
Proceedings of the Eighth Meeting of the ACL Special Interest Group on Computational Phonology at HLT-NAACL 2006, pages 41–49,
New York City, USA, June 2006.c©2006 Association for Computational Linguistics

Improved morpho-phonological sequence processing with
constraint satisfaction inference

Antal van den Bosch and Sander Canisius
ILK / Language and Information Science

Tilburg University, P.O. Box 90153, NL-5000 LE Tilburg, TheNetherlands
{Antal.vdnBosch,S.V.M.Canisius}@uvt.nl

Abstract

In performing morpho-phonological se-
quence processing tasks, such as letter-
phoneme conversion or morphological
analysis, it is typically not enough to base
the output sequence on local decisions that
map local-context input windows to sin-
gle output tokens. We present a global
sequence-processing method that repairs
inconsistent local decisions. The approach
is based on local predictions of overlap-
ping trigrams of output tokens, which
open up a space of possible sequences;
a data-driven constraint satisfaction infer-
ence step then searches for the optimal
output sequence. We demonstrate signifi-
cant improvements in terms of word accu-
racy on English and Dutch letter-phoneme
conversion and morphological segmenta-
tion, and we provide qualitative analyses
of error types prevented by the constraint
satisfaction inference method.

1 Introduction

The fields of computational phonology and mor-
phology were among the earlier fields in compu-
tational linguistics to adopt machine learning algo-
rithms as a means to automatically construct pro-
cessing systems from data. For instance, letter-
phoneme conversion was already pioneered, with
neural networks initially, at the end of the 1980s
(Sejnowski and Rosenberg, 1987), and was shortly

after also investigated with memory-based learn-
ing and analogical approaches (Weijters, 1991; Van
den Bosch and Daelemans, 1993; Yvon, 1996)
and decision trees (Torkkola, 1993; Dietterich
et al., 1995). The development of these data-
driven systems was thrusted by the early existence
of lexical databases, originally compiled to serve
(psycho)linguistic research purposes, such as the
CELEX lexical database for Dutch, English, and
German (Baayen et al., 1993). Many researchers
have continued and are still continuing this line of
work, generally producing successful systems with
satisfactory, though still imperfect performance.

A key characteristic of many of these early sys-
tems is that they perform decomposed or simplified
versions of the full task. Rather than predicting the
full phonemization of a word given its orthography
in one go, the task is decomposed in predicting in-
dividual phonemes or subsequences of phonemes.
Analogously, rather than generating a full word-
form, many morphological generation systems pro-
duce transformation codes (e.g., “add -er and um-
laut”) that need to be applied to the input string by
a post-processing automaton. These task simplifi-
cations are deliberately chosen to avoid sparseness
problems to the machine learning systems. Such
systems tend to perform badly when there are many
low-frequent and too case-specific classes; task de-
composition allows them to be robust and generic
when they process unseen words.

This task decomposition strategy has a severe
drawback in sequence processing tasks. Decom-
posed systems do not have any global method to
check whether their local decisions form a globally

41



coherent output. If a letter-phoneme conversion sys-
tem predicts schwas on every vowel in a polysyllabic
word such asparameterbecause it is uncertain about
the ambiguous mapping of each of theas andes, it
produces a bad pronunciation. Likewise, if a mor-
phological analysis system segments a word such as
beingas a prefix followed by an inflection, making
the locally most likely guesses, it generates an anal-
ysis that could never exist, since it lacks a stem.

Global models that coordinate, mediate, or en-
force that the output is a valid sequence are typi-
cally formulated in the form of linguistic rules, ap-
plied during processing or in post-processing, that
constrain the space of possible output sequences.
Some present-day research in machine learning
of morpho-phonology indeed focuses on satisfy-
ing linguistically-motivated constraints as a post-
processing or filtering step; e.g., see (Daya et al.,
2004) on identifying roots in Hebrew word forms.
Optimality Theory (Prince and Smolensky, 2004)
can also be seen as a constraint-based approach to
language processing based on linguistically moti-
vated constraints. In contrast to being motivated by
linguistic theory, constraints in a global model can
be learned automatically from data as well. In this
paper we propose such a data-driven constraint sat-
isfaction inference method, that finds a globally ap-
propriate output sequence on the basis of a space of
possible sequences generated by a locally-operating
classifier predicting output subsequences. We show
that the method significantly improves on the ba-
sic method of predicting single output tokens at a
time, on English and Dutch letter-phoneme conver-
sion and morphological analysis.

This paper is structured as follows. The constraint
satisfaction inference method is outlined in Sec-
tion 2. We describe the four morpho-phonological
processing tasks, and the lexical data from which we
extracted examples for these tasks, in Section 3. We
subsequently list the outcomes of the experiments
in Section 4, and conclude with a discussion of our
findings in Section 5.

2 Class trigrams and constraint
satisfaction inference

Both the letter-phoneme conversion and the morpho-
logical analysis tasks treated in this paper can be

seen as sequentially-structured classification tasks,
where sequences of letters are mapped to sequences
of phonemes or morphemes. Such sequence-to-
sequence mappings are a frequently reoccurring
phenomenon in natural language processing, which
suggests that it is preferable to take care of the issue
of classifying sequential data once at the machine
learning level, rather than repeatedly and in different
ways at the level of practical applications. Recently,
a machine learning approach for sequential data has
been proposed by Van den Bosch and Daelemans
(2005) that is suited for discrete machine-learning
algorithms such as memory-based learners, which
have been shown to perform well on word phonem-
ization and morphological analysis before (Van den
Bosch and Daelemans, 1993; Van den Bosch and
Daelemans, 1999). In the remainder of this paper,
we use as our classifier of choice theIB1 algorithm
(Aha et al., 1991) with feature weighting, as im-
plemented in the TiMBL software package1 (Daele-
mans et al., 2004).

In the approach to sequence processing proposed
by Van den Bosch and Daelemans (2005), the el-
ements of the input sequence (in the remainder of
this paper, we will refer to words and letters rather
than the more general terms sequences and sequence
elements) are assigned overlapping subsequences of
output symbols. This subsequence corresponds to
the output symbols for afocus letter, and one let-
ter to its left and one letter to its right. Predicting
such trigram subsequences for each letter of a word
eventually results in three output symbol predictions
for each letter. In many cases, those three predic-
tions will not agree, resulting in a number of po-
tential output sequences. We will refer to the pro-
cedure for selecting the final output sequence from
the space of alternatives spanned by the predicted
trigrams as an inference procedure, analogously to
the use of this term in probabilistic sequence clas-
sification methods (Punyakanok and Roth, 2001).
The original work on predicting class trigrams im-
plemented a simple inference procedure by voting
over the three predicted symbols (Van den Bosch
and Daelemans, 2005).

Predicting trigrams of overlapping output sym-
bols has been shown to be an effective approach

1TiMBL URL: http://ilk.uvt.nl/timbl/

42



to improve sequence-oriented natural language pro-
cessing tasks such as syntactic chunking and named-
entity recognition, where an input sequence of to-
kens is mapped to an output sequence of symbols
encoding a syntactic or semantic segmentation of the
sentence. Letter-phoneme conversion and morpho-
logical analysis, though sequentially structured on
another linguistic level, may be susceptible to bene-
fiting from this approach as well.

In addition to the practical improvement shown
to be obtained with the class trigram method, there
is also a more theoretical attractiveness to it. Since
the overlapping trigrams that are predicted are just
atomic symbols to the underlying learning algo-
rithm, a classifier will only predict output symbol
trigrams that are actually present in the data it was
trained on. Consequently, predicted trigrams are
guaranteed to be syntactically valid subsequences
in the target task. There is no such guarantee in
approaches to sequence classification where an iso-
lated local classifier predicts single output symbols
at a time, without taking into account predictions
made elsewhere in the word.

While the original voting-based inference proce-
dure proposed by Van den Bosch and Daelemans
(2005) manages to exploit the sequential informa-
tion stored in the predicted trigrams to improve upon
the performance of approaches that do not consider
the sequential structure of their output at all, it does
so only partly. Essentially, the voting-based infer-
ence procedure just splits the overlapping trigrams
into their unigram components, thereby retaining
only the overlapping symbols for each individual let-
ter. As a result, the guaranteed validity of the trigram
subsequences is not put to use. In this section we de-
scribe an alternative inference procedure, based on
principles of constraint satisfaction, that does man-
age to use the sequential information provided by
the trigram predictions.

At the foundation of this constraint-satisfaction-
based inference procedure, more briefly constraint
satisfaction inference, is the assumption that the
output symbol sequence should preferably be con-
structed by concatenating the predicted trigrams of
output symbols, rather than by chaining individual
symbols. However, as the underlying base classifier
is by no means perfect, predicted trigrams should not
be copied blindly to the output sequence; they may

be incorrect. If a trigram prediction is considered to
be of insufficient quality, the procedure backs off to
symbol bigrams or even symbol unigrams.

The intuitive description of the inference proce-
dure is formalized by expressing it as a weighted
constraint satisfaction problem (W-CSP). Constraint
satisfaction is a well-studied research area with
many diverse areas of application. Weighted con-
straint satisfaction extends the traditional constraint
satisfaction framework with soft constraints; such
constraints are not required to be satisfied for a solu-
tion to be valid, but constraints a given solution does
satisfy are rewarded according to weights assigned
to them. Soft constraints are perfect for expressing
our preference for symbol trigrams, with the possi-
bility of a back off to lower-degreen-grams if there
is reason to doubt the quality of the trigram predic-
tions.

Formally, a W-CSP is a tuple(X,D,C,W ).
Here,X = {x1, x2, . . . , xn} is a finite set of vari-
ables. D(x) is a function that maps each variable
to its domain, that is, the set of values that variable
can take on.C is the set of constraints. While a
variable’s domain dictates the values a single vari-
able is allowed to take on, a constraint specifies
which simultaneous valuecombinationsover a num-
ber of variables are allowed. For a traditional (non-
weighted) constraint satisfaction problem, a valid
solution would be an assignment of values to the
variables that (1) are a member of the corresponding
variable’s domain, and (2) satisfyall constraints in
the setC. Weighted constraint satisfaction, however,
relaxes this requirement to satisfy all constraints. In-
stead, constraints are assigned weights that may be
interpreted as reflecting the importance of satisfying
that constraint.

Let a constraintc ∈ C be defined as a function
that maps each variable assignment to 1 if the con-
straint is satisfied, or to 0 if it is not. In addition, let
W : C→ IR+ denote a function that maps each con-
straint to a positive real value, reflecting the weight
of that constraint. Then, the optimal solution to a
W-CSP is given by the following equation.

x
∗ = arg max

x

∑

c

W (c)c(x)

43



Figure 1: Illustration of the constraints yielded by a givensequence of predicted class trigrams for the word
hand. The constraints on the right have been marked with a number (between parentheses) that refers to the
trigram prediction on the left from which the constraint wasderived.

That is, the assignment of values to its variables
that maximizes the sum of weights of the constraints
that have been satisfied.

Translating the terminology used in morpho-
phonological tasks to the constraint satisfaction do-
main, each letter maps to a variable, the domain of
which corresponds to the three overlapping candi-
date symbols for this letter suggested by the trigrams
covering the letter. This provides us with a defini-
tion of the functionD, mapping variables to their
domain. In the following,yi,j denotes the candi-
date symbol for letterxj predicted by the trigram
assigned to letterxi.

D(xi) = {yi−1,i, yi,i, yi+1,i}

Constraints are extracted from the predicted tri-
grams. Given the goal of retaining predicted tri-
grams in the output symbol sequence as much as
possible, the most important constraints are simply
the trigrams themselves. A predicted trigram de-
scribes a subsequence of length three of the entire
output sequence; by turning such a trigram into a
constraint, we express the wish to have this trigram
end up in the final output sequence.

(xi−1, xi, xi+1) = (yi,i−1, yi,i, yi,i+1),∀i

No base classifier is flawless though, and there-
fore not all predicted trigrams can be expected to be
correct. Yet, even an incorrect trigram may carry
some useful information regarding the output se-
quence: one trigram also covers two bigrams, and

three unigrams. An incorrect trigram may still con-
tain smaller subsequences of length one or two that
are correct. Therefore, all of these are also mapped
to constraints.

(xi−1, xi) = (yi,i−1, yi,i), ∀i

(xi, xi+1) = (yi,i, yi,i+1), ∀i

xi−1 = yi,i−1, ∀i

xi = yi,i, ∀i

xi+1 = yi,i+1, ∀i

To illustrate the above procedure, Figure 1 shows
the constraints yielded by a given output sequence
of class trigrams for the word “hand”. With such an
amount of overlapping constraints, the satisfaction
problem obtained easily becomes over-constrained,
that is, no variable assignment exists that can sat-
isfy all constraints without breaking another. Even
only one incorrectly predicted class trigram already
leads to two conflicting candidate symbols for one
of the letters at least. In Figure 1, this is the case
for the letter “d”, for which both the symbol “d” and
“t” are predicted. On the other hand, without con-
flicting candidate symbols, no inference would be
needed to start with. The choice for the weighted
constraint satisfaction method always allows a solu-
tion to be found, even in the presence of conflict-
ing constraints. Rather than requiring all constraints
to be satisfied, each constraint is assigned a certain
weight; the optimal solution to the problem is an as-
signment of values to the variables that optimizes the

44



Focus Trigram output classes
Left context letter Right context Phonemization Morph. analysis

b o o k b u s -
b o o k i b u - s - -

b o o k i n u - k - - -
b o o k i n g - k I - - i
o o k i n g k I N - i -
o k i n g I N - i - -
k i n g N - - -

Table 1: Seven labeled examples of phonemization and morphological analysis trigram mappings created
for the wordbooking.

sum of weights of the constraints that are satisfied.

As weighted constraints are defined over overlap-
ping subsequences of the output sequence, the best
symbol assignment for each letter with respect to the
weights of satisfied constraints is decided upon on a
global sequence level. This may imply taking into
account symbol assignments for surrounding letters
to select the best output symbol for a certain letter.
In contrast, in non-global approaches, ignorant of
any sequential context, only the local classifier pre-
diction with highest confidence is considered for se-
lecting a letter’s output symbol. By formulating our
inference procedure as a constraint satisfaction prob-
lem, global output optimization comes for free: in
constraint satisfaction, the aim is also to find a glob-
ally optimal assignment of variables taking into ac-
count all constraints defined over them. Yet, for such
a constraint satisfaction formulation to be effective,
good constraint weights should be chosen, that is,
weights that favor good output sequences over bad
ones.

Constraints can directly be traced back to a pre-
diction made by the base classifier. If two con-
straints are in conflict, the one which the classifier
was most certain of should preferably be satisfied.
In the W-CSP framework, this preference can be ex-
pressed by weighting constraints according to the
classifier confidence for the originating trigram. For
the memory-based learner, we define the classifier
confidence for a predicted class as the weight as-
signed to that class in the neighborhood of the test
instance, divided by the total weight of all classes.

Let x denote a test instance, andc∗ its pre-
dicted class. Constraints derived from this class are

weighted according to the following rules:

• for a trigram constraint, the weight is simply
the base classifier’s confidence value for the
classc∗;

• for a bigram constraint, the weight is the sum
of the confidences for all trigram classes in the
nearest-neighbor set ofx that assign the same
symbol bigram to the letters spanned by the
constraint;

• for a unigram constraint, the weight is the sum
of the confidences for all trigram classes in the
nearest-neighbor set ofx that assign the same
symbol to the letter spanned by the constraint.

This weighting scheme results in an inference
procedure that behaves exactly as we already de-
scribed intuitively in the beginning of this section.
The preference for retaining the predicted trigrams
in the output sequence is translated into high rewards
for output sequences that do so, since such output se-
quences not only receive credit for the satisfied tri-
gram constraints, but also for all the bigram and un-
igram constraints derived from that trigram; they are
necessarily satisfied as well. Nonetheless, this pref-
erence for trigrams may be abandoned if composing
a certain part of the output sequence from several
symbol bigrams or even unigrams results in higher
rewards than when trigrams are used. The latter may
happen in cases where the base classifier is not con-
fident about its trigram predictions.

45



3 Data preparation

In our experiments we train classifiers on English
and Dutch letter-phoneme conversion and morpho-
logical analysis. All data for the experiments de-
scribed in this paper are extracted from the CELEX
lexical databases for English and Dutch (Baayen et
al., 1993). We encode the examples for our base
classifiers in a uniform way, along the following pro-
cedure. Given a word and (i) an aligned phone-
mic transcription or (ii) an aligned encoding of a
morphological analysis, we generate letter-by-letter
windows. Each window takes one letter in focus,
and includes three neighboring letters to the left
and to the right. Each seven-letter input window
is associated to a trigram class label, composed of
the focus class label aligned with the middle let-
ter, plus its immediately preceding and following
class labels. Table 1 displays the seven examples
made on the basis of the wordbooking, with tri-
gram classes (as explained in Section 2) both for
the letter-phoneme conversion task and for the mor-
phological analysis task. The full aligned phone-
mic transcription ofbookingis [bu-kIN-] (using the
SAMPA coding of the international phonetic alpha-
bet), and the morphological analysis ofbooking is
[book]stem[ing]inflection. The dashes in the phone-
mic transcription are inserted to ensure a one-to-
one mapping between letters and phonemes; the in-
sertion was done by automatical alignment through
expectation-maximization (Dempster et al., 1977).

The English word phonemization data, extracted
from the CELEX lexical database, contains 65,467
words, on the basis of which we create a database
of 573,170 examples. The Dutch word phonemiza-
tion data set consists of 293,825 words, totaling to
3,181,345 examples. Both data sets were aligned us-
ing the expectation-maximization algorithm (Demp-
ster et al., 1977), using a phonemic null character to
equalize the number of symbols in cases in which
the phonemic transcription is shorter than the ortho-
graphic word, and using “double phonemes” (e.g.
[X] for [ks]) in cases where the phonemic transcrip-
tion is longer, as intaxi – [tAksi].

CELEX contains 336,698 morphological analy-
ses of Dutch (which we converted to 3,209,090
examples), and 65,558 analyses of English words
(573,544 examples). We converted the available

Left Focus Right Trigram
context letter context class

a b n o A 0
a b n o r A 0 0

a b n o r m 0 0 0
a b n o r m a 0 0 0
b n o r m a l 0 0 0
n o r m a l i 0 0 0
o r m a l i t 0 0 0+Da
r m a l i t e 0 0+Da A→N
m a l i t e i 0+Da A →N 0
a l i t e i t A →N 0 0
l i t e i t e 0 0 0
i t e i t e n 0 0 0
t e i t e n 0 0 plural
e i t e n 0 plural 0
i t e n plural 0

Table 2: Examples with morphological analysis tri-
gram classes derived from the example wordabnor-
maliteiten.

morphological information for the two languages in
a coding scheme which is rather straightforward in
the case of English, and somewhat more compli-
cated for Dutch. For English, as exemplified in Ta-
ble 1, a simple segmentation label marks the begin-
ning of either a stem, an inflection (“s” and “i” in
Table 1), a stress-affecting affix, or a stress-neutral
affix (“1” and “2”, not shown in Table 1). The cod-
ing scheme for Dutch incorporates additional infor-
mation on the part-of-speech of every stem and non-
inflectional affix, the type of inflection, and also en-
codes all spelling changes between the base lemma
forms and the surface word form.

To illustrate the more complicated construction of
examples for Dutch morphological analysis, Table 2
displays the 15 instances derived from the Dutch
example wordabnormaliteiten(abnormalities) and
their associated classes. The class of the first in-
stance is A, which signifies that the morpheme start-
ing in a is an adjective (A). The class of the eighth
instance, 0+Da, indicates that at that position no seg-
ment starts (0), but that ana was deleted at that po-
sition (+Da, “delete a” here). Next to deletions, in-
sertions (+I) and replacements (+R, with a deletion
and an insertion argument) can also occur. Together

46



Language Task Unigrams Trigrams
English Letter-phon. 58 13,005

Morphology 5 80
Dutch Letter-phon. 201 17,538

Morphology 3,831 14,795

Table 3: Numbers of unigram and trigram classes
for the four tasks.

these two classification labels code that the first mor-
pheme is the adjectiveabnormaal. The second mor-
pheme, the suffixiteit, has class A→N. This com-
plex tag, which is in fact a rewrite rule, indicates that
wheniteit attaches right to an adjective (encoded by
A ), the new combination becomes a noun (→N).
Rewrite rule class labels occur exclusively with suf-
fixes, that do not have a part-of-speech tag of their
own, but rather seek an attachment to form a com-
plex morpheme with the part-of-speech tag. Finally,
the third morpheme isen, which is a plural inflection
that by definition attaches to a noun.

Logically, the number of trigram classes for each
task is larger than the number of atomic classes;
the actual numbers for the four tasks investigated
here are displayed in Table 3. The English morpho-
logical analysis task has the lowest number of tri-
gram classes, 80, due to the fact that there are only
five atomic classes in the original task, but for the
other tasks the number of trigram classes is quite
high; above 10,000. With these numbers of classes,
several machine learning algorithms are practically
ruled out, given their high sensitivity to numbers of
classes (e.g., support vector machines or rule learn-
ers). Memory-based learning algorithms, however,
are among a small set of machine learning algo-
rithms that are insensitive to the number of classes
both in learning and in classification.

4 Results

We performed experiments with the memory-based
learning algorithmIB1, equipped with constraint
satisfaction inference post-processing, on the four
aforementioned tasks. In one variant,IB1 was sim-
ply used to predict atomic classes, while in the other
variant IB1 predicted trigram classes, and constraint
satisfaction inference was used for post-processing
the output sequences. We chose to measure the gen-

Language Method Word accuracy
English Unigram 80.0±0.75

CSInf 85.4±0.71

Dutch Unigram 41.3±0.48
CSInf 51.9±0.48

Table 4: Word accuracies on English and Dutch
morphological analysis by the default unigram clas-
sifier and the trigram method with constraint satis-
faction inference, with confidence intervals.

Language Method Word accuracy
English Unigram 79.0±0.82

CSInf 84.5±0.76

Dutch Unigram 92.8±0.25
CSInf 94.4±0.22

Table 5: Word accuracies on English and Dutch
letter-phoneme conversion by the default unigram
classifier and the trigram method with constraint sat-
isfaction inference, with confidence intervals.

eralization performance of our trained classifiers on
a single 90% training set – 10% test set split of each
data set (after shuffling the data randomly at the
word level), and measuring the percentage of fully
correctly phonemized words or fully correctly mor-
phologically analyzed words – arguably the most
critical and unbiased performance metric for both
tasks. Additionally we performed bootstrap resam-
pling (Noreen, 1989) to obtain confidence intervals.

Table 4 lists the word accuracies obtained on the
English and Dutch morphological analysis tasks.
Constraint satisfaction inference significantly out-
performs the systems that predict atomic unigram
classes, by a large margin. While the absolute differ-
ences in scores between the two variants of English
morphological analysis is 5.4%, the error reduction
is an impressive 27%.

Table 5 displays the word phonemization accu-
racies of both variants on both languages. Again,
significant improvements over the baseline classifier
can be observed; the confidence intervals are widely
apart. Error reductions for both languages are im-
pressive: 26% for English, and 22% for Dutch.

47



5 Discussion

We have presented constraint satisfaction inference
as a global method to repair errors made by a local
classifier. This classifier is a memory-based learner
predicting overlapping trigrams, creating a space of
possible output sequences in which the inference
procedure finds the globally optimal one. This glob-
ally optimal sequence is the one that adheres best to
the trigram, bigram, and unigram sub-sequence con-
straints present in the predictions of the local classi-
fier, weighted by the confidences of the classifier, in
a back-off order from trigrams to unigrams.

The method is shown to significantly outperform
a memory-based classifier predicting atomic classes
and lacking any global post-processing, which has
previously been shown to exhibit successful perfor-
mance (Van den Bosch and Daelemans, 1993; Van
den Bosch and Daelemans, 1999). (While this was
the reason for using memory-based learning, we
note that the constraint satisfaction inference and its
underlying trigram-based classification method can
be applied to any machine-learning classifier.) The
large improvements (27% and 26% error reductions
on the two English tasks, 18% and 22% on the two
Dutch tasks) can arguably be taken as an indication
that this method may be quite effective in general in
morpho-phonological sequence processing tasks.

Apparently, the constraint-satisfaction method is
able to avoid more errors than to add them. At closer
inspection, comparing cases in which the atomic
classifier generates errors and constraint satisfaction
inference does not, we find that the type of avoided
error, when compared to the unigram classifier, dif-
fers per task. On the morphological analysis task,
we identify repairs where (1) a correct segmentation
is inserted, (2) a false segmentation is not placed,
and (3) a tag is switched. As Table 6 shows in its up-
per four lines, in the case of English most repairs in-
volve correctly inserted segmentations, but the other
two categories are also quite frequent. In the case of
Dutch the most common repair is a switch from an
incorrect tag, placed at the right segmentation posi-
tion, to the correct tag at that point. Given that there
are over three thousand possible tags in our compli-
cated Dutch morphological analysis task, this is in-
deed a likely area where there is room for improve-
ment.

Morphological analysis repairsEnglish Dutch
Insert segmentation 193 1,087
Delete segmentation 158 1,083
Switch tag 138 2,505

Letter-phoneme repairs English Dutch
Alignment 1,049 239
Correct vowel 32 94
Correct consonant 275 73

Table 6: Numbers of repaired errors divided over
three categories of morphological analysis classifi-
cations (top) and letter-phoneme conversions (bot-
tom) of the constraint satisfaction inference method
as compared to the unigram classifier.

The bottom four lines of Table 6 lists the counts of
repaired errors in word phonemization in both lan-
guages, where we distinguish between (1) alignment
repairs between phonemes and alignment symbols
(where phonemes are corrected to phonemic nulls,
or vice versa), (2) switches from incorrect non-null
phonemes to correct vowels, and (3) switches from
incorrect non-null phonemes to correct consonants.
Contrary to expectation, it is not the second vowel
category in which most repairs are made (many of
the vowel errors in fact remain in the output), but
the alignment category, in both languages. At points
where the local unigram classifier sometimes incor-
rectly predicts a phoneme twice, where it should
have predicted it along with a phonemic null, the
constraint satisfaction inference method never gen-
erates a double phoneme. Hence, the method suc-
ceeds in generating sequences that arepossible, and
avoiding impossible sub-sequences. At the same
time, apossiblesequence is not necessarily thecor-
rectsequence, so this method can be expected to still
make errors on the identity of labels in the output se-
quence.

In future work we plan to test a range ofn-gram
widths exceeding the current trigrams. Preliminary
results suggest that the method retains a positive ef-
fect over the baseline withn > 3, but it does not
outperform then = 3 case. We also intend to test
the method with a range of different machine learn-
ing methods, since as we noted before the constraint-
satisfaction inference method and its underlyingn-
gram output subsequence classification method can

48



be applied to any machine learning classification al-
gorithm in principle, as is already supported by pre-
liminary work in this direction.

Also, we plan comparisons to the work of
Stroppa and Yvon (2005) and Damper and East-
mond (1997) on sequence-global analogy-based
models for morpho-phonological processing, since
the main difference between this related work and
ours is that both alternatives are based on work-
ing units of variable width, rather than our fixed-
width n-grams, and also their analogical reasoning
is based on interestingly different principles than our
k-nearest neighbor classification rule, such as the
use of analogical proportions by Stroppa and Yvon
(2005).

Acknowledgements

This research was funded by NWO, the Netherlands
Organization for Scientific Research, as part of the
IMIX Programme. The authors would like to thank
Walter Daelemans for fruitful discussions, and three
anonymous reviewers for their insightful comments.

References

D. W. Aha, D. Kibler, and M. Albert. 1991. Instance-
based learning algorithms.Machine Learning, 6:37–
66.

R. H. Baayen, R. Piepenbrock, and H. van Rijn. 1993.
The CELEX lexical data base on CD-ROM. Linguistic
Data Consortium, Philadelphia, PA.

W. Daelemans, J. Zavrel, K. Van der Sloot, and A. Van
den Bosch. 2004. TiMBL: Tilburg memory based
learner, version 5.1.0, reference guide. Technical Re-
port ILK 04-02, ILK Research Group, Tilburg Univer-
sity.

R. I. Damper and J. F. G. Eastmond. 1997. Pronuncia-
tion by analogy: impact of implementational choices
on performance.Language and Speech, 40:1–23.

E. Daya, D. Roth, and S. Wintner. 2004. Learning
Hebrew roots: Machine learning with linguistic con-
straints. In Dekang Lin and Dekai Wu, editors,Pro-
ceedings of EMNLP 2004, pages 357–364, Barcelona,
Spain, July. Association for Computational Linguis-
tics.

A.P. Dempster, N.M. Laird, and D.B. Rubin. 1977. Max-
imum likelihood from incomplete data via the EM al-
gorithm. Journal of the Royal Statistical Society, Se-
ries B (Methodological), 39(1):1–38.

T. G. Dietterich, H. Hild, and G. Bakiri. 1995. A com-
parison ofID3 and backpropagation for English text-
to-speech mapping.Machine Learning, 19(1):5–28.

E. Noreen. 1989.Computer-intensive methods for test-
ing hypotheses: an introduction. John Wiley and sons.

A. Prince and P. Smolensky. 2004.Optimality The-
ory: Constraint Interaction in Generative Grammar.
Blackwell Publishers.

V. Punyakanok and D. Roth. 2001. The use of classifiers
in sequential inference. InNIPS-13; The 2000 Con-
ference on Advances in Neural Information Processing
Systems, pages 995–1001. The MIT Press.

T.J. Sejnowski and C.S. Rosenberg. 1987. Parallel net-
works that learn to pronounce english text.Complex
Systems, 1:145–168.

N. Stroppa and F. Yvon. 2005. An analogical learner
for morphological analysis. InProceedings of the
9th Conference on Computational Natural Language
Learning, pages 120–127. Association for Computa-
tional Linguistics.

K. Torkkola. 1993. An efficient way to learn English
grapheme-to-phoneme rules automatically. InPro-
ceedings of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), volume 2,
pages 199–202, Minneapolis.

A. Van den Bosch and W. Daelemans. 1993. Data-
oriented methods for grapheme-to-phoneme conver-
sion. In Proceedings of the 6th Conference of the
EACL, pages 45–53.

A. Van den Bosch and W. Daelemans. 1999. Memory-
based morphological analysis. InProceedings of the
37th Annual Meeting of the ACL, pages 285–292, San
Francisco, CA. Morgan Kaufmann.

A. Van den Bosch and W. Daelemans. 2005. Improv-
ing sequence segmentation learning by predicting tri-
grams. In I. Dagan and D. Gildea, editors,Proceed-
ings of the Ninth Conference on Computational Natu-
ral Language Learning.

A. Weijters. 1991. A simple look-up procedure supe-
rior to NETtalk? InProceedings of the International
Conference on Artificial Neural Networks -ICANN-91,
Espoo, Finland.

F. Yvon. 1996. Prononcer par analogie: motivation,
formalisation etévaluation. Ph.D. thesis, Ecole Na-
tionale Supérieure des Télécommunication, Paris.

49


