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Abstract

In this paper we propose a generalization
of the Stack-based decoding paradigm for
Statistical Machine Translation. The well
known single and multi-stack decoding
algorithms defined in the literature have
been integrated within a new formalism
which also defines a new family of stack-
based decoders. These decoders allows
a tradeoff to be made between the ad-
vantages of using only one or multiple
stacks. The key point of the new formal-
ism consists in parameterizeing the num-
ber of stacks to be used during the de-
coding process, and providing an efficient
method to decide in which stack each par-
tial hypothesis generated is to be inserted-
during the search process. Experimental
results are also reported for a search algo-
rithm for phrase-based statistical transla-

of both the target language modBl(e!) and the
string translation modePr(f{|e!) must be chosen.
The equation that models this process is:

é1 = argmax{Pr(ef) - Pr(filel)} (1)
€1

The search/decoding problem in SMT consists in
solving the maximization problem stated in Eq. (1).
In the literature, we can find different techniques to
deal with this problem, ranging from heuristic and
fast (as greedy decoders) to optimal and very slow
decoding algorithms (Germann et al., 2001). Also,
under certain circumstances, stack-based decoders
can obtain optimal solutions.

Many works (Berger et al., 1996; Wang and
Waibel, 1998; Germann et al.,, 2001; Och et al.,
2001; Ortiz et al., 2003) have adopted different types
of stack-based algorithms to solve the global search
optimization problem for statistical machine trans-
lation. All these works follow two main different
approaches according to the number of stacks used

tion models. in the design and implementation of the search algo-

rithm (the stacks are used to store partial hypotheses,
sorted according to their partial score/probability,
guring the search process) :

1 Introduction

The translation process can be formulated from
statistical point of view as follows: A source lan-
guage stringf{ = f1 ... f; is to be translated into
a target language string = e;...e;. Every tar-
get string is regarded as a possible translation for the
source language string with maximum a-posteriori
probability Pr(ef|f{). According to Bayes’ theo-
rem, the target string! that maximizesthe product

e On the one hand, in (Wang and Waibel, 1998;
Och et al., 2001) a single stack is used. In
that case, in order to make the search feasible,
the pruning of the number of partial hypothe-
ses stored in the stack is needed. This causes
many search errors due to the fact that hy-
potheses covering a different number of source
(translated) words compete in the same condi-
tions. Therefore, the greater number of covered
words the higher possibility to be pruned.

This work has been partially supported by the Spanish
project TIC2003-08681-C02-02, th&gencia Valenciana de
Ciencia y Tecnologiander contract GRUPOS03/031, tGen-
eralitat Valenciana and the project HERMES (Vicerrectorado
de Investigacion - UCLM-05/06)

!Note that the expression should also be maximized by
however, for the sake of simplicity we suppose that it is know

e On the other hand (Berger et al., 1996; Ger-
mann et al., 2001) make use of multiple stacks
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(one for each set of source covered/translateid (Marcu and Wong, 2002; Zens et al., 2002; Koehn
words in the partial hypothesis) in order toet al., 2003; Tomas and Casacuberta, 2003).

solve the disadvantages of the single-stack ap- For the translation modeRr(f{|e!)) in Eq. (1),
proach. By contrast, the problem of findingPBT can be explained from a generative point of
the best hypothesis to be expanded introducegew as follows (Zens et al., 2002):

an exponential term in the computational com-

plexity of the algorithm 1. The target sentence] is segmented intdy

phrasesdf).

In (Ortiz et al., 2003) the authors present an em-2. Each target phrasg is translated into a source
pirical comparison (about efficiency and translation ~ phrasef.

quality) of the two approaches paying special atten-
tion to the advantages and disadvantages of the two™
approaches.

In this paper we present a new formalism consist- In PBT, it is assumed that the relations between
ing of a generalization of the classical stack-basetihe words of the source and target sentences can
decoding paradigm for SMT. This new formalismbe explained by means of the hidden variabfg,
defines a new family of stack-based decoders, whiakhich contains all the decisions made during the
also integrates the well known stack-based decodirggnerative story.
algorithms proposed so far within the framework of

Finally, the source phrases are reordered in or-
der to compose the source senteffife= f;.

SMT, that is single and multi-stack decoders. Pr(f{lel) = Z Pr(, [, er")
The rest of the paper is organized as follows: in K.aft
section 2 the phrase-based approach to SMT is de- = > Pr(af(ef)Pr(fi|al, &)
picted; in section 3 the main features of classical K.ak
stack-based decoders are presented; in section 4 the 2)

new formalism is presented and in section 5 exper-

imental results are shown; finally some conclusions_Different assumptions can be made from the pre-
are drawn in section 6. vious equation. For example, in (Zens et al., 2002)

the following model is proposed:

2 Phrase Based Statistical Machine K
Translation po(flel) = alel) D> [[p(felea,) (3

. . K,sz k=1
Different translation model§TMs) have been pro-

posed depending on how the relation between thhere a; notes the index of the source phrase
source and the target languages is structured:; that éich is aligned with the:-th target phras¢, and

the way a target sentence is generated from a sour&@t all possible segmentations have the same proba-
sentence. This relation is summarized using the coRllity. In (Tomas and Casacuberta, 2001; Zens et al.,
cept ofalignment that is, how the constituents (typ- 2002), it also is assumed that the alignments must be
ically words or group-of-words) of a pair of sen-monotonic. This led us to the following equation:
tences are aligned to each other. The most widely K

used single-word-basestatistical alignment mod- po(flel) = a(el) Z Hp(fk|ék) (4)

els (SAMs) have been proposed in (Brown et al., Kak k=1

1993; Ney et al., 2000). On the other hand, models

that deal with structures or phrases instead of singl8 P0th cases the model parameters that have to be
words have also been proposed: the syntax trangstlmated_are the trgnslatlon.probapllltles between
lation models are described in (Yamada and KnighPhrase pairs= {p(f[e)}), which typically are es-
2001) , alignment templates are used in (Och, 200Zjmated as follows:

and the alignment template approach is re-framed S N(f, é)

into the so-calledphrase based translatio(PBT) p(fle) = N (&) )
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where N(f|é) is the number of times thaf have .’_\
been seen as a translation @fvithin the training

corpus.

newhyp:apply_operation(hypothesis)

3 StaCk-DeCOdlng A|gOf|tth Still there\are operations

to be applRd
The stack decoding algorithm, also calldd algo-
rithm, was first introduced by F. Jelinek in (Jelinek,
1969). The stack decoding algorithm attempts to
generate partial solutions, callbgipothesesuntil a
complete translation is fouRpthese hypotheses are
stored in a stack and ordered by the@ore Typi-
cally, this measure or score is the probability of th¢igure 1: Flow chart associated to the expansion of
product of the translation and the language modelshypothesis when using ait algorithm.
introduced above. Thel* decoder follows a se-

f steps f hievi let d i-
g:;/eggtei)r:a; Esso?gea;cis'levmg a complete (an pOSSc;ry overflow problems, the maximum number of hy-

potheses that a stack may store has to be limited. It
1. Initialize the stack with an empty hypothesis. is important to note that for a hypothesis, the higher
the aligned source words, the worse the score. These
2. lterate hypotheses will be discarded sooner when4in
(a) Poph (the best hypothesis) off the stack. search algorithm is used due to the stack length lim-
itation. Because of this, theulti-stack algorithms
were introduced.

stack.insert(newhyp)

All operations were applied

(b) If h is a complete sentence, outputnd

terminate. . .

e & Multi-stack algorithms store those hypotheses
() Expandh. with different subsets of source aligned words in dif-
(d) Goto step 2a. ferent stacks. That is to say, given an input sentence

J .- -

The search is started from a null string and obtainé1 clompso;]edt Ofi vtvo;ds, rlnl:Itl_ts,taS(:k s Igorlthms.
new hypotheses after an expansion process (step Sgyployess™ Stacks 1o transiate it. such an organi-
which is executed at each iteration. The expansio‘7hatlon Improves the pru_nlng_ of the hypothe.ses when
process consists of the application of a set of Od_—’he stack Iength limitation is exceeded, since onIy_
erators over the best hypothesis in the stack, as/JYPOtheses with the same number of covered posi-

is depicted in Figure 1. Thus, the design of stacfOns can compete with egch Othir' .
decoding algorithms involves defining a set of oper- All the segrch steps given fod algorlthm can
ators to be applied over every hypothesis as well Also be applied here, except step 2a. This is due

the way in which they are combined in the expansioFP the fact that multiple stacks are used instead of

process. Both the operators and the expansion alg%rJIy one. Figure 2 depicts the expansion process

rithm depend on the translation model that we uséh_ath tlhed_rfrf\ultl—sta;]ck a}:gorlthms execuée_, W_h'Ch 'S
For the case of the phrase-based translation modéﬂ@ _ty : erent'F an the one presentg In Figure 1.
described in the previous section, the operathiis Multl-s_tack_algqnthms have the n_egat_lve prop_erty of
defined, which adds a sequence of words to the tafPending significant amounts of time in selecting the
get sentence, and aligns it with a sequence of wordypotheses to be _expanded, since at each iteration,
of the Source sentence. the best hypothesis in a set Bf stacks must be
The number of hypotheses to be stored during th%earched for (Ortiz et al., 2003). By contrast, for the

search can be huge. In order then to avoid merré* algorithm, it is not possible to reduce the length
of the stack in the same way as in the multi-stack

“Each hypothesis has associated a coverage vector of lengthse without loss of translation quality.
J, which indicates the set of source words already cov- -, . .
ered/translated so far. In the following we will refer toghi Additionally, certain translation systems, e.g. the
simply as coverage. Pharaoh decoder (Koehn, 2003) use an alternative
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.’_\ 4.2 Mapping hypotheses to stacks
Generalized stack-decoding algorithms require a
"eWhyp=app'y“”’era“"”(hypmhess) mechanism to decide in which stack each hypothesis
ek are operaions \ is to be inserted. As stated in section 4.1, given an
10 be apylied input sentence and a generalized stack-decoding
algorithm withG = g, the decoder will work with
29 stacks, and each one will contaid—9 different
Al operations were applied coverages. Therefore, the above mentioned mecha-
nism can be expressed as a function which will be
referred to as the: function. Given a hypothesis
coverage composed of bits, they function return
Figure 2: Flow chart associated to the expansion @f stack identifier composed of onfbits:
a hypothesis when using a multi-stack algorithm.

stack[newhyp.coverage].insen(newhyp)

e ({0,117 — ({0,1}) (6)

Generalized stack algorithms are strongly in-
gg)ired by multi-stack algorithms; however, both
types of algorithms differ in the way the hypothesis
4 Generalized Stack-Decoding Algorithms e_xpansion. is performed. Figure 3 shows the expan-

sion algorithm of a generalized stack decoder with
As was mentioned in the previous section, given a granularity parameter equal goand a functiom

Sentencefl‘l to be translated, a Single stack deCOdwhich maps hypotheses coverages to stacks.
ing algorithm employs only one stack to perform the

translation process, while a multi-stack algorithm

employs2”/ stacks. We propose a possible way to ./_\
make a tradeoff between the advantages of both al-
gorithms that introduces a new parameter which will
be referred to as thgranularity of the algorithm. Still there are operations \\

The granularity parameter determines the numberof ~ ****X"
stacks used during the decoding process.

approach which consists in assigning to the same
stack, those hypotheses with the same number
source words covered.

newhyp:appIy_operation(hypothesis)

stack[mu(newhyp,coverage)],insen(newhyp)

4.1 Selecting thegranularity of the algorithm Al operations were applied

The granularity () of a generalized stack algorithm
is an integer which takes values betweeand J,

whereJ is the number of words which compose theF_ 3 Fl h ated to th . ;
sentence to translate. igure 3: Flow chart associated to the expansion o

Given a sentencg; to be translated, a general—a hypothesis when using a generalized-stack algo-

ized stack algorithm with a granularity parametelmhm'

equal tog, will have the following features: The function 1 can be defined in many ways,

e The algorithm will use at mo¥ stacks to per- Put there are two essential principles which must be
form the translation taken into account:

e Each stack will contain hypotheses which have e The function must be efficiently calculated
279 different coverages of;
e Hypotheses whose coverage have a similar

o If the algorithm can store at most = s hy- number of bits set to one must be assigned to
potheses, then, the maximum size of each stack  the same stack. This requirement allows the
will be equal toy; pruning of the stacks to be improved, since the
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hypotheses with a similar number of covered | () | afz) | p(z)
0000 | 00 | 0000| 00

words can compete fairly 000100 00011 00

_ _ _ 0010 | 00 | 0010| 00

A possible way to implement the function, 0100 01 [ 0oil| 00
namelypy, consists in simply shifting the coverage 1000 10 [ 0100| 01
vector.J — ¢ positions to the right, and then keeping 8(1’31 8(1’ 8123 81
only the firstg bits. SL_Jch a proposal is very easy 0110 01 | o01i1| o1
to calculate, however, it has a poor performance ac- 1001 10 [ 1000| 10
cording to the second principle explained above. 1010] 10 | 1001] 10
A better alternative to implement thefunction 11001 11 | 2000 10
P hefunction, 0111| 01 | 10i1] 10

namely o, can be formulated as a composition of 1011 10 | 1100| 11
two functions. A constructive definition of such a 1101 11 | 1101 ) 11

1110 11 1110 11

implementation is detailed next: T 11 11 1l

1. Letus suppose that the source sentence is com- . _
posed by.J words, we order the set of bit Table 1: Values returned by thg and u, function

numbers as follows: first the numbers which dd!€fined as a composition of theand functions
not have any bit equal to one, next, the numbers

which have only one bit equal to one, and so 0.3  Single and Multi Stack Algorithms

2. Given the list of numbers described above, wéhe classical single and multi-stack decoding al-
define a function which associates to each nun@orithms can be expressed/instantiated as particular
ber of the list, the order of the number withinc@ses of the general formalism that have been pro-
this list posed.

Given the input sentenct’ , a generalized stack

3. Given the coverage of a partial hypothesis, decoding algorithm withG = 0 will have the fol-
the stack on which this partial hypothesis is tqowing features:
be inserted is obtained by a two step process:

First, we obtain the image of returned by the ~ ® The algorithm works witl2” = 1 stacks.

function described above. Next, the result is
shifted.J — g positions to the right, keeping the
first ¢ bits

e Such a stack may store hypotheses \itHdif-
ferent coverages. That is to say, all possible
coverages.

Let 5 be the function that shifts a bit vectdr— ¢
positions to the right, keeping the firgbits; and let

« be the function that for each coverage returns its

e The mapping function returns the same stack
identifier for each coverage

order: The previously defined algorithm has the same
, p features as a single stack algorithm.
a: ({0,117 — ({0,1}) @) Let us now consider the features of a generalized
Then, s is expressed as follows: stack algorithm with a granularity value dt

o) = B o alz) ®) e The algorithm works witl2” stacks
Table 1 shows an example of the values which re-

turns theu; and theus functions when the input sen-

tence had words and the granularity of the decoder  The mapping function returns a different stack

is equal to2. As it can be observedys function identifier for each coverage

performs better tham; function according to the

second principle described at the beginning of this The above mentioned features characterizes the

section. multi-stack algorithms described in the literature.

e Each stack may store hypotheses with only
20 = 1 coverage.
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EUTRANS-I XEROX
Spanish | English [[ Spanish | English

Sentences 10,000 55,761
Training Words 97,131] 99,292 753,607 665,400
Vocabulary size 686 513 11,051 7,957
Average sentence leng. 9.7 9.9 13.5 11.9

Sentence 2,996 1,125
Test Words 35,023 | 35,590 10,106 8,370
Perplexity (Trigrams) - 3.62 - 48.3

Table 2: U TRANS-1 and XEROX corpus statistics

5 Experiments and Results values ofG slightly decreases the average score. In

_ _ . this case, a%- increases, the number of hypothe-
In this section, experimental results are presented fpg per stack decreases, taking into account that the
two well-known tasks: the ETRANS-I (Amengual q1ye of S is fixed, then the “optimal” hypothesis
et al., 1996), a small size and easy translation task,, easily be pruned.

and the XERox (Cubel et al., 2004), a medium sizé | (aples 3 and 4 detailed experiments are shown
and difficult translation task. The main statistics oty 5 value ofS = 212 and different values ofy. for

these corpora are shown. in Table 2. The translatiof ; Trans and XEROX corpora respectively.
results were obtained using a non-monotone gener-

alized stack algorithm. For both tasks, the training G | WER | Bleu | secsXsent| logprob
of the different phrase models was carried out us- 0| 66 10898 24 -18.88
. ) : . . 1] 6.6 |0.898 1.9 -18.80
ing the publicly availableThot toolkit (Ortiz et al., > 66 1 0897 17 18.81
2005). 4] 6.6 |0.898 1.3 -18.77
- : - 6 | 6.7 | 0.8% 11 -18.83
Different translation experiments have been car s 67 10806 ie 58

ried out, varying the value af (ranging from 0 to
8) and the maximum number of hypothesis that th‘?able 3: Translation experiments fouERANS cor-

algorl_thmf IS aIIg)W tolzsto:e f;)r all used_stackg)tg pus using a generalized stack algorithm with differ-
(rangl_ng rom2 _ to 2*4). In these experiments t € ent values of? and a fixed value of — 212
following statistics are computed: the average score

(or logProb) that the phrase-based translation model

assigns to each hypothesis, the translation quality g ngE'g (?'6‘335”8 Se%%xlse“t 'C_’gspg’zb
(by means of WER and Bleu measures), and the av- 11T 328 10657 204 3386
erage time (in secs.) per sentehce 2| 331 | 0.656 12.8 -33.79
In Figures 4 and 5 two plots are shown: the av- 4| 329 10657] 7.0 -33.70

; 6 | 33.7 | 0.652 6.3 -33.69

erage time per sentence (left) and the average score g1 363 [ 0632 137 3410

(right), for EUTRANS and XEROX corpora respec-
tively. As can be seen in both figures, the bigger thgable 4: Translation experiments foreEXox cor-
value of G the lower the average time per sentenceyys using a generalized stack algorithm with differ-
This is true up to the value af = 6. For higher ent values ofy and a fixed value of = 212

values ofG (keeping fixed the value of) the aver-

age time per sentence increase slightly. This is due According to the experiments presented here we
to the fact that at this point the algorithm start tacan conclude that:

spend more time to decide which hypothesis is to be
expanded. With respect to the average score similar
values are obtained up to the valugidf= 4. Higher

e The results correlates for the two considered
tasks: one small and easy, and other larger and
difficult.

3All the experiments have been executed on a PC with a Th d lized stack d di
2.60 Ghz Intel Pentium 4 processor with 2GB of memory. All € proposed generalized stac ecoding

the times are given in seconds. paradigm can be used to make a tradeoff be-
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Figure 5: Average time per sentence (in secs.) and average ger sentence. The results are shown for
different values of7 and.S for the XerRox corpus.

tween the advantages of classical single angrocess, and try to assign hypotheses to stacks such
multi-stack decoding algorithms. that there is "fair competition” within each stack,
i.e., brother hypotheses should cover roughly the

e As we expected, better results (regarding effisame number of input words (and the same words)
ciency and accuracy) are obtained when using possible.

a value of; betweerD and.J. The new family of stack-based algorithms allows

a tradeoff to be made between the classical single
and multi-stack decoding algorithms. For this pur-

In this paper, a generalization of the stack-decodinB0se. they employ a certain number of stacks be-
paradigm has been proposed. This new formalisieent (the number of stacks used by a single stack
includes the well known single and multi-stack de&!gorithm) and2” (the number of stacks used by a
coding algorithms and a new family of stack-basednultiple stack algorithm to translate a sentence with
algorithms which have not been described yet in thé Words.)

literature. According to the experimental results, it has been

Essentially, generalized stack algorithms use a paroved that an appropriate value 6f yields in a

rameterized number of stacks during the decodingtack decoding algorithm that outperforms (in effi-

6 Concluding Remarks
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ciency and acuraccy) the single and multi-stack aHermann Ney, Sonja NieRen, Franz J. Och, Hassan
gorithms proposed so far. Sawaf, Christoph Tillmann, and Stephan Vogel. 2000.

. Algorithms for statistical translation of spoken lan-
As future work, we plan to extend the experimen- guage.lEEE Trans. on Speech and Audio Processing

tation framework presented here to larger and more g(1):24-36, January.

complex tasks as KNSARDS and EJROPARL cor- _ _
Franz J. Och, Nicola Ueffing, and Hermann Ney. 2001.

ora. g . L
P An efficient A* search algorithm for statistical ma-
chine translation. IrData-Driven Machine Transla-
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