
Proceedings of the Eighth Meeting of the ACL Special Interest Group on Computational Phonology at HLT-NAACL 2006, pages 60–68,
New York City, USA, June 2006.c©2006 Association for Computational Linguistics

Morphology Induction from Limited Noisy Data
Using Approximate String Matching

Burcu Karagol-Ayan, David Doermann, and Amy Weinberg
Institute for Advanced Computer Studies (UMIACS)

University of Maryland
College Park, MD 20742

{burcu,doermann,weinberg }@umiacs.umd.edu

Abstract

For a language with limited resources, a
dictionary may be one of the few available
electronic resources. To make effective
use of the dictionary for translation, how-
ever, users must be able to access it us-
ing the root form of morphologically de-
formed variant found in the text. Stem-
ming and data driven methods, however,
are not suitable when data is sparse. We
present algorithms for discovering mor-
phemes from limited, noisy data obtained
by scanning a hard copy dictionary. Our
approach is based on the novel applica-
tion of the longest common substring and
string edit distance metrics. Results show
that these algorithms can in fact segment
words into roots and affixes from the lim-
ited data contained in a dictionary, and ex-
tract affixes. This in turn allows non na-
tive speakers to perform multilingual tasks
for applications where response must be
rapid, and their knowledge is limited. In
addition, this analysis can feed other NLP
tools requiring lexicons.

1 Introduction

In order to develop morphological analyzers for lan-
guages that have limited resources (either in terms of
experienced linguists, or electronic data), we must
move beyond data intensive methods developed for
rich resource languages that rely on large amounts

of data for statistical methods. New approaches that
can deal with limited, and perhaps noisy, data are
necessary for these languages.

Printed dictionaries often exist for languages be-
fore large amounts of electronic text, and provide
a variety of information in a structured format. In
this paper, we proposeMorphology Induction from
Noisy Data (MIND), a natural language morphology
induction framework that operates on from informa-
tion in dictionaries, specifically headwords and ex-
amples of usage. We use string searching algorithms
to morphologically segment words and identify pre-
fixes, suffixes, circumfixes, and infixes in noisy and
limited data. We present our preliminary results on
two data sources (Cebuano and Turkish), give a de-
tailed analysis of results, and compare them to a
state-of-the-art morphology learner. We employ the
automatically induced affixes in a simple word seg-
mentation process, decreasing the error rate of in-
correctly segmented words by 35.41%.

The next section discusses prior work on mor-
phology learning. In Section 3 and 4, we describe
our approach and MIND framework in detail. Sec-
tion 6 explains the experiments and presents results.
We conclude with future work.

2 Related Work

Much of the previous work on morphology learning
has been reported on automatically acquiring affix
lists. Inspired by works of Harris (1955), Dejean
(1998) attempted to find a list of frequent affixes
for several languages. He used successor and pre-
decessor frequencies of letters in a given sequence
of letters in identifying possible morpheme bound-

60

aries. The morpheme boundaries are where the pre-
dictability of the next letter in the letter sequence is
the lowest.

Several researchers (Brent, 1993; Brent et al.,
1995; Goldsmith, 2001) used Minimum Description
Length (MDL) for morphology learning. Snover
and Brent (2001) proposed a generative probabil-
ity model to identify stems and suffixes. Schone
and Jurafsky (2001) used latent semantic analysis
to find affixes. Baroni et al. (2002) produced a
ranked list of morphologically related pairs from
a corpus using orthographic or semantic similarity
with minimum edit distance and mutual informa-
tion metrics. Creutz and Lagus (2002) proposed
two unsupervised methods for word segmentation,
one based on maximum description length, and one
based on maximum likelihood. In their model,
words consisted of lengthy sequences of segments
and there is no distinction between stems and af-
fixes. The Whole Word Morphologizer (Neuvel and
Fulop, 2002) uses a POS-tagged lexicon as input, in-
duces morphological relationships without attempt-
ing to discover or identify morphemes. It is also ca-
pable of generating new words beyond the learning
sample.

Mystem (Segalovich, 2003) uses a dictionary for
unknown word guessing in a morphological analysis
algorithm for web search engines. Using a very sim-
ple idea of morphological similarity, unknown word
morphology is taken from all the closest words in
the dictionary, where the closeness is the number of
letters on its end.

The WordFrame model (Wicentowski, 2004) uses
inflection-root pairs, where unseen inflections are
transformed into their corresponding root forms.
The model works with imperfect data, and can han-
dle prefixes, suffixes, stem-internal vowel shifts, and
point-of-affixation stem changes. The WordFrame
model can be used for co-training with low-accuracy
unsupervised algorithms.

Monson (2004) concentrated on languages with
limited resources. The proposed language-
independent framework used a corpus of full word
forms. Candidate suffixes are grouped into candi-
date inflection classes, which are then arranged in a
lattice structure.

A recent work (Goldsmith et al., 2005) proposed
to use string edit distance algorithm as a bootstrap-

ping heuristic to analyze languages with rich mor-
phologies. String edit distance is used for rank-
ing and quantifying the robustness of morphological
generalizations in a set of clean data.

All these methods require clean and most of the
time large amounts of data, which may not exist
for languages with limited electronic resources. For
such languages, the morphology induction is still a
problem. The work in this paper is applicable to
noisy and limited data. String searching algorithms
are used with information found in dictionaries to
extract the affixes.

3 Approach

Dictionary entries contain headwords, and the exam-
ples of how these words are used in context (i.e. ex-
amples of usage). Our algorithm assumes that each
example of usage will contain at least one instance
of the headword, either in its root form, or as one
of its morphological variants. For each headword–
example of usage pair, we find the headword occur-
rence in the example of usage, and extract the affix
if the headword is in one of its morphological vari-
ants. We should note that we do not require the data
to be perfect. It may have noise such as OCR errors,
and our approach successfully identifies the affixes
in such noisy data.

4 Framework

Our framework has two stages,exact matchandap-
proximate match, and uses three string distance met-
rics, thelongest common substring(LCS), approx-
imate string matching with k differences(k-DIFF),
andstring edit distance(SED). We differentiate be-
tween exact and approximate matches and assign
two counts for each identified affix,exact count
andapproximate count. We require that each affix
should have a positive exact count in order to be in
the final affix list. Although approximate match can
be used to find exact matches to identify prefixes,
suffixes, and circumfixes, it is not possible to differ-
entiate between infixes and OCR errors. For these
reasons, we process the two cases separately.

First we briefly describe the three metrics we use
and the adaptations we made to find the edit opera-
tions in SED, and then we explain how we use these
metrics in our framework.

61

4.1 String Searching Algorithms

Longest Common Substring (LCS) Given two
stringsp = p1...pn andq = q1...qm, LCS finds the
longest contiguous sequence appearing inp andq.
The longest common substring is not same as the
longest common subsequence because the longest
common subsequence need not be contiguous.

There is a dynamic programming solution for
LCS1 that finds the longest common substring for
two strings with lengthn andm in O(nm).

String Edit Distance (SED)Given two stringsp
andq, SED is the minimum number of edit opera-
tions which transformsp to q. The edit operations al-
lowed are insertions, deletions, and substitutions. In
our algorithm, we set the cost of each edit operation
to 1. A solution based on dynamic programming
computes the distance between strings inO(mn),
wherem andn are the lengths of the strings (Wag-
ner and Fischer, 1974).

Approximate string matching with k differ-
ences (k-DIFF)Given two stringsp andq, the prob-
lem of approximate string matching withk differ-
ences is finding all the substrings ofq which are
at a distance less than or equal to a given valuek
from p. Insertions, deletions and substitutions are
all allowed. A dynamic programming solution to
this problem is the same as the classical string edit
distance solution with one difference: the values of
the first row of the table are initialized to 0 (Sellers,
1980). This initialization means that the cost of in-
sertions of letters ofq at the beginning ofp is zero.
The solutions are all the values of the last row of ta-
ble which are less or equal tok. Consequently, the
minimum value on the last row gives us the distance
of the closest occurrence of the pattern.

String Edit Distance with Edit Operations
(SED-path) In our framework, we are also inter-
ested in tracing back the editing operations per-
formed in achieving the minimum cost alignment.
In order to obtain the sequence of edit operations,
we can work backwards from the complete distance
matrix. For two stringsp andq with lengthsn and
m respectively, the cellL[n,m] of the distance ma-
trix L gives us the SED betweenp and q. To get
to the cellL[n,m], we had to come from one of 1)
L[n − 1,m] (insertion), 2)L[n,m − 1] (deletion),

1http://www.ics.uci.edu/ dan/class/161/notes/6/Dynamic.html

or 3)L[n − 1,m − 1] (substitution). Which of the
three options was chosen can be reconstructed given
these costs, edit operation costs, and the characters
p[n], q[m] of the strings. By working backwards,
we can trace the entire path and thus reconstruct the
alignment. However, there are ambiguous cases; the
same minimum cost may be obtained by a number
of edit operation sequences. We adapted the trace of
the path for our purposes as explained below.

Let pathbe the list of editing operations to obtain
minimum distance, andSED-pathbe the SED algo-
rithm that also returns apath. The length of thepath
is max(n,m), andpath[j] contains the edit oper-
ation to changeq[j] (or p[j] if n > m). Path can
contain four different types of operations: Match
(M), substitution (S), insertion (I), and deletion (D).
Our goal is finding affixes and in case of ambiguity,
we employed the following heuristics for finding the
SED operations leading the minimum distance:

Case 1: If one string is longer than the other, choose
I for extra characters

Case 2: Until an M is found, choose I in case of
ambiguity

Case 3: If an M is found previously, choose M/S in
case of ambiguity

Case 4: If there is an M between two I’s, switch this
with the last I

Case 1 ensures that if one word has more charac-
ters than the other, an insertion operation is selected
for those characters.

If there is an ambiguity, and an M/S or I oper-
ation have the same minimum cost, Case 2 gives
priority to the insertion operation until a match
case is encountered, while Case 3 gives priority to
match/substitution operations if a match case was
seen previously.

Below example shows how Case 4 helps us
to localize all the insertion operations. For the
headword–candidate example word pairabirids→
makaabiŕıds, thepathchanges from (1) to (2) using
Case 4, and correct prefix is identified as we explain
in the next section.

(1) I M I I I M M M S M M⇒ Prefixm-
(2) I I I I M M M M S M M⇒ Prefixmaka-

62

5 Morphology Induction from Noisy Data
(MIND)

The MIND framework consists of two stages. In the
exact match stage, MIND framework checks if the
headword occurs without any changes or errors (i.e.
if headword occurs exactly in the example of us-
age). If no such occurrence is found an approximate
match search is performed in second stage. Below
we describe these two stages in detail.

5.1 Exact Match

Given a list of (noisy) headword–example of usage
pairs (w,E), the exact match first checks if the head-
word occurs inE in its root form.2 If the headword
cannot be found inE in its root form, for eachei
in E, the longest common substring,LCS(w, ei),
is computed.3 Let el be theei that has the longest
common substring (l) with w.4 If w = l, and for
some suffixs and some prefixp one of the following
conditions is true, the affix is extracted.

1. el = ws (suffix) or

2. el = pw (prefix) or

3. el = pws (circumfix)

The extracted affixes are added to the induced af-
fix list, and theirexact counts are incremented. In
the third casep–sis treated together as a circumfix.

For the infixes, there is one further step. Ifw =
w′l andel = e′ll, we computeLCS(w′, e′l). If e′l =
w′s, for some suffixs, s is added as an infix to the
induced affix list. (This meansel = w′sl wherew =
w′l.)

The following sample run illustrates how the ex-
act match part identifies affixes. Given the Ce-
buano headword–example of usage pair (abtik) —
(naabtikan sad ku sa bátá), the wordnaabtikanis
marked as the candidate that has the longest com-
mon substring with headwordabtik. These two
words have the following alignment, and we ex-
tract the circumfixna–an. In the illustration below,

2Headwords consisting of one character are not checked.
3In order to reduce the search space, we do not check the

example words that are shorter than the headword. Although
there are some languages, such as Russian, in which headwords
may be longer than the inflected forms, such cases are not in the
scope of this paper.

4Note that the length of the longest common substring can
be at most the length of the headword, in which case the longest
common substring is the headword itself.

straight lines represent matches, and short lines end-
ing in square boxes represent insertions.

5.2 Approximate Match

When we cannot find an exact match, there may be
an approximate match resulting from an error with
OCR or morphophonemic rules5, and we deal with
such cases separately in the second part of the al-
gorithm. For eachei in E, we compute the dif-
ference between headword, and example word,k-
DIFF(w, ei). The example word that has the min-
imum difference from the headword is selected as
the most likely candidate (ecand). We then find the
sequence of the edit operations performed in achiev-
ing the minimum distance alignment to transform
ecand to w using SED-path algorithm we described
above.6

Let cnt(X) be the count ofX operation in the
computed path. Ifcnt(I) = 0, this case is consid-
ered as an approximate root form (with OCR errors).
The following conditions are considered as possible
errors and no further analysis is done for such cases:

cnt(M) = 0 ||
cnt(M) < max(cnt(S), cnt(D), cnt(I)) ||
cnt(M) < cnt(S) + cnt(D) + cnt(I)

Otherwise, we use the insertion operations at the
beginning and at the end of the path to identify the
type of the affix (prefix, suffix, or circumfix) and the
length of the suffix (number of insertion operations).
The identified affix is added to the affix list, and
its approximate countis incremented. All the other
cases are dismissed as errors. In its current state, the
infix affixes are not handled in approximate match
case.

The following sample shows how approximate
match works with noisy data. In the Cebuano input

5At this initial version, MIND does not make any distinc-
tions between noise in the data such as OCR errors, and mor-
phophonemic rules. Making this distinction will be one of our
future focuses

6Computing k-difference, and the edit path can be done in
parallel to reduce the computing time.

63

pair (ambihas) — (ambsh́asa pagbutang ang duha
ka silya arun makakit́a ang maglingkud sa luyu), the
first word in the example of usage has an OCR er-
ror, i is misrecognized ass. Moreover, there is a
vowel change in the word caused by the affix. An
exact match of the headword cannot be found in the
example of usage. The k-DIFF algorithm returns
ambsh́asaas the candidate example of usage word,
with a distance 2. Then, the SED-path algorithm
returns the pathM M M S M S M I, and algorithm
successfully concludes thata is the suffix as shown
below in illustration (dotted lines represent substitu-
tions).

6 Experiments

6.1 Dictionaries

The BRIDGE system (Ma et al., 2003) processes
scanned and OCRed dictionaries to reproduce elec-
tronic versions and extract information from dictio-
nary entries. We used the BRIDGE system to pro-
cess two bilingual dictionaries, a Cebuano-English
(CebEng) dictionary (Wolff, 1972) and a Turkish-
English (TurEng) dictionary (Avery et al., 1974),
and extract a list of headword-example of usage
pairs for our experiments. The extracted data is not
perfect: it has mistagged information, i.e. it may in-
clude some information that is not the headword or
example of usage, or some useful information may
be missing, and OCR errors may occur. OCR errors
can be in different forms: Two words can be merged
into one, one word can be split into two, or charac-
ters can be misrecognized.

Dictionary # of # of # of
Dictionary pages hw-ex pairs words
Cebuano-all 1163 27129 206149
Turkish-all 1000 27487 111334
Cebuano-20 20 562 4134
Turkish-20 20 503 1849

Table 1: Details of Data from Two Dictionaries Used
in Experiments

Along with the headword–example of usage pairs
from more than 1000 pages, we randomly selected
20 pages for detailed analysis. Table 1 provides de-

tails of the data from two dictionaries we use in our
experiments.

Both Cebuano and Turkish are morphologically
rich. Cebuano allows prefixes, suffixes, circumfixes,
infixes, while Turkish is an agglunative language.
The two dictionaries have different characteristics.
The example of usages in CebEng are complete sen-
tences given in italic font while TurEng has phrases,
idioms, or complete sentences as examples of usages
indicated in bold font.

6.2 Protocol

We ran our algorithm first on all of the data and then
on a randomly selected 20 pages from each dictio-
nary. We manually extracted the affixes from each
of the 20 pages. We then evaluated the MIND re-
sults with this ground truth. During the evaluation,
even if the number of an affix in the ground truth and
result are same, if they were extracted from different
words, this is counted as an error. We also examined
the cause of each error in this data.

We then compare our results from the whole
TurEng data with the state-of-the-art Linguistica
(Goldsmith, 2001) algorithm. Finally, we used the
suffixes extracted by MIND and Linguistica to seg-
ment words in a Turkish treebank.

6.3 Analysis

Dict. Affix Sample words
mu- galing/mugaling hiḱuh́ıkú/muhik̀uh́ıkù

C nag- kisdum/nagkisdum kugkugl/nagkugkug
E mi- iktin/miiktin k ı́rus/miḱarus
B i- kunsuylu/ikunsuylu paźıha/ipaŕıha
U na- ṕıl/naṕıl ulatl/náulat
A gi- buga/gibuga d́alit/gidádit
N gi-an labuk/gilabukańıkug/giikúgan
O -un gihay/gihayun ǵayung/gaýungun

-a pisar/pisara sirnpul/simpúla
-ı ad/adı ilaç/ilaeı

T -i heves/hevesi ilim/ilmi
U -a saz/saza sonsuz/sonsuza
R -e deniz/denize zmim/mime
K -ına etraf/etrafına kolay/kolayına
I -ya hasta/hastaya orta/ortaya
S -ü üst/̈usẗu zyüz/yüzü
H -ini bel/belini zevk/zevkini

-ine derin/derinine iç/içine

Table 3: Sample Affixes Extracted from Two Dictio-
naries

Table 2 shows result of MIND runs. The total
number of affixes and number of different types of

64

Cebuano Turkish
Whole dict. 20 pages Whole dict. 20 pages

Total 26106 542 27314 502
Root form 5727 180 18416 345
Prefix (diff. type) 10300 (180) 197 (26) 6 (6) 0 (0)
Suffix (diff. type) 1315 (253) 16 (8) 6983 (447) 128 (59)
Infix (diff. type) 25 (11) 0 (0) 1 (1) 0 (0)
Circumfix (diff. type) 717 (221) 18 (11) 9 (9) 0 (0)
App. Root form 1023 14 103 1
App. Prefix (diff. type) 1697 (116) 23 (9) 8 (8) 1 (1)
App. Suffix (diff. type) 2930 (199) 63 (19) 168 (100) 5 (5)
App. Circumfix (diff. type) 1060 (207) 14 (5) 20 (20) 0 (0)
Couldn’t decide 1159 13 765 15

Table 2: Total Number and Different Types of Affixes Extracted from Two Dictionaries Using MIND

affixes (in parenthesis) are presented for two dictio-
naries, CebEng and TurEng, and two data sets, the
whole dictionary and 20 randomly selected pages.
The top part of the table gives the exact match results
and the bottom part shows the approximate match
results. For Cebuano, approximate match part of the
framework finds many more affixes than it does for
Turkish. This is due to the different structures in
the two dictionaries. We should note that although
MIND incorrectly finds a few prefixes, circumfixes,
and infixes for Turkish, these all have count one.
Table 3 contains some of the most frequent ex-
tracted affixes along with their exact and approxi-
mate counts, and samples of headword–example of
usage word pairs they were extracted from. Each
word is segmented into one root and one suffix,
therefore when a word takes multiple affixes, they
are all treated as a compound affix.

Dictionary GT cnt. Res.cnt. Misses Additions
Cebuano 311 314 17 14
Turkish 155 142 8 10

Table 4: Detailed Analysis of Affixes from 20 Pages

Table 4 shows the number of affixes in ground
truth and MIND results along with number of
missed and incorrectly added affixes on 20 of these
pages of data. MIND only missed 5% of the affixes
in the ground truth in both data sets.

We also examined the causes of each miss and ad-
dition. Table 5 presents the causes of errors in the
output of MIND with an example for each cause. We
should emphasize that a valid affix such as Turkish
suffix -mı is counted as an error since the suffix-
ını should be extracted for that particular headword–
example of usage pair. An OCR error such as the

misrecognition ofa asd, causes both the miss of the
prefix mag-and incorrect addition ofmdg- for Ce-
buano. There are some cases that cannot be correctly
identified by the framework. These usually involve
dropping the last vowel because of morphophone-
mic rules. For the Cebuano dictionary, merge and
split caused several errors, while Turkish data does
not have any such errors. Main reason is the differ-
ent structure and format of the original dictionaries.
In the Cebuano dictionary, an italic font which may
result in merge and split is used to indicate example
of usages.

For the Cebuano data, five invalid suffixes, three
invalid prefixes, and two invalid circumfixes are
found, while one valid suffix and one valid circumfix
are missed. For the Turkish data, three invalid suf-
fixes, one invalid prefix, and two valid suffixes are
found while two valid suffix are missed. When we
look at the invalid affixes in the data, most of them
(six of the Cebuano, and all of the Turkish ones)
have count one, and maximum count in an invalid
affix is five. Therefore, if we use a low threshold,
we can eliminate many of the invalid affixes.

6.4 Comparison to Linguistica

We compared our system withLinguistica, a pub-
licly available unsupervised corpus-based morphol-
ogy learner (Goldsmith, 2001). Linguistica induces
paradigms in a noise-free corpus, while MIND
makes use of string searching algorithms and allows
one to deal with noise at the cost of correctness.
MIND emphasize segmenting a word into its root
and affixes. We trained Linguistica using two dif-
ferent data sets from TurEng7: 1) Whole headword-

7We would like to do the same comparison in Cebuano. For
the time being, we could not find a treebank and native speakers

65

Reason Cebuano Turkish
OCR 8 M→lbi 11 ını→mı or ım
Algorithm 8 (uluy, giuylan)→ 7 (alın, alnında)→

not gi-an, -lan is found not -ında, -da is found
Merge 9 ı́mung giĺaug→ı́munggiĺaug 0 -
Split 1 nag-ḱugus→nag- ḱugus 0 -
Other 5 apr.→april 0 -

Headword is an abbreviation

Table 5: The Distribution of the Causes of Errors in 20 Pages with Samples

example of usage sentence pairs, and 2) Headword-
candidate example words that our algorithm returns.
In the first case (Ling-all), Linguistica uses more
data than our algorithm, so to avoid any biases re-
sulting from this, we also trained Linguistica using
the headword and candidate example word (Ling-
cand). We only used the suffixes, since Turkish is a
suffix-based language. The evaluation is done by a
native speaker.

Figure 1 presents the analysis of the suffix lists
produced by Linguistica using two sets of training
data, and MIND. The suffix lists are composed of
suffixes the systems return that have counts more
than a threshold. The results are presented for six
threshold values for all of the data. We use thresh-
olding to decrease the number of invalid affixes
caused primarily by the noise in the data. For the
MIND results, the suffixes over threshold are the
ones that have positive exact counts and total counts
(sum of exact and approximate counts) more than
the threshold. Although Linguistica is not designed
for thresholding, the data we use is noisy, and we
explored if suffixes with a corpus count more than
a threshold will eliminate invalid suffixes. The ta-
ble on the left gives the total number of suffixes,
the percentage of suffixes that have a count more
than a threshold value, the percentage of invalid suf-
fixes, and percentage of missed suffixes that are dis-
carded by thresholding for the whole TurEng dictio-
nary. The number of affixes MIND finds are much
more than that of Linguistica. Furthermore, number
of invalid affixes are lower. On the other hand, the
number of missed affixes is also higher for MIND
since, for this particular data, there are many affixes
with counts less than 5. 41% of the affixes have an
exact count of 1. The main reason for this is the
agglunative nature of Turkish language. The effect
of thresholding can also be examined in the graph

for Cebuano.

on the right in Figure1 which gives the percentage
of valid suffixes as a function of threshold values.
MIND takes advantage of thresholding, and percent-
age of valid suffixes rapidly decrease for threshold
value 1.

System Th. Total Over Th. Invalid Missed
Ling-cand 0 6 100.00 0.00 0.00
Ling-all 0 4 100.00 0.00 0.00
MIND 0 60 96.67 1.72 0.00
Ling-cand 1 6 66.67 0.00 33.33
Ling-all 1 4 100.00 0.00 0.00
MIND 1 60 41.67 0.00 53.33
Ling-cand 2 6 50.00 0.00 50.00
Ling-all 2 4 75.00 0.00 25.00
MIND 2 60 18.33 0.00 76.67

Table 6: Total Number and Percentage of Over the
Threshold, Invalid, and Missed Suffixes Found by
Linguistica and MIND for Different Threshold Val-
ues for 20 pages of Turkish Data

Table 6 presents the same results for 20 pages
from TurEng for three threshold values. MIND per-
forms well even with very small data and finds many
valid affixes. Linguistica on the other hand finds
very few.

6.5 Stemming

To test the utility of the results, we perform a sim-
ple word segmentation, with the aim of stripping the
inflectional suffixes, and find the bare form of the
word. A word segmenter takes a list of suffixes, and
their counts from the morphology induction system
(Linguistica or MIND), a headword list as a dictio-
nary, a threshold value, and the words from a tree-
bank. For each word in the treebank, there is a root
form (rf), and a usage form (uf). The suffixes with
a count more than the threshold are indexed accord-
ing to their last letters. For each word in the tree-
bank, we first check ifuf is already in the dictio-
nary, i.e. in the headword list. If we cannot find it

66

System Th. Total % Over Th. % Invalid % Missed
Ling-cand 0 116 100.00 18.10 0.00
Ling-all 0 274 100.00 34.67 0.00
MIND 0 499 89.58 13.20 3.61
Ling-cand 1 116 98.28 17.54 0.86
Ling-all 1 274 94.89 32.69 1.46
MIND 1 499 50.50 4.37 33.07
Ling-cand 2 116 92.24 16.82 5.17
Ling-all 2 274 87.96 31.12 4.74
MIND 2 499 38.48 4.17 44.49
Ling-cand 3 116 91.38 16.98 6.03
Ling-all 3 274 85.40 31.20 6.57
MIND 3 499 28.86 2.78 53.31
Ling-cand 4 116 81.03 12.77 11.21
Ling-all 4 274 81.39 30.94 9.12
MIND 4 499 25.65 3.13 56.51
Ling-cand 5 116 80.17 12.90 12.07
Ling-all 5 274 79.56 31.19 10.58
MIND 5 499 23.25 2.59 58.72

Figure 1: Total Number and Percentage of Over the Threshold, Invalid, Missed and Valid Suffixes Found by
Linguistica and MIND for Different Threshold Values

in the dictionary, we repeatedly attempt to find the
longest suffix that matches the end ofuf , and check
the dictionary again. The process stops when a dic-
tionary word is found or when no matching suffixes
can be found at the end of the word. If the word the
segmenter returns is same asrf in the treebank, we
increase the correct count. Otherwise, this case is
counted as an error.

In our stemming experiments we used METU-
Sabanci Turkish Treebank8, a morphologically and
syntactically annotated treebank corpus of 7262
grammatical sentences (Atalay et al., 2003; Oflazer
et al., 2003). We skipped the punctuation and mul-
tiple parses,9 and ran our word segmentation on
14950 unique words. We also used the headword
list extracted from TurEng as the dictionary. Note
that, the headword list is not error-free, it has OCR
errors. Therefore even if the word segmenter returns
the correct root form, it may not be in the dictionary
and the word may be stripped further.

The percentage of correctly segmented words are
presented in Figure 2. We show results for six
threshold values. Suffixes with counts more than the
threshold are used in each case. Again for MIND
results, we require that the exact match counts are
more than zero, and the total of exact match and ap-

8http://www.ii.metu.edu.tr/ corpus/treebank.html
9Multiple parses are the cases where a suffix is attached not

to a single word, but to a group of words. The suffix-ti in takip
etti is attached totakip et.

Figure 2: Percentage of Correctly Segmented Words
by Different Systems for Different Threshold Values

proximate match counts are more than the thresh-
old. For Linguistica, suffixes with a corpus count
more than the threshold are used. For each thresh-
old value, MIND did much better than Ling-cand.
MIND outperformed Ling-all for thresholds 0 and
1. For the other values, the difference is small. We
should note that Ling-all uses much more training
data than MIND (503 vs. 1849 example of words),
and even with this difference the performance of
MIND is close to Ling-all. We believe the reason
for the close performance of MIND and Ling-all in
segmentation despite the huge difference in the num-
ber of correct affixes they found due to the fact that
affixes Ling-all finds are shorter, and more frequent.
In its current state, MIND does not segment com-
pound affixes, and find several long and less fre-
quent affixes. These long affixes can be composed

67

by shorter affixes Linguistica finds.

7 Conclusion and Future Work

We presented a framework for morphology induc-
tion from noisy data, that is especially useful for lan-
guages which have limited electronic data. We use
the information in dictionaries, specifically head-
word and the corresponding example of usage sen-
tences, to acquire affix lists of the language. We pre-
sented results on two data sets and demonstrated that
our framework successfully finds the prefixes, suf-
fixes, circumfixes, and infixes. We also used the ac-
quired suffix list from one data set in a simple word
segmentation process, and outperformed a state-of-
the-art morphology learner using the same amount
of training data.

At this point we are only using headword and
corresponding example of usage pairs. Dictionaries
provide much more information. We plan to make
use of other information, such as POS, to categorize
the acquired affixes. We will also investigate how
using all the words in example of usages and split-
ting the compound affixes in agglunative languages
can help us to increase the confidence of correct af-
fixes, and decrease the number of invalid affixes.
Finally we will work on identifying morphophone-
mic rules (especially stem-interval vowel shifts and
point-of-affixation stem changes).

Acknowledgments

The partial support of this research under contract
MDA-9040-2C-0406 is gratefully acknowledged.

References
Nart B. Atalay, Kemal Oflazer, and Bilge Say. 2003. The an-

notation process in the Turkish Treebank. InProceedings of
the EACL Workshop on Linguistically Interpreted Corpora–
LINC, Budapest, Hungary, April.

Robert Avery, Serap Bezmez, Anna G. Edmonds, and Mehlika
Yaylalı. 1974. RedhousėIngilizce-T̈urkçe S̈ozlük. Red-
house Yayınevi.

Marco Baroni, Johannes Matiasek, and Harald Trost. 2002.
Unsupervised discovery of morphologically related words
based on orthographic and semantic similarity. InProceed-
ings of the ACL-02 Workshop on Morphological and Phono-
logical Learning, pages 48–57.

Michael R. Brent, Sreerama K. Murthy, and Andrew Lundberg.
1995. Discovering morphemic suffixes: A case study in
minimum description length induction. InProceedings of
the 15th Annual Conference of the Cognitive Science Soci-
ety, pages 28–36, Hillsdale, NJ.

Michael R. Brent. 1993. Minimal generative models: A mid-
dle ground between neurons and triggers. InProceedings of
the 5th International Workshop on Artificial Intelligence and
Statistics, Ft. Laudersdale, FL.

Mathias Creutz and Krista Lagus. 2002. Unsupervised discov-
ery of morphemes. InProceedings of the ACL-02 Workshop
on Morphological and Phonological Learning.

H. Dejean. 1998. Morphemes as necessary concepts for struc-
tures: Discovery from untagged corpora. InWorkshop on
Paradigms and Grounding in Natural Language Learning,
pages 295–299.

John Goldsmith, Yu Hu, Irina Matveeva, and Colin Sprague.
2005. A heuristic for morpheme discovery based on string
edit distance. Technical Report TR-2205-04, Department of
Computer Science, University of Chicago.

John Goldsmith. 2001. Unsupervised learning of the mor-
phology of a natural language.Computational Linguistics,
27(2):153–198.

Zellig Harris. 1955. From phoneme to morpheme.Language,
31:190–222.

Huanfeng Ma, Burcu Karagol-Ayan, David Doermann, Dou-
glas Oard, and Jianqiang Wang. 2003. Parsing and tag-
ging of bilingual dictionaries.Traitement Automatique Des
Langues, pages 125–150.

Christian Monson. 2004. A framework for unsupervised nat-
ural language morphology induction. InProceedings of the
Student Research Workshop: ACL 2004, pages 67–72.

Sylvain Neuvel and Sean A. Fulop. 2002. Unsupervised learn-
ing of morphology without morphemes. InProceedings of
the ACL-02 Workshop on Morphological and Phonological
Learning, pages 31–40.

Kemal Oflazer, Bilge Say, Dilek Hakkani-Tür, and G̈okhan T̈ur.
2003. Building a Turkish Treebank. In Anne Abeillé, edi-
tor, Building and Using Parsed Corpora. Kluwer Academic
Publishers.

Patrick Schone and Daniel Jurafsky. 2001. Knowledge-free
induction of inflectional morphologies. InSecond Meeting
of the NAACL, pages 183–191.

Ilya Segalovich. 2003. A fast morphological algorithm with
unknown word guessing induced by a dictionary for a web
search engine. InProceedings of MLMTA, Las Vegas, NV.

P.H. Sellers. 1980. The theory and computation of evolution-
ary distances: pattern recognition.Journal of Algorithms,
1:359–373.

Matthew G. Snover and Michael R. Brent. 2001. A bayesian
model for morpheme and paradigm identification. InPro-
ceedings of the 39th Annual Meeting of the ACL, pages 482–
490.

Robert A. Wagner and Michael J. Fischer. 1974. The string-
to-string correction problem.Journal of the Association for
Computing Machinery, 21(1):168–173.

Richard Wicentowski. 2004. Multilingual noise-robust super-
vised morphological analysis using the wordframe model.
In Proceedings of the 7th Meeting of the ACL Special In-
terest Group in Computational Phonology, pages 70–77,
Barcelona, Spain.

John U. Wolff. 1972.A Dictionary of Cebuano Visaya. South-
east Asia Program, Cornell University, Ithaca, New York.

68

