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Abstract

In performing morpho-phonological se-
guence processing tasks, such as letter-
phoneme conversion or morphological
analysis, it is typically not enough to base
the output sequence on local decisions that
map local-context input windows to sin-
gle output tokens. We present a global
sequence-processing method that repairs
inconsistent local decisions. The approach
is based on local predictions of overlap-
ping trigrams of output tokens, which
open up a space of possible sequences;
a data-driven constraint satisfaction infer-
ence step then searches for the optimal
output sequence. We demonstrate signifi-
cant improvements in terms of word accu-
racy on English and Dutch letter-phoneme
conversion and morphological segmenta-
tion, and we provide qualitative analyses
of error types prevented by the constraint
satisfaction inference method.

Introduction

after also investigated with memory-based learn-
ing and analogical approaches (Weijters, 1991; Van
den Bosch and Daelemans, 1993; Yvon, 1996)
and decision trees (Torkkola, 1993; Dietterich

et al., 1995). The development of these data-
driven systems was thrusted by the early existence
of lexical databases, originally compiled to serve

(psycho)linguistic research purposes, such as the
CELEX lexical database for Dutch, English, and

German (Baayen et al.,, 1993). Many researchers
have continued and are still continuing this line of

work, generally producing successful systems with

satisfactory, though still imperfect performance.

A key characteristic of many of these early sys-
tems is that they perform decomposed or simplified
versions of the full task. Rather than predicting the
full phonemization of a word given its orthography
in one go, the task is decomposed in predicting in-
dividual phonemes or subsequences of phonemes.
Analogously, rather than generating a full word-
form, many morphological generation systems pro-
duce transformation codes (e.g., “add -er and um-
laut”) that need to be applied to the input string by
a post-processing automaton. These task simplifi-
cations are deliberately chosen to avoid sparseness
problems to the machine learning systems. Such

The fields of computational phonology and morSystems tend to perform badly when there are many
phology were among the earlier fields in Compu].OW-frequent and too case-specific classes; task de-
tational linguistics to adopt machine learning algo€omposition allows them to be robust and generic
rithms as a means to automatically construct provhen they process unseen words.

cessing systems from data. For instance, letter- This task decomposition strategy has a severe
phoneme conversion was already pioneered, witlirawback in sequence processing tasks. Decom-
neural networks initially, at the end of the 1980g0sed systems do not have any global method to
(Sejnowski and Rosenberg, 1987), and was shortgheck whether their local decisions form a globally
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coherent output. If a letter-phoneme conversion syseen as sequentially-structured classification tasks,
tem predicts schwas on every vowel in a polysyllabievhere sequences of letters are mapped to sequences
word such aparametebecause it is uncertain aboutof phonemes or morphemes. Such sequence-to-
the ambiguous mapping of each of theandes, it sequence mappings are a frequently reoccurring
produces a bad pronunciation. Likewise, if a morphenomenon in natural language processing, which
phological analysis system segments a word such asggests that it is preferable to take care of the issue
beingas a prefix followed by an inflection, making of classifying sequential data once at the machine
the locally most likely guesses, it generates an andkarning level, rather than repeatedly and in different
ysis that could never exist, since it lacks a stem. ways at the level of practical applications. Recently,
Global models that coordinate, mediate, or ena machine learning approach for sequential data has
force that the output is a valid sequence are typkeen proposed by Van den Bosch and Daelemans
cally formulated in the form of linguistic rules, ap- (2005) that is suited for discrete machine-learning
plied during processing or in post-processing, thatlgorithms such as memory-based learners, which
constrain the space of possible output sequencéwve been shown to perform well on word phonem-
Some present-day research in machine learnirigation and morphological analysis before (Van den
of morpho-phonology indeed focuses on satisfyBosch and Daelemans, 1993; Van den Bosch and
ing linguistically-motivated constraints as a postDaelemans, 1999). In the remainder of this paper,
processing or filtering step; e.g., see (Daya et alkye use as our classifier of choice tigel algorithm
2004) on identifying roots in Hebrew word forms.(Aha et al., 1991) with feature weighting, as im-
Optimality Theory (Prince and Smolensky, 2004plemented in the TiIMBL software packdg@aele-
can also be seen as a constraint-based approachrmans et al., 2004).
language processing based on linguistically moti- In the approach to sequence processing proposed
vated constraints. In contrast to being motivated blgy Van den Bosch and Daelemans (2005), the el-
linguistic theory, constraints in a global model carements of the input sequence (in the remainder of
be learned automatically from data as well. In thighis paper, we will refer to words and letters rather
paper we propose such a data-driven constraint salftan the more general terms sequences and sequence
isfaction inference method, that finds a globally apelements) are assigned overlapping subsequences of
propriate output sequence on the basis of a spaceaftput symbols. This subsequence corresponds to
possible sequences generated by a locally-operatitttge output symbols for &ocusletter, and one let-
classifier predicting output subsequences. We shaer to its left and one letter to its right. Predicting
that the method significantly improves on the basuch trigram subsequences for each letter of a word
sic method of predicting single output tokens at &ventually results in three output symbol predictions
time, on English and Dutch letter-phoneme converfor each letter. In many cases, those three predic-
sion and morphological analysis. tions will not agree, resulting in a number of po-
This paper is structured as follows. The constrairfential output sequences. We will refer to the pro-
satisfaction inference method is outlined in Seceedure for selecting the final output sequence from
tion 2. We describe the four morpho-phonologicathe space of alternatives spanned by the predicted
processing tasks, and the lexical data from which wigigrams as an inference procedure, analogously to
extracted examples for these tasks, in Section 3. Wee use of this term in probabilistic sequence clas-
subsequently list the outcomes of the experimengification methods (Punyakanok and Roth, 2001).
in Section 4, and conclude with a discussion of oufhe original work on predicting class trigrams im-

findings in Section 5. plemented a simple inference procedure by voting
over the three predicted symbols (Van den Bosch
2 Classtrigramsand constraint and Daelemans, 2005).
satisfaction inference Predicting trigrams of overlapping output sym-

bols has been shown to be an effective approach
Both the letter-phoneme conversion and the morpho-

logical analysis tasks treated in this paper can be TiMBL URL: http:/ilk.uvt.nl/timbl/
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to improve sequence-oriented natural language prbe incorrect. If a trigram prediction is considered to
cessing tasks such as syntactic chunking and namdae of insufficient quality, the procedure backs off to
entity recognition, where an input sequence of tosymbol bigrams or even symbol unigrams.
kens is mapped to an output sequence of symbolsThe intuitive description of the inference proce-
encoding a syntactic or semantic segmentation of tltiure is formalized by expressing it as a weighted
sentence. Letter-phoneme conversion and morphoenstraint satisfaction problem (W-CSP). Constraint
logical analysis, though sequentially structured osatisfaction is a well-studied research area with
another linguistic level, may be susceptible to benemany diverse areas of application. Weighted con-
fiting from this approach as well. straint satisfaction extends the traditional constraint
In addition to the practical improvement shownsatisfaction framework with soft constraints; such
to be obtained with the class trigram method, thereonstraints are not required to be satisfied for a solu-
is also a more theoretical attractiveness to it. Sinagon to be valid, but constraints a given solution does
the overlapping trigrams that are predicted are justatisfy are rewarded according to weights assigned
atomic symbols to the underlying learning algoto them. Soft constraints are perfect for expressing
rithm, a classifier will only predict output symbol our preference for symbol trigrams, with the possi-
trigrams that are actually present in the data it walsility of a back off to lower-degree-grams if there
trained on. Consequently, predicted trigrams arg reason to doubt the quality of the trigram predic-
guaranteed to be syntactically valid subsequencésns.
in the target task. There is no such guarantee in Formally, a W-CSP is a tuplé X, D,C,W).
approaches to sequence classification where an is@ere, X = {xy,zs,...,2,} is a finite set of vari-
lated local classifier predicts single output symbolables. D(x) is a function that maps each variable
at a time, without taking into account predictionsto its domain, that is, the set of values that variable
made elsewhere in the word. can take on.C is the set of constraints. While a
While the original voting-based inference procevariable’s domain dictates the values a single vari-
dure proposed by Van den Bosch and Daelemangle is allowed to take on, a constraint specifies
(2005) manages to exploit the sequential informayhich simultaneous valusombinationver a num-
tion stored in the predicted trigrams to improve upomer of variables are allowed. For a traditional (non-
the performance of approaches that do not considg@eighted) constraint satisfaction problem, a valid
the sequential structure of their output at all, it doesolution would be an assignment of values to the
so only partly. Essentially, the voting-based infervariables that (1) are a member of the corresponding
ence procedure just splits the overlapping trigramgariable’s domain, and (2) satisBll constraints in
into their unigram components, thereby retaininghe setC. Weighted constraint satisfaction, however,
only the overlapping symbols for each individual letrelaxes this requirement to satisfy all constraints. In-
ter. As aresult, the guaranteed validity of the trigrangtead, constraints are assigned weights that may be

subsequences is not put to use. In this section we daterpreted as reflecting the importance of satisfying
scribe an alternative inference procedure, based @fat constraint.

principles of constraint satisfaction, that does man-
age to use the sequential information provided by

the trigram predictions. Let a constraint € C be defined as a function
At the foundation of this COnStraint-SatiSfa.CtiOﬂ-that maps each variable assignment to 1 if the con-
based inference procedure, more briefly constraigtraint is satisfied, or to 0 if it is not. In addition, let
satisfaction inference, is the assumption that thg/. ¢'— IR* denote a function that maps each con-
output symbol sequence should preferably be coRtraint to a positive real value, reflecting the weight
structed by concatenating the predicted trigrams @ff that constraint. Then, the optimal solution to a

output symbols, rather than by chaining individualy-CSP is given by the following equation.

symbols. However, as the underlying base classifier
is by no means perfect, predicted trigrams should not * _ W
be copied blindly to the output sequence; they may * arginaxzc: (¢)e(x)
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Figure 1: lllustration of the constraints yielded by a giwaguence of predicted class trigrams for the word
hand The constraints on the right have been marked with a nuniietwéen parentheses) that refers to the
trigram prediction on the left from which the constraint vekesived.

That is, the assignment of values to its variablethree unigrams. An incorrect trigram may still con-
that maximizes the sum of weights of the constraint&in smaller subsequences of length one or two that
that have been satisfied. are correct. Therefore, all of these are also mapped

Translating the terminology used in morpho-o constraints.
phonological tasks to the constraint satisfaction do- ,
main, each letter maps to a variable, the domain of (i1, 21) = Wii-1,Yi4), Vi
which corresponds to the three overlapping candi- (@is Tit1) = (Yisis Yisit1): Vi
date symbols for this letter suggested by the trigrams
covering the letter. This provides us with a defini-
tion of the functionD, mapping variables to their
domain. In the following,y; ; denotes the candi- .
date symbol for letter:; predicted by the trigram Litl = Yisit1s Vi
assigned to letter;.

Tic1 = Yii—1» Vi

Ti = Yiis Vi

To illustrate the above procedure, Figure 1 shows
the constraints yielded by a given output sequence
D(xi) = {Yi-1.6: Yisir Yi+1.} of class trigrams for the word “hand”. With such an
Constraints are extracted from the predicted tri@mount of overlapping constraints, the satisfaction
grams. Given the goal of retaining predicted triProblem obtained easily becomes over-constrained,
grams in the output symbol sequence as much 3t is, no variable assignment exists that can sat-
possible, the most important constraints are simplipfy all constraints without breaking another. Even
the trigrams themselves. A predicted trigram de@nly one incorrectly predicted class trigram already
scribes a subsequence of length three of the entif@ads to two conflicting candidate symbols for one
output sequence; by turning such a trigram into 8f the letters at least. In Figure 1, this is the case
constraint, we express the wish to have this trigrarfPr the letter “d”, for which both the symbol “d” and

end up in the final output sequence. “t” are predicted. On the other hand, without con-
flicting candidate symbols, no inference would be
(i1, Tiy Tit1) = Yisie1, Yisis Yisit1), Vi needed to start with. The choice for the weighted

constraint satisfaction method always allows a solu-

No base classifier is flawless though, and therdion to be found, even in the presence of conflict-
fore not all predicted trigrams can be expected to hieg constraints. Rather than requiring all constraints
correct. Yet, even an incorrect trigram may carryo be satisfied, each constraint is assigned a certain
some useful information regarding the output seweight; the optimal solution to the problem is an as-
guence: one trigram also covers two bigrams, ansignment of values to the variables that optimizes the
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Focus Trigram output classes
Left context| letter | Right context| Phonemization Morph. analysis
- b 0 o k _bu _S-
_ _ b 0 o k [ bu- S--
_ b o 0 k i n u-k ---
b o o k i n g -kl -
o o Kk i n g _ k1N -i-
o k i n g - - IN - i--
kK i n g o _ N-_ --_

Table 1: Seven labeled examples of phonemization and miagibal analysis trigram mappings created
for the wordbooking

sum of weights of the constraints that are satisfied weighted according to the following rules:
As weighted constraints are defined over overlap-

ping subsequences of the output sequence, the besf tor 5 trigram constraint, the weight is simply

symbol assignment for each letter with respecttothe  ihe pase classifier’s confidence value for the
weights of satisfied constraints is decided uponona 355+

global sequence level. This may imply taking into
account symbol assignments for surrounding letters
to select the best output symbol for a certain letter.
In contrast, in non-global approaches, ignorant of
any sequential context, only the local classifier pre-
diction with highest confidence is considered for se-
lecting a letter’s output symbol. By formulating our
inference procedure as a constraint satisfaction prob-
lem, global output optimization comes for free: in e
constraint satisfaction, the aim is also to find a glob-
ally optimal assignment of variables taking into ac-
count all constraints defined over them. Yet, for such

a constraint satisfaction formulation to be effective,

good constraint weights should be chosen, that is, This weighting scheme results in an inference

weights that favor good output sequences over beﬁ?ocedure that behaves exactly as we already de-
ones. scribed intuitively in the beginning of this section.

Constraints can directly be traced back to a prefhe preference for retaining the predicted trigrams
diction made by the base classifier. If two conin the output sequence is translated into high rewards
straints are in conflict, the one which the ClaSSiﬁefor output sequences that do so, since such output se-
was most certain of should preferably be satisfiedjuences not only receive credit for the satisfied tri-
In the W-CSP framework, this preference can be eXram constraints, but also for all the bigram and un-
pressed by weighting constraints according to thgyram constraints derived from that trigram; they are
classifier confidence for the originating trigram. Fohecessarily satisfied as well. Nonetheless, this pref-
the memory-based learner, we define the classifigfence for trigrams may be abandoned if composing
confidence for a predicted class as the weight ag-certain part of the output sequence from several
signed to that class in the neighborhood of the teg{ymbol bigrams or even unigrams results in higher
instance, divided by the total weight of all classes. rewards than when trigrams are used. The latter may

Let x denote a test instance, anrd its pre- happen in cases where the base classifier is not con-
dicted class. Constraints derived from this class afe@ent about its trigram predictions.

e for a bigram constraint, the weight is the sum
of the confidences for all trigram classes in the
nearest-neighbor set af that assign the same
symbol bigram to the letters spanned by the
constraint;

for a unigram constraint, the weight is the sum
of the confidences for all trigram classes in the
nearest-neighbor set afthat assign the same

symbol to the letter spanned by the constraint.
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3 Data preparation Left Focus| Right Trigram
context | letter | context class
In our experiments we train classifiers on English—— a |b n o “AO
and Dutch letter-phoneme conversion and morpho- 51 b |'n o r AOO
logical analysis. All data for the experimentsder g5 bl n | o r m 000
scribed in this paper are extracted fromthe CELEX 3 p nl o r m a 000
lexical databases for English and Dutch (Baayenetp, o r m a | 000
al., 1993). We encode the examples for our basen, o r| m | a | i 000
classifiers in a uniform way, along the followingpro{ ¢ r ml| a I it 00 0+Da
cedure. Given a word and (i) an aligned phone- v 1 a| | i t e |00+DaA—N
mic transcription or (ii) an aligned encoding of & 1, g | i t e il|0+DaA—=NO
morphological analysis, we generate letter-by-letter 5 | t e i t| A —=NOO
windows. Each window takes one letter in focus, | | e i t e 000
and includes three neighboring letters to the left | e i t e n 000
and to the right. Each seven-letter input window ¢ t e n _ 00 plural
is associated to a trigram class label, composed pfe | e |'n _ _ 0 plural 0
the focus class label aligned with the middle lett | ¢ n o plural 0_

ter, plus its immediately preceding and following
class labels. Table 1 displays the seven exampldable 2: Examples with morphological analysis tri-
made on the basis of the wotmboking with tri- gram classes derived from the example walpthor-
gram classes (as explained in Section 2) both fanaliteiten
the letter-phoneme conversion task and for the mor-
phological analysis task. The full aligned phone-
mic transcription obookingis [bu-kIN-] (using the maorphological information for the two languages in
SAMPA coding of the international phonetic alpha-a coding scheme which is rather straightforward in
bet), and the morphological analysis lmdokingis the case of English, and somewhat more compli-
[000K stem [INQin fiection- The dashes in the phone-cated for Dutch. For English, as exemplified in Ta-
mic transcription are inserted to ensure a one-tdle 1, a simple segmentation label marks the begin-
one mapping between letters and phonemes; the ining of either a stem, an inflection (“s” and “i” in
sertion was done by automatical alignment throughable 1), a stress-affecting affix, or a stress-neutral
expectation-maximization (Dempster et al., 1977). affix (“1” and “2”, not shown in Table 1). The cod-
The English word phonemization data, extracteihg scheme for Dutch incorporates additional infor-
from the CELEX lexical database, contains 65,46nation on the part-of-speech of every stem and non-
words, on the basis of which we create a databadaflectional affix, the type of inflection, and also en-
of 573,170 examples. The Dutch word phonemizasodes all spelling changes between the base lemma
tion data set consists of 293,825 words, totaling téorms and the surface word form.
3,181,345 examples. Both data sets were aligned us-To illustrate the more complicated construction of
ing the expectation-maximization algorithm (Demp-examples for Dutch morphological analysis, Table 2
ster et al., 1977), using a phonemic null character t@isplays the 15 instances derived from the Dutch
equalize the number of symbols in cases in whicexample wordabnormaliteiten(abnormalities) and
the phonemic transcription is shorter than the orthaheir associated classes. The class of the first in-
graphic word, and using “double phonemes” (e.gstance is A, which signifies that the morpheme start-
[X] for [ks]) in cases where the phonemic transcriping in a is an adjective (A). The class of the eighth
tion is longer, as inaxi— [tAksi]. instance, 0+Da, indicates that at that position no seg-
CELEX contains 336,698 morphological analy-ment starts (0), but that amwas deleted at that po-
ses of Dutch (which we converted to 3,209,09Gition (+Da, “delete a” here). Next to deletions, in-
examples), and 65,558 analyses of English wordsertions (+1) and replacements (+R, with a deletion
(573,544 examples). We converted the availabland an insertion argument) can also occur. Together
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Language Task Unigrams  Trigrams Language Method| Word accuracy

English Letter-phon, 58 13,005 English Unigram 80.040.75
Morphology 5 80 CSinf 85.4+0.71

Dutch Letter-phon. 201 17,538 Dutch Unigram 41.3+0.48
Morphology 3,831 14,795 CSinf 51.940.48

Table 3: Numbers of unigram and trigram classe$able 4. Word accuracies on English and Dutch
for the four tasks. morphological analysis by the default unigram clas-
sifier and the trigram method with constraint satis-

faction inference, with confidence intervals.
these two classification labels code that the first mor-

pheme is the adjective&bnormaal The second mor-

pheme, the suffixteit, has class A—N. This com- Language Method| Word accuracy]
plex tag, which is in fact a rewrite rule, indicates that English Unigram 79.0+0.82
wheniteit attaches right to an adjective (encoded by CSiInf 84.5+0.76
A)), the new combination becomes a nounN). Dutch Unigram 92.8+0.25
Rewrite rule class labels occur exclusively with suf- CSInf 94.44+0.92

fixes, that do not have a part-of-speech tag of their

own, but rather seek an attachment to form a confable 5: Word accuracies on English and Dutch

plex morpheme with the part-of-speech tag. Finallyletter-phoneme conversion by the default unigram

the third morpheme isn which is a plural inflection classifier and the trigram method with constraint sat-

that by definition attaches to a noun. isfaction inference, with confidence intervals.
Logically, the number of trigram classes for each

task is larger than the number of atomic classes;

the actual numbers for the four tasks investigated

here are displayed in Table 3. The English morphoe_zralization performance of our trained classifiers on
logical analysis task has the lowest number of tri& single 90% training set — 10% test set split of each

gram classes, 80, due to the fact that there are on(tg?t‘z Iset Eafterdshufflmg_thet:ata randtomly ?tf tne
five atomic classes in the original task, but for th"°" elve )r’] an r_nezsurmc? efpﬁrcen agel of fully
other tasks the number of trigram classes is quit(‘eorrecty phonemized words or fully correctly mor-

high: above 10,000. With these numbers of classeRllogically analyzed words — arguably the most

several machine learning algorithms are practicalIfm'kCal :23 P”b"l”l‘sed perf?rmandci metric for both
ruled out, given their high sensitivity to numbers o asks. itionally we periormed bootstrap resam-

classes (e.g., support vector machines or rule Iearﬂl-Ing (Noreen, 1989) to obtain confidence intervals.
ers). Memory-based learning algorithms, however, Table 4 lists the word accuracies obtained on the

are among a small set of machine learning algcenglish and Dutch morphological analysis tasks.
rithms that are insensitive to the number of classeSonstraint satisfaction inference significantly out-

both in learning and in classification. performs the systems that predict atomic unigram
classes, by a large margin. While the absolute differ-
4 Results ences in scores between the two variants of English

: . o ’
We performed experiments with the memory_basegmrpholog|cal analysis is 5.4%, the error reduction

. . . . . IS an impressive 27%.
learning algorithmiel, equipped with constraint
satisfaction inference post-processing, on the four Table 5 displays the word phonemization accu-
aforementioned tasks. In one variaml was sim- racies of both variants on both languages. Again,
ply used to predict atomic classes, while in the othesignificant improvements over the baseline classifier
variantiB1 predicted trigram classes, and constraintan be observed; the confidence intervals are widely
satisfaction inference was used for post-processirgpart. Error reductions for both languages are im-
the output sequences. We chose to measure the geressive: 26% for English, and 22% for Dutch.
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5 Discussion Morphological analysis repairsEnglish Dutch

Insert segmentation 193 1,087
We have presented constraint satisfaction inferencéelete segmentation 158 1,083
as a global method to repair errors made by a localswitch tag 138 2,505
classifier. This classifier is a memory-based learn T etter-phoneme repairs English Dutch
predicting overlapping trigrams, creating a space (¢ fAIignment 1.049 539
possible output sequences in which the inferenceCorrect vowel 32 94
procedure finds the globally optimal one. This globt g rect consonant 275 73

ally optimal sequence is the one that adheres best'to
the trigram, bigram, and unigram sub-sequence coffable 6: Numbers of repaired errors divided over
straints present in the predictions of the local classthree categories of morphological analysis classifi-
fier, weighted by the confidences of the classifier, iBations (top) and letter-phoneme conversions (bot-
a back-off order from trigrams to unigrams. tom) of the constraint satisfaction inference method
The method is shown to significantly outperformas compared to the unigram classifier.
a memory-based classifier predicting atomic classes
and lacking any global post-processing, which has
previously been shown to exhibit successful perfor- The bottom four lines of Table 6 lists the counts of
mance (Van den Bosch and Daelemans, 1993; Vaapaired errors in word phonemization in both lan-
den Bosch and Daelemans, 1999). (While this waguages, where we distinguish between (1) alignment
the reason for using memory-based learning, weepairs between phonemes and alignment symbols
note that the constraint satisfaction inference and ifsvhere phonemes are corrected to phonemic nulls,
underlying trigram-based classification method caar vice versa), (2) switches from incorrect non-null
be applied to any machine-learning classifier.) Thphonemes to correct vowels, and (3) switches from
large improvements (27% and 26% error reductiongcorrect non-null phonemes to correct consonants.
on the two English tasks, 18% and 22% on the tw@€ontrary to expectation, it is not the second vowel
Dutch tasks) can arguably be taken as an indicatiarategory in which most repairs are made (many of
that this method may be quite effective in general ithe vowel errors in fact remain in the output), but
morpho-phonological sequence processing tasks. the alignment category, in both languages. At points
Apparently, the constraint-satisfaction method igvhere the local unigram classifier sometimes incor-
able to avoid more errors than to add them. At closdgectly predicts a phoneme twice, where it should
inspection, comparing cases in which the atomibave predicted it along with a phonemic null, the
classifier generates errors and constraint satisfactiéanstraint satisfaction inference method never gen-
inference does not, we find that the type of avoide@rates a double phoneme. Hence, the method suc-
error, when compared to the unigram classifier, difceeds in generating sequences thatpassible and
fers per task. On the morphological analysis taskvoiding impossible sub-sequences. At the same
we identify repairs where (1) a correct segmentatioiime, apossiblesequence is not necessarily -
is inserted, (2) a false segmentation is not place#gctsequence, so this method can be expected to still
and (3) atag is switched. As Table 6 shows in its upnake errors on the identity of labels in the output se-
per four lines, in the case of English most repairs inquence.
volve correctly inserted segmentations, but the other In future work we plan to test a range ofgram
two categories are also quite frequent. In the case wfidths exceeding the current trigrams. Preliminary
Dutch the most common repair is a switch from amesults suggest that the method retains a positive ef-
incorrect tag, placed at the right segmentation posiect over the baseline with > 3, but it does not
tion, to the correct tag at that point. Given that thereutperform then = 3 case. We also intend to test
are over three thousand possible tags in our complire method with a range of different machine learn-
cated Dutch morphological analysis task, this is ining methods, since as we noted before the constraint-
deed a likely area where there is room for improvesatisfaction inference method and its underlyirg
ment. gram output subsequence classification method can
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be applied to any machine learning classification alf. G. Dietterich, H. Hild, and G. Bakiri. 1995. A com-

gorithm in principle, as is already supported by pre- Pparison ofib3 and backpropagation for English text-
liminary work in this direction. to-speech mappindviachine Learning19(1):5-28.

Also, we plan comparisons to the work OfE. Noreen. 1989 Computer-intensive methods for test-
Stroppa and Yvon (2005) and Damper and East- ing hypotheses: an introductiodohn Wiley and sons.

mond (1997) on sequence-.global a”a'F’gy'b‘?‘S%! Prince and P. Smolensky. 2004Optimality The-
models for morpho-phonological processing, since ory: Constraint Interaction in Generative Grammar
the main difference between this related work and Blackwell Publishers.

Qurs IS. that bOFh alternatlves are based on.worlﬁ Punyakanok and D. Roth. 2001. The use of classifiers
ing units of variable width, rather than our fixed- ;. sequential inference. INIPS-13; The 2000 Con-

width n-grams, and also their analogical reasoning ference on Advances in Neural Information Processing
is based on interestingly different principles than our Systemspages 995-1001. The MIT Press.

k-nearest ”e'ghb"f Clas§|flcatlon rule, such as th\e.J. Sejnowski and C.S. Rosenberg. 1987. Parallel net-
use of analogical proportions by Stroppa and Yvon works that learn to pronounce english tetomplex
(2005). Systemsl:145-168.
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