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Abstract

State of the art in statistical machine trans-
lation is currently represented by phrase-
based models, which typically incorpo-
rate a large number of probabilities of
phrase-pairs and word n-grams. In this
work, we investigate data compression
methods for efficiently encoding n-gram
and phrase-pair probabilities, that are usu-
ally encoded in 32-bit floating point num-
bers. We measured the impact of com-
pression on translation quality through a
phrase-based decoder trained on two dis-
tinct tasks: the translation of European
Parliament speeches from Spanish to En-
glish, and the translation of news agencies
from Chinese to English. We show that
with a very simple quantization scheme all
probabilities can be encoded in just 4 bits
with a relative loss in BLEU score on the
two tasks by 1.0% and 1.6%, respectively.

1 Introduction
In several natural language processing tasks, such as
automatic speech recognition and machine transla-
tion, state-of-the-art systems rely on the statistical
approach.

Statistical machine translation (SMT) is based
on parametric models incorporating a large num-
ber of observations and probabilities estimated from
monolingual and parallel texts. The current state of
the art is represented by the so-called phrase-based
translation approach (Och and Ney, 2004; Koehn et

al., 2003). Its core components are a translation
model that contains probabilities of phrase-pairs,
and a language model that incorporates probabilities
of word n-grams.

Due to the intrinsic data-sparseness of language
corpora, the set of observations increases almost lin-
early with the size of the training data. Hence, to
efficiently store observations and probabilities in a
computer memory the following approaches can be
tackled: designing compact data-structures, pruning
rare or unreliable observations, and applying data
compression.

In this paper we only focus on the last approach.
We investigate two different quantization methods
to encode probabilities and analyze their impact on
translation performance. In particular, we address
the following questions:

• How does probability quantization impact on
the components of the translation system,
namely the language model and the translation
model?

• Which is the optimal trade-off between data
compression and translation performance?

• How do quantized models perform under dif-
ferent data-sparseness conditions?

• Is the impact of quantization consistent across
different translation tasks?

Experiments were performed with our phrase-
based SMT system (Federico and Bertoldi, 2005) on
two large-vocabulary tasks: the translation of Euro-
pean Parliament Plenary Sessions from Spanish to
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English, and the translation of news agencies from
Chinese to English, according to the set up defined
by the 2005 NIST MT Evaluation Workshop.

The paper is organized as follows. Section 2 re-
views previous work addressing efficiency in speech
recognition and information retrieval. Section 3 in-
troduces the two quantization methods considered
in this paper, namely the Lloyd’s algorithm and the
Binning method. Section 4 briefly describes our
phrase-based SMT system. Sections 5 reports and
discusses experimental results addressing the ques-
tions in the introduction. Finally, Section 6 draws
some conclusions.

2 Previous work

Most related work can be found in the area of speech
recognition, where n-gram language models have
been used for a while.

Efforts targeting efficiency have been mainly fo-
cused on pruning techniques (Seymore and Rosen-
feld, 1996; Gao and Zhang, 2002), which permit
to significantly reduce the amount of n-grams to be
stored at a negligible cost in performance. More-
over, very compact data-structures for storing back-
off n-gram models have been recently proposed by
Raj and Whittaker (2003).

Whittaker and Raj (2001) discuss probability en-
coding as a means to reduce memory requirements
of an n-gram language model. Quantization of a
3-gram back-off model was performed by applying
the k-means Lloyd-Max algorithm at each n-gram
level. Experiments were performed on several large-
vocabulary speech recognition tasks by considering
different levels of compression. By encoded proba-
bilities in 4 bits, the increase in word-error-rate was
only around 2% relative with respect to a baseline
using 32-bit floating point probabilities.

Similar work was carried out in the field of in-
formation retrieval, where memory efficiency is in-
stead related to the indexing data structure, which
contains information about frequencies of terms in
all the individual documents. Franz and McCarley
(2002) investigated quantization of term frequencies
by applying a binning method. The impact on re-
trieval performance was analyzed against different
quantization levels. Results showed that 2 bits are
sufficient to encode term frequencies at the cost of a

negligible loss in performance.
In our work, we investigate both data compres-

sion methods, namely the Lloyd’s algorithm and the
binning method, in a SMT framework.

3 Quantization
Quantization provides an effective way of reducing
the number of bits needed to store floating point
variables. The quantization process consists in par-
titioning the real space into a finite set of k quantiza-
tion levels and identifying a center ci for each level,
i = 1, . . . , k. A function q(x) maps any real-valued
point x onto its unique center ci. Cost of quantiza-
tion is the approximation error between x and ci.

If k = 2h, h bits are enough to represent a floating
point variable; as a floating point is usually encoded
in 32 bits (4 byte), the compression ratio is equal
to 32/h1 . Hence, the compression ratio also gives
an upper bound for the relative reduction of mem-
ory use, because it assumes an optimal implemen-
tation of data structures without any memory waste.
Notice that memory consumption for storing the k-
entry codebook is negligible (k ∗ 32 bits).

As we will apply quantization on probabilistic
distribution, we can restrict the range of real val-
ues between 0 and 1. Most quantization algorithms
require a fixed (although huge) amount of points
in order to define the quantization levels and their
centers. Probabilistic models used in SMT satisfy
this requirement because the set of parameters larger
than 0 is always limited.

Quantization algorithms differ in the way parti-
tion of data points is computed and centers are iden-
tified. In this paper we investigate two different
quantization algorithms.

Lloyd’s Algorithm
Quantization of a finite set of real-valued data points
can be seen as a clustering problem. A large fam-
ily of clustering algorithms, called k-means algo-
rithms (Kanungo et al., 2002), look for optimal cen-
ters ci which minimize the mean squared distance
from each data point to its nearest center. The map
between points and centers is trivially derived.

1In the computation of the compression ratio we take into
account only the memory needed to store the probabilities of the
observations, and not the memory needed to store the observa-
tions themselves which depends on the adopted data structures.
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As no efficient exact solution to this problem
is known, either polynomial-time approximation or
heuristic algorithms have been proposed to tackle
the problem. In particular, Lloyd’s algorithm starts
from a feasible set of centers and iteratively moves
them until some convergence criterion is satisfied.
Finally, the algorithm finds a local optimal solution.
In this work we applied the version of the algorithm
available in the K-MEANS package2 .

Binning Method
The binning method partitions data points into uni-
formly populated intervals or bins. The center of
each bin corresponds to the mean value of all points
falling into it. If Ni is the number of points of the
i-th bin, and xi the smallest point in the i-th bin, a
partition [xi, xi+1] results such that Ni is constant
for each i = 0, . . . , k − 1, where xk = 1 by default.
The following map is thus defined:

q(x) = ci if xi <= x < xi+1.

Our implementation uses the following greedy
strategy: bins are build by uniformly partition all
different points of the data set.

4 Phrase-based Translation System
Given a string f in the source language, our SMT
system (Federico and Bertoldi, 2005; Cettolo et al.,
2005), looks for the target string e maximizing the
posterior probability Pr(e,a | f) over all possible
word alignments a. The conditional distribution is
computed with the log-linear model:

pλ(e,a | f) ∝ exp

{

R
∑

r=1

λrhr(e, f ,a)

}

,

where hr(e, f ,a), r = 1 . . . R are real valued feature
functions.

The log-linear model is used to score translation
hypotheses (e,a) built in terms of strings of phrases,
which are simple sequences of words. The transla-
tion process works as follows. At each step, a target
phrase is added to the translation whose correspond-
ing source phrase within f is identified through three
random quantities: the fertility which establishes its
length; the permutation which sets its first position;

2www.cs.umd.edu/∼mount/Projects/KMeans.

the tablet which tells its word string. Notice that tar-
get phrases might have fertility equal to zero, hence
they do not translate any source word. Moreover,
untranslated words in f are also modeled through
some random variables.

The choice of permutation and tablets can be
constrained in order to limit the search space un-
til performing a monotone phrase-based translation.
In any case, local word reordering is permitted by
phrases.

The above process is performed by a beam-search
decoder and is modeled with twelve feature func-
tions (Cettolo et al., 2005) which are either esti-
mated from data, e.g. the target n-gram language
models and the phrase-based translation model, or
empirically fixed, e.g. the permutation models.
While feature functions exploit statistics extracted
from monolingual or word-aligned texts from the
training data, the scaling factors λ of the log-linear
model are empirically estimated on development
data.

The two most memory consuming feature func-
tions are the phrase-based Translation Model (TM)
and the n-gram Language Model (LM).

Translation Model
The TM contains phrase-pairs statistics computed
on a parallel corpus provided with word-alignments
in both directions. Phrase-pairs up to length 8 are
extracted and singleton observations are pruned off.
For each extracted phrase-pair (f̃ , ẽ), four transla-
tion probabilities are estimated:
– a smoothed frequency of f̃ given ẽ
– a smoothed frequency of ẽ given f̃
– an IBM model 1 based probability of ẽ given f̃
– an IBM model 1 based probability of f̃ given ẽ

Hence, the number of parameters of the transla-
tion models corresponds to 4 times the number of
extracted phrase-pairs. From the point of view of
quantization, the four types of probabilities are con-
sidered separately and a specific codebook is gener-
ated for each type.

Language Model
The LM is a 4-gram back-off model estimated with
the modified Kneser-Ney smoothing method (Chen
and Goodman, 1998). Singleton pruning is applied
on 3-gram and 4-gram statistics. In terms of num-
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task parallel resources mono resources LM TM
src trg words 1-gram 2-gram 3-gram 4-gram phrase pairs

NIST 82,168 88,159 463,855 1,408 20,475 29,182 46,326 10,410
EPPS 34,460 32,951 3,2951 110 2,252 2,191 2,677 3,877
EPPS-800 23,611 22,520 22,520 90 1,778 1,586 1,834 2,499
EPPS-400 11,816 11,181 11,181 65 1,143 859 897 1,326
EPPS-200 5,954 5,639 5,639 47 738 464 439 712
EPPS-100 2,994 2,845 2,845 35 469 246 213 387

Table 1: Figures (in thousand) regarding the training data of each translation task.

ber of parameters, each n-gram, with n < 4, has
two probabilities associated with: the probability of
the n-gram itself, and the back-off probability of the
corresponding n + 1-gram extensions. Finally, 4-
grams have only one probability associated with.

For the sake of quantization, two separate code-
books are generated for each of the first three lev-
els, and one codebook is generated for the last level.
Hence, a total of 7 codebooks are generated. In all
discussed quantized LMs, unigram probabilities are
always encoded with 8 bits. The reason is that uni-
gram probabilities have indeed the largest variability
and do not contribute significantly to the total num-
ber of parameters.

5 Experiments
Data and Experimental Framework
We performed experiments on two large vocabulary
translation tasks: the translation of European Parlia-
mentary Plenary Sessions (EPPS) (Vilar et al., 2005)
from Spanish to English, and the translation of doc-
uments from Chinese to English as proposed by the
NIST MT Evaluation Workshops3 .

Translation of EPPS is performed on the so-called
final text editions, which are prepared by the trans-
lation office of the European Parliament. Both the
training and testing data were collected by the TC-
STAR4 project and were made freely available to
participants in the 2006 TC-STAR Evaluation Cam-
paign. In order to perform experiments under differ-
ent data sparseness conditions, four subsamples of
the training data with different sizes were generated,
too.

Training and test data used for the NIST task are
3www.nist.gov/speech/tests/mt/.
4www.tc-star.org

task sentences src words ref words
EPPS 840 22725 23066
NIST 919 25586 29155

Table 2: Statistics of test data for each task.

available through the Linguistic Data Consortium5.
Employed training data meet the requirements set
for the Chinese-English large-data track of the 2005
NIST MT Evaluation Workshop. For testing we
used instead the NIST 2003 test set.

Table 1 reports statistics about the training data of
each task and the models estimated on them. That
is, the number of running words of source and target
languages, the number of n-grams in the language
model and the number phrase-pairs in the transla-
tion model. Table 2 reports instead statistics about
the test sets, namely, the number of source sentences
and running words in the source part and in the gold
reference translations.

Translation performance was measured in terms
of BLEU score, NIST score, word-error rate (WER),
and position independent error rate (PER). Score
computation relied on two and four reference trans-
lations per sentence, respectively, for the EPPS
and NIST tasks. Scores were computed in case-
insensitive modality with punctuation. In general,
none of the above measures is alone sufficiently in-
formative about translation quality, however, in the
community there seems to be a preference toward
reporting results with BLEU. Here, to be on the safe
side and to better support our findings we will report
results with all measures, but will limit discussion
on performance to the BLEU score.

In order to just focus on the effect of quantiza-
5www.ldc.upenn.edu
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LM-h
32 8 6 5 4 3 2

32 54.78 54.75 54.73 54.65 54.49 54.24 53.82
8 54.78 54.69 54.69 54.79 54.55 54.18 53.65
6 54.57 54.49 54.76 54.57 54.63 54.26 53.60

TM-h 5 54.68 54.68 54.56 54.61 54.60 54.10 53.39
4 54.37 54.36 54.47 54.44 54.23 54.06 53.26
3 54.28 54.03 54.22 53.96 53.75 53.69 53.03
2 53.58 53.51 53.47 53.35 53.39 53.41 52.41

Table 3: BLEU scores in the EPPS task with different quantization levels of the LM and TM.

tion, all reported experiments were performed with
a plain configuration of the ITC-irst SMT system.
That is, we used a single decoding step, no phrase
re-ordering, and task-dependent weights of the log-
linear model.

Henceforth, LMs and TM quantized with h bits
are denoted with LM-h and TM-h, respectively.
Non quantized models are indicated with LM-32
and TM-32.
Impact of Quantization on LM and TM
A first set of experiments was performed on the
EPPS task by applying probability quantization ei-
ther on the LM or on the TMs. Figures 1 and 2
compare the two proposed quantization algorithms
(LLOYD and BINNING) against different levels of
quantization, namely 2, 3, 4, 5, 6, and 8 bits.
The scores achieved by the non quantized models
(LM-32 and TM-32) are reported as reference.

The following considerations can be drawn from
these results. The Binning method works slightly,
but not significantly, better than the Lloyd’s algo-
rithm, especially with the highest compression ra-
tios.

In general, the LM seems less affected by data
compression than the TM. By comparing quantiza-
tion with the binning method against no quantiza-
tion, the BLEU score with LM-4 is only 0.42% rel-
ative worse (54.78 vs 54.55). Degradation of BLEU
score by TM-4 is 0.77% (54.78 vs 54.36). For all the
models, encoding with 8 bits does not affect transla-
tion quality at all.

In following experiments, binning quantization
was applied to both LM and TM. Figure 3 plots
all scores against different levels of quantization.
As references, the curves corresponding to only

LM-h TM-h BLEU NIST WER PER
32 32 28.82 8.769 62.41 42.30
8 8 28.87 8.772 62.39 42.19
4 4 28.36 8.742 62.94 42.45
2 2 25.95 8.491 65.87 44.04

Table 4: Translation scores on the NIST task with
different quantization levels of the LM and TM.

LM quantization (LM-h) and only TM quantization
(TM-h) are shown. Independent levels of quantiza-
tion of the LM and TM were also considered. BLEU
scores related to several combinations are reported
in Table 3.

Results show that the joint impact of LM and TM
quantization is almost additive. Degradation with
4 bits quantization is only about 1% relative (from
54.78 to 54.23). Quantization with 2 bits is sur-
prisingly robust: the BLEU score just decreases by
4.33% relative (from 54.78 to 52.41).

Quantization vs. Data Sparseness
Quantization of LM and TM was evaluated with re-
spect to data-sparseness. Quantized and not quan-
tized models were trained on four subset of the EPPS
corpus with decreasing size. Statistics about these
sub-corpora are reported in Table 1. Quantization
was performed with the binning method using 2,
4, and 8 bit encodings. Results in terms of BLEU
score are plotted in Figure 4. It is evident that the
gap in BLEU score between the quantized and not
quantized models is almost constant under different
training conditions. This result suggests that perfor-
mance of quantized models is not affected by data
sparseness.
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Consistency Across Different Tasks
A subset of quantization settings tested with the
EPPS tasks was also evaluated on the NIST task.
Results are reported in Table 4.

Quantization with 8 bits does not affect perfor-
mance, and gives even slightly better scores. Also
quantization with 4 bits produces scores very close
to those of non quantized models, with a loss in
BLEU score of only 1.60% relative. However, push-
ing quantization to 2 bits significantly deteriorates
performance, with a drop in BLEU score of 9.96%
relative.

In comparison to the EPPS task, performance
degradation due to quantization seems to be twice as
large. In conclusion, consistent behavior is observed
among different degrees of compression. Absolute
loss in performance, though quite different from the
EPPS task, remains nevertheless very reasonable.

Performance vs. Compression
From the results of single versus combined com-
pression, we can reasonably assume that perfor-
mance degradation due to quantization of LM and
TM probabilities is additive. Hence, as memory sav-
ings on the two models are also independent we can
look at the optimal trade-off between performance
and compression separately. Experiments on the
NIST and EPPS tasks seem to show that encoding
of LM and TM probabilities with 4 bits provides the
best trade-off, that is a compression ratio of 8 with a
relative loss in BLEU score of 1% and 1.6%. It can
be seen that score degradation below 4 bits grows
generally faster than the corresponding memory sav-
ings.

6 Conclusion
In this paper we investigated the application of data
compression methods to the probabilities stored by
a phrase-based translation model. In particular,
probability quantization was applied on the n-gram
language model and on the phrase-pair translation
model. Experimental results confirm previous find-
ings in speech recognition: language model proba-
bilities can be encoded in just 4 bits at the cost of
a very little loss in performance. The same resolu-
tion level seems to be a good compromise even for
the translation model. Remarkably, the impact of

quantization on the language model and translation
model seems to be additive with respect to perfor-
mance. Finally, quantization does not seems to be
affected by data sparseness and behaves similarly on
different translation tasks.
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Figure 1: EPPS task: translation scores vs. quantization level of LM. TM is not quantized.
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Figure 2: EPPS task: translation scores vs. quantization level of TM. LM is not quantized.
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Figure 3: EPPS task: translation scores vs. quantization level of LM and TM. Quantization was performed
with the Binning algorithm.
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Figure 4: EPPS task: translation scores vs. amount of training data. Different levels of quantization were
generated with the Binning algorithm.
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