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Introduction

We are pleased to present the Proceedings of the Eighth Meeting of the ACL Special Interest Group
on Computational Phonology (SIGPHON) to be held on June 8 in New York City. This is the first
time that the SIGPHON workshop has been collocated with the HLT-NAACL conference. Previous
meetings were held in conjunction with ACL and COLING in Las Cruces (1994), Santa Cruz (1996),
Madrid (1997), Quebec (1998), Luxembourg (2000), Philadelphia (2002), and Barcelona (2004).

One of the missions of SIGPHON is to encourage interaction between work in computational linguistics
and work in theoretical phonology, in the hope that both fields will profit from the interaction. In
addition, SIGPHON continues to promote work in computational morphology, seeking to fill in for
the absence of an analogous SIGMORPH group. Our recent meetings have been successful in both
regards, and we anticipate this will continue in 2006. Many mainstream phonologists are employing
computational tools and models that are of considerable interest to computational linguists more
generally, and our intention is that this workshop should be a forum to bring this work to the attention
of a wider range of computational linguists.

The submissions were reviewed by a program committee composed of eighteen experts in the field.
We are grateful to them for their timely, thoughtful, and thorough reviews.

We hope you enjoy this year’s meeting!

Greg Kondrak
Richard Wicentowski
June 2006






Organizers:

Richard Wicentowski, Swarthmore College
Greg Kondrak, University of Alberta

SIGPHON Executive Committee:

Jason Eisner, The Johns Hopkins University, President
Richard Wicentowski, Swarthmore College, Secretary
Adam Albright, Massachusetts Institute of Technology
Katrin Kirchoff, University of Washington

Eric Fosler-Lussier, The Ohio State University

Program Committee Members:

Adam Albright, University of California, Santa Cruz
Paul Boersma, University of Amsterdam

Anja Belz, University of Brighton

Steven Bird, University of Melbourne

Julie Carson-Berndsen, University College Dublin
John Coleman, University of Oxford

Mathias Creutz, Helsinki University of Technology
Jason Eisner, The Johns Hopkins University

John Goldsmith, University of Chicago

Sharon Goldwater, Brown University

Lauri Karttunen, Palo Alto Research Center

Greg Kondrak, University of Alberta

Mike Maxwell, Linguistic Data Consortium

Kemal Oflazer, Sabanci University

Gerald Penn, University of Toronto

Vito Pirrelli, Istituto di Linguistica Computazionale
Jason Riggle, University of Chicago

Richard Sproat, University of Illinois at Urbana-Champaign

Workshop Website:
http://nlp.cs.swarthmore.edu/sigphon06/






Table of Contents

A Combined Phonetic-Phonological Approach to Estimating Cross-Language Phoneme Similarity in an
ASR Environment
Lynette Melnarand Chen LilU. . ...t i et et 1....

Improving Syllabification Models with Phonotactic Knowledge
Karin MUILEr . . o 11..

Learning Quantity Insensitive Stress Systems via Local Inference
Jeffrey HeINz . ..o o 21...

Invited Talk: Universal Constraint Rankings Result from Learning and Evolution
PaUI BOBISIMA . . ...ttt ettt e et e e e e e 3L...

Exploring variant definitions of pointer length in MDL
Aris Xanthos, YU Huand John Goldsmith. ... 32...

Improved morpho-phonological sequence processing with constraint satisfaction inference
Antal van den Bosch and Sander CaniSius .. ........oouit e 41....

Richness of the Base and Probabilistic Unsupervised Learning in Optimality Theory
G A0S Z . . ottt et e e 50....

Morphology Induction from Limited Noisy Data Using Approximate String Matching
Burcu Karagol-Ayan, David Doermann and Amy Weinberg. ..., 60Q...

Learning Probabilistic Paradigms for Morphology in a Latent Class Model
BN Can . . . e 69...

A Naive Theory of Affixation and an Algorithm for Extraction
Harald Hammarstm . .. ... e e 79..

Vii






Conference Program

Thursday, June 8, 2006

9:00-9:30

9:30-10:00

10:00-10:30

10:30-11:00

11:00-12:30

12:30-14:00

14:00-14:30

14:30-15:00

15:00-15:30

15:30-16:00

16:00-16:30

16:30-17:00

17:00-17:30

A Combined Phonetic-Phonological Approach to Estimating Cross-Language
Phoneme Similarity in an ASR Environment
Lynette Melnar and Chen Liu

Improving Syllabification Models with Phonotactic Knowledge
Karin Muller

Learning Quantity Insensitive Stress Systems via Local Inference
Jeffrey Heinz

Break

Invited Talk: Universal Constraint Rankings Result from Learning and Evolution
Paul Boersma

Lunch

Exploring variant definitions of pointer length in MDL
Aris Xanthos, Yu Hu and John Goldsmith

Improved morpho-phonological sequence processing with constraint satisfaction in-
ference
Antal van den Bosch and Sander Canisius

Richness of the Base and Probabilistic Unsupervised Learning in Optimality Theory
Gaja Jarosz

Break
Morphology Induction from Limited Noisy Data Using Approximate String Match-
ing
Burcu Karagol-Ayan, David Doermann and Amy Weinberg

Learning Probabilistic Paradigms for Morphology in a Latent Class Model
Erwin Chan

A Naive Theory of Affixation and an Algorithm for Extraction
Harald Hammarstm






A Combined Phonetic-Phonological Approach to Estimating Cross-
Language Phoneme Similarity in an ASR Environment

Lynette Melnar
lynette.melnar@motorola.com

Abstract

This paper presents a fully automated lin-
guistic approach to measuring distance
between phonemes across languages. In
this approach, a phoneme is represented
by a feature matrix where feature catego-
ries are fixed, hierarchically related and
binary-valued; feature categorization ex-
plicitly addresses allophonic variation and
feature values are weighted based on their
relative prominence derived from lexical
frequency measurements. The relative
weight of feature values is factored into
phonetic distance calculation. Two pho-
nological distances are statistically de-
rived from lexical frequency
measurements. The phonetic distance is
combined with the phonological distances
to produce a single metric that quantifies
cross-language phoneme distance.

The performances of target-language
phoneme HMMs constructed solely with
source language HMMs, first selected by
the combined phonetic and phonological
metric and then by a data-driven, acous-
tics distance-based method, are compared
in context-independent automatic speech
recognition (ASR) experiments. Results
show that this approach consistently per-
forms equivalently to the acoustics-based
approach, confirming its effectiveness in
estimating cross-language similarity be-
tween phonemes in an ASR environment.

1

Chen Liu
chen.liu@motorola.com

1 Introduction

Speech technologists typically use acoustic meas-
urements to determine similarity among acoustic
speech models (phone(me) HMMs) and there are a
variety of distance metrics available that prove the
effectiveness of this method (see Sooful and Botha
2002). Additionally, HMM similarity can be
evaluated indirectly through comparison of HMM
performances in ASR experiments.

For acoustic measurements, speech data must
be accessible for model training. However, speech
data unavailability is a practical concern in that
most commercially available speech databases are
restricted to widely spoken languages in large
business markets. The vast majority of languages
have not been exposed to intense data collection
and resources for these languages are subsequently
either limited or completely unavailable. Hence a
knowledge-based phoneme distance metric poten-
tially has great value in acoustic modeling for re-
source-limited languages in that it can predict
cross-language HMM similarity in the absence of
target-language speech data.

Knowledge-based approaches to HMM similar-
ity generally attempt to identify articulatory simi-
larity between phonemes across languages. The
typical strategy is subjective and label-based,
where two phonemes are judged to be more or less
similar depending on their transcription labels
(Kohler 1996; Schultz and Waibel 1997, 2000).

A label-based approach suffers for two obvious
reasons. First, phone inventories designed for
speech technology applications are predominantly
phonemic in orientation. Thus, transcription labels
do not transfer with the same phonetic value to
other languages, even where international phonetic
transcription labels are employed. In a phonemic
transcription strategy, transcription labels are gen-
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erally restricted to only the most basic symbols,
usually unmodified letters of the Roman alphabet
(IPA 1999). Second, phoneme transcription labels
fail to capture allophony. The best phonetic defini-
tion that a phoneme transcription label can offer is
the most typical phonetic realization of that pho-
neme. Not surprisingly, label-based cross-language
transfer experiments have produced poor perform-
ance results.

In contrast to the subjective, label-based strat-
egy, researchers in such fields as language recon-
struction, dialectometry, and child language
development, commonly use automatic feature-
based approaches to articulatory similarity between
phonemes. In these methods, phonemes are repre-
sented by a distinctive feature vector and a pho-
netic distance or similarity algorithm is used to
align phoneme strings between related words
(Connolly 1997; Kessler 1995, 2005; Kondrak
2002; Nerbonne and Heeringa 1997; Somers
1998). Significantly, in these approaches, phono-
logical similarity is generally assumed.

In principle, the feature-based approach to pho-
netic distance admits more precise specification of
phonemes because it supports allophonic variance.
For example, a standard feature-based approach to
allophony representation restricts feature inclusion
to only those features relevant to all realizations of
the phoneme. Another common approach retains
features that are relevant to all allophonic variants,
but leaves their values underspecified (Archangeli
1988). However, it is unclear from the literature
whether allophony is explicitly addressed in the
current feature-based approaches to phoneme simi-
larity.

A strategy for specifying allophony and charac-
terizing phonetic distance between phonemes is
only one component in predicting phoneme simi-
larity among diverse languages without acoustic
data in an ASR environment. Because HMMs rep-
resent phonemes and significant allophones in a
language-dependent context, it is necessary to con-
sider the overall constructed target-language HMM
system. Thus phonological distance quantities that
regulate the priority of source languages for pho-
neme selection in accordance to their phonological
similarity to the target language are also in order.

In this paper, we describe an automated, com-
bined phonetic-phonological (CPP) approach to
estimating phoneme similarity across languages in
ASR. Elsewhere, we provide the phonetic and

phonological distance algorithms (Liu and Melnar
2005, 2006), though offer little linguistic justifica-
tion of the approach or evaluation of the experi-
ment results due to space limitations. Here, we
focus on explaining the linguistic principles behind
the algorithms and analyzing the results.

The CPP approach is fundamentally based on
articulatory phonetic features and is designed to
handle allophonic variation. Feature salience and
phonetic distance are automatically calculated and
phoneme distance is constrained by statistically-
derived phonological similarity biases. Unlike
other distinctive feature-based approaches to pho-
neme similarity, phonological distance is not as-
sumed. In testing this approach in cross-language
transfer experiments, target-language resources are
restricted to lexica and phonology descriptions and
do not include speech data.

In the next section, we describe our feature-
based phoneme specification method. In section
three, we show how our phoneme specification
approach is used in calculating phonetic distance
between phonemes. Section four describes two
other distance metrics that predict phonological
similarity between languages. We explain how the
three distance metrics combine to quantify cross-
language phoneme distance and select target-
language phoneme HMM inventories. In section
five, we describe the experiments that we con-
ducted to evaluate our approach to phoneme simi-
larity prediction. Here, the CPP method is
compared with an acoustic distance method in con-
text-independent speech recognition. We offer our
evaluation and conclusions in section 6.

2 Phoneme specification

In the CPP approach to estimating cross-language
phoneme similarity, each phoneme in our multilin-
gual ASR dataset is associated with a distinctive
feature matrix. Feature categories are fixed for all
phonemes, hierarchically related, and binary-
valued. Feature-contradiction, associated with al-
lophonic variance, is explicitly addressed through
the introduction of a small set of special corollary
features.

2.1

As noted in the introduction, cross-language pho-
neme comparison requires accurate feature specifi-
cation. Because a phoneme comprises one or more

The phoneme feature matrix



allophones which may contrast in particular fea-
tures, a distinctive feature strategy that allows for
feature contradiction is preferred. Omitting contra-
dictory features and underspecifying contradictory
values are two well-known methods.

However, cross-language phoneme comparison
in a computational environment is greatly facili-
tated by agreeing on a fixed set of binary-valued
features for all phonemes. A fixed set of distinctive
features is favored as this enables cross-class pho-
neme comparison. A binary-valued system is easy
to manipulate and naturally lends itself to mathe-
matical formulation. However, strict binary-valued
feature systems only indicate the presence or ab-
sence of a feature, and feature contradiction must
then be indicated by feature omission - which is
not possible in a fixed distinctive feature set.

The phoneme specification method that we em-
ploy indicates feature contradiction associated with
allophony in a strict binary-valued, fixed set of
distinctive features through the introduction of
special feature categories. Specifically, we utilize a
small set of corollary features to mark the occa-
sional, allophonic realizations of some primary
features. A corollary feature is defined as a feature
that supplements a primary feature in the system.
The corollary features mark “occasionality” (asso-
ciated with context dependency, dialectal variation,
speech style variation, etc.) in the primary feature
as either present or absent.

2.2 Primary and corollary features

Our feature set includes twenty-six primary articu-
latory features and six corollary features. The se-
lected primary features conform to a typical set of
hierarchically-related distinctive features (e.g. syl-
labic, sonorant, consonantal, labial, coronal, nasal,
continuant, high, low, back, etc.) (Ladefoged
1975). In this hierarchical system, the presence of
one feature presupposes the presence of those hier-
archically dominant features. For example, the
presence of the feature [alveolar] requires the pres-
ence of the feature [coronal], and the presence of
the feature [nasal] requires the presence of the fea-
ture [sonorant]. Significantly, the reverse of these
relations is not true. As is explained later in the
next section, this feature structure allows for a lin-
guistically-principled determination of feature sali-
ence in phonetic distance calculation.

Corollary features are restricted to specifying
those primary features that are judged to be most

significant to cross-language phoneme comparison
in an ASR environment. Phoneme inventories de-
signed for ASR comprise both phonemes and sig-
nificant allophones, where a significant allophone
is characteristically both acoustically distinct from
the primary allophone and associated with a suffi-
ciently high count of occurrence in the associated
speech database. Thus American English ASR
inventories regularly include an alveolar tap, a con-
textually-realized allophonic variant of both /t/ and
/d/.  Furthermore, pronunciation transcriptions in
ASR lexica are typically phonetic - within the con-
text of the phoneme-based inventory. So, word-
final voice neutralization in German is overtly in-
dicated throughout the lexicon (e.g. Aund : h U n t).
A typical ASR phoneme then does not represent a
true phoneme; rather it encompasses only that
phonemic variation that is not explicitly captured
by its existing significant allophones in the inven-
tory.

Corollary features specify variance that is not
usually overtly indicated in ASR inventories and
lexica but that is important to cross-language pho-
neme comparison in an acoustic, ASR environ-
ment. Internal phoneme recognition experiments
indicate that generally major class features (syl-
labic, sonorant, etc.), manner features (nasal, con-
tinuant, etc.) and laryngeal features (voice, spread
glottis, etc.) are more robustly identified than place
features (labial, coronal, etc.); accordingly, the set
of corollary features, provided in Table 1, pre-
dominantly targets particular major class, manner,
and laryngeal features.

Table I: Corollary features

Corollary
Feature
syllabic-occ

Description

positive value marks the occasional
realization of the phoneme as a syl-
labic consonant or glide

voice-occ positive value marks the occasional
voicing of phonemes

labial-occ positive value marks the occasional
rounding of vowels

nasal-occ positive value marks the occasional
nasalization of vowels and glides

rhotic-occ positive value marks the occasional
rhotization of liquids and vowels

spread-occ positive value marks the occasional

aspiration of obstruents

It should be pointed out that allophones that ex-
press a place contrast or difference in continuance



with the primary realization of a phoneme are typi-
cally considered significant allophones in the ASR
phoneme system and are therefore overtly repre-
sented.

As an illustration of the usefulness of corollary
features in cross-language phoneme comparison,
consider Table 2 which includes a partial feature
matrix for the phoneme /k/ associated with 17 lan-
guages and dialects:

Table 2: Partial distinctive feature table

Languages phoneme | spread | spread
glottis -0cc

0 0

Arabic

Danish

German

British English
U.S. English
Lat. Spanish
Can. French
Parisian French
Italian
Japanese

Dutch

Brz. Portuguese
Eur. Portuguese
Swedish
Korean
Cantonese
Mandarin

S L e ER R P R s
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Note that the realization of the phoneme /k/ differs
across the seventeen languages and dialects in the
two features provided: [spread glottis] and [spread-
occ]. The presence of the feature [spread glottis],
marked by 1, and the non-presence of the corollary
feature [spread-occ], marked by 0, indicates that
the glottis is always open during the articulation of
the phoneme; i.e. this phoneme is consistently as-
sociated with aspiration. The precise IPA transcrip-
tion of this segment is /k"/. A positive value for the
corollary feature [spread-occ] means that the pho-
neme is only sometimes associated with aspiration.
This phoneme has two principle phonetic realiza-
tions, marked [k] and [k"] in IPA notation. A 0
value for the feature [spread glottis] and corollary
feature [spread-occ] indicates that the segment is
never aspirated. Thus this phoneme is most accu-
rately labeled /k/ in IPA labeling.

Because this methodology incorporates pho-
neme feature contradiction, overall phonological
similarity among languages and dialects is more
precisely predicted:

Table 3: Phoneme similarity across languages

phoneme | allophone(s) | language lang. family
Danish Germanic
German Germanic
Kk Br. Eng. Germanic
’ Amer. Eng. | Germanic
Japanese Altaic
Swedish Germanic
Korean Altaic
K" Mandarin Sinitic
k Cantonese Sinitic
Arabic Afro-Asiatic
Lat. Span. Romance
Parisian Fr. Romance
K Canadian Fr. | Romance
Italian Romance
Dutch Germanic
Brz. Port. Romance
Eur. Port. Romance

Table 3 reveals that Germanic languages tend to
only occasionally aspirate /k/, Romance languages
avoid aspirating /k/, and Sinitic languages typically
aspirate /k/. Of course, closely related languages
tend to be phonologically similar.

3 Phonetic distance

Most techniques for measuring phonetic distance
between phonemes that do not assume speech data
availability are based on articulatory features,
though perceptual distance, judged (subjective)
distance, and historical distance are also attested
(Kessler 2005). We base our phonetic distance
measurement on articulatory features because of
their cross-linguistic consistency and general
availability.

As Kessler notes, standard phonological theory
provides no guidance in comparing phonetic dis-
tance between phonemes across multiple features
(Kessler 2005). In our experiments to date, we use
the Manhattan distance where the distance between
phonemes equals the sum of the absolute values of
individual feature distances. This approach is fairly
standard in the literature, though the Euclidean
distance has also been reported to attain good re-
sults (Kessler 2005).

Because features are known to differ in relative
importance (Ladefoged 1969), some researchers
apply weights or saliencies to the individual fea-
tures for distance calculation. Nerbonne and Heer-
inga (1997), for example, weighted each feature by
information gain, or entropy reduction. Kondrak
(2002) expressed weights as coefficients that could



be changed to any numeric value. He adjusted the
coefficients until he achieved optimal performance
on aligning cognate words.

In our approach, weights are derived from the
lexica of all the considered languages. Specifically,
the value of a weight for a feature is derived from
the frequency of the feature in the lexica. Each lan-
guage is treated equally in this approach; thus, the
weights are not subject to the relative size of a lan-
guage’s lexicon.

Because our phoneme specification method in-
corporates hierarchical relations between features,
feature weights are necessarily interdependent.
Hierarchically dominant features are more fre-
quently attested than their subordinate features and
thus receive more weight. Further, hierarchically
superior features tend to correspond to major pho-
netic categories (sonorant, consonantal, syllabic,
etc.), which are expected to be more contrastive or
distant to each other than sister subordinate catego-
ries. Thus, in a hierarchical feature system, lexical
frequency of features is a reasonable indication of
feature importance in phonetic contrast or distance.

In the following two subsections the phonetic
distance algorithm is described.

Quantitative representation of phonemes

A phoneme is denoted by p, (i), where / (=1,...,L)
represents the language that includes the phoneme,
and i (=1,...,[)) represents the index of the pho-
neme in language /. Thus, the phoneme inventory
of language / is

(1) {p@i=1...11} .

A phoneme p,;(i) is represented by a vector of J
features

@) A =0EAT = ED v Gy DT
where each v,(i,j) is a binary feature, i=1,---,/,,
j=1---,J, I=1,-,L, and the superscript 7 denotes
vector transposition.

Weighted phonetic distance

As mentioned, the value of a weight for a feature
in the present phonetic distance approach is de-
rived from the frequency of the feature in the
lexica of all the considered languages. Let ¢;[p; ()]

denote the occurrence count of a phoneme p, (i) in

a lexicon of language /, then the frequency of each
feature j contributed by the phoneme p;(i) is

ellpi (v, (G, j), and the frequency of each feature j

contributed by all the phonemes in language / is
f’:lc,[p,(i)]vl(i, j) - The global weights derived from

all the phonemes in all the languages are

3) W(j) = diag{w(D),--, w(j),--, w(J)}

where

“4)

I
PEE SN glcz[pz(i)]vl(i,j)
W) =—2wJ)=—2—
Lz L& J
= FUS S el (0 G )

Jj=li=1

=1 d

where diag(vector) gives a diagonal matrix with
elements of the vector as the diagonal entries. We
define the phonetic distance between phonemes
p; () and p,(k) in the form of a Manhattan dis-

tance, which is expressed as

)

J
dy (i, k) = [WOHELp DI =FLp, (D], = X w(Dlvi G )=V, (&, )

J=1

where i=1,---,I;, k=1,---,1,, and the weights, given
in a diagonal matrix W(,), are dependent upon the
feature identity j.

4 Phonological distance metrics

Although our phoneme specification approach is
designed to account for allophonic variance, not all
variation is captured. Because of this, the effec-
tiveness of measuring phonetic distance as a stand-
alone strategy to predicting cross-language pho-
neme similarity is compromised. Furthermore,
phonetic distance does not determine relative pho-
neme similarity in the not atypical scenario where
two or more phonemes share the same phonetic
distance to some target phoneme. In order to ad-
dress these problems, phonological distance met-
rics are used to bias cross-language phoneme
similarity predictions toward languages that have
similar phoneme inventories and phoneme fre-
quency distributions. The general idea is that the
more similar the phoneme inventory and relative
importance of each corresponding phoneme be-
tween languages, the more likely it is that the cor-
responding phonemes will be more similar.
Phonological distance consideration is espe-
cially desirable in an ASR environment because
ultimately HMMs corresponding to those source-
language phonemes predicted to be most similar to



target-language phonemes must interact in a sys-
tem that is intended to reflect a single target lan-
guage. Use of phonological metrics then ensures
that the overall model pool will have a bias toward
a reduced set of phonologically similar languages,
and it is reasonable to expect that similarity in lan-
guages of the model pool provides consistency in
the target HMM system (see Schultz and Waibel
2000).

In this section, we define two distance metrics
to characterize cross-language phonological simi-
larity. One is based on monophoneme inventories
while the other is based on biphoneme inventories.

4.1

Monophoneme distribution distance characterizes
the difference in lexical phoneme distribution be-
tween two languages. Specifically, the distribution,
or normalized histogram, of the phonemes is ob-
tained from a large lexicon of a language, with the
probability in the distribution corresponding to the
frequency of a phoneme in the lexicon. We derive
the distribution from a lexicon as we consider it
more representative of a language’s phonology
than a particular database.

The monophoneme distribution metric is a ty-
pological comparison that is based on two princi-
pal classes of information: (1) types of sounds and
(2) frequencies of these sounds in the lexicon. The
former class is directly associated with phoneme
inventory correspondence while the latter concerns
relative phoneme importance.

Because the phoneme inventories of the two
languages to be compared may not be identical, we
first need to define a combined inventory for them
(6)
{ppm)|m=1,... 0L} ={pD]i=1....[;}Vip, (k) [k =1,....1,}
where p, (m) is a phoneme in the combined inven-

Monophoneme distribution distance

tory where there are total 7, phonemes.
The frequency of the phoneme p,(m) in lan-
guage / can be expressed as

D =12

PRAVAG)

i=1
where ¢,[p,(m)] is the occurrence count of pho-

>]lt

neme p,(m) in a lexicon of language /. If a pho-
neme p,(m) does not exist in the language, its
frequency would be zero. The difference of pho-

neme frequencies between the two languages can
be calculated as

(8) dpylpi(m]=|piLpi (m)]=p,[py ()]

Then the monophoneme distribution distance
between the target language ¢ and source language

lis
(9) Dpy, = deh [Py (m)].
m=1

The distance is calculated between the target lan-
guage and every one of the source languages.

In view of the known differences in phonologi-
cal characteristics between vowels and consonants,
we make separate calculations for the vowel and
consonant categories. Thus Eq. (9) becomes
(10) Dpl; = delt [Py (m)]

pu(m)eg
where g=Vowels or Consonants.

m:l,...’[l[

1[1

4.2 Biphoneme distribution distance

The biphoneme distribution distance metric char-
acterizes the difference in lexical distribution of
phoneme pairs, or biphonemes, between two lan-
guages. Similar to the monophoneme distribution
distance, the distribution of biphonemes in a lan-
guage is obtained based on the frequency of bipho-
nemes in a large lexicon.

The biphoneme metric indicates how phonemes
can combine in a language and how important
these combinations are. Though the phonotactics
provided in this approach is limited to only a se-
quence of two, the overall biphoneme inventory
and distribution provides important phonological
information. For example, it indicates if and to
what extent consonants can cluster. Some lan-
guages tend to disfavor consonant clustering, like
the Romance languages, while others allow for
broad clustering, like the Germanic languages. It
also indicates if and to what extent vowels may co-
occur. Many languages require an onset consonant
so vowels will never co-occur; other languages
have no such restriction.

The biphoneme metric then yields types of in-
formation that are distinct from the monophoneme
metric. It explicitly provides a biphoneme inven-
tory, permissible phonotactic sequences, and pho-
notactic sequence importance. It also implicitly
incorporates phoneme inventory and phonological
complexity information.

Similar to the monophoneme distribution dis-
tance, the distribution of biphonemes in a language



is obtained based on the frequency of a biphoneme
in a large lexicon. The biphoneme inventory for
the target language ¢ is expressed as

(A1) g k=1,....1}}

while the biphoneme inventory for a source lan-
guage / is

(12)  Aq@li=1....1}}

Then the combined biphoneme inventory for the
two languages to be compared is
(13)
lanmn=1.. 1} ={q,()]i=1...1;}0iq, (k) |k =1,....1}}
where ¢, (n) is a biphoneme in the combined in-
ventory where there are total 7;, biphonemes. For a
phoneme at the beginning or end of a word, ¢ (n)
takes the format of “void+phoneme” or “pho-
neme+void”, respectively.

The frequency of a biphoneme g¢,(r) in lan-
guage / can be expressed as

(14) }’l[CIlz(n)]:[C;lwlﬂ,n

2 eila; (]

i=1

where ¢,[¢;,(n)] is the occurrence count of bipho-

=1,---,1},

neme ¢, (n) in a lexicon of language /. The differ-
ence of biphoneme frequencies between the two
languages is

(A5 dyylaum=|yilan 1=, lay (] n=1,--.1j,
Then the biphoneme distribution distance between
the target language ¢ and source language / is

I
(16) Dy, = Zd}’n[qzz (m)].

n=1
Similarly, the distance is better characterized
within the categories of vowels and consonants
separately. In our algorithm we count each bipho-
neme twice, the first time as a left-contact bipho-

neme and second time as a right-contact
biphoneme. Thus
(17) D}’ﬁ = zd}’lt[‘Ilt (m]+ Zdﬂ’lt[‘Ilt(”l)]

right of g, (n)eg leftof g, (n)eg

where g=Vowels or Consonants.

4.3 CPP phoneme distance

For phoneme similarity prediction, we unite the
phonetic and phonological distance metrics to ar-
rive at the CPP phoneme distance measurement.
Since the three distances are from different do-
mains and provide distinct types of information,
normalization is necessary before combination.
The normalization, aimed at extracting the relative

ranking between source phonemes and languages,
is a linear processing that scales the score range
from each domain into the range [0 1].

We equate the overall importance of phonetics
with that of phonology by providing a weight of 2
to the phonetic score and 1 to each of the phono-
logical scores. By doing this, a source-language
phoneme can have a greater phonetic distance to
some target-language phoneme than other source-
language phonemes but a lower phonological dis-
tance and receive a lower overall phoneme dis-
tance score. It is because phonological distance is
considered as important as phonetic distance that
the overall constructed target-language model pool
will tend to be restricted to a subset of phonologi-
cally similar languages.

The feature-based phoneme distance metric is
defined as
(18)

CPP(i,k) = ay [dy (i,k)]y + a, -[Dpjf 1y + &, -[Dyjf 1y
where CPP(i,k) represents the distance between
phoneme p,(i) from language / and phoneme p, (k)

from language ¢, and both phonemes belong to the
same phonological category g (vowels or conso-

nants). The weights a,, «,, and «, represent the

relative importance of each quantity. As men-
tioned, (a,,a,,a,)=(2,1,1). The symbol [-]y de-
notes that the quantity inside is linearly scaled into
the range [0 1]. For Dp; and Dy}, the original

range is determined by scores of all the source lan-
guages. Their scaling is done once for a target lan-
guage ¢. While for d,(i,k) , we found that it is better

to do scaling once for each target phoneme p,(k),

and the original range is determined by scores of a
group of candidate phonemes that includes at least
one phoneme from any source language.

5 Experiments

To test our CPP approach to phoneme similarity
prediction, we compared it to an acoustic distance
approach in ASR experiments. Because native lan-
guage speech data is used in measuring model dis-
tance in the acoustic approach, it is expected to
work better than the knowledge-based approach,
which only estimates acoustic similarity indirectly
through articulatory phonetic distance and overall
phonological distance.



5.1 Model construction

We employ the regular 3-state, left-right, mul-
timixture, continuous-Gaussian HMMs as the
acoustic models and assume that the models from
all the source and target languages have the same
topology except that the number of mixtures in a
state may vary. Once the top source phonemes are
determined from our feature-based phoneme dis-
tance metric for each target phoneme, the target
HMM is constructed by gathering all the mixtures
for a corresponding state from the source candi-
dates. The original mean and variance values are
maintained while the mixture weights are uni-
formly scaled down so that the new weights add up
to one for each state. It is possible to weigh mix-
tures according to the relative importance of the
candidates if the importance as reflected by the
phoneme distance metric has a significantly large
difference. The transition probabilities are adopted
from the top one candidate model.

5.2 CPP phoneme model construction

We used the 17 languages and dialects provided in
Table 2 in the experiments testing our CPP pho-
neme distance approach to phoneme HMM simi-
larity. For each language, a native monolingual
model set had been built by training with native
speech data. The acoustic features are 39 regular
MFCC features including cepstral, delta, and delta-
delta. The individual ASR databases derive from a
variety of projects and protocols, including, but not
limited to, CallHome, EUROM, SpeechDat, Poly-
phone, and GlobalPhone. In each of the following
experiments, we select one language as the target
language, and construct its acoustic models by us-
ing all the other languages as source languages. A
phoneme distance score is calculated for each tar-
get phoneme and the top two candidate source-
language phonemes are chosen for HMM model
construction. We conducted experiments with Ital-
ian, Latin American Spanish, European Portu-
guese, Japanese, and Danish as target languages.

5.3 Acoustic model construction

In the acoustics distance approach, models are built
with the top two models chosen from source lan-
guages based on their acoustic distance from the
corresponding native target model. For these ex-
periments, we adopt the widely used Bhat-
tacharyya metric for the distance measurement

(Mak and Barnard 1996). It should be noted that
the recognition performance of the acoustics-
constructed models is not a theoretically strict up-
per bound for HMM similarity because the meas-
urement in the acoustic space is probabilistic.

5.4 Results

Each recognition task includes about 3000 utter-
ances of digit strings, command words, and sen-
tences. The word accuracy results in Table 4
include the native baseline performance, i.e. the
performance of the native monolingual, context-
independent models from each target language, as
well as the acoustics-based and feature-based per-
formances. These results show that the perform-
ance of models selected by the CPP phoneme
distance approach is equivalent overall to that of
models selected by acoustic distance.

Table 4: Model performance

Target Native Acoustic | CPP
Language Baseline | Distance | Distance
Lat. Spanish 94.49 88.61 93.06
Italian 98.42 98.27 98.52
Japanese 95.36 76.72 78.76
Danish 94.36 72.95 70.15
Eur. Portuguese 96.31 7791 72.74

The performance of models selected by the CPP
approach nearly matches the performance of the
native models for Latin American Spanish and
surpasses those for Italian. This approach performs
better than the acoustic distance approach for Latin
American Spanish, Italian, and Japanese and not as
well for Danish and European Portuguese.

6 Evaluation and conclusion

We suggest four principal performance factors to
explain the results provided in Table 4: (1) rare
phonemes in the target-language inventory; (2)
target-language inventory complexity; (3) degree
of source-language phonological distance to the
target language; (4) reliability of source-language
models. Because the CPP approach has only been
tested on five languages, we consider this analysis
preliminary.

Regarding the first factor, rare phonemes in the
target-language inventory, it is worth noting that
neither Latin American Spanish nor Italian has
phonemes whose exact feature specifications are
unattested in phonemes from other languages in



our dataset. For these languages, all phonemes
have exact source-language matches. In contrast,
Japanese, Danish, and European Portuguese each
contain phonemes with feature specifications
unique to their language. Based on this analysis,
we propose that, all other factors being equal, the
greater the overall phoneme correspondence be-
tween the target language and the source lan-
guages, the better the target-language HMM
performance.

In general, it appears that target languages as-
sociated with inventories that are greater in size
than their least phonologically distant source lan-
guages perform worse than target languages asso-
ciated with smaller inventories relative to their
closest source languages. For example, the vowel
systems of Danish, European Portuguese, and
Japanese are the most complex of the five target
languages, with Danish having 26 vowels, Euro-
pean Portuguese having 14 vowels, and Japanese
having ten vowels. In sharp contrast, Latin Ameri-
can Spanish has only five vowels and Italian has
seven. Both Latin American Spanish and Italian
are phonologically similar to other Romance lan-
guages in the dataset that have greater vowel con-
trasts: Brazilian Portuguese (13 vowels), European
Portuguese (14 vowels), Parisian French (17 vow-
els) and Canadian French (19 vowels). Here, we
suggest that target languages that have a similar or
lesser number of phoneme contrasts compared to
the source languages are more likely to achieve
higher recognition performances, all other factors
being equal.

Relative phonological distance of the source
languages to the target language and reliability of
source language models additionally impact target-
language ASR performance. Consider Table 5
where the difference in these factors for Italian and
European Portuguese are given. First, Italian and
European Portuguese are both Romance languages
and our dataset includes a total of six, presumably
phonologically similar, Romance languages and
dialects. However, the recognition results of the
models selected by both the feature-based and
acoustics-based phoneme distance method are very
different for the two languages.

Table 5: Phonological distance and native baseline per-
formance factors in target-language recognition

Target Language Italian Eur. Portuguese
. (1) Lat. Spanish | (1) Brz. Port.
El(r)lps:; least distant (2) Parisian Fr. (2) Lat. Spanish
g8 (3) Brz. Port. (3) Canadian Fr.

Avg. phonolog.
distance of top 3 0.7399 0.8945
langs.
Avg. phonolog.
distance of top 1 0.5757 0.8248
lang.
Avg. native base-
line of top 3 langs. 89 91.94
Native baseline of 94 49 84.25
top 1 lang.

If we compare the phonological distances between
the least distant source languages to Italian and
European Portuguese, we observe that Italian’s
closest languages are less distant overall than
European Portuguese’s closest languages.

Because the phonologically least distant source
languages contribute the majority of target-
language HMMs, it is reasonable to expect that
lesser phonological distance to the target language
by a greater number of source languages is likely
to result in a better target-language HMM per-
formance, all other factors being equal.

Finally, note the substantial discrepancy in na-
tive baseline performance between the phonologi-
cally least distant source languages for Italian and
European Portuguese. The majority of selected
models for Italian derive from Latin American
Spanish which is associated with a high native rec-
ognition baseline. European Portuguese models,
on the other hand, largely come from Brazilian
Portuguese which has a much lower native base-
line. This suggests that the most reliable source-
language HMMs, as judged from their native rec-
ognition performance, contribute to better target-
language recognition performance, all other fac-
tors being equal.

In future work, we intend to test our CPP pho-
neme similarity approach on new target languages
and expand the preliminary evaluation provided
here. In particular, we are interested to what extent
this method can predict recognition performance
for new target languages.
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Abstract

We report on a series of experiments
with probabilistic context-free grammars
predicting English and German syllable
structure. The treebank-trained grammars
are evaluated on a syllabification task. The
grammar used by Miiller (2002) serves
as point of comparison. As she evalu-
ates the grammar only for German, we re-
implement the grammar and experiment
with additional phonotactic features. Us-
ing bi-grams within the syllable, we can
model the dependency from the previous
consonant in the onset and coda. A 10-
fold cross validation procedure shows that
syllabification can be improved by incor-
porating this type of phonotactic knowl-
edge. Compared to the grammar of Miiller
(2002), syllable boundary accuracy in-
creases from 95.8% to 97.2% for En-
glish, and from 95.9% to 97.2% for Ger-
man. Moreover, our experiments with
different syllable structures point out that
there are dependencies between the on-
set on the nucleus for German but not
for English. The analysis of one of our
phonotactic grammars shows that inter-
esting phonotactic constraints are learned.
For instance, unvoiced consonants are the
most likely first consonants and liquids
and glides are preferred as second conso-
nants in two-consonantal onsets.
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1 Introduction

In language technology applications, unknown
words are a continuous problem. Especially, Text-
to-speech (TTS) systems like those described in
Sproat (1998) depend on the correct pronunciation
of those words. Most of these systems use large pro-
nunciation dictionaries to overcome this problem.
However, the lexicons are finite and every natural
language has productive word formation processes.
Thus, a TTS system needs a module which con-
verts letters to sounds and a second module which
syllabifies these sound sequences. The syllabifica-
tion information is important to assign the stress sta-
tus of the syllable, to calculate the phone duration
(Van Santen et al. (1997)), and to apply phonologi-
cal rules (Kahn (1976), Blevins (1995)). Many au-
tomatic syllabification methods have been suggested
e.g., (Daelemans and van den Bosch, 1992; Van den
Bosch, 1997; Kiraz and Mobius, 1998; Vroomen
et al., 1998; Miiller, 2001; Marchand et al., to ap-
pear 2006). Miiller (2001) shows that incorporat-
ing syllable structure improves the prediction of syl-
lable boundaries. The syllabification accuracy in-
creases if the onset and coda is more fine-grained
(Miiller, 2002). However, she only incorporates par-
tial phonotactic knowledge in her approach. For in-
stance, her models cannot express that the phoneme
/I/ is more likely to occur after an /s/ than after a
/t/ in English. The information that a phoneme is
very probable in a certain position (here, the /1/ ap-
pears as second consonant in a two-consonantal on-
set cluster) will not suffice to express English phono-
tactics of an entire consonant cluster. Moreover, she
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only reports the performance of the German gram-
mar. Thus, we are interested if the detection of syl-
lable boundaries can be improved for both English
and German by adding further phonotactic knowl-
edge to a grammar.

Phonotactic constraints within the onset or coda
seem to be important for various tasks. Listeners in-
deed use phonotactic knowledge from their mother
language in various listening situations. Vitevitch
and Luce (1999), e.g., showed if English speak-
ers have to rate nonsense words how “English-like”
the stimuli are, highly probable phonotactic stimuli
were rated more “English-like” than stimuli with a
lower probability. Speakers make also use of their
phonotactic knowledge when they have to segment
a sequence into words. In a words spotting task,
Weber and Cutler (2006) found evidence that speak-
ers of American English can segment words much
easier when the sequence contains phonotactic con-
straints of their own language.

Beside many perception experiments which show
that phonotactic constraints are useful information,
many different methods have been suggested to
model phonotactic constraints for language tech-
nology applications. Krenn (1997), for instance,
uses Hidden Markov Models to tag syllable struc-
ture. The model decides whether a phoneme be-
longs to the onset, nucleus or coda. However, this
model does not incorporate fine-grained phonotac-
tics. Belz (2000) uses finite state automatons (FSA)
to model phonotactic structure of different sylla-
ble types. We use similar positional features of
syllables. Moreover, Carson-Berndsen (1998) and
Carson-Berndsen et al. (2004) focus on automat-
ically acquiring feature-based phonotactics by in-
duction of automata which can be used in speech
recognition. In our approach, we concentrate on
explicit phonotactic grammars as we want to test
different suggestions about the internal structure of
words from phonological approaches (e.g. Kessler
and Treiman (1997)). We assume, for instance, that
codas depend on the previous nucleus and that on-
sets depend on the subsequent nucleus.

In this paper, we present experiments on a series
of context-free grammars which integrate step by
step more phonological structure. The paper is or-
ganized as follows: we first introduce our grammar
development approach. In section 3, we describe our
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experiments and the evaluation procedure. The sub-
sequent section 4 shows what kind of phonotactic in-
formation can be learned from a phonotactic gram-
mar. Last, we discuss our results and draw some
conclusions.

2 Method

We build on the approach of Miiller (2001) which
combines the advantages of treebank and brack-
eted corpora training. Her method consists of four
steps: (i) writing a (symbolic i.e. non-probabilistic)
context-free phonological grammar with syllable
boundaries, (ii) training this grammar on a pronunci-
ation dictionary which contains markers for syllable
boundaries (see Example 1; the pre-terminals “X[”
and “X]” denote the beginning and end of a sylla-
ble such that syllables like [strIN] can be unambigu-
ously processed during training), (iii) transforming
the resulting probabilistic phonological grammar by
dropping the syllable boundary markers' (see Ex-
ample 2), and (iv) predicting syllable boundaries
of unseen phoneme strings by choosing their most
probable phonological tree according to the trans-
formed probabilistic grammar. The syllable bound-
aries can be extracted from the Syl node which gov-
erns a whole syllable.

(1) Word — X[ Sylone |X
(2) Word — Sylgpe

We use a grammar development procedure to de-
scribe the phonological structure of words. We ex-
pect that a more fine-grained grammar increases the
precision of the prediction of syllable boundaries as
more phonotactic information can be learned. In the
following section, we describe the development of a
series of grammars.

2.1 Grammar development

Our point of comparison is (i) the syllable com-
plexity grammar which was introduced by Miiller
(2002). We develop four different grammars: (ii) the
phonotactic grammar, (iii) the phonotactic on-nuc
grammar (iv) the phonotactic nuc-coda grammar
and (v) the phonotactic on-nuc-coda grammar. All
five grammars share the following features: The
grammars describe a word which is composed of one

"We also drop rules with zero probabilities



to n syllables which in turn branch into onset and
rhyme. The rhyme is re-written by the nucleus and
the coda. Onset or coda could be empty. Further-
more, all grammar versions differentiate between
monosyllabic and polysyllabic words. In polysyl-
labic words, the syllables are divided into syllables
appearing word-initially, word-medially, and word-
finally. Additionally, the grammars distinguish be-
tween consonant clusters of different sizes (ranging
from one to five consonants).

We assume that phonotactic knowledge within
the onset and coda can help to solve a syllabifica-
tion task. Hence, we change the rules of the syl-
lable complexity grammar (Miiller, 2002) such that
phonotactic dependencies are modeled. We express
the dependencies within the onset and coda as well
as the dependency from the nucleus by bi-grams.

2.1.1 Grammar generation

The grammars are generated automatically (using
perl-scripts). As all possible phonemes in a language
are known, our grammar generates all possible re-
write rules. This generation process naturally over-
generates, which means that we receive rules which
will never occur in a language. There are, for in-
stance, rules which describe the impossible English
onset /tRS/. However, our training procedure and
our training data make sure that only those rules will
be chosen which occur in a certain language.

The monosyllabic English word string is used as
a running example to demonstrate the differences
of the grammar versions. The word string is tran-
scribed in the pronunciation dictionary CELEX as
([strIN]) (Baayen et al., 1993). The opening square
bracket, “[*, indicates the beginning of the syllable
and the closing bracket, “|”, the end of the syllable.
The word consists of the tri-consonantal onset [str]
followed by the nucleus, the short vowel [] and the
coda [N].

In the following paragraphs, we will introduce the
different grammar versions. For comparison rea-
sons, we briefly describe the grammar of Miiller
(2002) first.

2.1.2 Syllable complexity grammar (Miiller,
2002)

The syllable complexity grammar distinguishes
between onsets and codas which contain a differ-
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ent number of consonants. There are different
rules which describe zero to n-consonantal onsets.
Tree (3) shows the complete analysis of the word
string.

(3) Word
\
Sy]one
Onsetone Rhyme,n,e
\
Onone.3.
n 3.1 Nucleusyp e Codapne.1
Onne | !
s n 32 I Coone.1.1
t  Ongpes.s 1\‘1
\
T
(4) Ongpe31 —s Ongpes2
(5) Ongpeo1 —s Ongpeao

Rule 4, e.g., describes a tri-consonantal onset, e.g.,
[str]. This rule occurs in example tree 3 and will
be used for words such as string or spray. Rule (5)
describes a two-consonantal onset occurring in the
analysis of words such as snake or stand. However,
this grammar cannot model phonotactic dependen-
cies from the previous consonant.

2.1.3 Phonotactic grammar

Thus, we develop a phonotactic grammar which
differs from the previous one. Now, a consonant in
the onset or coda depends on the preceding one. The
rules express bi-grams of the onset and coda conso-
nants. The main difference to the previous gram-
mars can be seen in the re-writing rules involving
phonemic preterminal nodes (rule 6) as well as ter-
minal nodes for consonants (rule 7).

(6) Xr.Cst—C XrChst
(7)) Xr.Cst—C

Rules of this type bear four features for a conso-
nant C inside an onset or a coda (X=0On, Cod),
namely: the position of the syllable in the word
(r=ini, med, fin, one), the current terminal node
(C = consonant), the succeeding consonant (C'T),
the cluster size (¢ = 1...5), and the position of a
consonant within a cluster (s = 1...5).

The example tree (8) shows the analysis of the
word string with the current grammar version. The



rule (9) comes from the example tree showing that
the onset consonant [¢] depends on the previous con-
sonant [s].

(8) Word
\
Sylone
Onsetone.3 Rhyme,, ¢
\
On .3.
one.S.3.1 Nucleus e Codaone.1
\ \
s Ong,.tso I Coppe.t 1.1

t  Onone.r.s.s

T

N

(9) Ongpess31— s Ongpet32

2.1.4 Phonotactic on-nuc grammar

We also examine if there are dependencies of the
first onset consonant on the succeeding nucleus. The
dependency of the whole onset on the nucleus is
indirectly encoded by the bi-grams within the on-
set. The phonotactic onset-nucleus grammar distin-
guishes between same onsets with different nuclei.
In example tree (12), the triconsonantal onset start-
ing with a phoneme [s]| depends on the Nucleus [/].
Rule (10) occurs in tree (12) and will be also used
for words such as strict or strip whereas rule (11) is
used for words such as strong or strop.

(10) Onset_ .15 — Ongpe.s.3.1
(11) Onsetone‘O'S — Onone,s.3.1
(12)

‘Word
\

one.l

Syl

Onset Rhyme

one.l.3 one.l

Onone.s.3.1

Nucleus Codagne.1

| one.l |
Onone.t.3.2
I Coone.N.1.1

\
N

S

t  Onone.r.3.3

T

2.1.5 Phonotactic nuc-coda grammar

The phonotactic nucleus-coda grammar encodes
the dependency of the first coda consonant on the
nucleus. The grammar distinguishes between codas
that occur with various nuclei. Rule 13 is used, for
instance, to analyze the word string, shown in Ex-
ample tree 15. The same rule will be applied for
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words such as bring, king, ring or thing. If there is
a different nucleus, we get a different set of rules.
Rule 14, e.g., is required to analyze words such as
long, song, strong or gong.

(13) Codaonell — N Coone.t.1.1
14) COdaone‘O.l — N Coope.t.1.1
(15)

Word

\
Sy]O’Vlﬁ

Onsetone.3

Onone.s.3.1

Rhyme

one.l

Coda,

Onone.t.3.2 ‘
U I Coone.N.1.1

\
N

Nucleus

one.l one.l.1

S

t  Onone.r.3.3

T

2.1.6 Phonotactic on-nuc-coda grammar

The last tested grammar is the phonotactic onset-
nucleus-coda grammar. It is a combination of gram-
mar 2.1.4 and 2.1.5. In this grammar, the first con-
sonant of the onset and coda depend on the nucleus.
Tree 16 shows the full analysis of our running exam-
ple word string.

(16)

‘Word

Syl

one.l

Onset Rhyme

one.l.3 one.l

Onone.s.3.1 Cod
oda

Onone.t.3.2 | ‘
I Coone.N.1.1

\
N

Nucleus

one.l one.l.1

S

t  Onone.r.3.3

T

The rules of the subtree (17) are the same for words
such as string or spring. However, words with a dif-
ferent nucleus such as strong will be analyzed with
a different set of rules.
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Word

SYlone I

Onset,,, . 1.3 Rhyme, . |

Onone.s.3.1
Nucleus,,,, . 1 Coda,,,. 1.1

I Coone.N.1.1

\
N
3 Experiments

In this section, we report on our experiments with
four different phonotactic grammars introduced in
Section 2.1 (see grammar 2.1.3-2.1.6), as well as
with a re-implementation of Miiller’s less complex
grammar (Miiller, 2002). All these grammars are
trained on a corpus of transcribed words from the
pronunciation lexicon CELEX. We use the full forms
of the lexicon instead of the lemmas. The German
lexicon contains 304,928 words and the English lex-
icon 71,493 words. Homographs with the same pro-
nunciation but with different part of speech tags are
taken only once. We use for our German exper-
iments 274,435 words for training and 30,492 for
testing (evaluating). For our English experiments,
we use 64,343 for training and 7,249 for testing.

3.1 Training procedure

We use the same training procedure as Miiller
(2001). It is a kind of treebank training where we
obtain a probabilistic context-free grammar (PCFG)
by observing how often each rule was used in the
training corpus. The brackets of the input guaran-
tee an unambiguous analysis of each word. Thus,
the formula of treebank training given by (Charniak,
1996) is applied: r is a rule, let |r| be the number
of times 7 occurred in the parsed corpus and A(r) be
the non-terminal that r expands, then the probability
assigned to r is given by

7]
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After training, we transform the PCFG by drop-
ping the brackets in the rules resulting in an anal-
ysis grammar. The bracket-less analysis grammar is
used for parsing the input without brackets; i.e., the
phoneme strings are parsed and the syllable bound-
aries are extracted from the most probable parse.
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In our experiments, we use the same technique.
The advantage of this training method is that we
learn the distribution of the grammar which maxi-
mizes the likelihood of the corpus.

3.2 Evaluation procedure

We evaluate our grammars on a syllabification task
which means that we use the trained grammars to
predict the syllable boundaries of an unseen corpus.
As we drop the explicit markers for syllable bound-
aries, the grammar can be used to predict the bound-
aries of arbitrary phoneme sequences. The bound-
aries can be extracted from the syl-span which gov-
erns an entire syllable.

Our training and evaluation procedure is a 10-fold
cross validation procedure. We divide the original
(German/English) corpus into ten parts equal in size.
We start the procedure by training on parts 1-9 and
evaluating on part 10. In a next step, we take parts
1-8 and 10 and evaluate on part 9. Then, we evaluate
on corpus 8 and so forth. In the end, this procedure
yields evaluation results for all 10 parts of the orig-
inal corpus. Finally, we calculate the average mean
of all evaluation results.

3.2.1 Evaluation Metrics

Our three evaluation measures are word accuracy,
syllable accuracy and syllable boundary accuracy.
Word accuracy is a very strict measure and does not
depend on the number of syllables within a word. If
a word is correctly analyzed the accuracy increases.
We define word accuracy as

# of correctly analyzed words
total # of words

Syllable accuracy is defined as

# of correctly analyzed syllables
total # of syllables

The last evaluation metrics we used is the syllable
boundary accuracy. It expresses how reliable the
boundaries were recognized. It is defined as

# of correctly analyzed syllable boundaries
total # of syllable boundaries

The difference between the three metrics can
be seen in the following example. Let our
evaluation corpus consist of two words, transfer-
ring and wet. The transcription and the sylla-
ble boundaries are displayed in table 1. Let our
trained grammar predict the boundaries shown in
table 2. Then the word accuracy will be 50%




trA:ns—{3:—rIN
wEt

transferring
wet

Table 1: Example: evaluation corpus

trA:n—sf3:—rIN
wEt

transferring
wet

Table 2: Example: predicted boundaries

(W} the syllable accuracy will be 50%
(%j%?m), and the syllable boundary accu-
racy is 75% (>-copreqylallc boundaries) The differ-
ence between syllable accuracy and syllable bound-
ary accuracy is that the first metric punishes the
wrong prediction of a syllable boundary twice as
the complete syllable has to be correct. The syllable
boundary accuracy only judges the end of the sylla-
ble and counts how often it is correct. Mono-syllabic
words are also included in this measure. They serve
as a baseline as the syllable boundary will be always
correct. If we compare the baseline for English and
German (tables 3 and 4, respectively), we observe
that the English dictionary contains 10.3% monosyl-
labic words and the German one 1.59%.

Table 3 and table 4 show that phonotactic knowl-
edge improves the prediction of syllable bound-
aries. The syllable boundary accuracy increases
from 95.84% to 97.15% for English and from 95.9%
to 96.48% for German. One difference between the
two languages is if we encode the nucleus in the on-
set or coda rules, German can profit from this in-
formation compared to English. This might point at
a dependence of German onsets from the nucleus.
For English, it is even the case that the on-nuc and
the nuc-cod grammars worsen the results compared
to the phonotactic base grammar. Only the combi-
nation of the two grammars (the on-nuc-coda gram-
mar) achieves a higher accuracy than the phonotactic
grammar. We suspect that the on-nuc-coda grammar
encodes that onset and coda constrain each other on
the repetition of liquids or nasals between /s/C on-
sets and codas. For instance, lull and mam are okey,
whereas slull and smame are less good.

4 Learning phonotactics from PCFGs

We want to demonstrate in this section that our
phonotactic grammars does not only improve syl-
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grammar version word syllable  syll bound.
accuracy —accuracy —accuracy

baseline 10.33%

(Miiller, 2002) 89.27% 91.84% 95.84%
phonot. grammar 92.48% 94.35% 97.15%
phonot. on-nuc 92.29% 94.21% 97.09%
phonot. nuc-cod 92.39% 94.27% 97.11%
phonot. on-nuc-cod | 92.64% 9447%  97.22%

Table 3: Evaluation of four English grammar ver-
sions.

grammar version word syllable  syll bound.
accuracy — accuracy — accuracy

baseline 1.59%

(Miiller, 2002) 86.06% 91.96% 95.90%
phonot. grammar 87.95% 93.09% 96.48%
phonot. nuc-cod 89.53% 94.09% 97.01%
phonot. on-nuc 89.97% 94.35% 97.15%
phonot. on-nuc-cod | 90.45% 94.62% 97.29%

Table 4: Evaluation of four German grammar ver-
sions.

labification accuracy but can be used to reveal in-
teresting phonotactic? information at the same time.
Our intension is to show that it is possible to aug-
ment symbolic studies such as e.g., Hall (1992),
Pierrehumbert (1994), Wiese (1996), Kessler and
Treiman (1997), or Ewen and van der Hulst (2001)
with extensive probabilistic information. Due to
time and place constraints, we concentrate on two-
consonantal clusters of grammar 2.1.3.

Phonotactic restrictions are often expressed by ta-
bles which describe the possibility of combination
of consonants. Table 5 shows the possible combi-
nations of German two-consonantal onsets (Wiese,
1996). However, the table cannot express differ-
ences in frequency of occurrence between certain
clusters. For instance, it does not distinguish be-
tween onset clusters such as [pfl] and [kl]. If we con-
sider the frequency of occurrence in a German dic-
tionary then there is indeed a great difference. [kl] is
much more common than [pfl].

4.1 German

Our method allows additional information to be
added to tables such as shown in table 5. In what
follows, the probabilities are taken from the rules
of grammar 2.1.3. Table 6 shows the probability of

Note that we only deal with phonotactic phenomena on the
syllable level and not on the morpheme level.



mono 1 R n m S v f t ts p k ] z g
0380 S | 0.160 0093 0036 0074 0.165 0318 0.131
0158 k | 0351 0322 0175 0.151
009 b | 0489 0510
0086 0.955 0.044
0083 f | 0620 0364 0.015
0066 g | 0362 0617 0019
0042 p | 0507 0400 0.030 0.061
0033 d 1.000
0019 s | 0200 0.066  0.100 0.133 | 0.033 0.133 0333
0019 s 1.000
0011 pf | 0882 0.117
0007 v 1.000
Table 6: German two-consonantal onsets in monosyllabic words - sorted by probability of occurrence
mono 1 r n m S v f t ts p k ] z g i S d
0322 s | 0.157 0001 0099 0.060 0.001 | 0.004 0223 0.150 0.074 _ 0.006 0.120
0.148 k| 0375 0390 0.003 0.003 0.030 0.196
0093 b | 0420 0574 0.004
0083 f | 0591 0333 0.075
0079 p | 0480 0457 0.056 0.005
0072 g | 0283 0709 0.006
0.068 0.686 0.039 0274
0048 d 0.822 0.112 0.065
0035 h 0.089 0910
0018 T 0.857 0.047 0.095
0014 S 0878 0030  0.030 0.060
0004 m 1.000
0003 1.000
0002 1 1.000
0002 v 1.000

Table 7: English two-consonantal onsets in monosyllabic words - sorted by probability of occurrence

Sonorants Obstruents

1 R n m S v
Obstruents
p + + (+) - + -
t - + - - - +)
k + + + + | +
b + + - - -
d - + - -
g + + + (+)
f + + - -
v + 4+ -
ts - - - +
pf + + - - -
S + + + + +

Table 5: (Wiese, 1996) German onset clusters

occurrence of German obstruents ordered by their
probability of occurrence. [S] occurs very often in
German words as first consonant in two-consonantal
onsets word initially. In the first row of table 6,
the consonants which occur as second consonants
are listed. We observe, for instance, that [St] is
the most common two-consonantal onset in mono-
syllabic words. This consonant cluster appears in
words such as Staub (dust), stark (strong), or Stolz
(pride). We believe that there is a threshold indicat-
ing that a certain combination is very likely to come
from a loanword. If we define the probability of a
two-consonantal onset as
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p(onset_ini_2) =g p(C1) x p(C2)
where p(C1) is the probability of the rule
XrCist— Cy Xr.Cosit
and p(C>) is the probability of the rule
X.r.Cy.s.t — Co,

then we get a list of two-consonantal onsets ordered
by their probabilities:

p(St) > ... > p(sk) > p(pfl) > p(sl) > ... > p(sf)

These onsets occur in words such as Steg (foot-
bridge), stolz (proud), Staat (state), Skalp (scalp),
Skat (skat) Pflicht (duty), Pflock (stake), or Slang
(slang) and Slum (slum). The least probable
combination is [sf] which appears in the German
word Sphdre (sphere) coming from the Latin word
sphaera. The consonant cluster [sl] is also a very
uncommon onset. Words with this onset are usually
loanwords from English. The onset [sk], however, is
an onset which occur more often in German words.
Most of the words are originally from Latin and are
translated into German long ago. Interestingly, the
onset [pfl] is also a very uncommon onset. Most
of these onsets result from the second sound shift
where in certain positions the simple onset conso-



nant /p/ became the affricate /pf/. The English trans-
lation of these words shows that the second sound
shift was not applied to English. However, the most
probable two-consonantal onset is [St]. The whole
set of two-consonantal onsets can be seen in Table 8.

4.2 English

English two-consonantal onsets show that unvoiced
first consonants are more common than voiced ones.
However, two combinations are missing. The alveo-
lar plosives /t/ and /d/ do not combine with the lateral
/1/ in English two-consonantal onsets. Table 8 shows
the most probable two-consonantal onsets sorted by
their joint probability.

4.3 Comparison between English and German

The fricatives /s/ and /S/ are often regarded as extra
syllabic. According to our study on two-consonantal
onsets, these fricatives are very probable first con-
sonants and combine with more second consonants
than all other first consonants. They seem to form
an own class. Liquids and glides are the most impor-
tant second consonants. However, English prefers /r/
over /l/ in all syllable positions and /j/ over /w/ (ex-
cept in monosyllabic words) and /n/ as second con-
sonants. Nasals can only combine with very little
first consonants. In German, we observe that /R/ is
preferred over /1/ and /v/ over /n/ and /j/. Moreover,
the nasal /n/ is much more common in German than
in English as second consonants which applies espe-
cially to medial and final syllables.

When we compare the phonotactic restrictions of
two languages, it is also interesting to observe which
combinations are missing. If certain consonant clus-
ters are not very likely or never occur in a language,
this might have consequences for language under-
standing and language learning. Phonotactic gaps
in one language might cause spelling mistakes in a
second language. For instance, a typical Northern
German name is Detlef which is often misspelled in
English as Deltef. The onset cluster /tl/ can occur
in medial and final German syllables but not in En-
glish. The different phonetic realization of /I/ may
play a certain role that /1t/ is more natural than /tl/ in
English.
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Mono-syllabic: /st/ > /kr/ > /sk/ > /kl/ > /br/ > /gt/ > [sl/ > /fi/ > /sp/ > [tr/
> /dr/ > /bl/ > /sw/ > [pl/ > [pt/ > /sn/ > thw/ > [kw/ > /ft/ > /gl/ > [sm/ >
twl > [Tr/ > /St/ > /fj/ > /djl > /Kj/ > Ipj/ > mj/ > /dw/ > /hj/ > njl > Itj/
> INjl > Nyl > Isjl > ITw/ > [sfl > [Tj/ > /Sw/ > /km/ > /kv/ > /gw/ > /Sn/
> /Sm/ > [pS/ > /bj/ > Ist/ > /sv/

Initial /pr/ > /st/ > /tr/ > /kr/ > /sp/ > /sk/ > [or/ > /gt/ > M/ > /KI/ > /fr/ >
/ol > /pl/ > Isl/ > [kw/ > [dr/ > [sn/ > [sw/ > [gl/ > /hw/ > /nj/ > [sm/ > /sj/
> [pj/ > ITr/ > /mjl > /Kj/ > 1dj/ > ftwl > Itj/ > [fj/ > /hjl > Nj/ > [oj/ > Ips/
> /St/ > [dw/ > [st] > Ivjl > Igjl > Igw/ > /pw/ > /mn/ > /Sm/ > [Tj/ > [Tw/
> /Sn/ > /tsw/ > [zjl > Ipt/ > /mw/ > [kn/ > /gz/

Medial: /st/ > /tr/ > /pr/ > /sp/ > Igr/ > /Kj/ > [kt/ > [kw/ > [pl/ > /br/ > /tj/
> lj/ > 1dj/ > [dr/ > /Kl > nj/ > /sk/ > /mj/ > /fx/ > Ipj/ > /bl > /fi/ > /bj/
> /gll > Igjl > Il > ISn/ > Isjl > Ivjl > ISjl > [Tt/ > Ivt/ > Igwl > [sl/ >
/nr/ > /sw/ > /mr/ > /sn/ > /hj/ > /hw/ > /sm/ > [zj/ > /tSt/ > /tjl > [st/ >
[dw/ > [Zx/ > ISt/ > [jw/ > /tSw/ > /tSn/ > /vw/ > /Dr/ > /dZr/ > /dn/ > [Tj/
> /twl > ISwl > [Zjl > [zx/ > [znl > [zwl > [Zw] > [dZj/ > [dZn/ > [dZw/
Final: /st/ > /tr/ > /kl/ > /bl/ > /gr/ > /dr/ > /pl/ > /br/ > /sk/ > /sp/ > Ipr/
> [kr/ > [tjl > Ml > il > M/ > NjL > kwl > [djl > [sjl > [kl > [s1 > /gl
> thw/ > /Sn/ > Ivr/ > [Sjl > Ivjl > [bjl > Ipjl > Ifjl > [Tr/ > /mjl > Igw/ >
st/ > [sw/ > [sm/ > /nt/ > [sn/ > /tSt/ > /mr/ > /tw/ > [dZr/ > [zj/ > Igj/ >
[dZj/ > ISyl > IZx] > Ist] > w/ > [zx/ > [Tj/ > /tjl > [Dr/ > [vw/ > [dw/ >
/dn/ > 1Sj/ > Ipw/ > ljw/ > /hjl > [St/ > [Zw/ > [tSn/ > [Zj/ > /pn/ > /Dj/ >
/dZn/ > /zn/ > ISw/ > [Zn/ > tSw/ > [Tw/ > /bd/ > /tsj/ > /Dw/

Monosyllabic: /St/ > /R/ > /Sv/ > /SI/ > /kl/ > /fi/ > /kR/ > /Sp/ > /bR/ >
/bl/ > /gR/ > /SR/ > [/dR/ > /fR/ > /Sm/ > /kn/ > /gl/ > /kv/ > [pl/ > [Sn/ >
/tsv/ > IpR/ > [pfl/ > IVR/ > /sk/ > /sl/ > /tv] > Ips/ > /sp/ > /sv/ > [sm/ >
/pfR/ > [pn/ > /gn/ > Isn/ > /fj/ > Isf/

Initial: /St/ > /tR/ > /pR/ > /Sp/ > /kR/ > /Sv/ > /gR/ > ISV > R/ > /KI/ >
/bR/ > /bl > i/ > /Sm/ > /gl/ > /tsv/ > [pl/ > /kv/ > /kn/ > /Sn/ > /dR/ >
ISR/ > Isk/ > Ipfl/ > Ips/ > Ign/ > [sl/ > /sm/ > [sts/ > [sf/ > [sv/ > [ks/ >
/tv/ > IVR/ > [sn/ > [mn/ > [st/ > /pn/ > [sp/ > /fj/ > [pfR/ > /mj/

Medial: /St/ > /tR/ > /bR/ > /fR/ > /S1/ > /gR/ > /kR/ > /bl/ > /dR/ > /Sp/
> /kl/ > 1/ > [pR/ > [gl/ > [Sv] > ISR/ > [st/ > [pl/ > /ks/ > /kv/ > /gn/ >
/Sn/ > /Sm/ > /kn/ > /tsv/ > /pfl/ > /dl/ > /dn/ > /gm/ > /sp/ > /sn/ > /fn/ >
/bn/ > Ivjl > /xR/ > /tn/ > [sl/ > IVR/ > [sk/ > Ipjl > Ips/ > Ists/ > [xn/ > /x1/
> /ml/ > /Rn/ > /Nn/ > /NR/ > /zn/ > /z/ > /mn/ > /tl/ > /st/ > /In/ > /tsR/
> ftsl/ > /sR/ > [t/ > [zR/ > [pfR/ > /pt/ > R/ > [sg/ > /pn/ > /dm/ > /tz/
> [svl > [zvl > v/

Final: /St/ > /tR/ > /bl/ > /SI/ > /bR/ > /fi/ > /kI/ > /dR/ > /gR/ > /Sp/ >
/kR/ > /Sv/ > [fR/ > ISR/ > [gl/ > /ks/ > /dl/ > /pl/ > /gn/ > [pR/ > [Sn/ >
/Sm/ > /kn/ > /dn/ > /kv/ > /tsvl > 1/ > /ml/ > /x1/ > /tsl/ > /gm/ > /pfl/ >
/NI/ > [z)/ > /tn/ > /xR/ > /VR/ > [fn/ > [bn/ > [vj/ > [zn/ > /Nn/ > [pn/ >
/RR/ > /mn/ > /xn/ > /zR/ > INR/ > /IR/ > /[dZm/ > /tsR/ > /nl/ > /gv/ > Ips/

> /ft/ > [pfR/ > NZ1/ > R/ > [sp/ > Ist/ > [sv/ > [sk/ > /sR/ > [sn/ > [sl/ >

/sm/ > [sts/

Table 8: Two-consonantal onsets ordered by joint
probability (top: English, bottom:German)



5 Discussion

Comparison of the syllabification performance with
other systems is difficult: (i) different approaches
differ in their training and evaluation corpus;
(ii) comparisons across languages are hard to inter-
pret; (iii) comparisons across different approaches
require cautious interpretations. Nevertheless, we
want to refer to several approaches that examined
the syllabification task. Van den Bosch (1997) in-
vestigated the syllabification task with five induc-
tive learning algorithms. He reported a general-
ization error for words of 2.22% on English data.
However, the evaluation procedure differs from ours
as he evaluates each decision (after each phoneme)
made by his algorithms. Marchand et al. (to ap-
pear 2006) evaluated different syllabification algo-
rithms on three different pronunciation dictionaries.
Their best algorithm (SbA) achieved a word accu-
racy of 91.08%. The most direct point of compari-
son are the results presented by Miiller (2002). Her
approach differs in two ways. First, she only eval-
uates the German grammar and second she trains
on a newspaper corpus. As we are interested in
how her grammars perform on our corpus, we re-
implemented her grammars and tested both in our
10-fold cross evaluation procedure. We find that the
first grammar (Miiller, 2001) achieves 85.45% word
accuracy, 88.94% syllable accuracy and 94.37% syl-
lable boundary accuracy for English and 84.21%,
90.86%, 95.36% for German respectively. The re-
sults show that the syllable boundary accuracy in-
creases from 94,37% to 97.2% for English and from
95.3% to 97.2% for German. The experiments point
out that phonotactic knowledge is a valuable source
of information for syllabification.

6 Conclusions

Phonotactic restrictions are important for language
perception and production. They influence the abil-
ity of children to segment words, and they help to
recognize words in nonsense sequences. In this
paper, we presented grammars which incorporate
phonotactic restrictions. The grammars were trained
and tested on a German and an English pronuncia-
tion dictionary. Our experiments show that English
and German profit from phonotactic knowledge to
predict syllable boundaries. We find evidence that

19

German codas depend on the nucleus which does
not apply for English. The English grammars which
model the dependency of part of the onset or coda
on the nucleus worsen the syllabification accuracy.
However, the combination of both show a better per-
formance than the base phonotactic grammar. This
suggests that there are constrains in the selection of
the onset and coda consonants.
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Abstract

This paper presents an unsupervised batch
learner for the quantity-insensitive stress
systems described in Gordon (2002). Un-
like previous stress learning models, the
learner presented hereis neither cue based
(Dresher and Kaye, 1990), nor reliant on
a priori Optimality-theoretic constraints
(Tesar, 1998). Instead our learner ex-
ploits a property caled neighborhood-
distinctness, which is shared by all of the
target patterns. Some consequences of this
approach include a natural explanation
for the occurrence of binary and ternary
rhythmic patterns, the lack of higher n-ary
rhythms, and the fact that, in these sys-
tems, stress aways falls within a certain
window of word edges.

1 Introduction

The central premise of thisresearch isthat phonotac-
tic patterns are have properties which reflect prop-
erties of the learner. This paper illustrates this ap-
proach for quantity-insensitive (QI) stress systems
(see below).

| present an unsupervised batch learner that cor-
rectly learns every one of these languages. The
learner succeeds because there is a universal prop-
erty of QI stress systems which | refer to as
neighborhood-distinctness (to be defined below).
This property, which is a structural notion of local-
ity, is used by the learning algorithm to successfully
infer the target pattern from samples.

A learner is afunction from a set of observations
to a grammar. An observation is some linguistic
sign, inthis case aword-sized sequence of stressval-
ues. A grammar is some device that must at least re-
spond Yes or No when asked if alinguistic signisa
possible sign for this language (Chomsky and Halle,
1968; Halle, 1978).1

The remainder of the introduction outlines the ty-
pology of the QI stress systems, motivates represent-
ing phonotactics with regular languages, and exam-
ines properties of the attested patterns. In §2, | define
the class of neighborhood-distinct languages. The
learning algorithm is presented in two stages. §3 in-
troduces a basic version of the learner the learner,
which successfully acquires just under 90% of the
target patterns. In §4, one modification is made to
this learner which consequently succeeds on all tar-
get patterns. §5 discusses predictions made by these
learning agorithms. The appendix summarizes the
target patterns and results.

1.1 Quantity-Insensitive Stress Systems

Stress assignment in QI languages is indifferent to
the weight of a syllable. For example, Latin is
guantity-sensitive (QS) because stress assignment
depends on the syllable type: if the penultimate syl-
lable is heavy (i.e. has along vowel or coda) then
it receives stress, but otherwise the antepenult does.
The stress systems under consideration here, unlike
Latin, do not distinguish syllable types.

1In this respect, this work departs from (or is a specia case
of) gradient phonotactic models (Coleman and Pierrehumbert,
1997; Frisch et a., 2000; Albright, 2006; Hayes and Wilson,
2006)
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There are 27 types of QI stress systems found in
Gordon’'s (2002) typology. Gordon adds six plausi-
bly attestable QI systems by considering the behav-
ior of al-light-syllabled words from QS systems.

These 33 patterns are divided into four kinds: sin-
gle, dua, binary and ternary. Single systems have
one stressed syllable per word, and dual systems up
to two. Binary and ternary systems stress every sec-
ond (binary) or third (ternary) syllable.

The choice to study QI stress systems was made
for three reasons. First, they are well studied and the
typology is well established (Hayes, 1995; Gordon,
2002). Secondly, learning of stress systems has been
approached before (Dresher and Kaye, 1990; Gupta
and Touretzky, 1991; Goldsmith, 1994; Tesar, 1998)
making it possible to compare learners and results.
Third, these patterns have been analyzed with ad-
jacency restrictions (e.g. no clash), as disharmony
(e.g. aprimary stress may not be followed by an-
other), and with recurrence requirements (e.g. build
trochaic feet iteratively from the left). Thus the pat-
terns found in the QI stress systems are represen-
tative of other phonotactic domains that the learner
should eventually be extended to.

The 33 types are shown in Table 1. See Gor-
don (2002) and Hayes (1995) for details, exam-
ples, and original sources. Note that some patterns
have a minimal word condition (Prince, 1980; Mc-
Carthy and Prince, 1990; Hayes, 1995), banning ei-
ther monosyllables or light monosyllables. For ex-
ample, Cayuvava bans all monosyllables, whereas
Hopi bans only light monosyllables. Because this
paper addresses QI stress patterns | abstract away
from the internal structure of the syllable. For con-
venience, when stress patterns are explicated in this
paper | assume (stressed) monosyllables are permit-
ted. The learning study, however, includes each
stress pattern both with and without stressed mono-
syllables. Predictions our learner makes with respect
to the minimal word condition are given in §5.2.

2\We use the (first) language name to exemplify the stress
pattern. The number in parentheses is an index to the lan-
guage Gordon’'s 2003 appendix. All stress representations fol-
low Gordon's notation, who uses the metrical grid (Liberman
and Prince, 1977; Prince, 1983). Thus, primary stress is indi-
cated by 2, secondary stress by 1, and no stress by 0.
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1.2 Phonotactics as Regular Languages

| represent phonotactic descriptions as regular sets,
accepted by finite-state machines. A finite state ma-
chineisab-tuple (3, Q, @, F, §) where 3 isafinite
alphabet, () isaset of states, gy € Q isthe start state,
F C Qisaset of fina states, and ¢ is a set of tran-
sitions. Each transition has an origin and a terminus
and is labeled with a symbol of the aphabet; i.e. a
transition is a 3-tuple (o, a,t) where o,t € @ and
a €.

Empirically, it has been observed that most
phonological phenomena are regular (Johnson,
1972; Kaplan and Kay, 1981; Kaplan and Kay, 1994;
Ellison, 1994; Eisner, 1997; Karttunen, 1998). This
is especialy true of phonotactics: reduplication and
metathesis, which have higher complexity, are not
phonotactic patterns as they involve alternations?

Formally, regular languages are widely studied in
computer science, and their basic properties are well
understood (Hopcroft et al., 2001). Also, alearning
literature exists. E.g. the class of regular languages
is not exactly identifiable in the limit (Gold, 1967),
but certain subsets of it are (Angluin, 1980; Angluin,
1982). Thus it is becomes possible to ask: What
subset of the regular languages delimits the class of
possible human phonotactics and can properties of
this class be exploited by alearner?

This perspective a so connects to finite state mod-
els of Optimality Theory (OT) (Prince and Smolen-
sky, 1993). Riggle (2004) shows that if OT con-
straints are made finite-state, it is possible to build a
transducer that takes any input to agrammatical out-
put. Removing from this transducer the input labels
and hidden structural symbols (such as foot bound-
aries) in the output labels yields a phonotactic ac-
ceptor for the language, atarget for our learner.

Consider Pintupi, #26 in Table 1, which exempli-
fies a binary stress pattern. Its phonotactic gram-
mar is given in Figure 1. The hexagon indicates the
start state, and final states are marked by the double
perimeter.

This machine accepts the Pintupi words, but not
other words of the same length. Also, the Pin-
tupi grammar accepts an infinite number of words—
just like the grammars in Hayes (1995) and Gordon

3See Albro (1998; 2005) for restricted extensions to regular
languages.



Table 1: The Quantity-Insensitive Stress Systems?

Single Systems
1. (1) Chitimacha 20000000 2000000 200000 20000 2000 200 20 2
2. (2) Lakota 02000000 0200000 020000 02000 0200 020 02 2
3. (3) Hopi (gs) 02000000 0200000 020000 02000 0200 020 20 2
4.  (4) Macedonian 00000200 0000200 000200 00200 0200 200 20 2
5. (5) Nahuatl / Mohawk! 00000020 0000020 000020 00020 0020 020 20 2
6. (6) Atayal / Dieguefiot 00000002 0000002 000002 00002 0002 002 02 2
Dua Systems
7. (7f) Quebec French 10000002 1000002 100002 10002 1002 102 12 2
8. (9f) Udihe 10000002 1000002 100002 10002 1002 102 02 2
9.  (10i) Lower Sorbian 20000010 2000010 200010 20010 2010 200 20 2
10. (11f) Sanuma 10000020 1000020 100020 10020 1020 020 20 2
11. (15f) Georgian 10000200 1000200 100200 10200 0200 200 20 2
12.  (161) Walmatjari 20000100 2000100 200100 20100 2010 200 20 2
(optional variants) 20000010 2000010 200010 20010
Binary Systems
13.  (24i) Araucanian 02010101 0201010 020101 02010 0201 020 02 2
14. (24f) Creek! (g9) 01010102 0101020 010102 01020 0102 020 02 2
15.  (25f) Urubu Kaapor 01010102 1010102 010102 10102 0102 102 02 2
16. (261) Malakmalak 20101010 0201010 201010 02010 2010 020 20 2
17. (26f) Cavinefd 10101020 0101020 101020 01020 1020 020 20 2
18. (27i) Maranungku 20101010 2010101 201010 20101 2010 201 20 2
19. (27f) Palestinean Arabict (gs) | 10101020 1010102 101020 10102 1020 102 20 2
Binary Systems with Clash
20. (28i) Central Alaskan Yupik! | 01010102 0101012 010102 01012 0102 012 02 2
21. (29i) Southern Paiute! 02010110 0201010 020110 02010 0210 020 20 2
22. (30i) Gosiute Shoshone 20101011 2010101 201011 20101 2011 201 21 2
23. (32f) Biangai 10101020 1101020 101020 11020 1020 120 20 2
24. (33f) Tauya 11010102 1010102 110102 10102 1102 102 12 2
Binary Systems with Lapse
25. (34f) Piro 10101020 1010020 101020 10020 1020 020 20 2
26. (36i) Pintupi / Diyarif 20101010 2010100 201010 20100 2010 200 20 2
27. (40f) Indonesian 10101020 1001020 101020 10020 1020 020 20 2
28. (42i) Garawa 20101010 2001010 201010 20010 2010 200 20 2
Ternary Systems
29. (48i) loway-Oto 02001001 0200100 020010 02001 0200 020 02 2
30. (49f) Cayuvaval 00100200 0100200 100200 00200 0200 200 20 2
31. (67i) Estonian (gs) 20010010 2001010 201010 20010 2010 200 20 2
(optional variants) 20101010 2010100 200100 20100
20100100 2010010
20010100
32.  (71f) Pecific Yupik (gs) 01001002 0100102 010020 01002 0102 020 02 2
33. (72i) Winnebago® (gs) 00200101 0020010 002001 00201 0020 002 02 2

T Bans monosyllables.
! Bans light monosyllables.
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Figure 1: Stressin Pintupi as afinite state machine

(2002), who take the observed forms as instances of
a pattern that extends to longer words. The learner’s
task isto take the Pintupi wordsin Table 1 and return
the pattern represented by Figure 1.

1.3 Propertiesof QI Stress Patterns

The deterministic acceptor with the fewest states for
alanguage is called the language's canonical accep-
tor. Therefore, let us ask what properties the canoni-
cal acceptors for the 33 stress types have in common
that might be exploited by alearner.

One property shared by all grammars except Es-
tonian is that they have exactly one loop (Estonian
has two). Though this restriction is nontrivia, it is
insufficient for learning to be guaranteed* A second
shared property isslenderness. A machineisslender
iff it accepts only one word of length n. The only ex-
ceptions to this are Walmatjari and Estonian, which
have free variation in longer words (see Table 1).

| focusin this paper on another property which are
shared by al machines without exception. In 29 of
the canonical acceptors, each state can be uniquely
identified by its incoming symbol set, its outgo-
ing symbol set, and whether it is final or non-final.
These items make up the neighborhood of a state,
which will be formally defined in the next section.
The other four stress systems have non-canonical
acceptors wherein each state can also be uniquely
identified by its neighborhood. This property | call
neighborhood-distinctness.  Thus, neighborhood-
distinctness is a universal property of QI stress sys-
tems, and it is this property that the learner will ex-
ploit.

4The proof is similar to the one used to show the cofinite
languages are not learnable (Osherson et a., 1986).
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2 Neighborhood-Distinctness

2.1 Neighborhood-Distinct Acceptors

The neighborhood of a state in an acceptor
(3, Q, qo, F,0) isdefined in (1).

(1) The neighborhood of a state ¢ is triple
(f,I1,0)where f = 1iffge Fand f =0
otherwise, I = {a |30 € Q, (0,a,q) € d},
and O ={a|3t € Q, (q,a,t) € 0}

Thus the neighborhood of state can be determined
by looking solely at whether or not it isfinal, the set
of symbols labeling the transitions which reach that
state, and the set of symbols labeling the transitions
which depart that state. For example in Figure 2,
states p and ¢ have the same neighborhood because
they are both nonfinal, can both be reached by some
element of {a,b}, and because each state can only
be exited by observing amember of {c, d}>

a C

Figure 2: Two states with the same neighborhood.

Neighborhood-distinct acceptors are defined in
2.

(20  An acceptor is said to be neighborhood-
distinct iff no two states have the same
neighborhood.

This class of acceptors is finite: there are 22/>I+1
neighborhoods, i.e. types of states. Since each state
in a neighborhood-distinct machine has a unique
neighborhood, this becomes an upper bound on ma-
chine size.®

5The notion of neighborhood can be generalized to neigh-
borhoods of size k, where sets I and O are defined as the in-
coming and outgoing paths of length k. However, this paper is
only concerned with neighborhoods of size 1.

SFor some acceptor, the notion of neighborhood lends it-
self to an equivalence relation Ry over Q: pRyq iff p and ¢
have the same neighborhood. Therefore, Ry partitions @ into
blocks, and neighborhood-distinct machines are those where
this partition equals the trivial partition.



2.2 Neighborhood-Distinct L anguages

The class of neighborhood-distinct languages is de-
fined in (3).

(3)  The neighborhood-distinct languages are
those for which there is an acceptor which
is neighborhood-distinct.

The neighborhood-distinct languages are a (finite)
proper subset of the regular languages over an
alphabet X: all regular languages whose small-
est acceptors have more than 221>+ states cannot
be neighborhood-distinct (since at least two states
would have the same neighborhood).

The canonically neighborhood-distinct languages
are defined in (4).

4@ The canonically neighborhood-distinct
languages are those for which the canonical
acceptor is neighborhood-distinct.

The canonically neighborhood-distinct |anguages
form a proper subset of the neighborhood-distinct
languages. For example, the canonical accep-
tor shown in Figure 3 of Lower Sorbian (#9 in
Table 1) is not neighborhood-distinct (states 2
and 3 have the same neighborhood). However,
there isanon-canonical (because non-deterministic)
neighborhood-distinct acceptor for this language, as
shown in Figure 4.

1

1

G

0

Figure 4: A neighborhood-distinct acceptor for
Lower Sorbian.
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Neighborhood-distinctness isauniversal property
of the patterns under consideration. Additionaly, it
is a property which a learner can use to induce a
grammar from surface forms.

3 TheNeighborhood L earner

In this section, | present the basic unsupervised
batch learner, caled the Neighborhood Learner,
which learns 29 of the 33 patterns. In the next
section, | introduce one modification to this learner
which results in perfect accuracy.

The basic version of the learner operates in two
stages. prefix tree construction and state-merging,
cf. Angluin (1982). These two stages find smaller
descriptions of the observed data; in particular state-
merging may lead to generalization (see below).

A prefix treeis constructed asfollows. Set theini-
tial machine M = (%, {q}, g0, 0, 0) and the current
state ¢ = ¢o. With each word, each symbol « is con-
sidered in order. If Vt € Q, (c,a,t) € ¢ then set
¢ = t. Otherwise, add anew state n to () and anew
arc (c,a,n) to 4. A new arc is therefore created on
every symbol in the first word. The last state for a
word isadded to F'. The processisrepeated for each
word. The prefix tree for Pintupi words from Table
lisshownin Figure5.

Figure 5: The prefix tree of Pintupi words.

The second stage of the learner is state-merging,
a process which reduces the number of statesin the
machine. A key concept in state merging is that
when two states are merged into a single state, their
transitions are preserved. Specifically, if statesp and
g merge, then a merged state pq is added to the ma-
chine, and p and ¢ are removed. For every arc that
left p (or ¢) to astate r, there is now an arc from pg
going to . Likewise, for every arc from a state r to
p (or ¢), thereis now an arc from r to pq.

The post-merged machine accepts every word that
the pre-merged machine accepts, and possibly more.
For example, if there is a path between two states
which become merged, aloop is formed.



What remains to be explained is the criteria the
learner uses to determine whether two states in
the prefix tree merge. The Neighborhood Learner
merges two states iff they have the same neighbor-
hood, guaranteeing that the resulting grammar is
neighborhood-distinct.

The intuition is that the prefix tree provides
a structured representation of the input and has
recorded information about different environments,
which are represented in the tree as states. Learning
is aprocess which identifies actually different envi-
ronments as ‘the same’'— here states are ‘the same’
iff their local features, i.e their neighborhoods, are
the same. For example, suppose states p and ¢ in the
prefix tree are both final or both nonfinal, and they
share the same incoming symbol set and outgoing
symbol set. In the learner’s eyes they are then ‘the
same’, and will be merged.

The merging criteria partitions the states of the
Pintupi prefix tree into five groups. States 3,5 and
7 are merged; states 2,4,6 are merged, and states
8,9,10,12 are merged. Merging of states halts when
no two nodes have the same neighborhood- thus, the
resulting machine is neighborhood-distinct. The re-
sult for Pintupi is shown in Figure 6.

Figure 6: The grammar learned for Pintupi.

The machine in Figure 6 is equivalent to the one
in Figure 1— they accept exactly the same language”
I.e. neighborhood merging of the prefix tree in Fig-
ure 5 generalizes from the data exactly as desired.

3.1 Resultsof Neighborhood L earning

The Neighborhood L earner successfully learns 29 of
the 33 language types (see appendix). These are ex-
actly the 29 canonically neighborhood-distinct lan-
guages. This suggests the following claim, which
has not been proven®

"This can be verified by checking to see if the minimized
versions of the two machines are isomorphic.

8The proof is made difficult by the fact that the acceptor
returned by the Neighborhood Learner is not necessarily the
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5 Conjecture: The Neighborhood Learner
identifies the class of canonicaly
neighborhood-distinct languages.

In 84, | discuss why the learner fails where it does,
and introduce amodification which resultsin perfect
accuracy.

4 ReversingthePrefix Tree

This section examines the four cases where neigh-
borhood learning failed and modifiesthelearning al-
gorithm, resulting in perfect accuracy. Thegoal isto
restrict generalization because in every case where
learning failed, the learner overgeneralized by merg-
ing more states than it should have. Thus, the re-
sulting grammars recognize multiple words with n
syllables.

The dua stress pattern of Lower Sorbian places
stress initially and, in words of four or more sylla-
bles, on the penult (see #9 Table 1). The prefix tree
built from these words is shown in Figure 7.

) ) A ()
OO0 0=g. 5.0

Figure 7: The prefix tree for Lower Sorbian.

Here the Neighborhood Learner fails because it
merges states 2 and 3. The resulting grammar incor-
rectly accepts words of the form 20*.

The proposed solution follows from the observa-
tion that if the prefix tree were constructed in reverse
(reading each word from right to left) then the corre-
sponding states in this structure would not have the
same neighborhoods, and thus not be merged. A re-
verse prefix tree is constructed like a forward prefix
tree, the only difference being that the order of sym-
bols in each word is reversed. When neighborhood
learning is applied to this structure and the result-
ing machine reversed again, the correct grammar is
obtained, shown in Figure 4.

How is the learner to know whether to construct
the prefix tree normally or in reverse? It simply does
both and intersects the results. Intersection of two

canonical acceptor.



languages is an operation which returns a language
consisting of the words common to both. Similarly,
machine intersection returns an acceptor which rec-
ognizes just those words that both machines recog-
nize. This strategy is thus conservative: the learner
keeps only the most robust generalizations, which
aretheonesit ‘finds' in both the forward and reverse
prefix trees.

This new learner is caled the Forward Backward
Neighborhood (FBN) Learner and it succeeds with
all the patterns (see appendix).

Interestingly, the additional languages the FBN
Learner can acquire are ones that, under foot-based
analyses like those in Hayes (1995), require feet to
be built from the right word edge. For example,
Lower Sorbian has a binary trochee aligned to the
right word edge; Indonesian iteratively builds binary
trochaic feet from the right word edge; Cayuvava it-
eratively builds anapests from the right word edge.
Thus structuring the input in reverse appears akin to
a footing procedure which proceeds from the right
word boundary.

5 Predictions of Neighborhood L earning

In this section, let us examine some of the predic-
tions that are made by neighborhood learning. In
particular, let us consider the kinds of languages that
the Neighborhood Learner can and cannot learn and
compare them with the attested typol ogy.

5.1 Binary and Ternary Stress Patterns

Neighborhood learning suggests an explanation of
the fact that the stress rhythms found in natural
language are binary or ternary and not higher n-
ary, and of the fact that stress falls within a three-
syllable window of the word edge: perhaps only sys-
tems with these properties are learnable. Thisis be-
cause the neighborhood learner cannot distinguish
between sequences of the same symbol with length
greater than two.

As an example, consider the quaternary (and
higher n-ary) stress pattern 2(0001)*(0/00/000).° If
the learner is exposed to samples from this pattern,
it incorrectly generalizesto 2(000*1)*(0/00]000).

°| follow Hopcroft et a (2001) in our notation of regular
expressions with one substitution— we use | instead of + to in-
dicate disjunction.
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Similarly, neighborhood learning cannot distin-
guish a form like 02000 from 020000, so a sys-
tem that places stress on the pre-antepenult (e.g.
02000, 002000, 0002000) is not learnable. With
samples from the pre-antepenultimate language
(0*2000/200/20|2), the learner incorrectly general-
izesto 0*20*.

5.2 Minimal Word Conditions

A subtle prediction made by neighborhood-learning
is that a QI stress language with a pattern like the
one exemplified by Hopi (shown in Figure 8) cannot
have a minimal word condition banning monosylla-
bles. Thisisbecause if there were no monosyllables
in this language, then state 4 in Figure 8 would have
the same neighborhood as state 2 (asin Figure 9).

Figure 8: The stress pattern exemplified by Hopi,
allowing monosyllables.

Figure 9: The stress pattern exemplified by Hopi,
not allowing monosyllables.

Since such a grammar recognizes a non-
neighborhood-distinct language it cannot be learned
by the Neighborhood Learner.

Asit happens, Hopi is a QS language which pro-
hibits light, but permits heavy, monosyllables. Since
| have abstracted away from the internal structure of
the syllable in this paper, this prediction is not dis-
confirmed by the known typology: there are in fact
no QI Hopi-like stress patterns in Gordon’s (2002)
typology which ban all monosyllables; i.e there are
no QI patterns like the one in Figure 9.

Some QI languages do have a minimal word con-
dition banning all monosyllables. To our knowl-
edge these are Cavinefia and Cayuvava (see Ta
ble 1), Mohawk (which places stress on the penult



like Nahuatl), and Diyari, Mohwak, Pitta Pitta and
Wangkumara (all which assign stress like Pintupi)
(Hayes, 1995). The Forward Backward Neighbor-
hood Learner learnsall of these patterns successfully
irrespective of whether the patterns (and correspond-
ing input samples) permit monosyllables, predicting
that such patterns do not correlate with a prohibition
on monosyllables (see appendix).

Other QI languages prohibit light monosyllables.
Dieguefio, for example, places stress finally like
Atayal (see Table 1), but only alows heavy mono-
syllables. Thisis an issue to attend to in future re-
search when trying to extend the learning algorithm
to QS patterns, when the syllable type (light/heavy)
isincluded in the representational scheme.

5.3 Restrictiveness and Other Approaches

There are languages that can be learned by neighbor-
hood learning that phonologists do not consider to
be natural. For example, the Neighborhood Learner
learns a pattern in which words with an odd number
of syllables bear initial stressbut words with an even
number of syllables bear stress on al odd syllables.
However, the grammar for thislanguage differsfrom
all of the attested systems in that it has two loops but
is dender (cf. Estonian which has two loops but is
not slender). Thusthis case suggests afurther formal
restriction to the class of possible stress systems.

More serious chalenges of unattestable, but
Neighborhood Learner-able, patterns exist; e.g.
21*. In other words, it does not follow
from neighborhood-distinctness that languages with
stress must have stressless syllables. Nor does the
notion that every word must bear some stress some-
where (i.e. Culminativity— see Hayes (1995)).

However, despite the existence of |earnable patho-
logical languages, this approach is not unrestricted.
The class of languages to be learned is finite—as
in the Optimality-theoretic and Principles and Pa
rameters frameworks—and is a proper subset of the
regular languages. Future research will seek addi-
tional properties to better approximate the class of
QI stress systems that can be exploited by inductive
learning.

This approach offers more insight into QI stress
systems than earlier learning models. Optimality-
theoretic learning models (e.g. (Tesar, 1998)) and
models set in the Principles and Parameters frame-
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work (e.g. (Dresher and Kaye, 1990)) make no use
of any property of the class of patterns to be learned
beyond its finiteness. Also, our learner is much sim-
pler than these other models, which require a large
set of apriori switches and cues or constraints.

6 Conclusions

This paper presented a batch learner which correctly
infers the attested QI stress patterns from surface
forms. The key to the success of thislearner isthat it
takes advantage of a universal property of QI stress
systems, neighborhood-distinctness. This property
provides a natural explanation for why stress falls
within a particular window of the word edge and
why rhythms are binary and ternary. It is strik-
ing that all of the attested patterns are learned by
this simple approach, suggesting that it will be fruit-
ful and revealing when applied to other phonotactic
learning problems.
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Appendix. Target Grammarsand Results

See Table 2. Circled numbers mean the learner iden-
tified the pattern. The x mark means the learner
failed to identify the pattern. The number inside the
circle indicates which forms were necessary for con-
vergence. Specificaly, in the “With Monosyllables’
column, (m means the learner succeeded learning
the “With Monosyllables’ pattern with words with
oneto n syllables. Likewise, in the “Without Mono-
syllables” column, () means the learner succeeded
learning the “Without Monosyllables’ pattern with
words with two to n syllables. For example, in
the “With Monosyllables’ column, &) means that
the learner succeeded only with words with one to
five syllables. The learners still succeed when given
longer words. The number n may be thought of as
the smallest word needed for generalization.



Table 2: Learning Results

With Monosyllables

Without Monosyllables

I & T 3
Language RegEXxp Z | || RegExp z |
Single
1. Chitimacha 20* @] @[ 20F @ @
2. Lakota (2]020%) ®| ®| 020* ®| ®
3. Hopi (q9) (2]20[020) ®| ®| (020%]2)0 x | x
4. Macedonian (2]20|0*200) ®| ®]| (2/0"20)0 X | ®
5. Nahuatl (2]0*20) ®| G| 0720 ®| 6
6. Ataya 0*2 @| @| 072 @| @
Dual
7. Quebec French (2]10*2) ®| ®| 10*2 ®| ©®
8. Udihe (2/(10%)702) ®| ®| (10")702 ®| ®
9.  Lower Sorbian (2/2(0]0%1)0) x | ®| 2(0/0*t1)0 x| ®
10. Sanuma (2/20/020|10*20) ®| @| (2/02]1072)0 ®| @
11. Georgian (2/20(07200]10"200) | @ (2/0720/10%20)0 X
12.  Walmatjari (2]120(0*10)707) x | ®| 20(0*10)707 x| ®
Binary
13.  Araucanian (2]02(01)*0%) ®| ®] 02(01)*0° ®] ®
14. Creek (qs) (2|(o1)*02o?) ®| ®| (01)*0207 ®| ®
15.  Urubu Kappor 0(10) ®| ®| (0]10)(10)*2 ®| ®
16. Malakmalak (2]072(01)*0) ®| ®| 072(01)*0 ®| ®
17. Cavinefia (2|0° 10) 20) ®| ®| 07(10)*20 ®| ®
18.  Maranungku 2(01)*0° ®| G| 20(10)*1° ®| ©
19. Palestinean Arabic (gs) | (10)*20° ®| G| (20/(10)*207) ®| G
Binaryw/clash
20. Central Alaskan Yupik | (0(10)*17)72 ®] & 0(10)*172 ®| 6
21. Southern Paiute (2|( 2102(01)*1)0) ©) (2/02(01) * 17)0 ©)
22.  Gosiute Shoshone 2((0 ) 1)? ®| ®| 2(01)*0°1 ®| ®
23. Biangai (217(10)*20) @] @| 17(10)*20 D @
24. Tauya (21 (10)*2) ®| ®| 17(10)*2 ®| ®
Binary w/lapse
25. Piro (2](10)*0720) ®| @] (10)*072 ®]| @
26. Pintupi 2(0(10)*0%)7 ®| ® 20(10)*0 ®| ®
27. Indonesian (2[(10)707(10)*20) X (1 ) 7(10)*2 X
28. Garawa 2(007 (10)*)” ®| ®| 2007(10)* ®| ®
Ternary
29. loway Oto (202(001)*0707) @ 02(001)*0707 @
30. Cayuvava (0707(100)*200/20[2) | x | @| (0707(100)*20|2)0 | x | @
31. Estonian (gs) 20°07(100|10)* ®| ®| 2007(100|10)* ®| ®
32.  Pacific Yupik (qs) (2|0(100)*(20” 1102)) @] @| 0(100)*(207]102) | @®| @
33.  Winnebago (gs) (2]02/002(001)*0°1%) | @| @] (02]002(001)*0°1%) | @ | ®

NHL : Neighborhood L earner

FBNL : Forward Backward Neighborhood L earner

30




Invited Talk:
Universal Constraint Rankings Result from Learning and Evolution

Paul Boersma
Institute of Phonetic Sciences
University of Amsterdam
Herengracht 338
1016CG Amsterdam, The Netherlands
paul.boersma@uva.nl

Abstract

Optimality Theory has met with a bad press in the more emergentist (e.g. computational) lit-
erature for its reliance on innate constraints and even on innate constraint rankings (positional
faithfulness, licensing by cue). In this talk I will show with computer simulations that even if
the learner’s initial grammar starts with a large number of constraints that have no inherent bias
towards unmarked or otherwise good sound systems, the learner will gradually turn the constraint
ranking into something resembling a universally unmarked sound system as an automatic result
of input frequencies and imperfections of the transmission channel. It turns out that the parents’
sound system is “semi-learnable”: if the parents’ sound system happens to be universally marked,
the offspring will learn to mimic the quirks of this system to some extent, but they will tend
to turn the language into a universally unmarked sound system within three generations or so.
The conclusion will be that a bidirectional Optimality-Theoretic model of the grammar with two
phonological and two phonetic representations is compatible with the view that there is no innate
phonological substance in language acquisition.
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Exploring variant definitions of pointer length in MDL

Aris Xanthos
Department of Linguistics
University of Chicago
Chicago IL 60637

axanthos@uchicago.edu

Abstract

Within the information-theoretical frame-
work described by (Rissanen, 1989; de
Marcken, 1996; Goldsmith, 2001), point-
ers are used to avoid repetition of phono-
logical material. Work with which we
are familiar has assumed that there is only
one way in which items could be pointed
to. The purpose of this paper is to de-
scribe and compare several different meth-
ods, each of which satisfies MDL’s ba-
sic requirements, but which have different
consequences for the treatment of linguis-
tic phenomena. In particular, we assess
the conditions under which these different
ways of pointing yield more compact de-
scriptions of the data, both from a theoret-
ical and an empirical perspective.

1 Introduction

The fundamental hypothesis underlying the Mini-
mum Description Length (MDL) framework (Rissa-
nen, 1989; de Marcken, 1996; Goldsmith, 2001) is
that the selection of a model for explaining a set of
data should aim at satisfying two constraints: on the
one hand, it is desirable to select a model that can be
described in a highly compact fashion; on the other
hand, the selected model should make it possible to
model the data well, which is interpreted as being
able to describe the data in a maximally compact
fashion. In order to turn this principle into an op-
erational procedure, it is necessary to make explicit

Yu Hu
Department of
Computer Science
University of Chicago
Chicago IL 60637

yuhu@Quchicago.edu

John Goldsmith
Departments of Linguistics and
Computer Science
University of Chicago
Chicago IL 60637
goldsmith@uchicago.edu

the notion of compactness. This is not a trivial prob-
lem, as the compactness (or conversely, the length)
of a description depends not only on the complexity
of the object being described (in this case, either a
model or a set of data given a model), but also on
the “language” that is used for the description.

Consider, for instance, the model of morphology
described in Goldsmith (2001). In this work, the
data consist in a (symbolically transcribed) corpus
segmented into words, and the “language” used to
describe the data contains essentially three objects:
a list of stems, a list of suffixes, and a list of sig-
natures, i.e. structures specifying which stems asso-
ciate with which suffixes to form the words found in
the corpus. The length of a particular model (or mor-
phology) is defined as the sum of the lengths of the
three lists that compose it; the length of each list is in
turn defined as the sum of the lengths of elements in
it, plus a small cost for the list structure itself'. The
length of an individual morpheme (stem or suffix) is
taken to be proportional to the number of symbols in
it.

Calculating the length of a signature involves the
notion of pointer, with which this paper is primar-
ily concerned. The function of a signature is to re-
late a number of stems with a number of suffixes.
Since each of these morphemes is spelled once in
the corresponding list, there is no need to spell it
again in a signature that contains it. Rather, each
signature comprises a list of pointers to stems and
a list of pointers to suffixes. A pointer is a sym-
bol that stands for a particular morpheme, and the
recourse to pointers relies on the assumption that

"More on this in section 2.1 below
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their length is lesser than that of the morphemes
they replace. Following information-theoretic prin-
ciples (Shannon, 1948), the length of a pointer to a
morpheme (under some optimal encoding scheme)
is equal to -1 times the binary logarithm of that mor-
pheme’s probability. The length of a signature is the
sum of the lengths of the two lists it contains, and
the length of each list is the sum of the lengths of
the pointers it contains (plus a small cost for the list
itself).

This work and related approaches to unsupervised
language learning have assumed that there is only
one way in which items could be pointed to, or iden-
tified. The purpose of this paper is to describe, com-
pare and evaluate several different methods, each of
which satisfies MDL’s basic requirements, but which
have different consequences for the treatment of lin-
guistic phenomena. One the one hand, we contrast
the expected description length of “standard” lists of
pointers with polarized lists of pointers, which are
specified as either (i) pointing to the relevant mor-
phemes (those that belong to a signature, or undergo
a morpho-phonological rule, for instance) or (ii)
pointing to their complement (those that do not be-
long to a signature, or do not undergo a rule). On the
other hand, we compare (polarized) lists of pointers
with a method based on binary strings specifying
each morpheme as relevant or not (for a given sig-
nature, rule, etc.). In particular, we discuss the con-
ditions under which these different ways of pointing
are expected to yield more compact descriptions of
the data.

The remainder of this paper is organized as fol-
lows. In the next section, we give a formal review
of the standard treatment of lists of pointers as de-
scribed in (Goldsmith, 2001); then we successively
introduce polarized lists of pointers and the method
of binary strings, and make a first, theoretical com-
parison of them. Section three is devoted to an em-
pirical comparison of these methods on a large nat-
ural language corpus. In conclusion, we discuss the
implications of our results in the broader context of
unsupervised language learning.

2 Variant definitions of pointers

In order to simplify the following theoretical discus-
sion, we temporarily abstract away from the com-
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plexity of a full-blown model of morphology. Given
a set of IV stems and their distribution, we consider
the general problem of pointing to a subset of M
stems (with 0 < M < N), first by means of “stan-
dard” lists of pointers, then by means of polarized
ones, and finally by means of binary strings.

2.1 Expected length of lists of pointers

Let 7 denote a set of N stems; we assume that the
length of a pointer to a specific stem ¢t € T is its
inverse log probability — log pr(t).2 Now, let {M}
denote the set of all subsets of 7 that contain exactly
0 < M < N stems. The description length of a
list of pointers to a particular subset € {M} is
defined as the sum of the lengths of the M pointers
it contains, plus a small cost of for specifying the list
structure itself, defined as A(M) := 0 if M = 0 and
log M bits otherwise>:

DLF(p) == A(M) = > log pr(t)

tep

The expected length of a pointer is equal to the
entropy over the distribution of stems:

hsems . — EtGT [_ logpr(t)} = — Zp?”(t) logpr(t>
tet

Thus, the expected description length of a list of
pointers to M stems (over all subsets € {M})
is:

S° DL
ne{M} ()

— )\(M) + Mhstems

Eue{M} [DLPH(/J)] = |{1\1/1}\

This value increases as a function of both the num-
ber of stems which are pointed to and the entropy
over the distribution of stems. Since 0 < hp¥™ <
log N, the following bounds hold:

0 S hslems S EILLG{M} [DLptr(M):I
<log N + Nh*™ < (N +1)log N

Here and throughout the paper, we use the notation log
to refer to the binary logarithm of x; thus entropy and other
information-theoretic quantities are expressed in terms of bits.

3Cases where the argument of this function can have the
value 0 will arise in the next section.



2.2 Polarization

Consider a set of N = 3 equiprobable stems, and
suppose that we need to specify that a given morpho-
phonological rule applies to one of them. In this con-
text, a list with a single pointer to a stem requires
logl — log% = 1.58 bits. Suppose now that the
rule is more general and applies to two of the three
stems. The length of the new list of pointers is thus
log2 — 2log % = 4.17 bits. It appears that for such
a general rule, it is more compact to list the stems to
which it does not apply, and mark the list with a flag
that indicates the “negative” meaning of the point-
ers. Since the flag signals a binary choice (either the
list points to stems that undergo the rule, or to those
that do not), log2 = 1 bit suffices to encode it, so
that the length of the new list is 1.58 + 1 = 2.58
bits.

We propose to use the term polarized to refer to
lists of pointers bearing a such flag. If it is useful to
distinguish between specific settings of the flag, we
may speak of positive versus negative lists of point-
ers (the latter being the case of our last example).
The expected description length of a polarized list
of M pointers is:

E}LE{M} [DLPO](,LL)] = ]_ + )\(M) _|_ Mhslcms (2)
with M := min(M, N — M)

From (1) and (2), we find that in general, the ex-
pected gain in description length by polarizing a list
of M pointers is:

Eucqany [DLP(p) — DLP ()]
—1iff M < &

—1 + )\(M) — )\(N — M) + (2M _ N)hstems
otherwise

Thus, if the number of stems pointed to is lesser than
or equal to half the total number of stems, using a
polarized list rather than a non-polarized one means
wasting exactly 1 bit for encoding the superfluous
flag. If the number of stems pointed to is larger than
that, we still pay 1 bit for the flag, but the reduced
number of pointers results in an expected saving of
A(M) — AN — M) bits for the list structure, plus
(2M — N) - h*™ bits for the pointers themselves.
Now, let us assume that we have no informa-
tion regarding the number M of elements which are
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Polarized vs. non—polarized lists
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Figure 1: Expected gain in description length by us-
ing polarized rather than non-polarized lists of point-
ers.

pointed to, i.e. that it has a uniform distribution be-
tween 1 and N (M ~ UJl, N]). Let us further as-
sume that stems follow a Zipfian distribution of pa-
rameter s, so that the probability of the k-th most
frequent stem is defined as:

1/ks o
f(k,N,s):= with Hy g :zZl/n
N,s n=1

where H  stands for the harmonic number of order
N of s. The entropy over this distribution is:

; s
thpf =

N,s HN <

7 k=1

Armed with these assumptions, we may now com-
pute the expected description length gain of polar-
ization (over all values of M) as a function of NV
and s:

Eni(Epeqary [DL* (1) — DL (1))
= —1+4 % Yrey AM) = A(M) + (M — MR,

Figure 1 shows the gain calculated for N = 1,
400, 800, 1200, 1600 and 2000, and s = 0, 1, 2
and 10. In general, it increases with N, with a
slope that depends on s: the greater the value of s,
the lesser the entropy over the distribution of stems;
since the entropy corresponds to the expected length



List of stems Binary string
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pointer; stem, e
pointer; stems
pointern, stemg.1

stem, e

Figure 2: Two ways of pointings to stems: by means
of a polarized list of pointers, or a binary string.

of a pointer, its decrease entails a decrease in the
number of bits that can be saved by using polarized
lists (which generally use less pointers). However,
even for an aberrantly skewed distribution of stems*,
the expected gain of polarization remains positive.
Since the value of s is usually taken to be slightly
greater than 1 for natural languages (Mandelbrot,
1953), it seems that polarized lists generally entail
a considerable gain in description length.

2.3 Binary strings

Consider again the problem of pointing to one out
of three equiprobable stems. Suppose that the list of
stems is ordered, and that we want to point to the
first one, for instance. An alternative to the recourse
to a list of pointers consists in using a binary string
(in this case 100) where the i-th symbol is set to 1
(or +) if the i-th stem is being pointed to, and to 0
(or —-) otherwise. Figure 2 gives a schematic view of
these two ways of pointing to items.

There are two main differences between this
method and the previous one. On the one hand,
the number of symbols in the string is constant and
equal to the fotal number N of stems, regardless of
the number M of stems that are pointed to. On the
other hand, the compressed length of the string de-
pends on the distribution of symbols in it, and not on
the distribution of stems. Thus, by comparison with
the description length of a list of pointers, there is a
loss due to the larger number of encoded symbols,
and a gain due to the use of an encoding specifically

“In the case s = 10, the probability of the most frequent
stem is .999 for N = 2000.
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tailored for the relevant distribution of pointed ver-
sus “unpointed” elements.

The entropy associated with a binary string is en-
tirely determined by the number of 1’s it contains,
i.e. the number M of stems which are pointed to,
and the length N of the string:

bin

NM = T

N

The compressed length of a binary string pointing to
M stems is thus:

DL™(M) := Nh' yf 3)
It is maximal and equal to N bits when M = %,

and minimal and equal to 0 when M = N, i.e. when
all stems have a pointer on them. Notice that binary
strings are intrinsically polarized, so that intervert-
ing 0’s and 1’s results in the same description length
regardless of their distribution.’

The question naturally arises, under which con-
ditions would binary strings be more or less com-
pact than polarized lists of pointers. If we assume
again that the distribution of the number of elements
pointed to is uniform and the distribution of stems is
Zipfian of parameter s, (2) and (3) justify the follow-
ing expression for the expected description length
gain by using binary strings rather than polarized
lists (as a function of N and s):

En[Eucian DL ()] — DL (M)]

1 N

=1+ LN M) + Mh?vip; — Nh

Figure 3 shows the gain calculated for N = 1, 400,
800, 1200, 1600 and 2000, and s = 0, 1, 2 and 3.
For s small, i.e. when the entropy over the distri-
bution of stems is greater or not much lesser than
that of natural languages, the description length of
binary strings is considerably lesser than that of po-
larized lists. The difference decreases as s increases,

> As one the reviewers has indicated to us, the binary strings
approach is actually very similar to the method of combinato-
rial codes described by (Rissanen, 1989). This method con-
sists in pointing to one among (11»\;) possible combinations of
M stems out of N. Under the assumption that these combi-
nations have a uniform probability, the cost for pointing to M
stems is log (;7) bits, which is in general slightly lesser than
the description length of the corresponding binary string (the
difference being maximal for M = N/2, i.e. when the binary
string encoding cannot take advantage of any compression).
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Figure 3: Expected gain in description length by us-
ing binary strings rather than polarized lists under
the assumption that M ~ U[1, N].

until at some point (around s = 2), the situation re-
verses and polarized lists become more compact. In
both cases, the trend increases with the number N
of stems (within the range of values observed).

By contrast, it is instructive to consider a case
where the distribution of the number of elements
pointed to departs from uniformity. For instance, we
can make the assumption that M follows a binomial
distribution (M ~ B[N, p]).® Under this assump-
tion (and, as always, that of a Zipfian distribution of
stems), the expected description length gain by us-
ing binary strings rather than polarized lists is:

By [EME{M} [DLP ()] _DLbin(M)]
= 2N (M) (1 ) + TR,
)pM (1 = pN-M

Letting N and s vary as in the previous computation,
we set the probability for a stem to have a pointer on
itto p = 0.01, so that the distribution of pointed ver-
sus “unpointed” elements is considerably skewed.’

bin
—Nhy

)

N

with pr(M) = (3,

SThis model predicts that most of the time, the number M
of elements pointed to is equal to N - p (where p denotes the
probability for a stem to have a pointer on it), and that the prob-
ability pr(M) of other values of M decreases as they diverge
from N - p.

"By symmetry, the same results would be found with p =
0.99.
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Binary strings vs. polarized lists
(binomial distribution of M, p =0.01)
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Figure 4: Expected gain in description length by us-
ing binary strings rather than polarized lists under
the assumption that A/ ~ B[N, 0.01].

As shown on figure 4, under these conditions, the ab-
solute value of the gain of using binary strings gets
much smaller in general, and the value of s for which
the gain becomes negative for [V large gets close to 1
(for this particular value, it becomes positive at some
point between N = 1200 and N = 1600).

Altogether, under the assumptions that we have
used, these theoretical considerations suggest that
binary strings generally yield shorter description
lengths than polarized lists of pointers. Of course,
data for which these assumptions do not hold could
arise. In the perspective of unsupervised learning,
it would be particularily interesting to observe that
such data drive the learner to induce a different
model depending on the representation of pointers
being adopted.

It should be noted that nothing prevents binary
strings and lists of pointers from coexisting in a sin-
gle system, which would select the most compact
one for each particular case. On the other hand, it is
a logical necessity that all lists of pointers be of the
same kind, either polarized or not.

3 Experiments

In the previous section, by assuming frequencies of
stems and possible distributions of M (the num-
ber of stems per signature), we have explored the-
oretically the differences between several encoding
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Figure 5: Frequency versus rank (stems) in English
corpus.

methods in the MDL framework. In this section, we
apply these methods to the problem of suffix discov-
ery in natural language corpora, in order to verify the
theoretical predictions we made previously. Thus,
the purpose of these experiments is not to state that
one encoding is preferable to the others; rather, we
want to answer the three following questions:

1. Are our assumptions on the frequency of stems
and size of signatures appropriate for natural
language corpora?

Given these assumptions, do our theoretical
analyses correctly predict the difference in de-
scription length of two encodings?

3. What is the relationship between the gain in de-
scription length and the size of the corpus?

3.1 Experimental methodology

In this experiment, for the purpose of calculating
distinct description lengths while using different en-
coding methods, we modified Linguistica® by imple-
menting list of pointers and binary strings as alter-
native means to encode the pointers from signatures
to their associated stems’. As a result, given a set

8The source and binary files can be freely downloaded at
http://linguistica.uchicago.edu.
Pointers to suffixes are not considered here.
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Distribution of the number of stems
per signature (English corpus)
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Figure 6: Distribution of number of stems per signa-
ture (English corpus)

of signatures, we are able to compute a description
length for each encoding methods.

Within Linguistica, the morphology learning pro-
cess can be divided into a sequence of heuristics,
each of which searches for possible incremental
modifications to the current morphology. For exam-
ple, in the suffix-discovery procedure, ten heuristics
are carried out successively; thus, we have a dis-
tinct set of signatures after applying each of the ten
heuristics. Then, for each of these sets, we encode
the pointers from each signature to its correspond-
ing stems in three rival ways: as a [list of pointers
(polarized or not), as traditionally understood, and
as a binary string. This way, we can compute the to-
tal description length of the signature-stem-linkage
for each of the ten sets of signatures and for each of
three two ways of encoding the pointers. We also
collect statistics on word frequencies and on the dis-
tribution of the size of signatures M, i.e. the number
M of stems which are are pointed to, both of which
are important parametric components in our theoret-
ical analysis.

Experiments are carried out on two orthographic
corpora (English and French), each of which has
100,000 word tokens.

3.2 Frequency of stems and size of signatures

The frequency of stems as a function of their rank
and the distribution of the size of signatures are plot-
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Figure 7: Frequency versus rank (stems) in French
corpus.

ted in figures 5 and 6 for the English corpus, and in
figures 7 and 8 for the French corpus. These graphs
show that in both the English and the French cor-
pora, stems appear to have a distribution similar to a
Zipfian one. In addition, in both corpora, M follows
a distribution whose character we are not sure of, but
which appears more similar to a binomial distribu-
tion. To some extent, these observations are consis-
tent with the assumptions we made in the previous
theoretical analysis.

3.3 Description length of each encoding

The description length obtained with each encoding
method is displayed in figures 9 (English corpus)
and 10 (French corpus), in which the z-axis refers to
the set of signatures resulting from the application
of each successive heuristics, and the y-axis corre-
sponds to the description length in bits. Note that
we only plot description lengths of non-polarized
lists of pointers, because the number of stems per
signature is always less than half the total number of
stems in these data (and we expect that this would
be true for other languages as well).!?

These two plots show that in both corpora, there is
always a gain in description length by using binary
strings rather than lists of pointers for encoding the
pointers from signatures to stems. This observation
is consistent with our conclusion in section 2.3, but

10See figures 6 and 8 as well as section 2.2 above.
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Distribution of the number of stems
per signature (French corpus)
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Figure 8: Distribution of number of stems per signa-
ture (French corpus)

it is important to emphasize again that for other data
(or other applications), lists of pointers might turn
out to be more compact.

3.4 Description length gain as a function of
corpus size

In order to evaluate the effect of corpus size on
the gain in description length by using binary string
rather than lists of variable-length pointers, we ap-
plied Linguistica to a number of English corpora of
different sizes ranging between 5,000 to 200,000 to-
kens. For the final set of signatures obtained with
each corpus, we then compute the gain of binary
strings encoding over lists of pointers as we did in
the previous experiments. The results are plotted in
figure 11.

This graph shows a strong positive correlation be-
tween description length gain and corpus size. This
is reminiscent of the results of our theoretical simu-
lations displayed in figures 3 and 4. As before, we
interpret the match between the experimental results
and the theoretical expectations as evidence support-
ing the validity of our theoretical predictions.

3.5 Discussion of experiments

These experiments are actually a number of case
studies, in which we verify the applicability of our
theoretical analysis on variant definitions of pointer
lengths in the MDL framework. For the particu-
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Figure 9: Comparison of DL of 10 successive mor-
phologies using pointers versus binary strings (En-
glish corpus).

lar application we considered, learning morphology
with Linguistica, binary strings encoding proves to
be more compact than lists of variable-length point-
ers. However, the purpose of this paper is not to
predict that one variant is always better, but rather to
explore the mathematics behind different encodings.
Armed with the mathematical analysis of different
encodings, we hope to be better capable of making
the right choice under specific conditions. In partic-
ular, in the suffix-discovery application (and for the
languages we examined), our results are consistent
with the assumptions we made and the predictions
we derived from them.

4 Conclusion

The overall purpose of this paper has been to illus-
trate what was for us an unexpected aspect of us-
ing Minimum Description Length theory: not only
does MDL not specify the form of a grammar (or
morphology), but it does not even specify the pre-
cise form in which the description of the abstract
linkages between concepts (such as stems and sig-
natures) should be encoded and quantitatively eval-
uated. We have seen that in a range of cases, us-
ing binary strings instead of the more traditional
frequency-based pointers leads to a smaller overall
grammar length, and there is no guarantee that we
will not find an even shorter way to accomplish the
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Figure 10: Comparison of DL of 10 successive
morphologies using pointers versus binary strings
(French corpus)

same thing tomorrow'!. Simply put, MDL is em-

phatically an evaluation procedure, and not a discov-
ery procedure.

We hope to have shown, as well, that a system-
atic exploration of the nature of the difference be-
tween standard frequency-based pointer lengths and
binary string based representations is possible, and
we can develop reasonably accurate predictions or
expectations as to which type of description will be
less costly in any given case.
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Abstract

In performing morpho-phonological se-
guence processing tasks, such as letter-
phoneme conversion or morphological
analysis, it is typically not enough to base
the output sequence on local decisions that
map local-context input windows to sin-
gle output tokens. We present a global
sequence-processing method that repairs
inconsistent local decisions. The approach
is based on local predictions of overlap-
ping trigrams of output tokens, which
open up a space of possible sequences;
a data-driven constraint satisfaction infer-
ence step then searches for the optimal
output sequence. We demonstrate signifi-
cant improvements in terms of word accu-
racy on English and Dutch letter-phoneme
conversion and morphological segmenta-
tion, and we provide qualitative analyses
of error types prevented by the constraint
satisfaction inference method.

Introduction

after also investigated with memory-based learn-
ing and analogical approaches (Weijters, 1991; Van
den Bosch and Daelemans, 1993; Yvon, 1996)
and decision trees (Torkkola, 1993; Dietterich

et al., 1995). The development of these data-
driven systems was thrusted by the early existence
of lexical databases, originally compiled to serve

(psycho)linguistic research purposes, such as the
CELEX lexical database for Dutch, English, and

German (Baayen et al.,, 1993). Many researchers
have continued and are still continuing this line of

work, generally producing successful systems with

satisfactory, though still imperfect performance.

A key characteristic of many of these early sys-
tems is that they perform decomposed or simplified
versions of the full task. Rather than predicting the
full phonemization of a word given its orthography
in one go, the task is decomposed in predicting in-
dividual phonemes or subsequences of phonemes.
Analogously, rather than generating a full word-
form, many morphological generation systems pro-
duce transformation codes (e.g., “add -er and um-
laut”) that need to be applied to the input string by
a post-processing automaton. These task simplifi-
cations are deliberately chosen to avoid sparseness
problems to the machine learning systems. Such

The fields of computational phonology and morSystems tend to perform badly when there are many
phology were among the earlier fields in Compu].OW-frequent and too case-specific classes; task de-
tational linguistics to adopt machine learning algo€omposition allows them to be robust and generic
rithms as a means to automatically construct provhen they process unseen words.

cessing systems from data. For instance, letter- This task decomposition strategy has a severe
phoneme conversion was already pioneered, witlirawback in sequence processing tasks. Decom-
neural networks initially, at the end of the 1980g0sed systems do not have any global method to
(Sejnowski and Rosenberg, 1987), and was shortgheck whether their local decisions form a globally
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coherent output. If a letter-phoneme conversion syseen as sequentially-structured classification tasks,
tem predicts schwas on every vowel in a polysyllabievhere sequences of letters are mapped to sequences
word such aparametebecause it is uncertain aboutof phonemes or morphemes. Such sequence-to-
the ambiguous mapping of each of theandes, it sequence mappings are a frequently reoccurring
produces a bad pronunciation. Likewise, if a morphenomenon in natural language processing, which
phological analysis system segments a word such asggests that it is preferable to take care of the issue
beingas a prefix followed by an inflection, making of classifying sequential data once at the machine
the locally most likely guesses, it generates an andkarning level, rather than repeatedly and in different
ysis that could never exist, since it lacks a stem. ways at the level of practical applications. Recently,
Global models that coordinate, mediate, or ena machine learning approach for sequential data has
force that the output is a valid sequence are typkeen proposed by Van den Bosch and Daelemans
cally formulated in the form of linguistic rules, ap- (2005) that is suited for discrete machine-learning
plied during processing or in post-processing, thatlgorithms such as memory-based learners, which
constrain the space of possible output sequencéwve been shown to perform well on word phonem-
Some present-day research in machine learnirigation and morphological analysis before (Van den
of morpho-phonology indeed focuses on satisfyBosch and Daelemans, 1993; Van den Bosch and
ing linguistically-motivated constraints as a postDaelemans, 1999). In the remainder of this paper,
processing or filtering step; e.g., see (Daya et alkye use as our classifier of choice tigel algorithm
2004) on identifying roots in Hebrew word forms.(Aha et al., 1991) with feature weighting, as im-
Optimality Theory (Prince and Smolensky, 2004plemented in the TiIMBL software packdg@aele-
can also be seen as a constraint-based approachrmans et al., 2004).
language processing based on linguistically moti- In the approach to sequence processing proposed
vated constraints. In contrast to being motivated blgy Van den Bosch and Daelemans (2005), the el-
linguistic theory, constraints in a global model carements of the input sequence (in the remainder of
be learned automatically from data as well. In thighis paper, we will refer to words and letters rather
paper we propose such a data-driven constraint salftan the more general terms sequences and sequence
isfaction inference method, that finds a globally apelements) are assigned overlapping subsequences of
propriate output sequence on the basis of a spaceaftput symbols. This subsequence corresponds to
possible sequences generated by a locally-operatitttge output symbols for &ocusletter, and one let-
classifier predicting output subsequences. We shaer to its left and one letter to its right. Predicting
that the method significantly improves on the basuch trigram subsequences for each letter of a word
sic method of predicting single output tokens at &ventually results in three output symbol predictions
time, on English and Dutch letter-phoneme converfor each letter. In many cases, those three predic-
sion and morphological analysis. tions will not agree, resulting in a number of po-
This paper is structured as follows. The constrairfential output sequences. We will refer to the pro-
satisfaction inference method is outlined in Seceedure for selecting the final output sequence from
tion 2. We describe the four morpho-phonologicathe space of alternatives spanned by the predicted
processing tasks, and the lexical data from which wigigrams as an inference procedure, analogously to
extracted examples for these tasks, in Section 3. Wee use of this term in probabilistic sequence clas-
subsequently list the outcomes of the experimengification methods (Punyakanok and Roth, 2001).
in Section 4, and conclude with a discussion of oufhe original work on predicting class trigrams im-

findings in Section 5. plemented a simple inference procedure by voting
over the three predicted symbols (Van den Bosch
2 Classtrigramsand constraint and Daelemans, 2005).
satisfaction inference Predicting trigrams of overlapping output sym-

bols has been shown to be an effective approach
Both the letter-phoneme conversion and the morpho-

logical analysis tasks treated in this paper can be TiMBL URL: http:/ilk.uvt.nl/timbl/
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to improve sequence-oriented natural language prbe incorrect. If a trigram prediction is considered to
cessing tasks such as syntactic chunking and namdae of insufficient quality, the procedure backs off to
entity recognition, where an input sequence of tosymbol bigrams or even symbol unigrams.
kens is mapped to an output sequence of symbolsThe intuitive description of the inference proce-
encoding a syntactic or semantic segmentation of tltiure is formalized by expressing it as a weighted
sentence. Letter-phoneme conversion and morphoenstraint satisfaction problem (W-CSP). Constraint
logical analysis, though sequentially structured osatisfaction is a well-studied research area with
another linguistic level, may be susceptible to benemany diverse areas of application. Weighted con-
fiting from this approach as well. straint satisfaction extends the traditional constraint
In addition to the practical improvement shownsatisfaction framework with soft constraints; such
to be obtained with the class trigram method, thereonstraints are not required to be satisfied for a solu-
is also a more theoretical attractiveness to it. Sinagon to be valid, but constraints a given solution does
the overlapping trigrams that are predicted are justatisfy are rewarded according to weights assigned
atomic symbols to the underlying learning algoto them. Soft constraints are perfect for expressing
rithm, a classifier will only predict output symbol our preference for symbol trigrams, with the possi-
trigrams that are actually present in the data it walsility of a back off to lower-degree-grams if there
trained on. Consequently, predicted trigrams arg reason to doubt the quality of the trigram predic-
guaranteed to be syntactically valid subsequencésns.
in the target task. There is no such guarantee in Formally, a W-CSP is a tuplé X, D,C,W).
approaches to sequence classification where an is@ere, X = {xy,zs,...,2,} is a finite set of vari-
lated local classifier predicts single output symbolables. D(x) is a function that maps each variable
at a time, without taking into account predictionsto its domain, that is, the set of values that variable
made elsewhere in the word. can take on.C is the set of constraints. While a
While the original voting-based inference procevariable’s domain dictates the values a single vari-
dure proposed by Van den Bosch and Daelemangle is allowed to take on, a constraint specifies
(2005) manages to exploit the sequential informayhich simultaneous valusombinationver a num-
tion stored in the predicted trigrams to improve upomer of variables are allowed. For a traditional (non-
the performance of approaches that do not considg@eighted) constraint satisfaction problem, a valid
the sequential structure of their output at all, it doesolution would be an assignment of values to the
so only partly. Essentially, the voting-based infervariables that (1) are a member of the corresponding
ence procedure just splits the overlapping trigramgariable’s domain, and (2) satisBll constraints in
into their unigram components, thereby retaininghe setC. Weighted constraint satisfaction, however,
only the overlapping symbols for each individual letrelaxes this requirement to satisfy all constraints. In-
ter. As aresult, the guaranteed validity of the trigrangtead, constraints are assigned weights that may be

subsequences is not put to use. In this section we daterpreted as reflecting the importance of satisfying
scribe an alternative inference procedure, based @fat constraint.

principles of constraint satisfaction, that does man-
age to use the sequential information provided by

the trigram predictions. Let a constraint € C be defined as a function
At the foundation of this COnStraint-SatiSfa.CtiOﬂ-that maps each variable assignment to 1 if the con-
based inference procedure, more briefly constraigtraint is satisfied, or to 0 if it is not. In addition, let
satisfaction inference, is the assumption that thg/. ¢'— IR* denote a function that maps each con-
output symbol sequence should preferably be coRtraint to a positive real value, reflecting the weight
structed by concatenating the predicted trigrams @ff that constraint. Then, the optimal solution to a

output symbols, rather than by chaining individualy-CSP is given by the following equation.

symbols. However, as the underlying base classifier
is by no means perfect, predicted trigrams should not * _ W
be copied blindly to the output sequence; they may * arginaxzc: (¢)e(x)
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Figure 1: lllustration of the constraints yielded by a giwaguence of predicted class trigrams for the word
hand The constraints on the right have been marked with a nuniietwéen parentheses) that refers to the
trigram prediction on the left from which the constraint vekesived.

That is, the assignment of values to its variablethree unigrams. An incorrect trigram may still con-
that maximizes the sum of weights of the constraint&in smaller subsequences of length one or two that
that have been satisfied. are correct. Therefore, all of these are also mapped

Translating the terminology used in morpho-o constraints.
phonological tasks to the constraint satisfaction do- ,
main, each letter maps to a variable, the domain of (i1, 21) = Wii-1,Yi4), Vi
which corresponds to the three overlapping candi- (@is Tit1) = (Yisis Yisit1): Vi
date symbols for this letter suggested by the trigrams
covering the letter. This provides us with a defini-
tion of the functionD, mapping variables to their
domain. In the following,y; ; denotes the candi- .
date symbol for letter:; predicted by the trigram Litl = Yisit1s Vi
assigned to letter;.

Tic1 = Yii—1» Vi

Ti = Yiis Vi

To illustrate the above procedure, Figure 1 shows
the constraints yielded by a given output sequence
D(xi) = {Yi-1.6: Yisir Yi+1.} of class trigrams for the word “hand”. With such an
Constraints are extracted from the predicted tri@mount of overlapping constraints, the satisfaction
grams. Given the goal of retaining predicted triProblem obtained easily becomes over-constrained,
grams in the output symbol sequence as much 3t is, no variable assignment exists that can sat-
possible, the most important constraints are simplipfy all constraints without breaking another. Even
the trigrams themselves. A predicted trigram de@nly one incorrectly predicted class trigram already
scribes a subsequence of length three of the entif@ads to two conflicting candidate symbols for one
output sequence; by turning such a trigram into 8f the letters at least. In Figure 1, this is the case
constraint, we express the wish to have this trigrarfPr the letter “d”, for which both the symbol “d” and

end up in the final output sequence. “t” are predicted. On the other hand, without con-
flicting candidate symbols, no inference would be
(i1, Tiy Tit1) = Yisie1, Yisis Yisit1), Vi needed to start with. The choice for the weighted

constraint satisfaction method always allows a solu-

No base classifier is flawless though, and therdion to be found, even in the presence of conflict-
fore not all predicted trigrams can be expected to hieg constraints. Rather than requiring all constraints
correct. Yet, even an incorrect trigram may carryo be satisfied, each constraint is assigned a certain
some useful information regarding the output seweight; the optimal solution to the problem is an as-
guence: one trigram also covers two bigrams, ansignment of values to the variables that optimizes the
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Focus Trigram output classes
Left context| letter | Right context| Phonemization Morph. analysis
- b 0 o k _bu _S-
_ _ b 0 o k [ bu- S--
_ b o 0 k i n u-k ---
b o o k i n g -kl -
o o Kk i n g _ k1N -i-
o k i n g - - IN - i--
kK i n g o _ N-_ --_

Table 1: Seven labeled examples of phonemization and miagibal analysis trigram mappings created
for the wordbooking

sum of weights of the constraints that are satisfied weighted according to the following rules:
As weighted constraints are defined over overlap-

ping subsequences of the output sequence, the besf tor 5 trigram constraint, the weight is simply

symbol assignment for each letter with respecttothe  ihe pase classifier’s confidence value for the
weights of satisfied constraints is decided uponona 355+

global sequence level. This may imply taking into
account symbol assignments for surrounding letters
to select the best output symbol for a certain letter.
In contrast, in non-global approaches, ignorant of
any sequential context, only the local classifier pre-
diction with highest confidence is considered for se-
lecting a letter’s output symbol. By formulating our
inference procedure as a constraint satisfaction prob-
lem, global output optimization comes for free: in e
constraint satisfaction, the aim is also to find a glob-
ally optimal assignment of variables taking into ac-
count all constraints defined over them. Yet, for such

a constraint satisfaction formulation to be effective,

good constraint weights should be chosen, that is, This weighting scheme results in an inference

weights that favor good output sequences over beﬁ?ocedure that behaves exactly as we already de-
ones. scribed intuitively in the beginning of this section.

Constraints can directly be traced back to a prefhe preference for retaining the predicted trigrams
diction made by the base classifier. If two conin the output sequence is translated into high rewards
straints are in conflict, the one which the ClaSSiﬁefor output sequences that do so, since such output se-
was most certain of should preferably be satisfiedjuences not only receive credit for the satisfied tri-
In the W-CSP framework, this preference can be eXram constraints, but also for all the bigram and un-
pressed by weighting constraints according to thgyram constraints derived from that trigram; they are
classifier confidence for the originating trigram. Fohecessarily satisfied as well. Nonetheless, this pref-
the memory-based learner, we define the classifigfence for trigrams may be abandoned if composing
confidence for a predicted class as the weight ag-certain part of the output sequence from several
signed to that class in the neighborhood of the teg{ymbol bigrams or even unigrams results in higher
instance, divided by the total weight of all classes. rewards than when trigrams are used. The latter may

Let x denote a test instance, anrd its pre- happen in cases where the base classifier is not con-
dicted class. Constraints derived from this class afe@ent about its trigram predictions.

e for a bigram constraint, the weight is the sum
of the confidences for all trigram classes in the
nearest-neighbor set af that assign the same
symbol bigram to the letters spanned by the
constraint;

for a unigram constraint, the weight is the sum
of the confidences for all trigram classes in the
nearest-neighbor set afthat assign the same

symbol to the letter spanned by the constraint.
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3 Data preparation Left Focus| Right Trigram
context | letter | context class
In our experiments we train classifiers on English—— a |b n o “AO
and Dutch letter-phoneme conversion and morpho- 51 b |'n o r AOO
logical analysis. All data for the experimentsder g5 bl n | o r m 000
scribed in this paper are extracted fromthe CELEX 3 p nl o r m a 000
lexical databases for English and Dutch (Baayenetp, o r m a | 000
al., 1993). We encode the examples for our basen, o r| m | a | i 000
classifiers in a uniform way, along the followingpro{ ¢ r ml| a I it 00 0+Da
cedure. Given a word and (i) an aligned phone- v 1 a| | i t e |00+DaA—N
mic transcription or (ii) an aligned encoding of & 1, g | i t e il|0+DaA—=NO
morphological analysis, we generate letter-by-letter 5 | t e i t| A —=NOO
windows. Each window takes one letter in focus, | | e i t e 000
and includes three neighboring letters to the left | e i t e n 000
and to the right. Each seven-letter input window ¢ t e n _ 00 plural
is associated to a trigram class label, composed pfe | e |'n _ _ 0 plural 0
the focus class label aligned with the middle lett | ¢ n o plural 0_

ter, plus its immediately preceding and following
class labels. Table 1 displays the seven exampldable 2: Examples with morphological analysis tri-
made on the basis of the wotmboking with tri- gram classes derived from the example walpthor-
gram classes (as explained in Section 2) both fanaliteiten
the letter-phoneme conversion task and for the mor-
phological analysis task. The full aligned phone-
mic transcription obookingis [bu-kIN-] (using the maorphological information for the two languages in
SAMPA coding of the international phonetic alpha-a coding scheme which is rather straightforward in
bet), and the morphological analysis lmdokingis the case of English, and somewhat more compli-
[000K stem [INQin fiection- The dashes in the phone-cated for Dutch. For English, as exemplified in Ta-
mic transcription are inserted to ensure a one-tdle 1, a simple segmentation label marks the begin-
one mapping between letters and phonemes; the ining of either a stem, an inflection (“s” and “i” in
sertion was done by automatical alignment throughable 1), a stress-affecting affix, or a stress-neutral
expectation-maximization (Dempster et al., 1977). affix (“1” and “2”, not shown in Table 1). The cod-
The English word phonemization data, extracteihg scheme for Dutch incorporates additional infor-
from the CELEX lexical database, contains 65,46nation on the part-of-speech of every stem and non-
words, on the basis of which we create a databadaflectional affix, the type of inflection, and also en-
of 573,170 examples. The Dutch word phonemizasodes all spelling changes between the base lemma
tion data set consists of 293,825 words, totaling téorms and the surface word form.
3,181,345 examples. Both data sets were aligned us-To illustrate the more complicated construction of
ing the expectation-maximization algorithm (Demp-examples for Dutch morphological analysis, Table 2
ster et al., 1977), using a phonemic null character t@isplays the 15 instances derived from the Dutch
equalize the number of symbols in cases in whicexample wordabnormaliteiten(abnormalities) and
the phonemic transcription is shorter than the orthaheir associated classes. The class of the first in-
graphic word, and using “double phonemes” (e.gstance is A, which signifies that the morpheme start-
[X] for [ks]) in cases where the phonemic transcriping in a is an adjective (A). The class of the eighth
tion is longer, as inaxi— [tAksi]. instance, 0+Da, indicates that at that position no seg-
CELEX contains 336,698 morphological analy-ment starts (0), but that amwas deleted at that po-
ses of Dutch (which we converted to 3,209,09Gition (+Da, “delete a” here). Next to deletions, in-
examples), and 65,558 analyses of English wordsertions (+1) and replacements (+R, with a deletion
(573,544 examples). We converted the availabland an insertion argument) can also occur. Together

46



Language Task Unigrams  Trigrams Language Method| Word accuracy

English Letter-phon, 58 13,005 English Unigram 80.040.75
Morphology 5 80 CSinf 85.4+0.71

Dutch Letter-phon. 201 17,538 Dutch Unigram 41.3+0.48
Morphology 3,831 14,795 CSinf 51.940.48

Table 3: Numbers of unigram and trigram classe$able 4. Word accuracies on English and Dutch
for the four tasks. morphological analysis by the default unigram clas-
sifier and the trigram method with constraint satis-

faction inference, with confidence intervals.
these two classification labels code that the first mor-

pheme is the adjective&bnormaal The second mor-

pheme, the suffixteit, has class A—N. This com- Language Method| Word accuracy]
plex tag, which is in fact a rewrite rule, indicates that English Unigram 79.0+0.82
wheniteit attaches right to an adjective (encoded by CSiInf 84.5+0.76
A)), the new combination becomes a nounN). Dutch Unigram 92.8+0.25
Rewrite rule class labels occur exclusively with suf- CSInf 94.44+0.92

fixes, that do not have a part-of-speech tag of their

own, but rather seek an attachment to form a confable 5: Word accuracies on English and Dutch

plex morpheme with the part-of-speech tag. Finallyletter-phoneme conversion by the default unigram

the third morpheme isn which is a plural inflection classifier and the trigram method with constraint sat-

that by definition attaches to a noun. isfaction inference, with confidence intervals.
Logically, the number of trigram classes for each

task is larger than the number of atomic classes;

the actual numbers for the four tasks investigated

here are displayed in Table 3. The English morphoe_zralization performance of our trained classifiers on
logical analysis task has the lowest number of tri& single 90% training set — 10% test set split of each

gram classes, 80, due to the fact that there are on(tg?t‘z Iset Eafterdshufflmg_thet:ata randtomly ?tf tne
five atomic classes in the original task, but for th"°" elve )r’] an r_nezsurmc? efpﬁrcen agel of fully
other tasks the number of trigram classes is quit(‘eorrecty phonemized words or fully correctly mor-

high: above 10,000. With these numbers of classeRllogically analyzed words — arguably the most

several machine learning algorithms are practicalIfm'kCal :23 P”b"l”l‘sed perf?rmandci metric for both
ruled out, given their high sensitivity to numbers o asks. itionally we periormed bootstrap resam-

classes (e.g., support vector machines or rule Iearﬂl-Ing (Noreen, 1989) to obtain confidence intervals.
ers). Memory-based learning algorithms, however, Table 4 lists the word accuracies obtained on the

are among a small set of machine learning algcenglish and Dutch morphological analysis tasks.
rithms that are insensitive to the number of classeSonstraint satisfaction inference significantly out-

both in learning and in classification. performs the systems that predict atomic unigram
classes, by a large margin. While the absolute differ-
4 Results ences in scores between the two variants of English

: . o ’
We performed experiments with the memory_basegmrpholog|cal analysis is 5.4%, the error reduction

. . . . . IS an impressive 27%.
learning algorithmiel, equipped with constraint
satisfaction inference post-processing, on the four Table 5 displays the word phonemization accu-
aforementioned tasks. In one variaml was sim- racies of both variants on both languages. Again,
ply used to predict atomic classes, while in the othesignificant improvements over the baseline classifier
variantiB1 predicted trigram classes, and constraintan be observed; the confidence intervals are widely
satisfaction inference was used for post-processirgpart. Error reductions for both languages are im-
the output sequences. We chose to measure the geressive: 26% for English, and 22% for Dutch.
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5 Discussion Morphological analysis repairsEnglish Dutch

Insert segmentation 193 1,087
We have presented constraint satisfaction inferencéelete segmentation 158 1,083
as a global method to repair errors made by a localswitch tag 138 2,505
classifier. This classifier is a memory-based learn T etter-phoneme repairs English Dutch
predicting overlapping trigrams, creating a space (¢ fAIignment 1.049 539
possible output sequences in which the inferenceCorrect vowel 32 94
procedure finds the globally optimal one. This globt g rect consonant 275 73

ally optimal sequence is the one that adheres best'to
the trigram, bigram, and unigram sub-sequence coffable 6: Numbers of repaired errors divided over
straints present in the predictions of the local classthree categories of morphological analysis classifi-
fier, weighted by the confidences of the classifier, iBations (top) and letter-phoneme conversions (bot-
a back-off order from trigrams to unigrams. tom) of the constraint satisfaction inference method
The method is shown to significantly outperformas compared to the unigram classifier.
a memory-based classifier predicting atomic classes
and lacking any global post-processing, which has
previously been shown to exhibit successful perfor- The bottom four lines of Table 6 lists the counts of
mance (Van den Bosch and Daelemans, 1993; Vaapaired errors in word phonemization in both lan-
den Bosch and Daelemans, 1999). (While this waguages, where we distinguish between (1) alignment
the reason for using memory-based learning, weepairs between phonemes and alignment symbols
note that the constraint satisfaction inference and ifsvhere phonemes are corrected to phonemic nulls,
underlying trigram-based classification method caar vice versa), (2) switches from incorrect non-null
be applied to any machine-learning classifier.) Thphonemes to correct vowels, and (3) switches from
large improvements (27% and 26% error reductiongcorrect non-null phonemes to correct consonants.
on the two English tasks, 18% and 22% on the tw@€ontrary to expectation, it is not the second vowel
Dutch tasks) can arguably be taken as an indicatiarategory in which most repairs are made (many of
that this method may be quite effective in general ithe vowel errors in fact remain in the output), but
morpho-phonological sequence processing tasks. the alignment category, in both languages. At points
Apparently, the constraint-satisfaction method igvhere the local unigram classifier sometimes incor-
able to avoid more errors than to add them. At closdgectly predicts a phoneme twice, where it should
inspection, comparing cases in which the atomibave predicted it along with a phonemic null, the
classifier generates errors and constraint satisfactiéanstraint satisfaction inference method never gen-
inference does not, we find that the type of avoide@rates a double phoneme. Hence, the method suc-
error, when compared to the unigram classifier, difceeds in generating sequences thatpassible and
fers per task. On the morphological analysis taskvoiding impossible sub-sequences. At the same
we identify repairs where (1) a correct segmentatioiime, apossiblesequence is not necessarily -
is inserted, (2) a false segmentation is not place#gctsequence, so this method can be expected to still
and (3) atag is switched. As Table 6 shows in its upnake errors on the identity of labels in the output se-
per four lines, in the case of English most repairs inquence.
volve correctly inserted segmentations, but the other In future work we plan to test a range ofgram
two categories are also quite frequent. In the case wfidths exceeding the current trigrams. Preliminary
Dutch the most common repair is a switch from amesults suggest that the method retains a positive ef-
incorrect tag, placed at the right segmentation posiect over the baseline with > 3, but it does not
tion, to the correct tag at that point. Given that thereutperform then = 3 case. We also intend to test
are over three thousand possible tags in our complire method with a range of different machine learn-
cated Dutch morphological analysis task, this is ining methods, since as we noted before the constraint-
deed a likely area where there is room for improvesatisfaction inference method and its underlyirg
ment. gram output subsequence classification method can
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be applied to any machine learning classification alf. G. Dietterich, H. Hild, and G. Bakiri. 1995. A com-

gorithm in principle, as is already supported by pre- Pparison ofib3 and backpropagation for English text-
liminary work in this direction. to-speech mappindviachine Learning19(1):5-28.

Also, we plan comparisons to the work OfE. Noreen. 1989 Computer-intensive methods for test-
Stroppa and Yvon (2005) and Damper and East- ing hypotheses: an introductiodohn Wiley and sons.

mond (1997) on sequence-.global a”a'F’gy'b‘?‘S%! Prince and P. Smolensky. 2004Optimality The-
models for morpho-phonological processing, since ory: Constraint Interaction in Generative Grammar
the main difference between this related work and Blackwell Publishers.

Qurs IS. that bOFh alternatlves are based on.worlﬁ Punyakanok and D. Roth. 2001. The use of classifiers
ing units of variable width, rather than our fixed- ;. sequential inference. INIPS-13; The 2000 Con-

width n-grams, and also their analogical reasoning ference on Advances in Neural Information Processing
is based on interestingly different principles than our Systemspages 995-1001. The MIT Press.

k-nearest ”e'ghb"f Clas§|flcatlon rule, such as th\e.J. Sejnowski and C.S. Rosenberg. 1987. Parallel net-
use of analogical proportions by Stroppa and Yvon works that learn to pronounce english tetomplex
(2005). Systemsl:145-168.
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Abstract

This paper proposes an unsupervised
learning algorithm for Optimality Theo-
retic grammars, which learns a complete
constraint ranking and a lexicon given
only unstructured surface forms and mor-
phological relations. The learning algo-
rithm, which is based on the Expectation-
Maximization  algorithm, gradually
maximizes the likelihood of the observed
forms by adjusting the parameters of a
probabilistic constraint grammar and a
probabilistic lexicon. The paper presents
the algorithm’s results on three con-
structed language systems with different
types of hidden structure: voicing neu-
tralization, stress, and abstract vowels. In
all cases the algorithm learns the correct
constraint ranking and lexicon. The paper
argues that the algorithm’s ability to iden-
tify correct, restrictive grammars is due in
part to its explicit reliance on the Opti-
mality Theoretic notion of Richness of the
Base.

Introduction

find the correct grammar, or correct ranking of
constraints, as well as the set of underlying forms
that correspond to overt surface forms given only
the surface forms and the set of universal con-
straints.

The most well known algorithms for learning
OT grammars (Tesar, 1995; Tesar and Smolensky,
1995; Boersma, 1997, 1998; Prince and Tesar,
1999; Boersma and Hayes, 2001) are supervised
learners and focus on the task of learning the
constraint ranking, given training pairs that map
underlying forms to surface forms. Recent work
has focused on the task of unsupervised learning of
OT grammars, where only unstructured surface
forms are provided to the learner. Some of this
work focuses on grammar learning without training
data (Tesar, 1998; Tesar, 1999; Hayes, 2004;
Apoussidou and Boersma, 2004). The remainder of
this work tackles the problem of learning the
ranking and lexicon simultaneously, the problem
addressed in the present paper (Tesar et al., 2003;
Tesar, 2004; Tesar and Prince, to appear; Merchant
and Tesar, to appear). These proposals adopt an
algebraic approach wherein learning the lexicon

involves  iteratively  eliminating  potential
underlying forms by determining that they have
become logically impossible, given certain

assumptions about the learning probfenin
particular, one simplifying assumption of previous
work requires that mappings be one-to-one and

In Optimality Theory or OT (Prince and Smolen-0 to This assumbtion bprohibits inout-outout
sky, 1993) grammars are defined by a set of ranka;gd : ! Umpt ProTibits  INpLE-otipY

) ; , ; ppings with deletion and insertion as well as
universal and violable constraints. The function o
the grammar is to map underlying or lexical forms

to valid surface forms. The task of the learner is toAn alternative algorithm is proposed in Escudero (2005), but
it has not been tested computationally.
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constraints that evaluate such mappings. This workIn classic OT, constraint ranking is categorical
represents a leap forward toward the accuraéd non-probabilistic. In recent years various sto-
modeling of human language acquisition, but thehastic versions of OT have been proposed to ac-
identification of a general-purpose, unsupervisecbunt for free variation (Boersma and Hayes,
learner of OT remains an open problem. 2001), lexically conditioned variation (Anttila,

In contrast to previous work, this paper proposekd97), child language acquisition (Legendre et al.,
a gradual, probabilistic algorithm for unsupervise@002) and the modeling of frequencies associated
OT learning based on the Expectation Maximizawith these phenomena. In addition to these advan-
tion algorithm (Dempster et al., 1977). Because thiages, probabilistic versions of OT are advanta-
algorithm depends on gradually maximizing amgeous from the point of view of learnability. In
objective function, rather than on wholly eliminatparticular, the Gradual Learning Algorithm for
ing logically impossible hypotheses, it is not cruStochastic OT (Boersma, 1997, 1998; Boersma and
cial to prohibit insertion or deletion. Hayes, 2001) is capable of learning in spite of

A major challenge posed by unsupervised learmoisy training data and is capable of learning vari-
ing of OT is that of learningestrictive grammars able grammars in a supervised fashion. In addi-
that generate only grammatical forms. In previouson, probabilistic versions of OT and variants of
work, the preference for restrictive grammars i©T (Goldwater and Johnson, 2003; Rosenbach and
implemented by encoding a bias into the rankingaeger, 2003) enable learning of OT via likelihood
algorithm that favors ranking constraints that pranaximization, for which there exist many estab-
hibit marked structures as high as possible. In colished algorithms. Furthermore, as this paper pro-
trast, the solution proposed here involves poses, unsupervised Ilearning of OT using
combination of likelihood maximization and ex-likelihood maximization combined with Richness
plicit reliance orRichness of the Base, an OT prin- of the Base provides a natural solution to the
ciple requiring that the set of potential underlyinggrammar-as-filter problem due to the power of
forms be universal. This combination favors reprobabilistic modeling to use negative evidence
strictive grammars because grammars that mapnaplicitly.
“rich” lexicon onto observed forms with high The algorithm proposed here relies on a prob-
probability are preferred. The proposed model igbilistic extension of OT in which each possible
tested on three constructed language systems, eaohstraint ranking is assigned a probability P(r).
exemplifying a different type of hidden structure. Thus, the OT grammar is a probability distribution

over constraint rankings rather than a single con-

2 Learning Probabilistic OT straint ranking. This notion of probabilistic OT is

) ) ) similar to - but less restricted than - Stochastic OT
While the primary task of the grammar is to Mag, yhich the distribution over possible rankings is
underlying forms to overt forms, the grammar'gsiven by the joint probability over independently
secondary role is that of a filter — ruling out unygmaly distributed constraints with fixed, equal
grammatlcal forms no matter what underlying formy,riance. The advantage of the present model is
is fed to the grammar. The role of the grammar agmpytational simplicity, but the proposed learn-
filter follows from the OT principle of Richness Ofing algorithm does not depend on any particular
the Base, according to which the set of possib|gstantiation of probabilistic OT.
underlying forms is universal (Prince and Smolen- t5pies 1 and 2 illustrate the proposed probabilis-
sky 1993). In other words, the grammar must B& version of OT with an abstract example. Table

restrictive and not overjggnerate. The requirementshows the violation marks assigned by three con-
that grammars be restrictive complicates the lear@gaints. A B and C. to five candidate outputs O

ing problem - it 'is not sufficient to find a combir)a-o5 for the underlying form, or input /I. To com-
tion of underlying forms and constraint ranking, ie the winner of an optimization, constraints are
that yields the set of observed surface forms: tgl?g%plied to the candidate set in order according to
constraint ranking must yield only grammaticalnejr rank. Candidates continue to the next con-
forms irrespective of the particular lexical itemsi qint if they have the fewest (or tie for fewest)
selected for the language. constraint violation marks (indicated by asterisks).
In this way the winning or optimal candidate, the
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candidate that violates the higher-ranked comuistic proposition that each morpheme has a con-

straints the least, is selected. sistent underlying form across contexts, while the
grammar drives allomorphic variation that may

constraints result in the morpheme having different surface

input: n A ' B » C realizations in different contexts. Rather than iden-
0 O, * P * i tifying a single underlying form for each mor-

% O, *x ; P * pheme, this model represents the underlying form
= 0Os Pk ; as a distribution over possible underlying forms,

_(% O, L * | x and this distribution is constant across contexts. To
o Os * : e determine the probability of an underlying form for

Table 1. OT Candidates and Constraint Violationg morphologically complex word, the product of
the morpheme’s individual distributions is taken —

The third column of Table 2 identifies the win-the probability of an underlying form is taken to be
ner under each possible ranking of the three cotidependent of morphological context. For exam-
straints. For example, if the ranking is A >> B >>ple, suppose that some morphemehds two pos-

C, constraint A eliminates all buts@nd Q, then sible underlying forms,;land b, and the two
constraint B eliminates £ designating @as the underlying forms are equally likely. This means
winner. The remainder of Table 2 illustrates théhat the conditional probabilities of both underly-
proposed probabilistic instantiation of OT. Theng forms are 50%: P(| M) = P(k | M) = 50%.

first column shows the probability P(r) that the In sum, the probabilistic model described here
grammar assigns to each ranking in this exampleonsists of a grammar and lexicon, both of which
The probability of each ranking determines thére probabilistic. The task of learning involves
probability with which the winner under that rank-selecting the appropriate parameter settings of both
ing will be selected for the given input. In othethe grammar and lexicon simultaneously.

words, it defines the conditional probability(® | . o .

1), shown in the fourth column, of thé"loutput 3 EXpectation Maximization and Richness
candidate given the input /I/ under the ranking r.  Of theBasein OT

The last column shows the total conditional prob- . . . .
ability for each candidate after summing acros his section presents the detalls. of t.he 'ea'.r”'”g
rankings. For instance,;@ the winner under two algorithm f(_)r prObab'I'SF'C OT. .F'rSt’ n Sgctlon
of the rankings, and thus its total conditional probs:1 the objective function and its properties are
ability P(Q; | 1) is found by summing over the con-discussed. Next, Se'ctlon 3.2 proposes th'e solution
ditional probabilities under each ranking. The totdP the grammar-as-filter problem, which involves
conditional probability P(@] 1) refers to the prob- restnctmg the sgarch space available to 'Fhe learn-
ability that underlying form /I/ will surface assO ing algorithm. Finally, Section 3.3 describes the

; " likelihood maximization algorithm — the input to
and this probability depends on the grammar.
ISP ity dep 9 the algorithm, the initial state, and the form of the

P(r) [ranking winner |P,(Oc|1) |P(Oc|1) | Solution.
0.2

0.20 | A>>B>>C . 0.2 . . .
0.15 | A>>C>>B 8 0.15 3.1 TheObjective Function

) ‘ 0.2
828 CB::::::E g 8'25 01 The learning algorithm relies on the following ob-
0.00 | B>>C>>A | Q 0.0 0.0 jective function:

0.50 C>>B>>A Q 0.5 0.5 P (OIM)= P (O |M Fy
Table 2: Probabilistic OT #(OIM) I:l[ +(O M

- Fy
In addition to the conditional probability as- _H[ZPH Q& i IM]
signed by the grammar, this model relies on a “
probability distribution P(I | M) over possible un- = [ JI22Pa(Oc 1 DR (1 IMI™
derlying forms for a given morpheme M. This ko
property of the model implements the standard lin-
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The likelihood of the data, or set of overt surfacd.2 Richness of the Base
forms, R(O | M) depends on the parameter set-
tings, the probability distributions over rankinggAlthough the notion of a restrictive grammar is
and under|ying forms’ under the hypothesis H. thItlver Clear, it is difficult to implement for-
is also conditional on M, the set of observed mofally. Previous work on OT learnability (Tesar,
phemes, which are annotated in the data providé§95; Tesar and Smolensky, 1995; Smolensky
to the algorithm. M is constant, however, and doek?96; Tesar, 1998, Tesar, 1999; Tesar et al., 2003;
not differ between hypotheses for the same dal&sar and Prince, to appear; Hayes, 2004) has pro-
set. Under this model each unique surface fogm ®0osed the heuristic dflarkedness over Faithful-
is treated independently, and the likelihood of theess during learning to favor restrictive grammars.
data is simply the product of the probability of OT there are two basic types of constraints,
each surface form, raised to the power corresponf@larkedness constraints, which penalize dis-
ing to its observed frequency.F Each surface preferred surface structures, and faithfulness con-
form O, is composed of a set of morphemeg M Straints, which penalize nonidentical mappings
and each of these morphemes has a set of undeffigm underlying to surface forms. In general, a
ing forms |;. The probability of each surface formrestrictive grammar will have markedness con-
P4(O | My) is found by summing the joint distribu- Straints ranked high, because these constraints will
tion P4(O« & ;| My) over all possible underlying restrlct the type of surface forms thgt are allowed
forms kJ for morphemes Mthat compose 0 n a Ianguage. On the other hand, if faithfulness
Finally, the joint probability is simply the productconstraints are ranked high, all the distinctions in-

of the conditional probability {0y | I;) and lexi- troduced into the lexicon will surface. Thus, a
cal probability R(lx; | M), both of which were heuristic preferring markedness constraints to rank

defined in the previous section. high whenever possible does in general prefer re-

The primary property of this objective functionstrictive grammars. However, the markedness over
is that it is maximal only when the hypothesis gerfaithfulness heuristic does not exhaust the notion
erates the observed data with high probability. |@f restrictiveness. In particular, markedness over
other words, the grammar must map the select&jthfulness does not favor grammar restrictiveness
lexicon onto observed surface forms without wasthat follows from particular rankings between
ing probability mass on unobserved forms. Bemarkedpess constraints or between faithfulness
cause there are two parameters in the model, ti§@nstraints.
can be accomplished by adjusting the ranking dis- This work aims to provide a general solution
tributions or by adjusting lexicon distributions.that does not require distinguishing various types
The probability model itself does not Specifyof constraints — the proposed solution implements
whether the grammar or the lexicon should be aaa.iChneSS of the Base eXpIICItIy in the initial state
justed in order to maximize the objective functionof the lexicon. Specifically, the solution involves
In other words, the objective function is indifferenf€quiring that initial distributions over the lexicon
to whether the restrictions observed in the larfke uniform, or rich. Although the objective func-
guage are accounted for by having a restrictiéon alone does not prefer restrictive grammars
grammar or by selecting a restrictive lexicon. A§Ver restrictive lexicons, a lexicon constrained to
discussed in Section 2, according to Richness Be uniform, or nonrestrictive, will in turn force the
the Base, only the first option is available in OTgrammar to be restrictive. Another way to think
the grammar must be restrictive and must neutra@bout it is that a restrictive grammar is one that
ize noncontrastive distinctions in the languagé&ompresses the input distributions maximally by
The next subsection addresses the proposed sdRapping as much of the lexicon onto observed sur-
tion — a restriction of the search procedure that face forms as possible. By requiring the lexicon to

vors maximizing probability by restricting thebe rich the proposed solution relies on the objec-
grammar rather than the lexicon. tive function’s natural preference for grammars

that maximally compress the lexicon. The objec-
tive function prefers restrictive grammars in this
situation because restrictive grammars will allow
the highest probability to be assigned to observed
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forms. In contrast, if the lexicon is not rich, thereinrelated surface forms. For this reason, potential
is nothing for the grammar to compress, and thenderlying forms are derived from surface forms
objective function’s natural preference for comby considering all featural variants of surface
pression will not be employed. The next subsectidorms for features that are evaluated by the gram-
discusses the algorithm and the initialization of themar. Of these potential underlying forms, only

parameters in more detail. those that can yield each of the observed surface
o o _ allomorphs of the morpheme under some ranking
3.3 Likelihood Maximization Algorithm of the constraints are included. This formulation

differs substantially from previous work, which
Qimed to construct the lexicon via discrete steps,
he first of which involved permanently setting the
. 2 .Values for features that do not alternate. In coptras
ity assigned to the observed set of data accordi

S . " . approach taken here aims to create a rich initial
to the objective function. In addition, any regma”:&xicon, to compel the selection of a restrictive

As discussed above, the goal of the learning alg
rithm is to find the probability distributions over
rankings and lexicons that maximize the probabi

ties present in the data should be accommodated By - - .
the grammar rather than by restricting the lexicor., 5 ygition to featural variants, variants of sur-

g?l_ ir:hpre\lliou__:,hwork on unsll(Jper\I/isded Ie?g_ipg Face forms that differ in length are included if they
, the algortthm assumes knowledge o COM4re supported by allomorphic alternation. In par-

straints, the possible gnderlylng forms of .Overﬁcular, featural variants of all the observed surface
forms, and sets of candidate outputs and their Coﬂomorphs of the morpheme are considered as po-
straint violation profiles for all possible underlying, i~ | underlying forms for the morpheme if each

forms. While the present version of the algorithrgf the observed surface forms can be generated
receives this information as input, recent work in nder some ranking. Including these types of un-

computational QT. (Rigglg, 2.004; Eisner, _2000 erlying forms extends previous work, which did
suggests that this information is formally derlvabl(f‘:|

¢ i traint d ¢ surf ¢ rk'C{)t allow segmental insertion or deletion or con-
rom the constraints and overt sufface 1orms aNGyaints that evaluate these unfaithful mappings,

can be ggnerated automatlcally. ' '  such as Mx and CEP.
In addition, the algorithm receives information

bout th holoaical relati bet The algorithm initializes both the lexicon and
abou € morphological relations beween Oy, mmar to uniform probability distributions. This
served surface forms. Specifically, output form

: eans that all rankings are initially equally likely.
are segmentgd Into morphemes, .and .t_he MAMkewise, all potential underlying forms for a mor-
phemes'are mdexed by a unique |dent|f|er.. Th heme are initially equally likely. Thus, the prob-
mformatlon, which has also' been 'assumed In pr bility distributions begin unbiased, but choosing
vious vyork, cannot be derived dweqtly from thean unbiased lexicon initially begins the search
constraints and observed forms but is a necesszi‘aﬁyough parameter space at a position that favors

]E:ompon;ent of ha mode_lrrt]hat refer? to Ll’(nderlympestrictive grammars. The experiments in the fol-
orms ol morphémes. 1nhe présent work assum ing section suggest that this choice of initializa-

this information is available to the learner althoug on correctly selects a restrictive final grammar

Section 5 wil digcuss th? pogsibility of I'earnir'lg The learning algorithm itself is based on the Ex-
these mqrphologlcal relations in conjunction Wlttbectation Maximization algorithm (Dempster et al.,
the learning of phon'ology. . . . 977) and alternates between an expectation stage
The set of potential underlying forms 'S derive nd a maximization stage. During the expectation
:rom obsdert\;]ed surf?ce_ Iorrr:s, (r)nortﬁhologlcr?l rg‘lt'tage the algorithm computes the likelihood of the
lons, and the constraint Set. ©n the one hand e eq surface forms under the current hypothe-
set of potential underlying forms, which is 'n't'a”ysis. During the maximization stage the algorithm

unn‘or_mly d|s'tr|buted, should be rich gnough 9 djusts the grammar and lexicon distributions in
constitute a rich base for the reasons discussed e Jer to increase the likelihood of the data. The

Iie(. On the other hand, the set shoulq be r robability distribution over rankings is adjusted
stricted enough so that the search space is not

ording to the following re-estimation formula:
large and so that the grammar is not pressured to g g

favor mapping underlying forms to completely
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_ F L (O M) more positions. Such languages, three of which
PH+1(r)_ZZF P,(O, [M,) are shown below, test the algorithm’s ability to
K . ko TR identify correct and restrictive grammars. The par-
» ) ) tial rankings shown below correspond to the neces-
Intuitively, this formula re-estimates the prob-ary rankings that must hold for these languages;
ability of a ranking for statél+1 in proportion 10  gach partial ranking actually corresponds to several
the ranking’s contribution to the overall probabilityyota) rankings of the constraints. Also shown below
at stateH. The algorithm re-estimates the probabily e the morphologically analyzed surface forms for
ity distribution for an underlying form according tog5cph language that are provided as input to the al-

an analogous formula: gorithm. The subscripts in these forms indicate
_ Fo PO &1 M) morpheme identities, while the hyphens segment
Pl IM;) —ZZF E P.(O. [M) the words into separate morphemes. For example,

k - k R tat,, means that the surface form “tat” could be

derived from either morpheme 1 or 2 in this lan-
Intuitively, the re-estimate of the probability ofgyage.

an underlying form; for stateH+1 is propor-

tional to the contribution that underlying form e (A) Final devoicing, contrast intervocalically:
makes to the total probability due to morpheme M * NOSFV,Max >>IDVolI>>IVV, NoVol

at stateH. The algorithm continues to alternate « tat,; dat, tat-es; tad-es; dat-es; dad-es
between the two stages until the distributions con-

verge, or until the change between one stage an8l (B) Final devoicing and intervocalic voicing:
the next reaches some predetermined minimum. At * NOSFV,MAX, IVV >>IDVoI, NOoVOI

this point the resulting distributions are taken to * tat, dat tad res; dad +6e5

correspond to the learned grammar and lexicon. _
(C) No voiced obstruents:

4 Experiments * MAx, Novoi>>IDVol, IVV

e tab o34 tal 23465
This section describes the results of experiments _ . o
with three artificial language systems with differ- Inlanguage C, it would be possible to maximize
ent types of hidden structure. In all experimentdi€ objective function by selecting a restrictive
presented here, each unique surface form is é%XICOﬂ rather than a restrictive grammar. In par-

sumed to occur with frequency 1. ticular, /tat/ could be selected as the underlying
form for morphemes 1-4 in order to account for the
4.1 Voicing Neutralization lack of voiced obstruents in the observed surface

forms. In this case, the objective function could

The first test set is an artificial language systeqist as well be satisfied by an identity grammar

(Tesar and Prince, to appear) exhibiting voicinghapping underlying /tat/ to surface “tat”. However,
neutralization. The constraint set includes five comys discussed in Section 2, such a grammar would
straints: violate the principle of Richness of the Base by
putting the restriction against voiced obstruents
into the lexicon rather than the grammar. Thus, this
* NOSFV- No syllable-final voiced obstruents |anguage tests not only whether the algorithm finds
e |VV - No intervocalic voiceless consonants a maximum, but also whether the maximum corre-

* IDVoI - Surface voicing must match underly-SPONdS t0 a restrictive grammar.

ing voicing . In fact, for all three languages abov.e,. the algo-
rithm converges on the correct, restrictive gram-

MAX - Input segments must have output COfmgars and correct lexicons. Specifically, the final
respondents grammars for each of the languages above con-
These five constraints can describe a number wérge on probability distributions that distribute the
languages, but of particular interest are languagpsobability mass equally among the total rankings
in which voicing contrasts are neutralized in one aonsistent with the partial orders above. For ex-
ample, for language C the algorithm converges on

* NoVol - No voiced obstruents
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a distribution that assigns equal probability to thef lexical and grammatical stress, requiring that the
20 total rankings consistent with the partial ordeslgorithm learn that a contrast in roots is preserved,
given by Max, Novoi>>IDVol, IVV. while a contrast in suffixes is neutralized.

The initial uniform lexicon for language C is ] )
shown in Table 3. Here the numbers 1-5 refer to©  Full contrast: roots and suffixes contrast in
morpheme indices, and the possible underlying Stress, default left:
forms for each morpheme are uniformly distrib- * F>>ML>> MR, FAR
uted. This initial lexicon favors a grammar that can  « pa-kas; pa-gé; bé-kas; ba-ga,
map as much of the rich lexicon as possible onto . , :
surface forms with no voiced obstruents. With © Full contrast. rpots and suffixes contrast in
these constraints, this translates into ranking stress, default right:

NoVor above ID\OI and IVV. As the algorithm * F>>MR>>ML, FAR

begins learning the lexicon and continues to refine  « pa-kés; pa-g&; bé-kas; ba-ga

its hypothesis for this language, nothing drives the S
algo?/i?hm to abandon thegi’nitigl rich Iexi%on. Thus, * Root contrast only, default right.
in the final state, the lexicon for this language is * FAR>>MR>>ML

identical to the initial lexicon. In general, the final * pa-kds; pa-ga,, bd-kas, bd-gay
lexicon will be uniformly distributed over underly-
ing forms that differ in noncontrastive features.

Predictable left stress:
« ML >>FAR, F, MR

1 |/tat/ - 25% | /tad/ - 25%dat/ - 25%/dad/ - 25% * pé-kas; pa-gas; ba-kas; bé-gay
2 |/tat/ - 25% | /tad/ - 25%dat/ - 25%4/dad/ - 25% . : .

3 Iftat - 25% | ftad/ - 25%dat - 2504/dad/ - 25% ' redictable right stress:

4 |Jtat/ - 25% | tadl - 25%dat/ - 25%]/dad/ - 25% * MR>>FAR, F, ML

5 |/e/-100% * pa-kés; pa-ga,; ba-kés; ba-gé

Table 3. Initial Lexicon for Language C .
In all cases the algorithm learns the correct, re-

4.2 Grammatical and Lexical Stress strictive grammars corresponding to the partial
orders shown above. As before, the final lexicon

The next set of languages from the PAKA systemssigns uniform probability to all underlying forms
(Tesar et al., 2003) test the ability of the algorithrthat differ in noncontrastive features. For example,
to identify grammatical stress (most restrictive)in the case of the language with root contrast only,

lexical stress (least restrictive), and combinatiorthe final lexicon selects a unique lexical item for
of the two. The constraint set includes: root morphemes and maintains a uniform probabil-
e MANLEET- Stress the leftmost svilable ity distribution over stressed and unstressed under-
y lying forms for suffixes.

®* MAINRIGHT - Stress the rightmost syllable
* FAITHACCENT - Stress an accented syllable

* FAITHACCENTROOT - Stress an accented root The final experiment tests the algorithm on an
syllable artificial language, based on Polish, with abstract
derlying vowels that never surface faithfully.

4.3 Abstract Underlying Vowels

: Possible Ianggages and their corr'es'pondmg IOé;(rl']though the particular phenomenon exhibited by
tial orders ranging from least restrictive to mosélavic alternating vowels is rare, the general phe-
restrictive are shown below. In the first two lan- '

guages, the least restrictive languages, lexical gigomenon wherein underlying forms do not corre-
s ; : ; ."Spond to any surface allomorph is not uncommon
tinctions in stress are realized faithfully, while

: . .. —and should be accommodated by the learning algo-
grammatical stress surfaces only in forms with ng

underlying stress. In the final two languages stregghm' This language presents a challgnge for pre-
vious work on unsupervised learning of OT

is entirely grammatical; underlying distinctions ar . .
. . ecause alternations in the number of segments are
neutralized in favor of a regular surface stress pat;

tern. Finally, the middle language isacombinatioﬂbserved in-morpheme 3. The morphologically
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annotated input to the algorithm for this languagkvor restrictive grammars, but the ability of the

is shown in Table 4. algorithm to learn restrictive grammars in these

experiments suggests that initializing the lexicons

kater vatr, sateg to uniform distributions does compel the learning

kater-ay vatn-as satg-ay algorithm to select restrictive grammars rather than
Table 4. Yer Language Surface Forms restrictive lexicons.

While the experiments presented in this section

In this language morphemes 1, 2 and 4 exhibit focus on the task of learning a grammar and lexi-
alternation while morpheme 3 alternates betweeaon simultaneously, the proposed algorithm is also
sater andsatr depending on the context. The concapable of learning grammars from structurally
straints for this language, based on Jarosz (2008)nbiguous forms. The same likelihood maximiza-

are shown below: tion procedure proposed here could be used for

o unsupervised learning of grammars that assign full

* *E=’[+HIGH|[-ATR] structural description to overt forms. Future direc-

* DepV tions include testing the algorithm on language
e MAX-V data of this sort.
° *C OMPLEXCODA 5 Condus'on

® IDENT[HIGH] , ,
In sum, this paper has presented an unsupervised,

1 2 3 4 probabilistic algorithm for OT learning. The paper
kater/ Natr] | /satEr/ Ial argues that combining the OT principle of Rich-
ness of the Base and likelihood maximization pro-
vides a novel and general solution to the problem

In the proposed analysis of this language, the afif finding a restrictive grammar. The proposed

stract underlying [E], which is a [+high] version Ofsolution involves explicitly implementing Richness

[e], is neutralized on the surface and exhibits tw8]c the Base |n.t.he |n|t|aI|zat|on of the Iexu_:on.m
der to fully utilize the properties of the objective

repairs systematically depending on the context. _ : .
deletes in general, but if a complex coda is at sta pqtlon. By re.Iyl.ng 9” Richness (.)f the. Base and
IKelihood maximization, the algorithm is able to

the vowel surfaces as [e] by violating . : P . e
IDENT[HIGH]. The required partial ranking for this use negative evidence implicitly to find restrictive

language is shown below while the desired lexicogl amMmars. The algorithm is shown to b? sucpessful
is shown in Table 5. on three constructed languages featuring different

types of neutralization and hidden structure.
{*E, {DEPV >> *COMPLEXCODA }} >> ~ Onpe potential extension of the proposed algo-
IDENT[HIGH] >> MAX-V rithm involves combining a system for unsuper-
yised learning of morphological relations with the

ing above and the lexicon in Table 5. Specificall;},)mposed algorithm for learning phonology. Sev-

the final grammar assigns equal probability to afffd! algorithms have been proposed for automati-
gally inducing morphological relations, like those

the rankings consistent with the above partial of- . _
der. The final lexicon selects a single underlyin ssumed by the present learner (Goldsmith, 2901’
form for each morpheme as shown in Table 5 be"OVer and Brent, 2001). The task of uncovering
morphological relations is complicated by allo-
morphic alternations that obscure the underlying
identity of related morphemes. While these algo-
4.4 Discussion rithms are very promising, their performance may
be significantly enhanced if they were combined
In summary, the algorithm is able to find a corwith an algorithm that models such phonological
rect grammar and lexicon combination for all oflternations.
the language systems discussed. As discussed iln conclusion, this is the first proposed unsuper-
Section 3, the objective function itself does notised algorithm for OT learning that takes advan-

Table 5. Desired Final Lexicon

The algorithm successfully learns the correct ran

are contrastive.
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tage of the power of probabilistic modeling to learn EM Algorithm. Journal of Royal Statistics Society.
a grammar and lexicon simultaneously. This paper 39(B):1-38

demonstrates that combining OT theoretic prinCgjsner, Jason. 2000. Easy and hard constraint ranking in
ples with results from computational language optimality theory: Algorithms and complexity. In Ja-
learning is a worthwhile pursuit that may inform son Eisner, Lauri Karttunen and Alain Thériault
both disciplines. In this case the theoretical princi- (eds.), Finite-State Phonology: Proceedings of the
ple of Richness of the Base has provided a novel 5th Workshop of the ACL Special Interest Group in
solution to a learning problem, but at the same Computational Phonology (SGPHON), pages 22-33,
time, this work also informs theoretical OT by Luxembourg, August.

providing a formal characterization of this theoEscudero, Paola. 200inguistic Perception and Sec-
retical principle. Future work includes testing on ond Language Acquisition.Explaining the attainment
larger, more realistic languages, including lan- of optimal phonological categorization. Doctoral dis-
guage data with noise and variation, in order to Sertation, Utrecht University.

determine the algorithm’s resistance to noise argbidsmith, John. 2001. Unsupervised Learning of Mor-
ability to model variable grammars like those ob- phology of a Natural LanguagE€omputational Lin-
served in natural languages and in human languageguistics, 27: 153-198.

acquisition. Goldwater, Sharon and Mark Johnson. 2003. Learning

OT constraint rankings using a maximum entropy
model. In Jennifer Spenader, Anders Eriksson and
Osten Dahl (eds.)Proceedings of the Sockholm

I would like to thank Paul Smolensky for his in-  \yerkshop on Variation within Optimality Theory.
valuable feedback on this work and for his sugges- siockholm University, pages 111-120.

tions on the preparation of this paper. | am also

L ; :Hayes, Bruce. 2004. Phonological acquisition in Opti-
grateful to Luigi Burzio, Robert Frank, Jason Eis mality Theory: the early stages. Appeared 2004 in

ner, and members of the Johns Hopkins Linguistics Kager, Rene, Pater, Joe, and Zonneveld, Wim, (eds.),

Research Group (especially_ Joan Cher?-'Main, Fixing Priorities: Constraints in Phonological Ac-
Adam Wayment, and Sara Finley) for additional g igition. Cambridge University Press.

comments and helpful discussion.
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Abstract

For a language with limited resources, a
dictionary may be one of the few available
electronic resources. To make effective
use of the dictionary for translation, how-
ever, users must be able to access it us-
ing the root form of morphologically de-
formed variant found in the text. Stem-
ming and data driven methods, however,
are not suitable when data is sparse. We
present algorithms for discovering mor-
phemes from limited, noisy data obtained
by scanning a hard copy dictionary. Our
approach is based on the novel applica-
tion of the longest common substring and
string edit distance metrics. Results show
that these algorithms can in fact segment
words into roots and affixes from the lim-
ited data contained in a dictionary, and ex-
tract affixes. This in turn allows non na-
tive speakers to perform multilingual tasks
for applications where response must be
rapid, and their knowledge is limited. In
addition, this analysis can feed other NLP
tools requiring lexicons.

Introduction

t@umiacs.umd.edu

of data for statistical methods. New approaches that
can deal with limited, and perhaps noisy, data are
necessary for these languages.

Printed dictionaries often exist for languages be-
fore large amounts of electronic text, and provide
a variety of information in a structured format. In
this paper, we proposelorphology Induction from
Noisy Data (MIND) a natural language morphology
induction framework that operates on from informa-
tion in dictionaries, specifically headwords and ex-
amples of usage. We use string searching algorithms
to morphologically segment words and identify pre-
fixes, suffixes, circumfixes, and infixes in noisy and
limited data. We present our preliminary results on
two data sources (Cebuano and Turkish), give a de-
tailed analysis of results, and compare them to a
state-of-the-art morphology learner. We employ the
automatically induced affixes in a simple word seg-
mentation process, decreasing the error rate of in-
correctly segmented words by 35.41%.

The next section discusses prior work on mor-
phology learning. In Section 3 and 4, we describe
our approach and MIND framework in detail. Sec-
tion 6 explains the experiments and presents results.
We conclude with future work.

2 Related Work

Much of the previous work on morphology learning
has been reported on automatically acquiring affix

In order to develop morphological analyzers for lanlists. Inspired by works of Harris (1955), Dejean
guages that have limited resources (either in terms (£998) attempted to find a list of frequent affixes
experienced linguists, or electronic data), we mugor several languages. He used successor and pre-
move beyond data intensive methods developed fdecessor frequencies of letters in a given sequence
rich resource languages that rely on large amounds letters in identifying possible morpheme bound-
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aries. The morpheme boundaries are where the pyging heuristic to analyze languages with rich mor-
dictability of the next letter in the letter sequence iphologies. String edit distance is used for rank-
the lowest. ing and quantifying the robustness of morphological
Several researchers (Brent, 1993; Brent et algeneralizations in a set of clean data.
1995; Goldsmith, 2001) used Minimum Description All these methods require clean and most of the
Length (MDL) for morphology learning. Snovertime large amounts of data, which may not exist
and Brent (2001) proposed a generative probabifer languages with limited electronic resources. For
ity model to identify stems and suffixes. Schoneuch languages, the morphology induction is still a
and Jurafsky (2001) used latent semantic analysmoblem. The work in this paper is applicable to
to find affixes. Baroni et al. (2002) produced anoisy and limited data. String searching algorithms
ranked list of morphologically related pairs fromare used with information found in dictionaries to
a corpus using orthographic or semantic similaritgxtract the affixes.
with minimum edit distance and mutual informa-
tion metrics. Creutz and Lagus (2002) proposed Approach

two unsupervised methods for word segmentatiorb. . . .
. L ictionary entries contain headwords, and the exam-
one based on maximum description length, and on

based on maximum likelihood. In their model P'€S of how these words are used in context (i.e. ex-

. mples of usage). Our algorithm assumes that each
words consisted of lengthy sequences of segmenis . . .

: Y xample of usage will contain at least one instance

and there is no distinction between stems and af- . o

. ) of the headword, either in its root form, or as one

fixes. The Whole Word Morphologizer (Neuvel and”, . : .

) . .of its morphological variants. For each headword—

Fulop, 2002) uses a POS-tagged lexicon as input, in- . .

. . . ) example of usage pair, we find the headword occur-

duces morphological relationships without attempt- . .

. . . . : rence in the example of usage, and extract the affix

ing to discover or identify morphemes. It is also ca-

able of generating new words bevond the Iearnin'f the headword is in one of its morphological vari-
Eample g 9 y gnts. We should note that we do not require the data

Mystem (Segalovich, 2003) uses a dictionary foFo be perfect. It may have noise .S“Ch."’?s OCR errors,
S . .and our approach successfully identifies the affixes
unknown word guessing in a morphological analysis .
. . ) .~ Th such noisy data.
algorithm for web search engines. Using a very sim-
ple idea of morphological similarity, unknown word4 Framework
morphology is taken from all the closest words in
the dictionary, where the closeness is the number @fur framework has two stagesyact matclandap-
letters on its end. proximate matchand uses three string distance met-
The WordFrame model (Wicentowski, 2004) usesics, thelongest common substrin@CS), approx-
inflection-root pairs, where unseen inflections ar@nate string matching with k differencés-DIFF),
transformed into their corresponding root formsandstring edit distanc€SED). We differentiate be-
The model works with imperfect data, and can hartween exact and approximate matches and assign
dle prefixes, suffixes, stem-internal vowel shifts, antivo counts for each identified affixexact count
point-of-affixation stem changes. The WordFramendapproximate count We require that each affix

model can be used for co-training with low-accuracghould have a positive exact count in order to be in

unsupervised algorithms. the final affix list. Although approximate match can
Monson (2004) concentrated on languages withe used to find exact matches to identify prefixes,
limited resources. The proposed languagesuffixes, and circumfixes, it is not possible to differ-

independent framework used a corpus of full worentiate between infixes and OCR errors. For these

forms. Candidate suffixes are grouped into candieasons, we process the two cases separately.

date inflection classes, which are then arranged in aFirst we briefly describe the three metrics we use

lattice structure. and the adaptations we made to find the edit opera-
A recent work (Goldsmith et al., 2005) proposedions in SED, and then we explain how we use these

to use string edit distance algorithm as a bootstrapaetrics in our framework.
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4.1 String Searching Algorithms or 3) L[n — 1, m — 1] (substitution). Which of the
three options was chosen can be reconstructed given
stringsp = p1...p, andq = q1...gm, LCS finds the these costs, edit operation costs, and the characters

longest contiguous sequence appearing and q. pln}, g[m] of the strings. By working backwards,

The longest common substring is not same as tHye can trace the entire path and thus reconstruct the

longest common subsequence because the Iong@@nmemj Howevert, theresre z:nblggokl:s cases,bthe
common subsequence need not be contiguous. Same minimum cost may be obtained by a number

There is a dynamic programming solution forOf edit operation sequences. We a_dapted the trace of
he path for our purposes as explained below.

LCS! that finds the longest common substring fo} i o i ]
Let pathbe the list of editing operations to obtain

two strings with lengtth andm in O(nm).
g g (nm) minimum distance, an8 ED-pathbe the SED algo-

String Edit Distance (SED) Given two stringp .
andg, SED is the minimum number of edit opera—_mhm that also returns path The length of thgpath

tions which transforms to ¢. The edit operations al- '> maz(n,m), andpathlj] contains the edit oper-
ation to change|[j] (or p[j] if n > m). Pathcan

lowed are insertions, deletions, and substitutions. | tain f gif tt ¢ i . Match
our algorithm, we set the cost of each editoperatioﬁon ain four difierent types of operations. Matc

to 1. A solution based on dynamic programmin M), substitution (S), insertion (1), and deletion (D).

computes the distance between stringglifmn), ur goall 'S flintdr:ngf ?Ifflxgs ar:] d n (t:_ase]:c Off?rg.b |thJr|1ty,
wherem andn are the lengths of the strings (Wag-\évggmp Oy el odqwmg eunstics %r n mg. ©
ner and Fischer, 1974). operations leading the minimum distance:

Approximate string matching with & differ-  cage 1: If one string is longer than the other, choose
ences (k-DIFF)Given two stringg andg, the prob- | for extra characters

lem of approximate string matching with differ-

ences is finding all the substrings gfwhich are Case 2:Until an M is found, choose | in case of
at a distance less than or equal to a given value ambiguity

from p. Insertions, deletions and substitutions argase 3: If an M is found previously, choose M/S in
all allowed. A dynamic programming solution to case of ambiguity

this problem is the same as the classical string edit

distance solution with one difference: the values of@se 4: If there is an M between two I's, switch this
the first row of the table are initialized to 0 (Sellers, ~ Withthe last |

1980). This initialization means that the cost of in-
sertions of letters of at the beginning op is zero.
The solutions are all the values of the last row of tafor those characters
ble which are less or equal o Consequently, the )

- . . If there is an ambiguity, and an M/S or | oper-
minimum value on the last row gives us the distance. 2 .
ation have the same minimum cost, Case 2 gives
of the closest occurrence of the pattern.

String Edit Distance with Edit Operations priority to the insertion operation until a match

(SED-path) In our framework, we are also inter- case is encountered, while Case 3 gives priority to

X . " . match/substitution operations if a match case was
ested in tracing back the editing operations per- .
seen previously.

formed in achieving the minimum cost alignment.
g g Below example shows how Case 4 helps us

In order to obtain the sequence of edit operations,

we can work backwards from the complete distancteO localize all the insertion operations. For the

. . ) headword—candidate example word paliirids —
matrix. For two string® andq with lengthsn and kaabifds thepathch ¢ 1) 10 (2) usi
m respectively, the cell[n, m] of the distance ma- ga ai " Z epat ¢ a;_nge;drozpf_((j) o )usmlg'
trix L gives us the SED betweanandg. To get ase 4, and correct prefix is identified as we explain

to the cellL[n, m|, we had to come from one of 1) in the next section.
L[n — 1,m] (insertion), 2)L[n, m — 1] (deletion), (A)I M 111 M M M
M M

Longest Common Substring (LCS) Given two

Case 1 ensures that if one word has more charac-
ters than the other, an insertion operation is selected

S M M= Prefixm-
1http://www.ics.uci.edu/dan/class/16l/notes/(i/Dynamic.htg‘%)I FrrMM S M M= Prefixmaka-
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5 Morphology Induction from Noisy Data  straight lines represent matches, and short lines end-
(MIND) ing in square boxes represent insertions.

b tik

The MIND framework consists of two stages. In the
| Ty
btikan

exact match stage, MIND framework checks if the T
headword occurs without any changes or errors (i.e. na
if headword occurs exactly in the example of us-

age). If no such occurrence is found an approximat@2 Approximate Match

match search is performed in second stage. Belohen we cannot find an exact match, there may be
we describe these two stages in detail. an approximate match resulting from an error with
51 Exact Match OCR or morphophonemic rulgsand we deal with

) ) ) such cases separately in the second part of the al-
Given a list of (noisy) headword—example of Usag§orithm. For each; in E, we compute the dif-

pairs (v, E), the exact match first checks if the headigrence between headword, and example wérd,
word occurs inE in its root form? If the headword DIFF (w, ;). The example word that has the min-
cannot be found in in its root form, for eacte;  jmum difference from the headword is selected as
in E, the longest common substringC'S(w, ),  the most likely candidates{,,;). We then find the

is computed. Let ¢; be thee; that has the longest gequence of the edit operations performed in achiev-
common substringlY with w.* If w = 1, and for ing the minimum distance alignment to transform

some suffixs and some prefix one of the following 44 1, using SED-path algorithm we described
conditions is true, the affix is extracted. above®

a
|
a

1. ¢; = ws (suffix) or Let ent(X) be the count ofX operation in the
computed path. ltnt(I) = 0, this case is consid-
ered as an approximate root form (with OCR errors).
The following conditions are considered as possible
The extracted affixes are added to the induced agrrors and no further analysis is done for such cases:
fix list, and theirexact courg are incremented. In
the third case—sis treated together as a circumfix. ent(M) = 0 |
For the infixes, there is one further step.ulf=
w'l ande; = e}l, we computeLC'S(w', e}). If €] = ent(M) < maz(ent(S), ent(D), ent(D)) ||
w's, for some suffixs, s is added as an infix to the cnt(M) < cnt(S) + cent(D) + ent(I)
induced affix list. (This means = w’sl wherew =

w'l.) Otherwise, we use the insertion operations at the
The following sample run illustrates how the ex-peginning and at the end of the path to identify the
act match part identifies affixes. Given the Cetype of the affix (prefix, suffix, or circumfix) and the
buano headword—example of usage palitk) —  |ength of the suffix (number of insertion operations).
(naabtikan sad ku sadta), the wordnaabtikanis  The identified affix is added to the affix list, and
marked as the candidate that has the longest cofgs approximate counis incremented. All the other
mon substring with headwordbtik These two cases are dismissed as errors. In its current state, the

words have the following alignment, and we exinfix affixes are not handled in approximate match
tract the circumfixna—an In the illustration below, cas5e.

2Headwords consisting of one character are not checked. ~ The following sample shows how approximate
®In order to reduce the search space, we do not check thgatch works with noisy data. In the Cebuano input
example words that are shorter than the headword. Although
there are some languages, such as Russian, in which headwords’At this initial version, MIND does not make any distinc-
may be longer than the inflected forms, such cases are not in thiens between noise in the data such as OCR errors, and mor-
scope of this paper. phophonemic rules. Making this distinction will be one of our
“Note that the length of the longest common substring cafuture focuses
be at most the length of the headword, in which case the longest ®Computing k-difference, and the edit path can be done in
common substring is the headword itself. parallel to reduce the computing time.

2. e; = pw (prefix) or
3. ¢; = pws (circumfix)
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pair @mbiha$ — (ambslasa pagbutang ang duha tails of the data from two dictionaries we use in our
ka silya arun makakét ang maglingkud sa luyuthe  experiments.

first word in the example of usage has an OCR er- Both Cebuano and Turkish are morphologically
ror, i is misrecognized as. Moreover, there is a rich. Cebuano allows prefixes, suffixes, circumfixes,
vowel change in the word caused by the affix. Annfixes, while Turkish is an agglunative language.
exact match of the headword cannot be found in thEhe two dictionaries have different characteristics.
example of usage. The k-DIFF algorithm return§he example of usages in CebEng are complete sen-
ambstasaas the candidate example of usage wordences given in italic font while TurEng has phrases,
with a distance 2. Then, the SED-path algorithnidioms, or complete sentences as examples of usages
returns the patt M M S M S M | and algorithm indicated in bold font.

successfully concludes thatis the suffix as shown

below in illustration (dotted lines represent substitu®-2  Protocol
tions). We ran our algorithm first on all of the data and then
on a randomly selected 20 pages from each dictio-
nary. We manually extracted the affixes from each
of the 20 pages. We then evaluated the MIND re-
sults with this ground truth. During the evaluation,
even if the number of an affix in the ground truth and
result are same, if they were extracted from different
6.1 Dictionaries words, this is counted as an error. We also examined

the cause of each error in this data.
The BRIDGE system (Ma et al,, 2003) processes We then compare our results from the whole

scanned and OCRed dictionaries to reproduce eleﬁ]rEng data with the state-of-the-art Linguistica

tronic versions and extract information from dictio- ) ) .
nary entries. We used the BRIDGE system to pro(_Goldsmlth, 2001) algorithm. Finally, we used the

cess wo bilinaual dicti ) i : rs1uffixes extracted by MIND and Linguistica to seg-
gual dictionaries, a Cebuano-Englis ) .

(CebEng) dictionary (Wolff, 1972) and a Turkish—mem words in a Turkish treebank.

English (TurEng) dictionary (Avery et al., 1974),5. 3 Analysis

and extract a list of headword-example of usage

pairs for our experiments. The extracted data is nof Dict. | Affix | Sample words \

perfect: it has mistagged information, i.e. it may in- mu- | galing/mugaling hikRkG/muhikihika

biha

am
| 1]
ambs h a

n—nmn

!
a

6 Experiments

can be in different forms: Two words can be merged . . b L
. .. gi-an | labuk/gilabukarikug/giikigan
into one, one word can be split into two, or charac- -un | gihay/gihayun gyung/gayingun

ters can be misrecognized. -a pisar/pisara sirnpul/siniga
-1 ad/ad! ilag/ilael

clude some information that is not the headword of € | nag- | kisdum/nagkisdum kugkugl/nagkugkug
. . E mi- iktin/miiktin kirus/mikarus
example of usage, or some useful information may g | . kunsuylufikunsuylu paba/ipatha
be missing, and OCR errors may occur. OCR errors U na- | pil/nagl ulatl/nailat
A | g buga/gibuga dlit/gidadit
N
o}

Dictionary # of # of #of T -i heves/hevesi ilim/ilmi
Dictionary pages | hw-ex pairs | words u -a saz/saza sonsuz/sonsuza
Cebuano-all | 1163 | 27129 | 206149 R | -e | deniz/denize zmim/mime
Turkish-all 1000 27487 111334 K -ina | etraf/etrafina kolay/kolayina
Cebuano-20 20 562 2134 | -ya hasta/hastaya orta/ortaya
Turkish-20 || 20 503 1849 S | U | Ustlistizyliziyizii

H -ini bel/belini zevk/zevkini

-ine | derin/derinine i¢/icine

Table 1: Details of Data from Two Dictionaries Used
in Experiments Table 3: Sample Affixes Extracted from Two Dictio-

Along with the headword—example of usage pair32/es
from more than 1000 pages, we randomly selected Table 2 shows result of MIND runs. The total
20 pages for detailed analysis. Table 1 provides deumber of affixes and number of different types of
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Cebuano Turkish

Whole dict. | 20pages || Whole dict. | 20 pages
Total 26106 542 27314 502
Root form 5727 180 18416 345
Prefix (diff. type) 10300 (180)| 197 (26) 6 (6) 0 (0
Suffix (diff. type) 1315 (253)| 16 (8) || 6983 (447)| 128 (59)
Infix (diff. type) 25 (11) 0 (0 1 (1) 0 (0
Circumfix (diff. type) 717 (221)| 18 (11) 9 (9 0 (0
App. Root form 1023 14 103 1
App. Prefix (diff. type) 1697 (116)| 23 (9) 8 (8) 1 Q)
App. Suffix (diff. type) 2930 (199)| 63 (19) 168 (100) 5 (5)
App. Circumfix (diff. type) 1060 (207)| 14 (5) 20 (20) 0 (0
Couldn't decide 1159 13 765 15

Table 2: Total Number and Different Types of Affixes Extracted from Two Dictionaries Using MIND

affixes (in parenthesis) are presented for two dictianisrecognition ot asd, causes both the miss of the
naries, CebEng and TurEng, and two data sets, tipeefix mag-and incorrect addition omdg-for Ce-
whole dictionary and 20 randomly selected pagefuano. There are some cases that cannot be correctly
The top part of the table gives the exact match resulidentified by the framework. These usually involve
and the bottom part shows the approximate matdiropping the last vowel because of morphophone-
results. For Cebuano, approximate match part of thaic rules. For the Cebuano dictionary, merge and
framework finds many more affixes than it does fosplit caused several errors, while Turkish data does
Turkish. This is due to the different structures imot have any such errors. Main reason is the differ-
the two dictionaries. We should note that althouglent structure and format of the original dictionaries.
MIND incorrectly finds a few prefixes, circumfixes, In the Cebuano dictionary, an italic font which may
and infixes for Turkish, these all have count oneresult in merge and split is used to indicate example
Table 3 contains some of the most frequent exef usages.
tracted affixes along with their exact and approxi- For the Cebuano data, five invalid suffixes, three
mate counts, and samples of headword—example iofvalid prefixes, and two invalid circumfixes are
usage word pairs they were extracted from. Eactound, while one valid suffix and one valid circumfix
word is segmented into one root and one suffixare missed. For the Turkish data, three invalid suf-
therefore when a word takes multiple affixes, theyixes, one invalid prefix, and two valid suffixes are
are all treated as a compound affix. found while two valid suffix are missed. When we
look at the invalid affixes in the data, most of them
| Dictionary [[ GTent. | Res.cnt. | Misses | Additions | (six of the Cebuano, and all of the Turkish ones)
%rbklijsino féé ilé' 187 ig have count one, and maximum count in an invalid
affix is five. Therefore, if we use a low threshold,
Table 4: Detailed Analysis of Affixes from 20 Pageswve can eliminate many of the invalid affixes.

Table 4 shows the number of affixes in ground.4 Comparison to Linguistica
truth and MIND results along with number of we compared our system wittinguistica a pub-
missed and incorrectly added affixes on 20 of thesgly available unsupervised corpus-based morphol-
pages of data. MIND only missed 5% of the affixesgy learner (Goldsmith, 2001). Linguistica induces
in the ground truth in both data sets. paradigms in a noise-free corpus, while MIND

We also examined the causes of each miss and atlakes use of string searching algorithms and allows
dition. Table 5 presents the causes of errors in thene to deal with noise at the cost of correctness.
output of MIND with an example for each cause. WeMIND emphasize segmenting a word into its root
should emphasize that a valid affix such as Turkishnd affixes. We trained Linguistica using two dif-
suffix -m1 is counted as an error since the suffix ferent data sets from TurEfigl) Whole headword-
ini should be extracted for that particular headword—"7y ould ike to do the same comparison in Cebuano. For
example of usage pair. An OCR error such as thee time being, we could not find a treebank and native speakers
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Reason | Cebuano I Turkish |

OCR 8 | M—lbi 11 | ini—miorim
Algorithm 8 | (uluy, giuylan)}— 7 | (alin, alninda)-

not gi-an, -lan is found not -inda, -da is found
Merge 9 | imung gibug—imunggibug || 0 | -
Split 1 | nag-Kigus—nag- Kigus 0
Other 5 | apr—april 0

Headword is an abbreviation

Table 5: The Distribution of the Causes of Errors in 20 Pages with Samples

example of usage sentence pairs, and 2) Headworah the right in Figurel which gives the percentage
candidate example words that our algorithm returnsf valid suffixes as a function of threshold values.
In the first case (Ling-all), Linguistica uses moreMIND takes advantage of thresholding, and percent-
data than our algorithm, so to avoid any biases rexge of valid suffixes rapidly decrease for threshold
sulting from this, we also trained Linguistica usingvalue 1.

the headword and candidate example word (Ling- _ _
cand). We only used the suffixes, since Turkish islaSystem |l Th. | Total [ OverTh. | invalid | Missed |

. Lo Ling-cand 6 100.00 0.00 0.00
sufflx-based language. The evaluation is done by|g g a 4 10000 | 000 | 000
native speaker. MIND 60 96.67 1.72 0.00

Figure 1 presents the analysis of the suffix listsLing-cand 6 66.67 | 0.00 | 33.33
Ling-all 4 100.00 | 0.00 0.00

produced by Linguistica using two sets of training pynp
data, and MIND. The suffix lists are composed of Ling-cand
suffixes the systems return that have counts moyé-ng-all

. MIND
than a threshold. The results are presented for six
threshold values for all of the data. We use threshFable 6: Total Number and Percentage of Over the
olding to decrease the number of invalid affixeShreshold, Invalid, and Missed Suffixes Found by
caused primarily by the noise in the data. For th&inguistica and MIND for Different Threshold Val-
MIND results, the suffixes over threshold are thaies for 20 pages of Turkish Data
ones that have positive exact counts and total counts
(sum of exact and approximate counts) more than Table 6 presents the same results for 20 pages
the threshold. Although Linguistica is not designedrom TurEng for three threshold values. MIND per-
for thresholding, the data we use is noisy, and wi®rms well even with very small data and finds many
explored if suffixes with a corpus count more tharvalid affixes. Linguistica on the other hand finds
a threshold will eliminate invalid suffixes. The ta-very few.
ble on the left gives the total number of suffixes,
the percentage of suffixes that have a count mof5 Stemming
than a threshold value, the percentage of invalid sufg test the utility of the results, we perform a sim-
fixes, and percentage of missed suffixes that are digre word segmentation, with the aim of stripping the
carded by thresholding for the whole TurEng dictioinflectional suffixes, and find the bare form of the
nary. The number of affixes MIND finds are muchyord. A word segmenter takes a list of suffixes, and
more than that of Linguistica. Furthermore, numbegheir counts from the morphology induction system
of invalid affixes are lower. On the other hand, thg| inguistica or MIND), a headword list as a dictio-
number of missed affixes is also higher for MINDpary 4 threshold value, and the words from a tree-
since, for this particular data, there are many affixe§ank. For each word in the treebank, there is a root
with counts less than 5. 41% of the affixes have afyrm (; ), and a usage formuf). The suffixes with
exact count of 1. The main reason for this is the, count more than the threshold are indexed accord-
agglunative nature of Turkish language. The effeGhg to their last letters. For each word in the tree-
of thresholding can also be examined in the graphank; we first check if.f is already in the dictio-

for Cebuano. nary, i.e. in the headword list. If we cannot find it

60 41.67 0.00 53.33
6 50.00 0.00 50.00
4 75.00 0.00 25.00
60 18.33 0.00 76.67

NNNPFPRPRPROOO
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System Th. | Total | % Over Th. | % Invalid | % Missed

Ling-cand|| O 116 100.00 18.10 0.00

Ling-all 0 274 100.00 34.67 0.00

MIND 0 499 89.58 13.20 3.61

Ling-cand 1 116 98.28 17.54 0.86

Ling-all 1 274 94.89 32.69 1.46

MIND 1 499 50.50 4.37 33.07

Ling-cand || 2 116 92.24 16.82 5.17

Ling-all 2 274 87.96 31.12 4.74

MIND 2 499 38.48 4.17 44.49

Ling-cand || 3 116 91.38 16.98 6.03

Ling-all 3 274 85.40 31.20 6.57

MIND 3 499 28.86 2.78 53.31

Ling-cand|| 4 116 81.03 12.77 11.21 0 1 2 3 4 5
Ling-all 4 274 81.39 30.94 9.12 -4 - Ling-cand-valid —e- - Ling-all-valid —=— MIND-valid
MIND 4 499 25.65 3.13 56.51

Ling-cand || 5 116 80.17 12.90 12.07

Ling-all 5 274 79.56 31.19 10.58

MIND 5 499 23.25 2.59 58.72

Figure 1: Total Number and Percentage of Over the Threshold, Invalid, Missed and Valid Suffixes Found by
Linguistica and MIND for Different Threshold Values

in the dictionary, we repeatedly attempt to find the 100
longest suffix that matches the endugf, and check
the dictionary again. The process stops when a dic-
tionary word is found or when no matching suffixes
can be found at the end of the word. If the word the
segmenter returns is samergsin the treebank, we
increase the correct count. Otherwise, this case is o ‘ ;

counted as an error. NAGO 2 3 a4 5

In our stemming experiments we used METU- |- Ling-cand —e- Ling-all —=—MIND |

Sabanci Turkish Treebatka morphologically and _
syntactically annotated treebank corpus of 726p19ure 2: Percentage of Correctly Segmented Words

grammatical sentences (Atalay et al., 2003; Oflaz&ly Different Systems for Different Threshold Values
et al., 2003). We skipped the punctuation and mul-

tiple parsg@, and ran our word segmentation Onproximate match counts are more than the thresh-
14950 unique words. We also used the headwoigly For Linguistica, suffixes with a corpus count
list extracted from TurEng as the dictionary. NOt&ysre than the threshold are used. For each thresh-
that, the headword list is not error-free, it has OCR) 4 value, MIND did much better than Ling-cand.
errors. Therefore even if the word segmenter returng np outperformed Ling-all for thresholds 0 and
the correct root form, it may not be in the dictionary; ko the other values, the difference is small. We
and the word may be stripped further. should note that Ling-all uses much more training
The percentage of correctly segmented words atta than MIND (503 vs. 1849 example of words),
presented in Figure 2. We show results for sband even with this difference the performance of
threshold values. Suffixes with counts more than thelIND is close to Ling-all. We believe the reason
threshold are used in each case. Again for MINBor the close performance of MIND and Ling-all in
results, we require that the exact match counts agggmentation despite the huge difference in the num-
more than zero, and the total of exact match and aper of correct affixes they found due to the fact that
- affixes Ling-all finds are shorter, and more frequent.
ohttp:/fwww.ii.metu.edu.tr/ corpus/treebank. htmi In its current state, MIND does not segment com-
Multiple parses are the cases where a suffix is attached not . .
to a single word, but to a group of words. The suftixin takip pound affixes, and find several long and less fre-
etti is attached tdakip et guent affixes. These long affixes can be composed

8 &8 8 8
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by shorter affixes Linguistica finds. Michael R. Brent. 1993. Minimal generative models: A mid-
dle ground between neurons and triggersPlaceedings of

7 Conclusion and Future Work the 5th International Workshop on Atrtificial Intelligence and
Statistics Ft. Laudersdale, FL.

We presented a framework for morphology inducMathias Creutz and Krista Lagus. 2002. Unsupervised discov-

tion from noisy data, that is especially useful for lan- €1y of morphemes. IRroceedings of the ACL-02 Workshop

. . : on Morphological and Phonological Learnin
guages which have limited electronic data. We use _ . pnotod 9 g
; . . . . fp H. Dejean. 1998. Morphemes as necessary concepts for struc-
the information in dictionaries, specifically head- " yres: piscovery from untagged corpora. Workshop on

word and the corresponding example of usage sen-Paradigms and Grounding in Natural Language Learning
tences, to acquire affix lists of the language. We pre- Pages 295-299.

sented results on two data sets and demonstrated tﬁ%{;“ Goldsmith, Yu Hu, Irina Matveeva, and Colin Sprague.
005. A heuristic for morpheme discovery based on string

our framework successfully finds the prefixes, suf- egit distance. Technical Report TR-2205-04, Department of
fixes, circumfixes, and infixes. We also used the ac- Computer Science, University of Chicago.
quired suffix list from one data set in a simple wordlohn Goldsmith. 2001. Unsupervised learning of the mor-

segmentation process, and outperformed a state-of-gg?z'g’_%gifggat”ra' languageComputational Linguistics

the-a_rt_morphology learner using the same amou%‘llig Harris. 1955. From phoneme to morphenk@nguage
of training data. 31:190-222.

At this point we are only using headword andquanfeng Ma, Burcu Karagol-Ayan, David Doermann, Dou-
corresponding example of usage pairs. Dictionaries 9las Oard, and Jiangiang Wang. 2003. Parsing and tag-

. : . ging of bilingual dictionaries.Traitement Automatique Des
provide much more information. We plan to make Languespages 125-150.

use of Other 'nfo_rmatlon’ Suc.:h as P(_)S’ to_ Calegoriz& ristian Monson. 2004. A framework for unsupervised nat-
the acquired affixes. We will also investigate how ural language morphology induction. Rroceedings of the
using all the words in example of usages and split- Student Research Workshop: ACL 20pdges 67—72.

ting the compound affixes in agglunative Ianguage%WVai” Neuvel and Sean A. Fulop. 2002. Unsupervised learn-

hel 0] th fid f t af ing of morphology without morphemes. Rroceedings of
can help us 1o Increase the confidence or Correct ar- e acp-02 Workshop on Morphological and Phonological

fixes, and decrease the number of invalid affixes. Learning pages 31-40.
Finally we will work on identifying morphophone- Kemal Oflazer, Bilge Say, Dilek Hakkanitif, and Gkhan Tur.

mic rules (especially stem-interval vowel shifts and 2003. Building a Turkish Treebank. In Anne Abéilledi-
. . tor, Building and Using Parsed Corpor&luwer Academic
point-of-affixation stem changes). Publishers.

Ack led t Patrick Schone and Daniel Jurafsky. 2001. Knowledge-free
cKnowledgments induction of inflectional morphologies. 18econd Meeting
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Abstract

This paper introduces the probabilistic
paradigm, a probabilistic, declarative
model of morphological structure. We de-
scribe an algorithm that recursively ap-
plies Latent Dirichlet Allocation with an
orthogonality constraint to discover mor-
phological paradigms as the latent classes
within a suffix-stem matrix. We apply the
agorithm to data preprocessed in severa
different ways, and show that when suf-
fixes are distinguished for part of speech
and allomorphs or gender/conjugational
variants are merged, the model is able to
correctly learn morphological paradigms
for English and Spanish. We compare our
system with Linguistica (Goldsmith
2001), and discuss the advantages of the
probabilistic paradigm over Linguistica's
signature representation.

1 Introduction

In recent years researchers have addressed the task
of unsupervised learning of declarative representa-
tions of morphological structure. These models
include the signature of (Goldsmith 2001), the con-
flation set of (Schone and Jurafsky 2001), the
paradigm of (Brent et. a. 2002), and the inflec-
tional class of (Monson 2004). While these repre-
sentations group morphologically related words in
systematic ways, they are rather different from the
paradigm, the representation of morphology in tra-
ditional grammars. A paradigm lists the prototypi-
cal morphological properties of lexemes belonging

Proceedings of the Eighth Meeting of the ACL Special Interest Group on Computational Phonology at HLT-NAAGIage8&9-78,
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to a particular part of speech (POS) category; for
example, a paradigm for regular English verbs
would include the suffixes {$,eds, ings, s$}™
Hand-built computational implementations of
paradigms as inheritance hierarchies include
DATR (Evans and Gazdar 1996) and Functional
Morphology (Forsberg and Ranta 2004). The two
principal ways in which learned models have dif-
fered from paradigms are that: 1) they do not have
POS types, and 2) they are not abstractions that
generalize beyond the words of the input corpus.

There are important reasons for learning a
POS-associated, paradigmatic representation of
morphology. Currently, the dominant technology
for morphological analysis involves mapping be-
tween inflected and base of forms of words with
finite-state transducers (FSTs), a procedural model
of morphological relations. Rewrite rules are hand-
crafted and compiled into FSTs, and it would be
beneficia if these rules could be learned automati-
caly. One line of research in computational mor-
phology has been directed towards learning finite-
state mapping rules from some sort of paradig-
matic structure, where all morphological forms and
POS types are presumed known for a set of lex-
emes (Clark 2001, Kazakov and Manandhar 2001,
Oflazer et. al. 2001, Zajac 2001, Albright 2002).
This can be accomplished by first deciding on a
base form, then learning rules to convert other
forms of the paradigm into this base form. If one
could develop an unsupervised algorithm for learn-
ing paradigms, it could serve as the input to rule-
learning procedures, effectively leading to an en-
tirely unsupervised system for learning FSTs from
raw data. Thisis our long-term goal.

1 s isthe null suffix.
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An alternative approach isto skip the paradigm
formulation step and construct a procedural model
directly from raw data. (Yarowsky and Wicen-
towski 2000) bootstrap inflected and base forms
directly from raw data and learn mappings between
them. Their results are quite successful, but the
morphological information they learn is not struc-
tured as clearly as a paradigmatic model. (Freitag
2005) congtructs a morphological automaton,
where nodes are clustered word types and arcs are
suffixation rules.

This paper addresses the problem of finding an
organization of stems and suffixes as probabilistic
paradigms (section 2), a model of morphology
closer to linguistic notion of paradigm than previ-
ously proposed models. We encode the morpho-
logical structure of a language in a matrix
containing frequencies of words, and formulate the
problem of learning paradigms as one of finding
latent classes within the matrix. We present a re-
cursive LDA, alearning algorithm based on Latent
Dirichlet Allocation (section 3), and show that un-
der certain conditions (section 5), it can correctly
learn morphological paradigms for English and
Spanish. In section 6, we compare the probabilistic
paradigm to the signature model of (Goldsmith
2001). In section 7, we sketch some ideas for how
to make our system more unsupervised and more
linguistically adequate.

We assume a model of morphology where
each word is the concatenation of a stem and asin-
gle suffix representing all of the word's morpho-
logical and POS properties. Although thisis avery
simplistic view of morphology, there are many
hitherto unresolved computational issues for learn-
ing even this basic model, and we consider it nec-
essary to address these issues before developing
more sophisticated models. For a stem/suffix rep-
resentation, the task of learning a paradigm from
raw data involves proposing suffixes and stems,
proposing segmentations, and systematically orga
nizing stems and suffixes into classes. One diffi-
culty is suffix allomorphy: a suffix has multiple
forms depending on its phonologica environment
(eg. ss/ess). Another problem is suffix cate-
gorial ambiguity (ss is ambiguous for noun and
verb uses). Finally, lexemes appear in only a subset
of their potential forms, due to sparse data. An un-
supervised learner needs to be able to handle all of
these difficulties in order to discover abstract para-
digmatic classes.
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In this paper, we are primarily interested in
how the co-occurrence of stems and suffixes in a
corpus leads them to be organized into paradigms.
We use data preprocessed with correct segmenta-
tions of words into stems and suffixes, in order to
focus on the issue of determining what additional
knowledge is needed. We demonstrate that para-
digms for English and Spanish can be successfully
learned when tokens have been assigned POS tags
and allomorphs or gender/conjugationa variants
are given a common representation. Our learning
algorithm is not supervised since the target concept
of gold standard "input" POS category of stems is
not known, but rather it is an unsupervised algo-
rithm that relies on preprocessed data for optimal
performance.

2 TheProbabilistic Paradigm

We introduce the probabilistic paradigm, a prob-
abiligtic, declarative model of regular morphology.
The probabiligtic paradigm model consists of three
matrices. the data matrix D, the morphological
probabilities matrix M, and the lexical probabilities
matrix L. Let m be the number of stems, n the
number of stems, and p the number of paradigms.
The D matrix encodes the joint distribution of lexi-
cal and morphological information in acorpus. Itis
of size m x n, and each cell contains the fre-
guency of the word formed by concatenating the
appropriate stem and suffix. The M matrix is of
sizem x p, and each column contains the condi-
tional probabilities of each suffix given a para-
digm. The L matrix is of sizep x n, and contains
the conditional probabilities of each paradigm
given a stem. Each suffix should belong to exactly
one paradigm, and the suffixes of a particular
paradigm should be conditionally independent.
Each column of the M matrix defines a canonical
paradigm, a set of suffixes that attach to stems as-
sociated with that paradigm. A lexical paradigmis
the full set of word forms for a particular stem, and
is an instantiation of the canonical paradigm for a
particular stem.

The probabilistic paradigm is not well-
developed as the usua notion of "paradigm” in
linguistics. First, the system employs no labels
such as "noun", "plural", "past", etc. Second, prob-
abiligtic paradigms have only a top-level categori-
zation; induced “verb” paradigms, for example, are
not substructured into different tenses or conjuga-



tions. Third, we do not distinguish between inflec-
tional and derivationa morphology; traditional
grammars place derived forms in separate lexical
paradigms. Fourth, we do not handle syncretism,
where one suffix belongs in multiple dots of the
paradigm. Fifth, we do not yet not handle irregular
and sub-regular forms. Despite these drawbacks,
our paradigms have an important advantage over
traditional paradigms, in being probabilistic and
therefore able to model language usage.

3 Learningthe probabilistic paradigmin a
latent class model

We learn the parameters of the probabilistic para-
digm model by applying a dimensionality reduc-
tion algorithm to the D matrix, in order to produce
the M and L matrices. This reduces the size of the
representation from m*n to m*p + p*n. The main
idea is to discover the latent classes (paradigms)
which represent the underlying structure of the in-
put matrix. This handles two important problems:
1) that words occur in a subset of their possible
morphological forms in a corpus, and 2) that the
words formed from a particular stem can belong to
multiple POS categories. The second problem can
be quantified as follows. in our English data,
14.3% of types occur with multiple open-class base
POS categories, accounting for 56.5% of tokens;
for Spanish, 13.7% of types, 37.8% of tokens.

3.1 LDA modéd for morphology

The dimensionality reduction algorithm that we
employ is Latent Dirichlet Allocation (LDA) (Blei
et. a. 2003). LDA is a generative probabilistic
model for discrete data. For the application of topic
discovery within a corpus of documents, a docu-
ment consists of a mixture of underlying topics,
and each topic consists of a probability distribution
over the vocabulary. The topic proportions are
drawn from a Dirichlet distribution, and the words
are drawn from a multinomial over the topic. Prob-
ability distributions of documents and words are
conditionally independent of topics. LDA produces
two non-negative parameter matrices, Gamma and
Beta: Gamma is the matrix of Dirichlet posteriors,
encoding the distribution of documents and topics;
Beta encodes the distribution of words and topics.
The mapping of the data structures of LDA to
the probabilistic paradigm is as follows. The
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document-word matrix is analogous to the suffix-
stem D matrix. For morphology, a "document” is a
multiset of tokens in a corpus, such that each of
those tokens decomposes into a stem and a speci-
fied suffix. Different underlying canonical para-
digms ("topics') can be associated with suffixes,
and each canonical paradigm allows a set of stems
("words'). For a suffix-stem ("document-word")
matrix of sizem x n and k latent classes, the
Gamma matrix is of sizem x %k, and the Beta ma-
trix isof sizek x n. The Gamma matrix, normal-
ized by column, is the M matrix, and the Beta
matrix, normalized by row, isthe L matrix.

3.2 RecursvelLDA

One standard issue in using these types of algo-
rithms is selecting the number of classes. To deal
with this, we have formulated a recursive wrapper
algorithm for LDA that accomplishes a divisive
clustering of suffixes. LDA isrun at each stage to
find the local Gamma and Beta matrices. To split
the suffixes into two classes, we assign each suffix
to the class for which its probability is greater, by
examining the Gamma matrix. The input matrix is
then divided into two smaller matrices based on
this split, and the algorithm continues with each
submatrix. The result is a binary tree describing the
suffix splits at each node.

To congtruct a classification of suffixes into
paradigms, it is necessary to make a cut in the tree.
Assuming that suffix splits are optimal, we start at
the root of the tree and go down until reaching a
node where there is sufficient uncertainty about
which class a suffix should belong to. A good split
of suffixesis one where the vectors of probabilities
of suffixes given a class are orthogonal; we can
find such a split by minimizing the cosine of the
two columns of the node's Gamma matrix (we call
this the "Gamma cosine"). Thus, a node at which
suffixes should not be split has a high Gamma co-
sine, and when encountering such a node, a cut
should be made. The suffixes below this node are
grouped together as a paradigm; tree structure be-
low the cut node is ignored. In our experiments we
have selected thresholds for the Gamma cosine, but
we do not know if there is a single value that
would be successful cross-linguigticaly. After the
tree has been cut, the Gamma and Beta matrices
for ancestor nodes are normalized and combined to
form the M and L matrices for the language.



Ancther issue is dealing with suboptimal solu-
tions. Random initiaizations of parameters lead
the EM training procedure to local maxima in the
solution space, and as a result LDA produces dif-
fering suffix splits across different runs. To get
around this, we ssmply run LDA multiple times (25
in our experiments) and choose the solution that
minimi zes the Gamma cosine.

We aso experimented with minimizing the
Beta cosine. The Beta matrix represents stem am-
biguity with respect to a suffix split. Since there
are inherently ambiguous stems, one should not
expect the Beta cosine value to be extremely low.
Minimizing the Beta cosine sometimes made the
Beta matrix "too disambiguated" and forced the
representation of ambiguity into Gamma matrix,
thereby inflating the Gamma cosine and causing
incorrect classifications of suffixes.

4 Data

We conducted experiments on English and
Spanish. For English, we chose the Penn Treebank
(Marcus et. a. 1993), which is already POS-
tagged; for Spanish, we chose an equivalent-sized
portion of newswire (Graff and Galegos 1999),
POS-tagged by the FreeLing morphologica ana-
lyzer (Carreras et. a. 2004). We restricted our data
to nouns, verbs, adjectives, and adverbs. Words
that did not follow canonical suffixation patterns
for their POS category (irregulars, foreign words,
incorrectly tagged words, etc.) were excluded. We
segmented each word into stem and suffix for a
specified set of suffixes. Rare suffixes were ex-
cluded, such as many English agjective-forming
suffixes and Spanish 2nd person plura forms.
Stems were not lemmatized, with the result that
there can be multiple stem variants of a particular
lemma, as with the words stemm.ing¢$ and
stem.s$. Tokens were not disambiguated for
word sense. Stems that occurred with only one suf-
fix were excluded.

We use several different representations of suf-
fixes in constructing the data matrices: 1) merged,
labeled suffixes; 2) merged, unlabeled suffixes; 3)
unmerged, unlabeled suffixes. For unmerged suf-
fixes, allomorphs’ are represented in their original
spelling. A merged suffix is a common representa-

2 We abuse the standard usage of the term "allomorph"
to include gender and conjugational variants.
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tion for the multiple surface manifestations of an
underlyingly identical suffix. Suffixes also can be
unlabeled, or labeled with base POS tags. For an
example, a verb created would be segmented as
create.d$ with an unmerged, labeled suffix, or
create.d/eds$v with a merged, labeled suffix.
Labels disambiguate otherwise categoricaly am-
biguous suffixes.

The gold standard for each language lists the
suffixes that belong to a paradigm for stems of a
particular POS category. We call this the "input"
POS category, which is not indicated in annota-
tions and is the concept to be predicted. This
should be differentiated from the "output” POS
labels on the suffixes: for example, 1ys$r attaches
to stems of the input category “adjective’. Each
suffix is an atomic entity, so the system actualy
has no concept of output POS categories. All that
we require is that distinct suffixes are given dis-
tinct symbols.

In the English gold standard (Table 1), each
slashed pair of suffixes denotes one merged form;
the unmerged forms are the individua suffixes.
allys$Rr is the suffix 1y$r preceded by an epen-
thetic vowel, as in the word basically. In the
Spanish gold standard (Table 2), each dashed
group of suffixes corresponds to one merged form.
For adjectives and nouns, a$ and os are feminine
and masculine singular forms, and as$ and oss
are the corresponding plurals. $ and s¢ do not
have gender; es$ is a plura alomorph.
mente/amentes$R IS a derivationa suffix. The
first two groups of verbal suffixes are past partici-
ples, agreeing in number and gender. For the other
verb forms, when three are listed they correspond
to forms for the 1st, 2nd, and 3rd conjugations.
When there are two, the first is for the 1st conjuga-
tion, and the other isidentical for the 2nd and 3rd.
oV has the same form across all three conjuga-
tions.

$A, d/edsa,

r/ersA, ally/lySR

SN, 's$N, es/sSN

$V, d/edsv, es/s$v,

ing$V, ing$A, ing$N, r/ersN

Adjectives:

Nouns :
Verbs:

Table 1. Gold standard for English



Adjectives: a/o/SA, as/os/es/sS$A,

mente/amenteS$R
Nouns : a/o/$N, as/os/es/sS$SN

Verbs: ada/ida/ado/idosV,
adas/idas/ados/idos$V, ando/iendo$V,
ar/er/ir$V, oS8V, as/ess$V, a/esV,
amos/emos/imos$V, an/ens$V, aba/iasV,
dbamos/iamos$V, aban/ian$V,
aré/eré/irésv, arad/erd/irasv,
aremos/eremos/iremoss$vV,
é/138V, 6/168V, aron/ierons$V,
aria/eria/iria$V, arian/erian/iriansVv

aran/eran/iransv,

Table 2. Gold standard for Spanish

5 Experiments

51 Merged, labeled suffixes

Figure 1 shows the recursion tree for English data
preprocessed with merged, labeled suffixes. To
produce a classification of suffixes into paradigms,
we start at the root and go down until reaching
nodes with a Gamma cosine greater than or equal
to the threshold. The cut for a threshold of .0009
produces three paradigms exactly matching the
gold standard for verbs, adjectives, and nouns, re-
spectively. Table 3 shows the complete M matrix,
which contains suffix probabilities for each para-
digm. Table 4 shows a portion of the L matrix,
which contains the probabilities of stems belonging
to paradigms. We list the stems that are most am-
biguous with respect to paradigm membership
(note that this table does not specify the words that
belong to each category, only their stems).

"Verb n IlAdj n IlNoun n

SA 0.000 0.829 0.000
d/ed$A 0.020 0.000 0.000
r/ersA 0.000 0.033 0.000
ing$A 0.008 0.000 0.000
SN 0.000 0.000 0.706
's$N 0.000 0.000 0.036
r/ersN 0.037 0.000 0.000
ing$N 0.065 0.000 0.000
es/sSN 0.000 0.000 0.257
ally/lysR 0.000 0.138 0.000
SV 0.342 0.000 0.000
d/edsv 0.284 0.000 0.000
ing$V 0.133 0.000 0.000
es/s$V 0.110 0.000 0.000

Table 3. M matrix for English merged, |abeled
suffixes. Columns: p (suf f | paradigm).
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1: .0004

SA d/ed$A r/er$A ing$A $N 's$N r/er$N ing$N
es/s$N ally/ly$R $V d/ed$V ing$V es/s$V

2: .0000 : 9: .1413

$A d/ed$A r/er$A ing$A SN 's$N es/s$N
r/er$N ing$N ally/ly$R

$V d/ed$V ing$V es/ssV

.1604

3: .0009 o 6:

d/ed$h ing$A r/er$N ing$N $A r/er$A

$V d/ed$V ing$V es/s$vV ally/lysR

4: .0061 5: .0000 o7
d/ed$n sV

'| a/edsv ed/ssv

.0000 8: .0000

ing$A r/er$N s; sA r/er$a

ally/ly$R

ing$N ing$v

Figure 1. Recursion tree for English merged,
labeled suffixes. Each node shows its current
suffix set, and the Gamma cosine value for the
split. Dotted lines indicate paradigms for a
Gamma cosine threshold of .0009.

"Verb n llAdj n IlNounll

reset 0.333 0.292 0.375
blunt 0.445 0.278 0.277
calm 0.417 0.375 0.209
total 0.312 0.462 0.226
clean 0.478 0.319 0.203
parallel 0.222 0.278 0.500
alert 0.500 0.222 0.277
sound 0.483 0.184 0.333
compound 0.372 0.171 0.457
pale 0.417 0.417 0.166
fine 0.254 0.230 0.516
premier 0.235 0.235 0.529
brief 0.175 0.524 0.301
polish 0.250 0.556 0.194
ski 0.378 0.108 0.513

fake 0.200 0.600 0.200
light 0.092 0.427 0.481
foster 0.226 0.161 0.613
bottom 0.107 0.304 0.589
repurchase 0.333 0.095 0.571

Table 4. Portion of L matrix for English merged,
labeled suffixes, sorted by lowest entropy.
Columns: p (paradigm|stem).



Next, we examine the morphological and lexical
conditional probabilities in the M and L matrices.
It is possible that even though the correct
classification of suffixes into paradigms was
learned, the probabilities may be off. Table 5
shows, however, that the M and L matrices are an
extremely accurate approximation of the true
morphological and lexical probabilities. We have
included statistics for the corresponding Spanish
experiment; the paradigms that were discovered for
Spanish also match the gold standard.

English Spanish
# suffixes 14 26
# stems 7315 5115
CRE M .0002 bits .0003 bits
CRE L .0006 bits .0020 bits

Table 5. Comparison of M and L matrices with
true morphologica and lexical probabilities, by
conditional relative entropy (CRE).

5.2 Unmerged, labeled suffixes

The next experiments tested the effect of allomor-
phy on paradigm discovery, using data where suf-
fixes are labeled but not merged. There are
competing pressures at work in determining how
allomorphs are assigned to paradigms. on the one
hand, the digointedness of stem sets for alo-
morphs would tend to place them in separate para-
digms; on the other hand, if those stem sets have
other suffixes in common that belong to the same
paradigm, the allomorphs might likewise be placed
in that paradigm. In our experiments, we found that
there was much more variability across runs than
in the merged suffix cases. In English, for exam-
ple, the suffix essN was sometimes placed in the
"verb" paradigm, although the maximally orthogo-
nal solution placed it in the “noun” paradigm.
Figure 2 shows the recursion tree and para-
digms for Spanish. Gold standard noun and adjec-
tive categories are fragmented into multiple
paradigms in the tree. Although nouns have a
common parent hode (2), the nouns of the different
genders are placed in separate paradigms -- this is
because a noun can have only one gender. The
verbs are all in a single paradigm (node 10). Node
11 contains all the first-conjugation verbs, and
node 12 contains al the second/third-conjugation
verbs. The reason that they are not in separate
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paradigms is that asv is shared by stems of all
three conjugations, which leads to a split that is not
guite orthogonal .

The case of adjectives is the most interesting.
Gendered and non-gendered adjective stems are
digoint, so adjectives appear in two separate sub-
trees (nodes 4, 13). In node 4, the gender-
ambiguous plural essa isin conflict with the plu-
ra ssa, but it would conflict with two pluras
as$A and ossa if it were placed in node 13.
amente$R appears together in node 14 because it
shares stems with the feminine adjectives.
amente$R also shares stems with verbs, as it is
also the derivational suffix which attaches to ver-
bal past participles in the feminine "a" form. This
is probably why the group of adjectives at node 13
is a dster to the verb nodes. The allomorph
mente$R ataches to non-gendered adjectives, and
isthusin thefirst adjective group.

13: .0021

:| 14: .0000 || 15: .0133 |}

$A es$A s$A

a$h assh o$A ossA |}

mente$R s$N

il amentesR

10: .0098

11: .0107 12: .0056

i | a$V aba$Vv aban$V ada$v
¢ | adas$v adosv ados$v

i | amos$V an$V ando$V ar$v
¢ | aremos$V aron$V arasv

i | arén$v arésv ariasv

¢ | arian$V as$v o$v

i | abamos$v 65V

e$V emos$V ensV er$V eremos$V
erasVv eransV erésv eriasv H
erian$V es$V ida$v idas$v idosv | i
idos$V iendo$V ieron$V imos$v
ir$v iremos$V irdsV iran$v
iré$V iria$V iriangV i6$V ésv
1$V ia$v iamos$V ian$v

Figure 2. Recursion tree for Spanish, unmerged,
|abeled suffixes, with Gamma cosine values. Dot-
ted lines indicate paradigms for a Gamma cosine
threshold of .0021.

5.3 Unmerged, unlabeled suffixes

The case of unmerged, unlabeled suffixes is not as
successful. In the Gamma matrix for the root node
(Table 6), there is no orthogonal division of the
suffixes, as indicated by the high Gamma cosine
value of .1705. Despite this, the algorithm has dis-
covered useful information. There is a subpara-



digm of unambiguous suffixes {'s¢$,allys}, and
another of {ds,eds,ing$,rs}. The other suf-
fixes (3,ers,ess, 1y$, ss) are ambiguous. The
ambiguity of 1ys seems to be a secondary effect:
since adjectives with the null suffix ¢ are found to
be ambiguous, 1y$ islikewise ambiguous.

S [0.9055] 0.0703
's$ [0.0351] 0.0000
allys$ [0.0007] 0.0000
as 0.0000 [0.1139]
eds 0.0000 [0.1332]
er$ [0.0087] 0.0084
es$ [0.0089] 0.0001
ing$ 0.0000 [0.1176]
1ys 0.0033 [0.0603]
r$ 0.0000 [0.0198]
s$ 0.0378 [0.4764]

Table 6. Gamma matrix for root node, English,
unmerged, unlabeled suffixes; the categorization
is shown with brackets. Columns indicate
p(suffix|class).

6 Comparison with Linguistica

In this section, we compare our system with
Linguistica® (Goldsmith 2001), a freely available
program for unsupervised discovery of morpho-
logical structure. We focus our attention on Lin-
guistica's representation of morphology, rather
than the algorithm used to learn it. Linguistica
takes a list of word types, proposes segmentations
of words into stems and suffixes, and organizes
them into signatures. A signature is a non-
probabilistic data structure that groups together all
stems that share a common set of suffixes. Each
stem belongs to exactly one signature, and the set
of suffixes for each signature is unique. For exam-
ple, running Linguistica on our raw English text,
there is a signature {s, fuls,ss$} for the stems

{resource, truth, youth}, indicating the

morphology of the words ({resources,
truths, youth$, resourceful$, truth-
fuls, youthfuls, resources$, truthss,

youthss$}. There are no POS types in the system.
Thus, even for a prototypicaly "noun" signature
suchas {$, 'ss}, itisquite possible that not all of
the words that the signature represents are actually
nouns. For example, the word structures isin

®http://linguistica.uchigago.edu
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this signature, but occurs both as a noun (59 times)
and averb (2 times) in our corpus.

The signature model can be derived from the
suffix-stem data matrix, by first converting all
positive counts to 1, and then placing in separate
groups al the stems that have the same 0/1 column
pattern. Another way to view the signature is as a
special case of the probabilistic paradigm where all
probabilities are restricted to being O or 1, for if
this were so, the only way to fit the data would be
to let there be a canonical paradigm for every dif-
ferent subset of suffixes that some stem appears
with. In theory, it is possible for the number of sig-
natures to be exponentia in the number of suffixes;
in practice, Linguistica finds hundreds of signa-
tures for English and Spanish. Although there has
been work on reducing the number of signatures
(Goldwater and Johnson 2004; Hu et. a. 2005,
who report a reduction of up to 30%), the number
of remaining signatures is still two orders of mag-
nitude greater than the number of canonical para-
digms we find. The simplest explanation for thisis
that a suffix can be listed many times in the differ-
ent signatures, but only has one entry in the M
matrix of the probabilistic paradigm.

It is important for a naturd language system to
handle out-of-vocabulary words. A signature does
not predict the forms of potential but unseen forms
of stems. To some extent Linguistica could ac-
commodate this, as it identifies when one signa-
ture's suffixes are a proper subset of another's, but
it does not handle cases where suffixes are partially
overlapping. One principa advantage of the prob-
abiligtic paradigm is that the canonical paradigm
allows the instantiation of a lexical paradigm con-
taining a complete set of predicted word forms for
astem.

Since Linguistica is a system that starts from
raw text, it may seem that it cannot be directly
compared to our work, which assumes that seg-
mentations and suffixes are already known. How-
ever, it is possible to run Linguistica on our data by
doing further preprocessing. We rewrite the corpus
in such a way that Linguistica can detect correct
morphological and POS information for each to-
ken. Each token is replaced by the concatenation of
its stem, the dummy string 12345, and a single-
character encoding of its merged suffix. For exam-
ple, the token accelerate.d/ed$Vv is mapped to
acceleratel2345D, whereD represents d/edsv.
The omnipresence of the dummy string enables



Linguistica to discover al the desired stems and
suffixes, but no more. By mapping the input corpus
in this way, we can examine the type of grammar
that Linguistica would find if it knew the informa-
tion that we have assumed in the previous experi-
ments. Linguistica found 565 signatures from the
"cooked" English data (Figure 3). 50% of word
types are represented by the first 13 signatures.

1. { $N, es/s$N } 1540
abortion absence accent acceptance
accident accolade accommodation

2. { 8N, 's$N } 1168
aba abbie abc academy achenbaum aclu
adams addington addison adobe

3. { SN, 's$N, es/s$N } 224
accountant acquisition actor
administration airline airport alliance

5. { sa, ally/ly$R } 319
abrupt absolute abundant accurate
actual additional adequate adroit

6. { $A, $N, es/s$N } 173
abrasive acid activist adhesive adult
afghan african afrikaner aggregate

7. { $V, d/ed$v, es/s$V } 135
abate achieve administer afflict
aggravate alienate amass apologize

9. { $v, d/eds$v, ing$v, es/s$vV } 73
abound absorb adopt applaud assert
assist attend attract avert avoid

13. { $N, $V, d/ed$V, es/s$N, es/s$V } 44
advocate amount attribute battle
bounce cause compromise decline

Figure 3. Selected top signatures for merged, labeled
suffix English data. Each signature shows the suffix set,
number of stems, and several example stems. Ranking is
by 1og (num stems)* log(num suffixes).

We have formulated two metrics to evaluate the
quality of a collection of signatures or paradigms.
Ideally, all suffixes of a particular signature would
be of the same category, and al the words of a par-
ticular category would be contained within one
signature. POS fragmentation measures to what
extent the words of an input POS category are scat-
tered across different signatures. It is the average
number of bits required to encode the probability
distribution of some category’s words over signa-
tures. Sgnature impurity measures the extent to
which the suffixes of a signature are of mixed in-
put POS types. It is the expected value of the num-
ber of bits required to encode the probability
distribution of some signature’'s suffixes over input
POS categories. Table 7 shows that, according to
these metrics, the signature does not organize mor-
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phological information as efficiently as probabilis-
tic paradigms’. Linguistica's impurity scores are
reasonably low because many of the signatures
with the most stems are categorically homogene-
ous. Fragmentation scores show that the placement
of the mgjority of words within top signatures off-
sets the scattering of a POS category’s suffixes
over many signatures.

D POS fragmentation =

{Zh(p(Slwordsof P))}/| P
P

2 Signature impurity =

l:z S.numstemsx h(p(P| S))}/
S

h: entropy
P: input POS categories
S: signatures/ paradigms

S

Linguistica |Recursive LDA
English fragmentation | 5.422 bits 0 bits
English impurity .404 bits 0 bits
Spanish fragmentation| 6.084 bits 0 bits
Spanish impurity .332 bits 0 bits

Table 7. Comparison of Linguistica and recursive LDA
on merged, labeled suffix data. The maximum possible
impurity for 3 POS categoriesis|ogy(3) = 1.585 hits.

Finally, a morphological grammar should reflect
the general, abstract morphological structure of the
language from which a corpus was sampled. To
test for consistency of morphological grammars
across corpora, we split our cooked English data
into two equal parts. Linguistica found 449 total
signatures for the first half and 462 for the second.
296 signatures were common to both (in terms of
the suffixes contained by the signatures). Of the
3506 stems shared by both data sets, 1831 (52.2%)
occurred in the same signature. Of the top 50 sig-
natures for each half-corpus, 45 were in common,
and 1651 of 2403 shared stems (68.7%) occurred
in the same signature. Recursive LDA found the

* Our scores would not be so good if we had chosen a
poor Gamma cosine threshold value for classification.
However, Linguistica's scores cannot be decreased, as
there is only one signature model for a fixed set of
stems and suffixes.

S.numstems



same canonical paradigms for both data sets
(which matched the gold standard). Differences in
word counts between the corpus haves atered
stem inventories and lexical probabilities, but not
the structure of the canonical paradigms. Our sys-
tem thus displays a robustness to corpus choice
that does not hold for Linguistica.

7 FutureWork

This section sketches some ideas for future work to
increase the linguistic adequacy of the system, and
to make it more unsupervised.

1. Bootstrapping: for fully unsupervised learning,
we need to hypothesize stems and suffixes. The
output of recursive LDA indicates which suffixes
may be ambiguous. To bootstrap a disambiguator
for the different categorial uses of these suffixes,
one could use various types of distributional in-
formation, as well as knowledge of partia para-
digmatic structure for non-ambiguous suffixes.

2. Automated detection of cut nodes: currently the
system requires that the user select a Gamma co-
sine threshold for extracting paradigms from the
recursion tree. We would like to automate this
process, perhaps with different heuristics.

3. Suffix merging and formulation of generation
rules: when we decide that two suffixes should be
merged (based on some measures of distributional
similarity and word-interna context), we also need
to formulate phonologica (i.e., spelling) rules to
determine which surface form to use when instan-
tiating aform from the canonical paradigm.

4. Non-regular forms: we can take advantage of
empty cells in the data matrix in order to identify
non-regularities such as suppletives, stem variants,
semi-regular subclasses, and suffix alomorphs. If
the expected frequency of a word form (as derived
from the M matrix and frequency of a stem) isrela-
tively high but the value in the D matrix is zero,
this is evidence that a non-regular form may oc-
cupy this cell. Locating irregular words could use
methods similar to those of (Y arowsky and Wicen-
towski 2000), who pair irregular inflections and
their roots from raw text. Stem variants and allo-
morphic suffixes could be detected in a similar
manner, by finding sets of stemg/suffixes with mu-
tually exclusive matrix entries.

5. Multiple morphological properties per word: we
currently represent all morphological and POS in-
formation with a single suffix. The learning algo-

e

rithm and representation could perhaps be
modified to alow for multiple morphological
properties. One could perform recursive LDA on a
particular morphological property, then take each
of the learned paradigms and perform recursive
LDA again, but for a different morphological
property. This method might discover Spanish con-
jugational classes as subclasses within “verbs’.

8 Discussion

This paper has introduced the probabilistic para-
digm model of morphology. It has some important
benefits: it is an abstract, compact representation of
a language's morphology, it accommodates lexical
ambiguity, and it predicts forms of words not seen
in the input data.

We have formulated the problem of learning
probabilistic paradigms as one of discovering la-
tent classes within a suffix-stem count matrix,
through the recursive application of LDA with an
orthogonality constraint. Under optimal data condi-
tions, it can learn the correct paradigms, and also
models morphological and lexical probabilities
extremely accurately. It is robust to corpus choice,
S0 we can say that it learns a morphological gram-
mar for the language. Thisis a new application of
matrix factorization agorithms, and an usual one:
whereas in document topic modeling, one tries to
find that a document consists of multiple topics,
we want to find orthogonal decompositions where
each suffix (document) belongs to only one input
POS category (topic).

We have demonstrated that the algorithm can
successfully learn morphological paradigms for
English and Spanish under the conditions that
segmentations are known, categorically ambiguous
suffixes have been distinguished, and allomorphs
have been merged. When suffixes have not been
merged, there is a tendency to place allomorphic
variants in different paradigms. The algorithm is
the least successful in the unmerged, unlabeled
case, as ambiguous suffixes do not alow for a
clear split of suffixesinto paradigms. However, the
program output indicates which suffixes are poten-
tially ambiguous or unambiguous, and this infor-
mation could be used by bootstrapping procedures
for suffix disambiguation.

Some of the behavior of the learning algorithm
can be explained in terms of severa congraints.
First, LDA assumes conditional independence of



documents (suffixes) given topics (paradigms). A
stem should be able to occur with each suffix of a
canonica paradigm. But if a stem occurs with one
allomorphic variant of a suffix, we know that it
necessarily cannot occur with the other. Therefore,
allomorphy violates conditional independence of
suffixes given a paradigm, and we cope with this
by merging allomorphs. Second, LDA &also as-
sumes conditional independence of words (stems)
given topics (paradigm). As our data contains stem
variants, this assumption does not hold either, but
it isaless serious violation due to the large number
of total stems. Third, we have impased the con-
straint of orthogonality of suffixes and paradigms,
which is not required by LDA (and actualy unde-
sired in document topic modeling, since documents
can contain multiple topics). Orthogonal suffix
splits are possible when categorically ambiguous
suffixes have been disambiguated.

In conclusion, we view morphology learning
as a process of manipulating the representation of
data to fit a learnable computationa model. The
aternative would be to complicate the model and
learning algorithm to accommodate raw data and
all its concurrent ambiguities and dependencies.
We hypothesize that successful, fully unsupervised
learning of linguistically adequate representations
of morphology will be more easily accomplished
by first bootstrapping the sorts of information that
we have assumed, or, in other words, fitting the
data to the model.
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Abstract

We present a novel approach to the unsu-
pervised detection of affixes, that is, to ex-
tract a set of salient prefixes and suffixes
from an unlabeled corpus of a language.
The underlying theory makes no assump-
tions on whether the language uses a lot
of morphology or not, whether it is pre-
fixing or suffixing, or whether affixes are
long or short. It does however make the
assumption that 1. salient affixes have to
be frequent, i.e occur much more often
that random segments of the same length,
and that 2. words essentially are vari-
able length sequences of random charac-
ters, e.g a character should not occur in
far too many words than random without
a reason, such as being part of a very fre-
quent affix. The affix extraction algorithm
uses only information from fluctation of
frequencies, runs in linear time, and is free
from thresholds and untransparent itera-
tions. We demonstrate the usefulness of
the approach with example case studies on
typologically distant languages.

1 Introduction
The problem at hand can be described as follows:

Input : An unlabeled corpus of an arbitrary natural
language

Output : A (possibly ranked) set of prefixes and
suffixes corresponding to true prefixes and suf-

Proceedings of the Eighth Meeting of the ACL Special Interest Group on Computational Phonology at HLT-NAAGIage869-88,
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fixes in the linguistic sense, i.e well-segmented
and with grammatical meaning, for the lan-
guage in question.

Restrictions : We consider only concatenative mor-
phology and assume that the corpus comes al-
ready segmented on the word level.

The theory and practice of the problem is relevant
or even essential in fields such as child language ac-
quisition, information retrieval and, of course, the
fuller scope of computational morphology and its
further layers of application (e.g Machine Transla-
tion).

The reasons for attacking this problem in an un-
supervised manner include advantages in elegance,
economy of time and money (no annotated resources
required), and the fact that the same technology may
be used on new languages.

An outline of the paper is as follows: we start
with some notation and basic definitions, with which
we describe the theory that is intended to model
the essential behaviour of affixation in natural lan-
guages. Then we describe in detail and with ex-
amples the thinking behind the affix extraction al-
gorithm, which actually requires only a few lines to
define mathematically. Next, we present and discuss
some experimental results on typologically different
languages. The paper then finishes with a brief but
comprehensive characterization of related work and
its differences to our work. At the very end we state
the most important conclusions and ideas on future
components of unsupervised morphological analy-
sis.

New York City, USA, June 2006£2006 Association for Computational Linguistics



2 A Naive Theory of Affixation
Notation and definitions:

e w,s,b,x,y,... € ¥X*: lowercase-letter vari-
ables range over strings of some alphabet > and
are variously called words, segments, strings,
etc.

s <w: s is a terminal segment of the word w
i.e there exists a (possibly empty) string x such
that w = xs

W,S,... C X*: capital-letter variables range
over sets of words/strings/segments

fw(s) = [{w € W|s <w}|: the number of
words in W with terminal segment s

Sw = {s|s<w € W}: all terminal segments
of the words in W

e | - |: is overloaded to denote both the length of
a string and the cardinality of a set

Assume we have two sets of random strings over
some alphabet >_:

e Bases B = {by,ba,...,bn}

e Suffixes S = {s1,52,..., 8}

Such that:

Arbitrary Character Assumption (ACA) Each
character ¢ € ¥ should be equally likely in any
word-position for any member of B or S.

Note that B and S need not be of the same car-
dinality and that any string, including the empty
string, could end up belonging to both B and S.
They need neither to be sampled from the same
distribution; pace the requirement, the distributions
from which B and S are drawn may differ in how
much probability mass is given to strings of different
lengths. For instance, it would not be violation if B
were drawn from a a distribution favouring strings
of length, say, 42 and S from a distribution with a
strong bias for short strings.

Next, build a set of affixed words W C {bs|b €
B,s € S}, that is, a large set whose members are
concatenations of the form bs for b € B,s € S,
such that:
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Frequent Flyer Assumption (FFA) : The mem-
bers of S are frequent. Formally: Given any
s €St fw(s) >> fw(z) for all z such that 1.
|x| = |s|; and 2. not x < &’ for all 5" € .5).

In other words, if we call s € S a true suffix and we
call x an arbitrary segment if it neither a true suffix
nor the terminal segment of a true suffix, then any
true suffix should have much higher frequency than
an arbitrary segment of the same length.

One may legimately ask to what extent words of
real natural languages fit the construction model of
W, with the strong ACA and FFA assumptions, out-
lined above. For instance, even though natural lan-
guages often aren’t written phonemically, it is not
hard to come up with languages that have phonotac-
tic constraints on what may appear at the beginning
or end of a word, e.g, Spanish *s¢- may not begin
a word and yields est- instead. Another violation
of ACA is that (presumably all (Ladefoged, 2005))
languages disallow or disprefer a consonant vs. a
vowel conditioned by the vowel/consonant status of
its predecessor. However, if a certain element occurs
with less frequency than random (the best example
would be click consonants which, in some languages
e.g Eastern ! X060 (Traill, 1994), occur only initially),
this is not a problem to the theory.

As for FFA, we may have breaches such as Bibli-
cal Aramaic (Rosenthal, 1995) where an old -a el-
ement appears on virtually everywhere on nouns,
making it very frequent, but no longer has any syn-
chronic meaning. Also, one can doubt the require-
ment that an affix should need to be frequent; for
instance, the Classical Greek inflectional (lacking
synchronic internal segmentation) alternative medial
3p. pl. aorist imperative ending -cfwr (Blomqvist
and Jastrup, 1998), is not common at all.

Just how realistic the assumptions are is an empir-
ical question, whose answer must be judged by ex-
periments on the relevant languages. In the absense
of fully annotated annotated test sets for diverse lan-
guages, and since the author does not have access to
the Hutmegs/CELEX gold standard sets for Finnish
and English (Creutz and Lindén, 2004), we can only
give some guidelining experimental data.

ACA On a New Testament corpus of Basque
(Leizarraga, 1571) we computed the probabil-
ity of a character appearing in the initial, sec-



Positions Distance
lp1 — pal|  0.47
|lp1 — psl|  0.36
|[p1 —pal|  0.37
|lp2 — ps|| 0.34
Hpg —p4H 0.23
|lps —pal]  0.18

Table 1: Difference between character distributions
according to word position.

ond, third or fourth position of the word. Since
Basque is entirely suffixing, if it complied to
ACA, we’d expect the distributions to be simi-
lar. However, if we look at the difference of the
distributions in terms of variation distance be-
tween two probability distributions (||p — q|| =
23, Ip(x) — q(x)]), it shows that they dif-
fer considerably — especially the initial position
proves more special (see table 1).

FFA As for the FFA, we checked a corpus of bible
portions of Warlpiri (Yal, 1968 2001). This was
chosen because it is one of the few languages
known to the author where data was available
and which has a decent amount of frequent suf-
fixes which are also long, e.g case affixes are
typically bisyllabic phonologically and five-ish
characters long orthographically. Since the or-
thography used marked segmentation, it was
easy to compute FFA statistics on the words
as removed from segmentation marking. Com-
paring with the lists in (Nash, 1980, Ch. 2) it
turns out that FFA is remarkably stable for all
grammatical suffixes occuring in the outermost
layer. There are however the expected kind
of breaches; e.g a tense suffix -ku combined
with a last vowel -u which is frequent in some
frequent preceding affixes making the terminal
segment -uku more frequent than some genuine
three-letter suffixes.

The language known to the author which has
shown the most systematic disconcord with the
FFA is Haitian Creole (also in bible corpus
experiments (Hai, 2003 1999)). Haitian cre-
ole has very little morphology of its own but
owes the lion’s share of it’s words from French.
French derivational morphemes abound in
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these words, e.g -syon, which have been care-
fully shown by (Lefebvre, 2004) not to be pro-
ductive in Haitian Creole. Thus, the little mor-
phology there is in Haitian creole is very dif-
ficult to get at without also getting the French
relics.

3 An Algorithm for Affix Extraction

The key question is, if words in natural languages
are constructed as W explained above, can we re-
cover the segmentation? That is, can we find B and
S, given only W? The answer is yes, we can par-
tially decide this. To be more specific, we can com-
pute a score Z such that Z(z) > Z(y) if z € Sw
and y ¢ Sy . In general, the converse need not hold,
i.e if both z,y € Sy, or both z,y ¢ Sy, then
it may still be that Z(x) > Z(y). This is equiva-
lent to constructing a ranked list of all possible seg-
ments, where the true members of Sy appear at the
top, and somewhere down the list the junk, i.e non-
members of Sy, start appearing and fill up the rest
of the list. Thus, it is not said where on the list the
true-affixes/junk border begins, just that there is a
consistent such border.

Now, how should this list be computed? Given the
FFA, it’s tempting to look at frequencies alone, i.e
just go through all words and make a list of all seg-
ments, ranking them by frequency? This won’t do it
because 1. it doesn’t compensate between segments
of different length; naturally, short segments will be
more frequent than long ones, solely by virtue of
their shortness 2. it overcounts ill-segmented true
affixes, e.g -ng will invariably get a higher (or equal)
count than -ing. What we will do is a modification
of this strategy, because 1. can easily be amended
by subtracting estimated prior frequencies (under
ACA) and there is a clever way of tackling 2. Note
that, to amend 2., when going through w and each
s<w, it would be nice if we could count s only when
it is well-segmented in w. We are given only W so
this information is not available to us, but, the FFA
assumption let’s us make a local guess of it.

We shall illustrate the idea with an example of an
evolving frequency curve of a word “playing” and
its segmentations “playing”, “aying”, “ying”, “ing”,
“ng”, “g” (W being the set of words from an Eng-
lish bible corpus (Eng, 1977)). Figure 1 shows a
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Figure 1: The observed fyy(s) and expected ey (s)
frequency for s <w = playing.

frequency curve fyy(s) and its expected frequency
curve ey (s). The expected frequency of a suffix s
doesn’t depend on the actual characters of s and is
defined as:

1
ew(s) = [W]- mr]

Where 7 is the size of the alphabet under the assump-
tion that its characters are uniformly distributed. We
don’t simply use 26 in the case of lowercase English
since not all characters are equally frequent. Instead
we estimate the size of a would-be uniform distribu-
tion from the entropy of the distribution of the char-
acters in W. This gives r ~ 18.98 for English and
other languages with a similar writing practice.

Next, define the adjusted frequency as the differ-
ence between the observed frequency and the ex-
pected frequency:

fiv(s) = fw(s) —ewl(s)

It is the slope of this curve that predicts the presence
of a good split. Figure 2 shows the appearance of
this curve again exemplified by “playing”.

After these examples, we are ready to define the
segmentation score of a suffix relative to a word Z :

SWxW—>Q:

0 if not s <w
[ (si)—=f"(si—1)
[f/(si—1)]

Table 2 shows the evolution of exact values from
the running example.

Zw(s,w) = {

To move from a Z-score for a segment that is rel-
ative to a word we simply sum over all words to get

-2
playing laying aying ying ing ng

Figure 2: The slope of the f{;,(s) curve for s <w =
playing.

Input: A text corpus C'

Step 1. Extract the set of words W from C' (thus all
contextual and word-frequency information is
discarded)

Step 2. Calculate Zyy (s, w) for each w € W and
s<dw

Step 3. Accumulate Zy (s) = >, e Z (s, w)
Table 3: Summary of affix-extraction algorithm.

the final score Z : Sy — Q:

Zw(s)= > Z(s,w) (1)

weW

To be extra clear, the FFA assumption is “ex-
ploited” in two ways. On the one hand, frequent
affixes get many oppurtunities to get a score (which
could, however, be negative) in the final sum over
w € W. On the other hand, the frequency is what
make up the appearance of the slope that predicts the
segmentation point.

The final Z-score in equation 1 is the one that
purports to have the property that Z(z) > Z(y) if
x € Sy and y ¢ Sy — at least if purged (see be-
low). A summary of the algorithm described in this

if s = s;(w) for somegection is displayed in table 3.

The time-complexity bounding factor is the num-
ber of suffixes, i.e the cardinality of Syy, which is
linear (in the size of the input) if words are bounded
in length by a constant and quadratic in the (really)
worst case if not.




s ‘ playing laying aying ying  ing ng g

s) 1 4 12 40 706 729 756
ew (s) 0.00 0.00 0.00 0.10 190 36.0 684
f(s) —ewl(s) 0.99 399 119 398 704 692 71.0
Z(s,’playing”) 0.00 299 199 232 166 -0.0 -0.8

Table 2: Exact values of frequency curves and scores from the running “playing” example.

1028682.0 ing 111264.0 ling
594208.0 ed 111132.0 ent
3711450 s 109725.0 ating
337464.0 s 109125.0 ate
326250.0 ation  108228.0 an
289536.0 es 97020.0 ies
238853.5 e 94560.0 s
222256.0 er 81648.0 ically
191889.0 ers 81504.0 ment
172800.0 ting 78669.0 led
168288.0 Iy 77900.0 ering
159408.0 ations  74976.0 er’s
143775.0 ted 73988.0 y
130960.0 able e
116352.0 ated -261379 I
113364.0 al -38620.6 m
113280.0 ness -78757.3 a

Table 4: Top 30 and bottom 3 extracted suffixes
for English. 47178 unique words yielded a total of
154407 ranked suffixes.

4 Experimental Results

For a regular English 1 million token newspaper
corpus we get the top 30 plus bottom 3 suffixes as
shown in table 4.

English has little affixation compared to e.g Turk-
ish which is at the opposite end of the typological
scale (Dryer, 2005). The corresponding results for
Turkish on a bible corpus (Tur, 1988) is shown in
table 5.

The results largely speak for themselves but some
comments are in order. As is easily seen from the
lists, some suffixes are suffixes of each other so one
could purge the list in some way to get only the
most “competitive” suffixes. One purging strategy
would be to remove x from the list if there is a 2
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1288402.4 i 33756.55 ler
1510569 er  29816.53 da
142552.6 in 29404.49 di
141603.3 im  28337.89 e
134403.2 en  26580.41 dan
130794.5 e 26373.54 r
127352.0 an  24183.99 ti
1134826 a 22527.26 un
82581.95 ya  21388.71 iniz
78447.74 ar 20993.87 sin
76353.77 ak  20117.60 ik
68730.00 n 18612.14 i
64761.37 ir 18316.45 ek
53021.67 la e
47218.78 ini  -38091.8 ¢
44858.18 lar -240917.5 I
37229.14 iz  -284460.1 s

Table 5: Top 30 and bottom 3 extracted suffixes
for Turkish. 56881 unique words yielded a total of
175937 ranked suffixes.

such that x = yz and Z(z) > Z(x) (this would
remove e.g -ting if -ing is above it on the list). A
more sophisticated purging method is the following,
which does slightly more. First, for a word w € W
define its best segmentation as: Segment(w)
argmaxsqyZ(s). Then purge by keeping only those
suffixes which are the best parse for at least one
word: Sy, = {s € Sy |FwSegment(w) = s}.
Such purging kicks out the bulk of “junk” suf-
fixes. Table 4 shows the numbers for English, Turk-
ish and the virtually affixless Maori (Bauer et al.,
1993). It should noted that “junk” suffixes still re-
main after purging — typically common stem-final
characters — and that there is no simple relation
between the number of suffixes left after purging
and the amount of morphology of the language in
question. Otherwise we would have expected the
morphology-less Maori to be left with no, or 28-ish,



Language | Corpus | Tokens | |W| | [Swl | IS
Maori (Mao, 1996) 1101665 8354 23007 78
English (Eng, 1977) 917634 12999 39845 63
Turkish (Tur, 1988) 574592 56881 175937 122

Table 6: Figures for different languages on the ef-
fects on the size of the suffix list after purging.

suffixes or at least less than English.

A good sign is that the purged list and its order
seems to be largely independent of corpus size (as
long as the corpus is not very small) but we do get
some significant differences between bible English
and newspaper English.

We have chosen to illustrate using affixes but the
method readily generalizes to prefixes as well and
even prefixes and suffixes at the same time. As
an example of this, we show top-10 purged prefix-
suffix scores in the same table also for some typo-
logically differing languages in table 7. Again, we
use bible corpora for cross-language comparability
(Swedish (Swe, 1917) and Swahili (Swa, 1953)).
The scores have been normalized in each language
to allow cross-language comparison — which, judg-
ing from the table, seems meaningful. Swahili is an
exclusively prefixing language but verbs tend to end
in -a (whose status as a morpheme is the linguistic
sense can be doubted), whereas Swedish is suffix-
ing, although some prefixes are or were productive
in word-formation.

A full discussion of further aspects such as a more
informed segmentation of words, peeling of multi-
ple suffix layers and purging of unwanted affixes re-
quires, is beyond the scope of this paper.

5 Related Work

For reasons of space we cannot cite and comment
every relevant paper even in the narrow view of
highly unsupervised extraction of affixes from raw
corpus data, but we will cite enough to cover each
line of research. The vast fields of word segmenta-
tion for speech recognition or for languages which
do not mark word boundaries will not be covered.
In our view, segmentation into lexical units is a dif-
ferent problem than that of affix extraction since the
frequencies of lexical items are different, i.e occur
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Swedish English Swahili
for-  0.097 | -eth 0.086 | -a 0.100
-en  0.086 | -ing 0.080 | wa-  0.095
-na  0.036 | -ed 0.063 | ali- 0.065
-ade 0.035 | -est 0.036 | nita- 0.059
-a 0.034 | -th 0.035 | aka- 0.049
-ar  0.033 | -es 0.034 | ni- 0.046
-er  0.033 | -s 0.033 | ku-  0.044
-as  0.032 | -ah 0.026 | ata- 0.042
-8 0.031 | -er 0.026 | ha-  0.032
-de  0.031 | -ation 0.019 | a- 0.031

Table 7: Comparative figures for prefix vs. suffix
detection. The high placement of English -eth and
-ah are due to the fact that the bible version used has
drinketh, sitteth etc and a lot of personal names in
-ah.

much more sparsely. Results from this area which
have been carried over or overlap with affic detec-
tion will however be taken into account. A lot of
the papers cited have a wider scope and are still use-
ful even though they are critisized here for having a
non-optimal affix detection component.

Many authors trace their approches back to two
early papers by Zellig Harris (Harris, 1955; Har-
ris, 1970) which count letter successor varieties.
The basic procedure is to ask how many different
phonemes occur (in various utterances e.g a corpus)
after the first n phonemes of some test utterance and
predict that segmentation(s) occur where the number
of succesors reaches a peak. For example, if we have
play, played, playing, player, players, playground
and we wish to test where to segment plays, the suc-
cesor count for the prefix pla would be 1 because
only y occurs after whereas the number of succes-
sors of play peak at three (i.e {e,i,g}). Although
the heuristic has had some success it was shown (in
various interpretations) as early as (Hafer and Weiss,
1974) that it is not really sound — even for English.
A slightly better method is to compile a set of words
into a trie and predict boundaries at nodes with high
actitivity (e.g (Johnson and Martin, 2003; Schone
and Jurafsky, 2001; Kazakov and Manandhar, 2001)
and earlier papers by the same authors), but this not
sound either as non-morphemic short common char-
acter sequences also show significant branching.



The algorithm in this paper is differs significantly
from the Harris-inspired varieties. First, we do
not record the number of phonemes/character of a
given prefix/suffix but the total number of contin-
uations. In the example above, that would be the
set {ed, ing, er, ers, ground} rather than the three-
member set of continuing phonemes/characters.
Secondly, segmentation of a given word is not the
immediate objective and what amounts to identifi-
cation of the end of a lexical (thus generally low-
frequency) item is not within the direct reach of the
model. Thirdly, and most importantly, the algorithm
in this paper looks at the slope of the frequency
curve not at peaks in absolute frequency.

A different approach, sometimes used in com-
plement of other sources of information, is to se-
lect aligned pairs (or sets) of strings that share a
long character sequence (work includes (Jacquemin,
1997; Yarowsky and Wicentowski, 2000; Baroni et
al., 2002; Clark, 2001)). A notable advantage is that
one is not restricted to concatenative morphology.

Many publications (Cavar et al., 2004; Brent et
al., 1995; Goldsmith et al., 2001; Déjean, 1998;
Snover et al., 2002; Argamon et al., 2004; Gold-
smith, 2001; Creutz and Lagus, 2005; Neuvel and
Fulop, 2002; Baroni, 2003; Gaussier, 1999; Sharma
et al., 2002; Wicentowski, 2002; Oliver, 2004),
and various other works by the same authors, de-
scribe strategies that use frequencies, probabilities,
and optimization criteria, often Minimum Descrip-
tion Length (MDL), in various combinations. So far,
all these are unsatisfactory on two main accounts; on
the theretical side, they still owe an explanation of
why compression or MDL should give birth to seg-
mentations coinciding with morphemes as linguisti-
cally defined. On the experimental side, thresholds,
supervised/developed parametres and selective input
still cloud the success of reported results, which, in
any case, aren’t wide enough to sustain some too
rash language independence claims.

To be more specific, some MDL approaches aim
to minimize the description of the set of words in
the input corpus, some to describe all tokens in
the corpus, but, none aims to minimize, what one
would otherwise expect, the set of possible words
in the language. More importantly, none of the re-
viewed works allow any variation in the descrip-
tion language (“model”) during the minimization
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search. Therefore they should be more properly la-
beled “weighting schemes” and it’s an open question
whether their yields correspond to linguistic analy-
sis. Given an input corpus and a traditional linguis-
tic analysis, it is trivial to show that it is possible to
decrease description length (according to the given
schemes) by stepping away from linguistic analysis.
Moreover, various forms of codebook compression,
such as Lempel-Ziv compression, yield shorter de-
scription but without any known linguistic relevance
at all. What is clear, however, apart from whether it
is theoretically motivated, is that MDL approaches
are useful.

A systematic test of segmentation algorithms over
many different types of languages has yet to be pub-
lished. For three reasons, it will not be undertaken
here either. First, as e.g already Manning (1998)
notes for sandhi phenomena, it is far from clear
what the gold standard should be (even though we
may agree or agree to disagree on some familiar
European languages). Secondly, segmentation al-
gorithms may have different purposes and it might
not make good sense to study segmentation in isola-
tion from induction of paradigms. Lastly, and most
importantly, all of the reviewed techniques (Wicen-
towski, 2004; Wicentowski, 2002; Snover et al.,
2002; Baroni et al., 2002; Andreev, 1965; Cavar
et al., 2004; Snover and Brent, 2003; Snover and
Brent, 2001; Snover, 2002; Schone and Jurafsky,
2001; Jacquemin, 1997; Goldsmith and Hu, 2004;
Sharma et al., 2002; Clark, 2001; Kazakov and Man-
andhar, 1998; Déjean, 1998; Oliver, 2004; Creutz
and Lagus, 2002; Creutz and Lagus, 2003; Creutz
and Lagus, 2004; Hirsiméki et al., 2003; Creutz
and Lagus, 2005; Argamon et al., 2004; Gaussier,
1999; Lehmann, 1973; Langer, 1991; Flenner, 1995;
Klenk and Langer, 1989; Goldsmith, 2001; Gold-
smith, 2000; Hu et al., 2005b; Hu et al., 2005a;
Brent et al., 1995), as they are described, have
threshold-parameters of some sort, explicitly claim
not to work well for an open set of languages, or
require noise-free all-form input (Albright, 2002;
Manning, 1998; Borin, 1991). Therefore it is not
possible to even design a fair test.

In any event, we wish to appeal to the merits of
developing a theory in parallel with experimentation
— as opposed to only ad hoc result chasing. If we
have a theory and we don’t get the results we want,



we may scrutinize the assumptions behind the theory
in order to modify or reject it (understanding why
we did so). Without a theory there’s no telling what
to do or how to interpret intermediate numbers in a
long series of calculations.

6 Conclusion

We have presented a new theory of affixation and a
parameter-less efficient algorithm for collecting af-
fixes from raw corpus data of an arbitrary language.
Depending on one’s purposes with it, a cut-off point
for the collected list is still missing, or at least, we
do not consider that matter here. The results are very
promising and competitive but at present we lack
formal evaluation in this respect. Future directions
also include a more specialized look into the relation
between affix-segmentation and paradigmatic varia-
tion and further exploits into layered morphology.
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