct senses of similarity (i.e. intra- and inter-
ontological) and are thus incomparable.  

Posse et al. (2006) develop a GO-based similar-
ity algorithm–XOA, short for Cross-Ontological 
Analytics–capable of combining intra- and inter-
ontological relations by “translating” each associa-
tive relation across the gene ontologies into a hier-
archical relation within a single ontology. More 
precisely, let c1 denote a GO code in the gene on-
tology O1 and c2 a GO code in the gene ontology 
O2. The XOA similarity between c1 and c2 is de-
fined as shown in (4), where4

• cos(ci,cj) denotes the cosine associative meas-
ure proposed by Bodenreider et al. (2005) 

• sim(ci,cj) denotes any of the three intra-
ontological semantic similarities described 
above, see (1)-(3) 

• maxci in Oj {f(ci)} denotes the maximum of the 
function f() over all GO codes ci in the gene 
ontology Oj.  

The major innovation of the XOA approach is to 
allow the comparison of two nodes c1, c2 across 
distinct ontologies O1, O2 by mapping c1 into its 
closest node c4 in O2 and c2 into its closest node 
c3 in O1. The inter-ontological semantic similarity 
between c1 and c2 can be then estimated from the 
intra-ontological semantic similarities between c1-

                                                           
4 If c1 and c2 are in the same ontology, i.e. O1=O2, then 
xoa(c1,c2) is still computed as in (4). In most cases, the 
maximum in (4) would be obtained with c3 = c2 and c4 = c1 
so that  XOA(c1,c2) would simply be computed as sim(c1,c2). 
However, there are situations where there exists a GO code c3 
(c4) in the same ontology which 
• is highly associated with c1 (c2),  
•  is semantically close to c2 (c1), and  
•  leads to a value for  sim(c1,c3) x cos(c2,c3)  ((sim(c2,c4) 

x cos(c1,c4)) that is higher than sim(c1,c2). 

c3 and c2-c4, using multiplication with the associa-
tive relations between c2-c3 and c1-c4 as a score 
enrichment device. 
 

(4)  

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

×

×

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=

), c(c
), c(c

), c(c
), c(c

Oinc

Oinc
,

), c(c

41cos
42sim

32cos
31sim

XOA

24

13

max

max

max21  

 
Posse et al. (2006) show that the XOA similarity 

measure provides substantial advantages. For ex-
ample, a comparative evaluation of protein similar-
ity, following the benchmark study of Lord et al. 
(2002, 2003), reveals that XOA provides the basis 
for a better correlation with protein sequence simi-
larities as measured by BLAST bit score than any 
intra-ontological semantic similarity measure. The 
XOA similarity between genes/gene products de-
rives from the XOA similarity between GO codes. 
Let GP1 and GP2 be two genes/gene products. Let 
c11,c12,…, c1n denote the set of GO codes associ-
ated with GP1 and c21, c22,…., c2m the set of GO 
codes associated with GP2. The XOA similarity 
between GP1 and GP2 is defined as in (5), where 
i=1,…,n and j=1,…,m.  
 

(5) XOA(GP1,GP2) = max {XOA(c1i, c2j)} 
 
The results of the study by Posse et al. (2006) are 
shown in Table 1. Note that the correlation be-
tween protein similarities based on intra-
ontological similarity measures and BLAST bit 
scores in Table 1 is given for each choice of gene 
ontology (MF, BP, CC). This is because intra-
ontological similarity methods only take into ac-
count GO codes that are in the same ontology and 
can therefore only assess protein similarity from a 
single ontology viewpoint. By contrast, the XOA-
based protein similarity measure makes use of GO 
codes that can belong to any of the three gene on-
tologies and needs not be broken down by single 
ontologies, although the contribution of each gene 
ontology or even single GO codes can still be 
fleshed out, if so desired. 

Is it possible to improve on these XOA results 
by factoring in textual evidence? We will address 
this question in the remaining part of the paper. 
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Semantic Similarity 

Measures 
Resnik Lin Jiang &  

Conrath 
Intra-ontological    

Molecular Function 0.307 0.301 0.296 
Biological Process 0.195 0.202 0.203 
Cellular Component 0.229 0.234 0.233 

XOA 0.405 0.393 0.368 
Table 1: Spearman rank order correlation coeffi-

cients between BLAST bit score and semantic 
similarities, calculated using a set of 255,502 pro-
tein pairs–adapted from Posse et al. (2006). 

3 Textual Evidence Selection 

Our first step in integrating textual evidence into 
the XOA algorithm is to select salient information 
from biomedical literature germane to the problem. 
Several approaches can be used to carry out this 
prerequisite. For example, one possibility is to col-
lect documents relevant to the task at hand, e.g. 
through PubMed queries, and use feature weight-
ing and selection techniques from the Information 
Retrieval literature−e.g. tf*idf (Buckley 1985) and 
Information Gain (e.g. Yang and Pedersen 
1997)−to distill the most relevant information. An-
other possibility is to use Information Extraction 
algorithms tailored to the biomedical domain such 
as Medstract (http://www.medstract.org, Puste-
jovsky et al. 2002) to extract entity-relationship 
structures of relevance. Yet another possibility is to 
use specialized tools such as GoPubMed (Doms 
and Schroeder 2005) where traditional keyword-
based capabilities are coupled with term extraction 
and ontological annotation techniques.  

In our study, we opted for the latter solution, us-
ing generic Information Retrieval techniques to 
normalize and weigh the textual evidence ex-
tracted. The main advantage of this choice is that 
tools such as GoPubMed provide very high quality 
term extraction at no cost. Less appealing is the 
fact that the textual evidence provided is GO-based 
and therefore does not offer information which is 
orthogonal to the gene ontology. It is reasonable to 

expect better results than those reported in this pa-
per if more GO-independent textual evidence were 
brought to bear. We are currently working on using 
Medstract as a source of additional textual evi-
dence. 

GoPubMed is a web server which allows users 
to explore PubMed search results using the Gene 
Ontology for categorization and navigation pur-
poses (available at http://www.gopubmed.org). As 
shown in Figure 1 below, the system offers the 
following functionality: 
• It provides an overview of PubMed search re-

sults by categorizing abstracts according to the 
Gene Ontology 

• It verifies its classification by providing an 
accuracy percentage for each 

• It shows definitions of Gene Ontology terms 
• It allows users to navigate PubMed search re-

sults by GO categories 
• It automatically shows GO terms related to the 

original query for each result  
• It shows query terms (e.g. “Rab5” in the mid-

dle windowpane of Figure 1) 
• It automatically extracts terms from search 

results which map to GO categories (e.g. high-
lighted terms other than “Rab5”  in the middle 
windowpane of Figure 1). 

In integrating textual evidence with the XOA al-
gorithm, we utilized the last functionality (auto-
matic extraction of terms) as an Information 
Extraction capability. Details about the term ex-
traction algorithm used in GoPubMed are given in 
Delfs et al. (2004). In short, the GoPubMed term 
extraction algorithm uses word alignment strate-
gies in combination with stemming to match word 
sequences from PubMed abstracts with GO terms. 
In doing so, partial and discontinuous matches are 
allowed. Partial and discontinuous matches are 
weighted according to closeness of fit. This is indi-
cated by the accuracy percentages associated with 
GO in Figure 1 (right side). In this study we did 
not make use of these accuracy percentages, but 
plan to do so in the future. 
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Figure 1: GoPubMed sample query for the “rab5” protein. The abstracts shown are automatically proposed by the 
system after the user issues the protein query and then selects the GO term “late endosome” (bottom left) as the 
discriminating parameter. 
  

Our data set consists of 2360 human protein 
pairs containing 1783 distinct human proteins. This 
data set was obtained as a 1% random sample of 
the human proteins used in the benchmark study of 
Posse et al. (2006)–see Table 1.5 For each of the 
1783 human proteins, we made a GoPubMed query 
and retrieved up to 100 abstracts. We then col-
lected all the terms extracted by GoPubMed for 
each protein across the abstracts retrieved. Table 2 
provides an example of the output of this process. 
 

nutrient, uptake, carbohydrate, metabolism, affect-
ing, cathepsin, activity, protein, lipid, growth, rate, 
habitually, signal, transduction, fat, protein, cad-
herin, chromosomal, responses, exogenous, lactat-
ing, exchanges, affects, mammary, gland, …. 

Table 2: Sample output of the GoPubMed term extrac-
tion process for the Cadherin-related tumor suppressor 
protein. 
                                                           
5 We chose such a small sample to facilitate the collection of 
evidence from GoPubMed, which is not yet fully automated. 
Our XOA approach is very scalable, and we do not anticipate 
any problem running the full protein data set of 255,502 pairs, 
once we fully automate the GoPubMed extraction process. 

4 Integrating Textual Evidence in XOA 

Using the output of the GoPubMed term extraction 
process, we created vector-based signatures for 
each of the 1783 proteins, where  
• features are obtained by stemming the terms 

provided by GoPubMed  
• the value for each feature is derived as the 

tf*idf  for the feature. 
We then calculated the similarity between each of 
the 2360 protein pairs as the cosine value of the 
two vector-based signatures associated with the 
protein pair. 

We tried two different strategies to augment the 
XOA score for protein similarity using the protein 
similarity values obtained as the cosine of the 
GoPubMed term-based signatures. The first strat-
egy adopts a fusion approach in which the two 
similarity measures are first normalized to be 
commensurable and then combined to provide an 
interpretable integrated model. A simple normali-
zation is obtained by observing that the Resnik’s 
information content measure is commensurable to 
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the log of the text based cosine (LC). This leads us 
to the fusion model shown in (5) for XOA, based 
on Resnik’s semantic similarity measure (XOAR). 

(5)      Fusion(Resnik) = XOAR + LC 

We then observe that the XOA measures based on 
Resnik, Lin (XOAL) and Jiang & Conrath (XOAJC) 
are highly correlated (correlations exceed 0.95 on 
the large benchmarking dataset discussed in sec-
tion 2, see Table 1). This suggests the fusion model 
shown in (6), where the averages of the XOA 
scores are computed from the benchmarking data 
set. 

(6)      Fusion(Lin) =  
                XOAL + LC*Ave( XOAL)/Ave(XOAR) 

          Fusion(Jiang & Conrath) =  
               XOAJC + LC*Ave(XOAJC)/Ave(XOAR) 

The second strategy consists in building a predic-
tion model for BLAST bit score (BBS) using the 
XOA score and the log-cosine LC as predictors 
without the constraint of remaining interpretable. 
As in the previous strategy, a different model was 
sought for each of the three XOA variants. In each 
case, we restrict ourselves to cubic polynomial re-
gression models as such models are quite efficient 
at capturing complex nonlinear relationships be-
tween target and predictors (e.g. Weisberg 2005). 
More precisely, for each of the semantic similarity 
measures, we fit the regression model to BBS 
shown in (7), where the subscript x denotes either 
R, L or JC, and the coefficients a to h are found by 
maximizing the Spearman rank order correlations 
between BBS and the regression model. This 
maximization is automatically carried out by using 
a random walk optimization approach (Romeijn 
1992). The coefficients used in this study for each 
semantic similarity measure are shown in Table 3. 

 
(7)    a*XOAx + b*XOAx

2 + c*XOAx +  d*LC 
        + e*LC2 + f*LC3 +  g*XOAx*LC 

5 Evaluation 

Table 4 summarizes the results for both strategies, 
comparing Spearman rank correlations between 
BBS and the models from the fusion and regres-
sion approaches with Spearman rank correlations 
between BBS and XOA alone. Note that the latter 
correlations are lower than the one reported in Ta-
ble 2 due to the small size of our sample (1% of the 

original data set, as pointed out above). P-values 
associated with the changes in the correlation val-
ues are also reported, enclosed in parentheses.  
 
 Resnik Lin Jiang & Conrath 
a -10684.43 2.83453e-05 0.2025174 
b 1.786986 -31318.0 -1.93974 
c 503.3746 45388.66 0.08461453 
d -3.952441 208.5917 4.939535e-06 
e 0.0034074 1.55518e-04 0.0033902 
f 1.4036e-05 9.972911e-05 -0.000838812 
g 713.769 -1.10477e-06 2.461781 

Table 3: Coefficients of the regression model maximiz-
ing Spearman rank correlation between BBS and the 
regression model for each of the three semantic similar-
ity measures. 
 

 XOA Fusion Regression 
Resnik 0.295 0.325 (>0.20) 0.388 (0.0008) 
Lin 0.274 0.301 (>0.20) 0.372 (0.0005) 
Jiang & 
Conrath 0.273 0.285 (>0.20) 0.348 (0.008) 

Table 4: Spearman rank order correlation coefficients 
between BLAST bit score BBS and XOA, BBS and the 
fusion model, and BBS and the regression model. P-
values for the differences between the augmented mod-
els and XOA alone are given in parentheses. 
 

An important finding from Table 4 is that inte-
grating text-based evidence in the semantic simi-
larity measures systematically improves the 
relationships between BLAST and XOA. Not sur-
prisingly, the fusion models yield smaller im-
provements. However, these improvements in the 
order of 3% for the Resnik and Lin variants are 
very encouraging, even though they are not statis-
tically significant. The regression models, on the 
other hand, provide larger and statistically signifi-
cant improvements, reinforcing our hypothesis that 
textual evidence complements the GO-based simi-
larity measures. We expect that a more sophisti-
cated NLP treatment of textual evidence will yield 
significant improvements even for the more inter-
pretable fusion models.   

Conclusions and Further Work 

Our early results show that literature evidence pro-
vides a significant contribution, even using very 
simple Information Extraction and integration 
methods such as those described in this paper. The 
employment of more sophisticated Information 
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Extraction tools and integration techniques is 
therefore likely to bring higher gains.  

Further work using GoPubMed involves factor-
ing in the accuracy percentage which related ex-
tracted terms to their induced GO categories and 
capturing complex phrases (e.g. signal transduc-
tion, fat protein). We also intend to compare the 
advantages provided by the GoPubMed term ex-
traction process with Information Extraction tools 
created for the biomedical domain such as Med-
stract (Pustejovsky et al. 2002), and develop a 
methodology for integrating a variety of Informa-
tion Extraction processes into XOA. 
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