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Abstract

For a language with limited resources, a
dictionary may be one of the few available
electronic resources. To make effective
use of the dictionary for translation, how-
ever, users must be able to access it us-
ing the root form of morphologically de-
formed variant found in the text. Stem-
ming and data driven methods, however,
are not suitable when data is sparse. We
present algorithms for discovering mor-
phemes from limited, noisy data obtained
by scanning a hard copy dictionary. Our
approach is based on the novel applica-
tion of the longest common substring and
string edit distance metrics. Results show
that these algorithms can in fact segment
words into roots and affixes from the lim-
ited data contained in a dictionary, and ex-
tract affixes. This in turn allows non na-
tive speakers to perform multilingual tasks
for applications where response must be
rapid, and their knowledge is limited. In
addition, this analysis can feed other NLP
tools requiring lexicons.

Introduction
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of data for statistical methods. New approaches that
can deal with limited, and perhaps noisy, data are
necessary for these languages.

Printed dictionaries often exist for languages be-
fore large amounts of electronic text, and provide
a variety of information in a structured format. In
this paper, we proposelorphology Induction from
Noisy Data (MIND) a natural language morphology
induction framework that operates on from informa-
tion in dictionaries, specifically headwords and ex-
amples of usage. We use string searching algorithms
to morphologically segment words and identify pre-
fixes, suffixes, circumfixes, and infixes in noisy and
limited data. We present our preliminary results on
two data sources (Cebuano and Turkish), give a de-
tailed analysis of results, and compare them to a
state-of-the-art morphology learner. We employ the
automatically induced affixes in a simple word seg-
mentation process, decreasing the error rate of in-
correctly segmented words by 35.41%.

The next section discusses prior work on mor-
phology learning. In Section 3 and 4, we describe
our approach and MIND framework in detail. Sec-
tion 6 explains the experiments and presents results.
We conclude with future work.

2 Related Work

Much of the previous work on morphology learning
has been reported on automatically acquiring affix

In order to develop morphological analyzers for lanlists. Inspired by works of Harris (1955), Dejean
guages that have limited resources (either in terms (£998) attempted to find a list of frequent affixes
experienced linguists, or electronic data), we mugor several languages. He used successor and pre-
move beyond data intensive methods developed fdecessor frequencies of letters in a given sequence
rich resource languages that rely on large amounds letters in identifying possible morpheme bound-
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aries. The morpheme boundaries are where the pyging heuristic to analyze languages with rich mor-
dictability of the next letter in the letter sequence iphologies. String edit distance is used for rank-
the lowest. ing and quantifying the robustness of morphological
Several researchers (Brent, 1993; Brent et algeneralizations in a set of clean data.
1995; Goldsmith, 2001) used Minimum Description All these methods require clean and most of the
Length (MDL) for morphology learning. Snovertime large amounts of data, which may not exist
and Brent (2001) proposed a generative probabifer languages with limited electronic resources. For
ity model to identify stems and suffixes. Schoneuch languages, the morphology induction is still a
and Jurafsky (2001) used latent semantic analysmoblem. The work in this paper is applicable to
to find affixes. Baroni et al. (2002) produced anoisy and limited data. String searching algorithms
ranked list of morphologically related pairs fromare used with information found in dictionaries to
a corpus using orthographic or semantic similaritgxtract the affixes.
with minimum edit distance and mutual informa-
tion metrics. Creutz and Lagus (2002) proposed Approach

two unsupervised methods for word segmentatiorb. . . .
. L ictionary entries contain headwords, and the exam-
one based on maximum description length, and on

based on maximum likelihood. In their model P'€S of how these words are used in context (i.e. ex-

. mples of usage). Our algorithm assumes that each
words consisted of lengthy sequences of segmenis . . .

: Y xample of usage will contain at least one instance

and there is no distinction between stems and af- . o

. ) of the headword, either in its root form, or as one

fixes. The Whole Word Morphologizer (Neuvel and”, . : .

) . .of its morphological variants. For each headword—

Fulop, 2002) uses a POS-tagged lexicon as input, in- . .

. . . ) example of usage pair, we find the headword occur-

duces morphological relationships without attempt- . .

. . . . : rence in the example of usage, and extract the affix

ing to discover or identify morphemes. It is also ca-

able of generating new words bevond the Iearnin'f the headword is in one of its morphological vari-
Eample g 9 y gnts. We should note that we do not require the data

Mystem (Segalovich, 2003) uses a dictionary foFo be perfect. It may have noise .S“Ch."’?s OCR errors,
S . .and our approach successfully identifies the affixes
unknown word guessing in a morphological analysis .
. . ) .~ Th such noisy data.
algorithm for web search engines. Using a very sim-
ple idea of morphological similarity, unknown word4 Framework
morphology is taken from all the closest words in
the dictionary, where the closeness is the number @fur framework has two stagesyact matclandap-
letters on its end. proximate matchand uses three string distance met-
The WordFrame model (Wicentowski, 2004) usesics, thelongest common substrin@CS), approx-
inflection-root pairs, where unseen inflections ar@nate string matching with k differencés-DIFF),
transformed into their corresponding root formsandstring edit distanc€SED). We differentiate be-
The model works with imperfect data, and can hartween exact and approximate matches and assign
dle prefixes, suffixes, stem-internal vowel shifts, antivo counts for each identified affixexact count
point-of-affixation stem changes. The WordFramendapproximate count We require that each affix

model can be used for co-training with low-accuracghould have a positive exact count in order to be in

unsupervised algorithms. the final affix list. Although approximate match can
Monson (2004) concentrated on languages withe used to find exact matches to identify prefixes,
limited resources. The proposed languagesuffixes, and circumfixes, it is not possible to differ-

independent framework used a corpus of full worentiate between infixes and OCR errors. For these

forms. Candidate suffixes are grouped into candieasons, we process the two cases separately.

date inflection classes, which are then arranged in aFirst we briefly describe the three metrics we use

lattice structure. and the adaptations we made to find the edit opera-
A recent work (Goldsmith et al., 2005) proposedions in SED, and then we explain how we use these

to use string edit distance algorithm as a bootstrapaetrics in our framework.

61



4.1 String Searching Algorithms or 3) L[n — 1, m — 1] (substitution). Which of the
three options was chosen can be reconstructed given
stringsp = p1...p, andq = q1...gm, LCS finds the these costs, edit operation costs, and the characters

longest contiguous sequence appearing and q. pln}, g[m] of the strings. By working backwards,

The longest common substring is not same as tHye can trace the entire path and thus reconstruct the

longest common subsequence because the Iong@@nmemj Howevert, theresre z:nblggokl:s cases,bthe
common subsequence need not be contiguous. Same minimum cost may be obtained by a number

There is a dynamic programming solution forOf edit operation sequences. We a_dapted the trace of
he path for our purposes as explained below.

LCS! that finds the longest common substring fo} i o i ]
Let pathbe the list of editing operations to obtain

two strings with lengtth andm in O(nm).
g g (nm) minimum distance, an8 ED-pathbe the SED algo-

String Edit Distance (SED) Given two stringp .
andg, SED is the minimum number of edit opera—_mhm that also returns path The length of thgpath

tions which transforms to ¢. The edit operations al- '> maz(n,m), andpathlj] contains the edit oper-
ation to change|[j] (or p[j] if n > m). Pathcan

lowed are insertions, deletions, and substitutions. | tain f gif tt ¢ i . Match
our algorithm, we set the cost of each editoperatioﬁon ain four difierent types of operations. Matc

to 1. A solution based on dynamic programmin M), substitution (S), insertion (1), and deletion (D).

computes the distance between stringglifmn), ur goall 'S flintdr:ngf ?Ifflxgs ar:] d n (t:_ase]:c Off?rg.b |thJr|1ty,
wherem andn are the lengths of the strings (Wag-\évggmp Oy el odqwmg eunstics %r n mg. ©
ner and Fischer, 1974). operations leading the minimum distance:

Approximate string matching with & differ-  cage 1: If one string is longer than the other, choose
ences (k-DIFF)Given two stringg andg, the prob- | for extra characters

lem of approximate string matching with differ-

ences is finding all the substrings gfwhich are Case 2:Until an M is found, choose | in case of
at a distance less than or equal to a given value ambiguity

from p. Insertions, deletions and substitutions argase 3: If an M is found previously, choose M/S in
all allowed. A dynamic programming solution to case of ambiguity

this problem is the same as the classical string edit

distance solution with one difference: the values of@se 4: If there is an M between two I's, switch this
the first row of the table are initialized to 0 (Sellers, ~ Withthe last |

1980). This initialization means that the cost of in-
sertions of letters of at the beginning op is zero.
The solutions are all the values of the last row of tafor those characters
ble which are less or equal o Consequently, the )

- . . If there is an ambiguity, and an M/S or | oper-
minimum value on the last row gives us the distance. 2 .
ation have the same minimum cost, Case 2 gives
of the closest occurrence of the pattern.

String Edit Distance with Edit Operations priority to the insertion operation until a match

(SED-path) In our framework, we are also inter- case is encountered, while Case 3 gives priority to

X . " . match/substitution operations if a match case was
ested in tracing back the editing operations per- .
seen previously.

formed in achieving the minimum cost alignment.
g g Below example shows how Case 4 helps us

In order to obtain the sequence of edit operations,

we can work backwards from the complete distancteO localize all the insertion operations. For the

. . ) headword—candidate example word paliirids —
matrix. For two string® andq with lengthsn and kaabifds thepathch ¢ 1) 10 (2) usi
m respectively, the cell[n, m] of the distance ma- ga ai " Z epat ¢ a;_nge;drozpf_((j) o )usmlg'
trix L gives us the SED betweanandg. To get ase 4, and correct prefix is identified as we explain

to the cellL[n, m|, we had to come from one of 1) in the next section.
L[n — 1,m] (insertion), 2)L[n, m — 1] (deletion), (A)I M 111 M M M
M M

Longest Common Substring (LCS) Given two

Case 1 ensures that if one word has more charac-
ters than the other, an insertion operation is selected

S M M= Prefixm-
1http://www.ics.uci.edu/dan/class/16l/notes/(i/Dynamic.htg‘%)I FrrMM S M M= Prefixmaka-
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5 Morphology Induction from Noisy Data  straight lines represent matches, and short lines end-
(MIND) ing in square boxes represent insertions.

b tik

The MIND framework consists of two stages. In the
| Ty
btikan

exact match stage, MIND framework checks if the T
headword occurs without any changes or errors (i.e. na
if headword occurs exactly in the example of us-

age). If no such occurrence is found an approximat@2 Approximate Match

match search is performed in second stage. Belohen we cannot find an exact match, there may be
we describe these two stages in detail. an approximate match resulting from an error with
51 Exact Match OCR or morphophonemic rulgsand we deal with

) ) ) such cases separately in the second part of the al-
Given a list of (noisy) headword—example of Usag§orithm. For each; in E, we compute the dif-

pairs (v, E), the exact match first checks if the headigrence between headword, and example wérd,
word occurs inE in its root form? If the headword DIFF (w, ;). The example word that has the min-
cannot be found in in its root form, for eacte;  jmum difference from the headword is selected as
in E, the longest common substringC'S(w, ),  the most likely candidates{,,;). We then find the

is computed. Let ¢; be thee; that has the longest gequence of the edit operations performed in achiev-
common substringlY with w.* If w = 1, and for ing the minimum distance alignment to transform

some suffixs and some prefix one of the following 44 1, using SED-path algorithm we described
conditions is true, the affix is extracted. above®

a
|
a

1. ¢; = ws (suffix) or Let ent(X) be the count ofX operation in the
computed path. ltnt(I) = 0, this case is consid-
ered as an approximate root form (with OCR errors).
The following conditions are considered as possible
The extracted affixes are added to the induced agrrors and no further analysis is done for such cases:
fix list, and theirexact courg are incremented. In
the third case—sis treated together as a circumfix. ent(M) = 0 |
For the infixes, there is one further step.ulf=
w'l ande; = e}l, we computeLC'S(w', e}). If €] = ent(M) < maz(ent(S), ent(D), ent(D)) ||
w's, for some suffixs, s is added as an infix to the cnt(M) < cnt(S) + cent(D) + ent(I)
induced affix list. (This means = w’sl wherew =

w'l.) Otherwise, we use the insertion operations at the
The following sample run illustrates how the ex-peginning and at the end of the path to identify the
act match part identifies affixes. Given the Cetype of the affix (prefix, suffix, or circumfix) and the
buano headword—example of usage palitk) —  |ength of the suffix (number of insertion operations).
(naabtikan sad ku sadta), the wordnaabtikanis  The identified affix is added to the affix list, and
marked as the candidate that has the longest cofgs approximate counis incremented. All the other
mon substring with headwordbtik These two cases are dismissed as errors. In its current state, the

words have the following alignment, and we exinfix affixes are not handled in approximate match
tract the circumfixna—an In the illustration below, cas5e.

2Headwords consisting of one character are not checked. ~ The following sample shows how approximate
®In order to reduce the search space, we do not check thgatch works with noisy data. In the Cebuano input
example words that are shorter than the headword. Although
there are some languages, such as Russian, in which headwords’At this initial version, MIND does not make any distinc-
may be longer than the inflected forms, such cases are not in thiens between noise in the data such as OCR errors, and mor-
scope of this paper. phophonemic rules. Making this distinction will be one of our
“Note that the length of the longest common substring cafuture focuses
be at most the length of the headword, in which case the longest ®Computing k-difference, and the edit path can be done in
common substring is the headword itself. parallel to reduce the computing time.

2. e; = pw (prefix) or
3. ¢; = pws (circumfix)
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pair @mbiha$ — (ambslasa pagbutang ang duha tails of the data from two dictionaries we use in our
ka silya arun makakét ang maglingkud sa luyuthe  experiments.

first word in the example of usage has an OCR er- Both Cebuano and Turkish are morphologically
ror, i is misrecognized as. Moreover, there is a rich. Cebuano allows prefixes, suffixes, circumfixes,
vowel change in the word caused by the affix. Annfixes, while Turkish is an agglunative language.
exact match of the headword cannot be found in thEhe two dictionaries have different characteristics.
example of usage. The k-DIFF algorithm return§he example of usages in CebEng are complete sen-
ambstasaas the candidate example of usage wordences given in italic font while TurEng has phrases,
with a distance 2. Then, the SED-path algorithnidioms, or complete sentences as examples of usages
returns the patt M M S M S M | and algorithm indicated in bold font.

successfully concludes thatis the suffix as shown

below in illustration (dotted lines represent substitu®-2  Protocol
tions). We ran our algorithm first on all of the data and then
on a randomly selected 20 pages from each dictio-
nary. We manually extracted the affixes from each
of the 20 pages. We then evaluated the MIND re-
sults with this ground truth. During the evaluation,
even if the number of an affix in the ground truth and
result are same, if they were extracted from different
6.1 Dictionaries words, this is counted as an error. We also examined

the cause of each error in this data.
The BRIDGE system (Ma et al,, 2003) processes We then compare our results from the whole

scanned and OCRed dictionaries to reproduce eleﬁ]rEng data with the state-of-the-art Linguistica

tronic versions and extract information from dictio- ) ) .
nary entries. We used the BRIDGE system to pro(_Goldsmlth, 2001) algorithm. Finally, we used the

cess wo bilinaual dicti ) i : rs1uffixes extracted by MIND and Linguistica to seg-
gual dictionaries, a Cebuano-Englis ) .

(CebEng) dictionary (Wolff, 1972) and a Turkish—mem words in a Turkish treebank.

English (TurEng) dictionary (Avery et al., 1974),5. 3 Analysis

and extract a list of headword-example of usage

pairs for our experiments. The extracted data is nof Dict. | Affix | Sample words \

perfect: it has mistagged information, i.e. it may in- mu- | galing/mugaling hikRkG/muhikihika

biha

am
| 1]
ambs h a

n—nmn

!
a

6 Experiments

can be in different forms: Two words can be merged . . b L
. .. gi-an | labuk/gilabukarikug/giikigan
into one, one word can be split into two, or charac- -un | gihay/gihayun gyung/gayingun

ters can be misrecognized. -a pisar/pisara sirnpul/siniga
-1 ad/ad! ilag/ilael

clude some information that is not the headword of € | nag- | kisdum/nagkisdum kugkugl/nagkugkug
. . E mi- iktin/miiktin kirus/mikarus
example of usage, or some useful information may g | . kunsuylufikunsuylu paba/ipatha
be missing, and OCR errors may occur. OCR errors U na- | pil/nagl ulatl/nailat
A | g buga/gibuga dlit/gidadit
N
o}

Dictionary # of # of #of T -i heves/hevesi ilim/ilmi
Dictionary pages | hw-ex pairs | words u -a saz/saza sonsuz/sonsuza
Cebuano-all | 1163 | 27129 | 206149 R | -e | deniz/denize zmim/mime
Turkish-all 1000 27487 111334 K -ina | etraf/etrafina kolay/kolayina
Cebuano-20 20 562 2134 | -ya hasta/hastaya orta/ortaya
Turkish-20 || 20 503 1849 S | U | Ustlistizyliziyizii

H -ini bel/belini zevk/zevkini

-ine | derin/derinine i¢/icine

Table 1: Details of Data from Two Dictionaries Used
in Experiments Table 3: Sample Affixes Extracted from Two Dictio-

Along with the headword—example of usage pair32/es
from more than 1000 pages, we randomly selected Table 2 shows result of MIND runs. The total
20 pages for detailed analysis. Table 1 provides deumber of affixes and number of different types of
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Cebuano Turkish

Whole dict. | 20pages || Whole dict. | 20 pages
Total 26106 542 27314 502
Root form 5727 180 18416 345
Prefix (diff. type) 10300 (180)| 197 (26) 6 (6) 0 (0
Suffix (diff. type) 1315 (253)| 16 (8) || 6983 (447)| 128 (59)
Infix (diff. type) 25 (11) 0 (0 1 (1) 0 (0
Circumfix (diff. type) 717 (221)| 18 (11) 9 (9 0 (0
App. Root form 1023 14 103 1
App. Prefix (diff. type) 1697 (116)| 23 (9) 8 (8) 1 Q)
App. Suffix (diff. type) 2930 (199)| 63 (19) 168 (100) 5 (5)
App. Circumfix (diff. type) 1060 (207)| 14 (5) 20 (20) 0 (0
Couldn't decide 1159 13 765 15

Table 2: Total Number and Different Types of Affixes Extracted from Two Dictionaries Using MIND

affixes (in parenthesis) are presented for two dictianisrecognition ot asd, causes both the miss of the
naries, CebEng and TurEng, and two data sets, tipeefix mag-and incorrect addition omdg-for Ce-
whole dictionary and 20 randomly selected pagefuano. There are some cases that cannot be correctly
The top part of the table gives the exact match resulidentified by the framework. These usually involve
and the bottom part shows the approximate matdiropping the last vowel because of morphophone-
results. For Cebuano, approximate match part of thaic rules. For the Cebuano dictionary, merge and
framework finds many more affixes than it does fosplit caused several errors, while Turkish data does
Turkish. This is due to the different structures imot have any such errors. Main reason is the differ-
the two dictionaries. We should note that althouglent structure and format of the original dictionaries.
MIND incorrectly finds a few prefixes, circumfixes, In the Cebuano dictionary, an italic font which may
and infixes for Turkish, these all have count oneresult in merge and split is used to indicate example
Table 3 contains some of the most frequent exef usages.
tracted affixes along with their exact and approxi- For the Cebuano data, five invalid suffixes, three
mate counts, and samples of headword—example iofvalid prefixes, and two invalid circumfixes are
usage word pairs they were extracted from. Eactound, while one valid suffix and one valid circumfix
word is segmented into one root and one suffixare missed. For the Turkish data, three invalid suf-
therefore when a word takes multiple affixes, theyixes, one invalid prefix, and two valid suffixes are
are all treated as a compound affix. found while two valid suffix are missed. When we
look at the invalid affixes in the data, most of them
| Dictionary [[ GTent. | Res.cnt. | Misses | Additions | (six of the Cebuano, and all of the Turkish ones)
%rbklijsino féé ilé' 187 ig have count one, and maximum count in an invalid
affix is five. Therefore, if we use a low threshold,
Table 4: Detailed Analysis of Affixes from 20 Pageswve can eliminate many of the invalid affixes.

Table 4 shows the number of affixes in ground.4 Comparison to Linguistica
truth and MIND results along with number of we compared our system wittinguistica a pub-
missed and incorrectly added affixes on 20 of thesgly available unsupervised corpus-based morphol-
pages of data. MIND only missed 5% of the affixesgy learner (Goldsmith, 2001). Linguistica induces
in the ground truth in both data sets. paradigms in a noise-free corpus, while MIND

We also examined the causes of each miss and atlakes use of string searching algorithms and allows
dition. Table 5 presents the causes of errors in thene to deal with noise at the cost of correctness.
output of MIND with an example for each cause. WeMIND emphasize segmenting a word into its root
should emphasize that a valid affix such as Turkishnd affixes. We trained Linguistica using two dif-
suffix -m1 is counted as an error since the suffix ferent data sets from TurEfigl) Whole headword-
ini should be extracted for that particular headword—"7y ould ike to do the same comparison in Cebuano. For
example of usage pair. An OCR error such as thee time being, we could not find a treebank and native speakers
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Reason | Cebuano I Turkish |

OCR 8 | M—lbi 11 | ini—miorim
Algorithm 8 | (uluy, giuylan)}— 7 | (alin, alninda)-

not gi-an, -lan is found not -inda, -da is found
Merge 9 | imung gibug—imunggibug || 0 | -
Split 1 | nag-Kigus—nag- Kigus 0
Other 5 | apr—april 0

Headword is an abbreviation

Table 5: The Distribution of the Causes of Errors in 20 Pages with Samples

example of usage sentence pairs, and 2) Headworah the right in Figurel which gives the percentage
candidate example words that our algorithm returnsf valid suffixes as a function of threshold values.
In the first case (Ling-all), Linguistica uses moreMIND takes advantage of thresholding, and percent-
data than our algorithm, so to avoid any biases rexge of valid suffixes rapidly decrease for threshold
sulting from this, we also trained Linguistica usingvalue 1.

the headword and candidate example word (Ling- _ _
cand). We only used the suffixes, since Turkish islaSystem |l Th. | Total [ OverTh. | invalid | Missed |

. Lo Ling-cand 6 100.00 0.00 0.00
sufflx-based language. The evaluation is done by|g g a 4 10000 | 000 | 000
native speaker. MIND 60 96.67 1.72 0.00

Figure 1 presents the analysis of the suffix listsLing-cand 6 66.67 | 0.00 | 33.33
Ling-all 4 100.00 | 0.00 0.00

produced by Linguistica using two sets of training pynp
data, and MIND. The suffix lists are composed of Ling-cand
suffixes the systems return that have counts moyé-ng-all

. MIND
than a threshold. The results are presented for six
threshold values for all of the data. We use threshFable 6: Total Number and Percentage of Over the
olding to decrease the number of invalid affixeShreshold, Invalid, and Missed Suffixes Found by
caused primarily by the noise in the data. For th&inguistica and MIND for Different Threshold Val-
MIND results, the suffixes over threshold are thaies for 20 pages of Turkish Data
ones that have positive exact counts and total counts
(sum of exact and approximate counts) more than Table 6 presents the same results for 20 pages
the threshold. Although Linguistica is not designedrom TurEng for three threshold values. MIND per-
for thresholding, the data we use is noisy, and wi®rms well even with very small data and finds many
explored if suffixes with a corpus count more tharvalid affixes. Linguistica on the other hand finds
a threshold will eliminate invalid suffixes. The ta-very few.
ble on the left gives the total number of suffixes,
the percentage of suffixes that have a count mof5 Stemming
than a threshold value, the percentage of invalid sufg test the utility of the results, we perform a sim-
fixes, and percentage of missed suffixes that are digre word segmentation, with the aim of stripping the
carded by thresholding for the whole TurEng dictioinflectional suffixes, and find the bare form of the
nary. The number of affixes MIND finds are muchyord. A word segmenter takes a list of suffixes, and
more than that of Linguistica. Furthermore, numbegheir counts from the morphology induction system
of invalid affixes are lower. On the other hand, thg| inguistica or MIND), a headword list as a dictio-
number of missed affixes is also higher for MINDpary 4 threshold value, and the words from a tree-
since, for this particular data, there are many affixe§ank. For each word in the treebank, there is a root
with counts less than 5. 41% of the affixes have afyrm (; ), and a usage formuf). The suffixes with
exact count of 1. The main reason for this is the, count more than the threshold are indexed accord-
agglunative nature of Turkish language. The effeGhg to their last letters. For each word in the tree-
of thresholding can also be examined in the graphank; we first check if.f is already in the dictio-

for Cebuano. nary, i.e. in the headword list. If we cannot find it

60 41.67 0.00 53.33
6 50.00 0.00 50.00
4 75.00 0.00 25.00
60 18.33 0.00 76.67

NNNPFPRPRPROOO
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System Th. | Total | % Over Th. | % Invalid | % Missed

Ling-cand|| O 116 100.00 18.10 0.00

Ling-all 0 274 100.00 34.67 0.00

MIND 0 499 89.58 13.20 3.61

Ling-cand 1 116 98.28 17.54 0.86

Ling-all 1 274 94.89 32.69 1.46

MIND 1 499 50.50 4.37 33.07

Ling-cand || 2 116 92.24 16.82 5.17

Ling-all 2 274 87.96 31.12 4.74

MIND 2 499 38.48 4.17 44.49

Ling-cand || 3 116 91.38 16.98 6.03

Ling-all 3 274 85.40 31.20 6.57

MIND 3 499 28.86 2.78 53.31

Ling-cand|| 4 116 81.03 12.77 11.21 0 1 2 3 4 5
Ling-all 4 274 81.39 30.94 9.12 -4 - Ling-cand-valid —e- - Ling-all-valid —=— MIND-valid
MIND 4 499 25.65 3.13 56.51

Ling-cand || 5 116 80.17 12.90 12.07

Ling-all 5 274 79.56 31.19 10.58

MIND 5 499 23.25 2.59 58.72

Figure 1: Total Number and Percentage of Over the Threshold, Invalid, Missed and Valid Suffixes Found by
Linguistica and MIND for Different Threshold Values

in the dictionary, we repeatedly attempt to find the 100
longest suffix that matches the endugf, and check
the dictionary again. The process stops when a dic-
tionary word is found or when no matching suffixes
can be found at the end of the word. If the word the
segmenter returns is samergsin the treebank, we
increase the correct count. Otherwise, this case is o ‘ ;

counted as an error. NAGO 2 3 a4 5

In our stemming experiments we used METU- |- Ling-cand —e- Ling-all —=—MIND |

Sabanci Turkish Treebatka morphologically and _
syntactically annotated treebank corpus of 726p19ure 2: Percentage of Correctly Segmented Words

grammatical sentences (Atalay et al., 2003; Oflaz&ly Different Systems for Different Threshold Values
et al., 2003). We skipped the punctuation and mul-

tiple parsg@, and ran our word segmentation Onproximate match counts are more than the thresh-
14950 unique words. We also used the headwoigly For Linguistica, suffixes with a corpus count
list extracted from TurEng as the dictionary. NOt&ysre than the threshold are used. For each thresh-
that, the headword list is not error-free, it has OCR) 4 value, MIND did much better than Ling-cand.
errors. Therefore even if the word segmenter returng np outperformed Ling-all for thresholds 0 and
the correct root form, it may not be in the dictionary; ko the other values, the difference is small. We
and the word may be stripped further. should note that Ling-all uses much more training
The percentage of correctly segmented words atta than MIND (503 vs. 1849 example of words),
presented in Figure 2. We show results for sband even with this difference the performance of
threshold values. Suffixes with counts more than thelIND is close to Ling-all. We believe the reason
threshold are used in each case. Again for MINBor the close performance of MIND and Ling-all in
results, we require that the exact match counts agggmentation despite the huge difference in the num-
more than zero, and the total of exact match and aper of correct affixes they found due to the fact that
- affixes Ling-all finds are shorter, and more frequent.
ohttp:/fwww.ii.metu.edu.tr/ corpus/treebank. htmi In its current state, MIND does not segment com-
Multiple parses are the cases where a suffix is attached not . .
to a single word, but to a group of words. The suftixin takip pound affixes, and find several long and less fre-
etti is attached tdakip et guent affixes. These long affixes can be composed

8 &8 8 8
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by shorter affixes Linguistica finds. Michael R. Brent. 1993. Minimal generative models: A mid-
dle ground between neurons and triggersPlaceedings of

7 Conclusion and Future Work the 5th International Workshop on Atrtificial Intelligence and
Statistics Ft. Laudersdale, FL.

We presented a framework for morphology inducMathias Creutz and Krista Lagus. 2002. Unsupervised discov-

tion from noisy data, that is especially useful for lan- €1y of morphemes. IRroceedings of the ACL-02 Workshop

. . : on Morphological and Phonological Learnin
guages which have limited electronic data. We use _ . pnotod 9 g
; . . . . fp H. Dejean. 1998. Morphemes as necessary concepts for struc-
the information in dictionaries, specifically head- " yres: piscovery from untagged corpora. Workshop on

word and the corresponding example of usage sen-Paradigms and Grounding in Natural Language Learning
tences, to acquire affix lists of the language. We pre- Pages 295-299.

sented results on two data sets and demonstrated tﬁ%{;“ Goldsmith, Yu Hu, Irina Matveeva, and Colin Sprague.
005. A heuristic for morpheme discovery based on string

our framework successfully finds the prefixes, suf- egit distance. Technical Report TR-2205-04, Department of
fixes, circumfixes, and infixes. We also used the ac- Computer Science, University of Chicago.
quired suffix list from one data set in a simple wordlohn Goldsmith. 2001. Unsupervised learning of the mor-

segmentation process, and outperformed a state-of-gg?z'g’_%gifggat”ra' languageComputational Linguistics

the-a_rt_morphology learner using the same amou%‘llig Harris. 1955. From phoneme to morphenk@nguage
of training data. 31:190-222.

At this point we are only using headword andquanfeng Ma, Burcu Karagol-Ayan, David Doermann, Dou-
corresponding example of usage pairs. Dictionaries 9las Oard, and Jiangiang Wang. 2003. Parsing and tag-

. : . ging of bilingual dictionaries.Traitement Automatique Des
provide much more information. We plan to make Languespages 125-150.

use of Other 'nfo_rmatlon’ Suc.:h as P(_)S’ to_ Calegoriz& ristian Monson. 2004. A framework for unsupervised nat-
the acquired affixes. We will also investigate how ural language morphology induction. Rroceedings of the
using all the words in example of usages and split- Student Research Workshop: ACL 20pdges 67—72.

ting the compound affixes in agglunative Ianguage%WVai” Neuvel and Sean A. Fulop. 2002. Unsupervised learn-

hel 0] th fid f t af ing of morphology without morphemes. Rroceedings of
can help us 1o Increase the confidence or Correct ar- e acp-02 Workshop on Morphological and Phonological

fixes, and decrease the number of invalid affixes. Learning pages 31-40.
Finally we will work on identifying morphophone- Kemal Oflazer, Bilge Say, Dilek Hakkanitif, and Gkhan Tur.

mic rules (especially stem-interval vowel shifts and 2003. Building a Turkish Treebank. In Anne Abéilledi-
. . tor, Building and Using Parsed Corpor&luwer Academic
point-of-affixation stem changes). Publishers.

Ack led t Patrick Schone and Daniel Jurafsky. 2001. Knowledge-free
cKnowledgments induction of inflectional morphologies. 18econd Meeting

. . f the NAAC 183-191.
The partial support of this research under Contra(I:IE/:SeZanvicth;(?g; A fast morphological algorithm with
MDA-9040-2C-0406 is gratefully acknowledged. unknown Wo.rd gueésing induced by a dictionary for a web

search engine. IRroceedings of MLMTALas Vegas, NV.
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