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Abstract

In this paper we propose a generalization
of the Stack-based decoding paradigm for
Statistical Machine Translation. The well
known single and multi-stack decoding
algorithms defined in the literature have
been integrated within a new formalism
which also defines a new family of stack-
based decoders. These decoders allows
a tradeoff to be made between the ad-
vantages of using only one or multiple
stacks. The key point of the new formal-
ism consists in parameterizeing the num-
ber of stacks to be used during the de-
coding process, and providing an efficient
method to decide in which stack each par-
tial hypothesis generated is to be inserted-
during the search process. Experimental
results are also reported for a search algo-
rithm for phrase-based statistical transla-
tion models.

1 Introduction

The translation process can be formulated from a
statistical point of view as follows: A source lan-
guage stringfJ

1
= f1 . . . fJ is to be translated into

a target language stringeI
1

= e1 . . . eI . Every tar-
get string is regarded as a possible translation for the
source language string with maximum a-posteriori
probability Pr(eI

1
|fJ

1
). According to Bayes’ theo-

rem, the target strinĝeI
1

that maximizes1 the product
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1Note that the expression should also be maximized byI ;
however, for the sake of simplicity we suppose that it is known.

of both the target language modelPr(eI
1
) and the

string translation modelPr(fJ
1
|eI

1
) must be chosen.

The equation that models this process is:

êI
1 = arg max

eI
1

{Pr(eI
1) · Pr(fJ

1 |e
I
1)} (1)

The search/decoding problem in SMT consists in
solving the maximization problem stated in Eq. (1).
In the literature, we can find different techniques to
deal with this problem, ranging from heuristic and
fast (as greedy decoders) to optimal and very slow
decoding algorithms (Germann et al., 2001). Also,
under certain circumstances, stack-based decoders
can obtain optimal solutions.

Many works (Berger et al., 1996; Wang and
Waibel, 1998; Germann et al., 2001; Och et al.,
2001; Ortı́z et al., 2003) have adopted different types
of stack-based algorithms to solve the global search
optimization problem for statistical machine trans-
lation. All these works follow two main different
approaches according to the number of stacks used
in the design and implementation of the search algo-
rithm (the stacks are used to store partial hypotheses,
sorted according to their partial score/probability,
during the search process) :

• On the one hand, in (Wang and Waibel, 1998;
Och et al., 2001) a single stack is used. In
that case, in order to make the search feasible,
the pruning of the number of partial hypothe-
ses stored in the stack is needed. This causes
many search errors due to the fact that hy-
potheses covering a different number of source
(translated) words compete in the same condi-
tions. Therefore, the greater number of covered
words the higher possibility to be pruned.

• On the other hand (Berger et al., 1996; Ger-
mann et al., 2001) make use of multiple stacks

64



(one for each set of source covered/translated
words in the partial hypothesis) in order to
solve the disadvantages of the single-stack ap-
proach. By contrast, the problem of finding
the best hypothesis to be expanded introduces
an exponential term in the computational com-
plexity of the algorithm.

In (Ortı́z et al., 2003) the authors present an em-
pirical comparison (about efficiency and translation
quality) of the two approaches paying special atten-
tion to the advantages and disadvantages of the two
approaches.

In this paper we present a new formalism consist-
ing of a generalization of the classical stack-based
decoding paradigm for SMT. This new formalism
defines a new family of stack-based decoders, which
also integrates the well known stack-based decoding
algorithms proposed so far within the framework of
SMT, that is single and multi-stack decoders.

The rest of the paper is organized as follows: in
section 2 the phrase-based approach to SMT is de-
picted; in section 3 the main features of classical
stack-based decoders are presented; in section 4 the
new formalism is presented and in section 5 exper-
imental results are shown; finally some conclusions
are drawn in section 6.

2 Phrase Based Statistical Machine
Translation

Different translation models(TMs) have been pro-
posed depending on how the relation between the
source and the target languages is structured; that is,
the way a target sentence is generated from a source
sentence. This relation is summarized using the con-
cept ofalignment; that is, how the constituents (typ-
ically words or group-of-words) of a pair of sen-
tences are aligned to each other. The most widely
used single-word-basedstatistical alignment mod-
els (SAMs) have been proposed in (Brown et al.,
1993; Ney et al., 2000). On the other hand, models
that deal with structures or phrases instead of single
words have also been proposed: the syntax trans-
lation models are described in (Yamada and Knight,
2001) , alignment templates are used in (Och, 2002),
and the alignment template approach is re-framed
into the so-calledphrase based translation(PBT)

in (Marcu and Wong, 2002; Zens et al., 2002; Koehn
et al., 2003; Tomás and Casacuberta, 2003).

For the translation model (Pr(fJ
1
|eI

1
)) in Eq. (1),

PBT can be explained from a generative point of
view as follows (Zens et al., 2002):

1. The target sentenceeI
1

is segmented intoK
phrases (̃eK

1
).

2. Each target phrasẽek is translated into a source
phrasef̃ .

3. Finally, the source phrases are reordered in or-
der to compose the source sentencef̃K

1
= fJ

1
.

In PBT, it is assumed that the relations between
the words of the source and target sentences can
be explained by means of the hidden variableãK

1
,

which contains all the decisions made during the
generative story.

Pr(fJ
1
|eI

1
) =

∑

K,ãK
1

Pr(, f̃K
1

, ãK
1
|ẽK

1
)

=
∑

K,ãK
1

Pr(ãK
1
|ẽK

1
)Pr(f̃K

1
|ãK

1
, ẽK

1
)

(2)

Different assumptions can be made from the pre-
vious equation. For example, in (Zens et al., 2002)
the following model is proposed:

pθ(f
J
1 |e

I
1) = α(eI

1)
∑

K,ãK
1

K∏

k=1

p(f̃k|ẽãk
) (3)

where ãk notes the index of the source phraseẽ

which is aligned with thek-th target phrasẽfk and
that all possible segmentations have the same proba-
bility. In (Tomás and Casacuberta, 2001; Zens et al.,
2002), it also is assumed that the alignments must be
monotonic. This led us to the following equation:

pθ(f
J
1 |e

I
1) = α(eI

1)
∑

K,ãK
1

K∏

k=1

p(f̃k|ẽk) (4)

In both cases the model parameters that have to be
estimated are the translation probabilities between
phrase pairs (θ = {p(f̃ |ẽ)}), which typically are es-
timated as follows:

p(f̃ |ẽ) =
N(f̃ , ẽ)

N(ẽ)
(5)
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whereN(f̃ |ẽ) is the number of times that̃f have
been seen as a translation ofẽ within the training
corpus.

3 Stack-Decoding Algorithms

The stack decoding algorithm, also calledA∗ algo-
rithm, was first introduced by F. Jelinek in (Jelinek,
1969). The stack decoding algorithm attempts to
generate partial solutions, calledhypotheses, until a
complete translation is found2; these hypotheses are
stored in a stack and ordered by theirscore. Typi-
cally, this measure or score is the probability of the
product of the translation and the language models
introduced above. TheA∗ decoder follows a se-
quence of steps for achieving a complete (and possi-
bly optimal) hypothesis:

1. Initialize the stack with an empty hypothesis.

2. Iterate

(a) Poph (the best hypothesis) off the stack.

(b) If h is a complete sentence, outputh and
terminate.

(c) Expandh.

(d) Go to step 2a.

The search is started from a null string and obtains
new hypotheses after an expansion process (step 2c)
which is executed at each iteration. The expansion
process consists of the application of a set of op-
erators over the best hypothesis in the stack, as it
is depicted in Figure 1. Thus, the design of stack
decoding algorithms involves defining a set of oper-
ators to be applied over every hypothesis as well as
the way in which they are combined in the expansion
process. Both the operators and the expansion algo-
rithm depend on the translation model that we use.
For the case of the phrase-based translation models
described in the previous section, the operatoradd is
defined, which adds a sequence of words to the tar-
get sentence, and aligns it with a sequence of words
of the source sentence.

The number of hypotheses to be stored during the
search can be huge. In order then to avoid mem-

2Each hypothesis has associated a coverage vector of length
J , which indicates the set of source words already cov-
ered/translated so far. In the following we will refer to this
simply as coverage.

Figure 1: Flow chart associated to the expansion of
a hypothesis when using anA⋆ algorithm.

ory overflow problems, the maximum number of hy-
potheses that a stack may store has to be limited. It
is important to note that for a hypothesis, the higher
the aligned source words, the worse the score. These
hypotheses will be discarded sooner when anA∗

search algorithm is used due to the stack length lim-
itation. Because of this, themulti-stack algorithms
were introduced.

Multi-stack algorithms store those hypotheses
with different subsets of source aligned words in dif-
ferent stacks. That is to say, given an input sentence
fJ
1

composed ofJ words, multi-stack algorithms
employes2J stacks to translate it. Such an organi-
zation improves the pruning of the hypotheses when
the stack length limitation is exceeded, since only
hypotheses with the same number of covered posi-
tions can compete with each other.

All the search steps given forA∗ algorithm can
also be applied here, except step 2a. This is due
to the fact that multiple stacks are used instead of
only one. Figure 2 depicts the expansion process
that the multi-stack algorithms execute, which is
slightly different than the one presented in Figure 1.
Multi-stack algorithms have the negative property of
spending significant amounts of time in selecting the
hypotheses to be expanded, since at each iteration,
the best hypothesis in a set of2J stacks must be
searched for (Ortı́z et al., 2003). By contrast, for the
A∗ algorithm, it is not possible to reduce the length
of the stack in the same way as in the multi-stack
case without loss of translation quality.

Additionally, certain translation systems, e.g. the
Pharaoh decoder (Koehn, 2003) use an alternative
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Figure 2: Flow chart associated to the expansion of
a hypothesis when using a multi-stack algorithm.

approach which consists in assigning to the same
stack, those hypotheses with the same number of
source words covered.

4 Generalized Stack-Decoding Algorithms

As was mentioned in the previous section, given a
sentencefJ

1
to be translated, a single stack decod-

ing algorithm employs only one stack to perform the
translation process, while a multi-stack algorithm
employs2J stacks. We propose a possible way to
make a tradeoff between the advantages of both al-
gorithms that introduces a new parameter which will
be referred to as thegranularity of the algorithm.
The granularity parameter determines the number of
stacks used during the decoding process.

4.1 Selecting thegranularity of the algorithm

The granularity (G) of a generalized stack algorithm
is an integer which takes values between1 andJ ,
whereJ is the number of words which compose the
sentence to translate.

Given a sentencefJ
1

to be translated, a general-
ized stack algorithm with a granularity parameter
equal tog, will have the following features:

• The algorithm will use at most2g stacks to per-
form the translation

• Each stack will contain hypotheses which have
2J−g different coverages offJ

1

• If the algorithm can store at mostS = s hy-
potheses, then, the maximum size of each stack
will be equal to s

2g

4.2 Mapping hypotheses to stacks

Generalized stack-decoding algorithms require a
mechanism to decide in which stack each hypothesis
is to be inserted. As stated in section 4.1, given an
input sentencefJ

1
and a generalized stack-decoding

algorithm withG = g, the decoder will work with
2g stacks, and each one will contain2J−g different
coverages. Therefore, the above mentioned mecha-
nism can be expressed as a function which will be
referred to as theµ function. Given a hypothesis
coverage composed ofJ bits, theµ function return
a stack identifier composed of onlyg bits:

µ : ({0, 1})J −→ ({0, 1})g (6)

Generalized stack algorithms are strongly in-
spired by multi-stack algorithms; however, both
types of algorithms differ in the way the hypothesis
expansion is performed. Figure 3 shows the expan-
sion algorithm of a generalized stack decoder with
a granularity parameter equal tog and a functionµ
which maps hypotheses coverages to stacks.

Figure 3: Flow chart associated to the expansion of
a hypothesis when using a generalized-stack algo-
rithm.

The functionµ can be defined in many ways,
but there are two essential principles which must be
taken into account:

• Theµ function must be efficiently calculated

• Hypotheses whose coverage have a similar
number of bits set to one must be assigned to
the same stack. This requirement allows the
pruning of the stacks to be improved, since the
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hypotheses with a similar number of covered
words can compete fairly

A possible way to implement theµ function,
namelyµ1, consists in simply shifting the coverage
vectorJ − g positions to the right, and then keeping
only the firstg bits. Such a proposal is very easy
to calculate, however, it has a poor performance ac-
cording to the second principle explained above.

A better alternative to implement theµ function,
namelyµ2, can be formulated as a composition of
two functions. A constructive definition of such a
implementation is detailed next:

1. Let us suppose that the source sentence is com-
posed byJ words, we order the set ofJ bit
numbers as follows: first the numbers which do
not have any bit equal to one, next, the numbers
which have only one bit equal to one, and so on

2. Given the list of numbers described above, we
define a function which associates to each num-
ber of the list, the order of the number within
this list

3. Given the coverage of a partial hypothesis,x,
the stack on which this partial hypothesis is to
be inserted is obtained by a two step process:
First, we obtain the image ofx returned by the
function described above. Next, the result is
shiftedJ − g positions to the right, keeping the
first g bits

Let β be the function that shifts a bit vectorJ − g

positions to the right, keeping the firstg bits; and let
α be the function that for each coverage returns its
order:

α : ({0, 1})J −→ ({0, 1})J (7)

Then,µ2 is expressed as follows:

µ2(x) = β ◦ α(x) (8)

Table 1 shows an example of the values which re-
turns theµ1 and theµ2 functions when the input sen-
tence has4 words and the granularity of the decoder
is equal to2. As it can be observed,µ2 function
performs better thanµ1 function according to the
second principle described at the beginning of this
section.

x µ1(x) α(x) µ2(x)
0000 00 0000 00
0001 00 0001 00
0010 00 0010 00
0100 01 0011 00
1000 10 0100 01
0011 00 0101 01
0101 01 0110 01
0110 01 0111 01
1001 10 1000 10
1010 10 1001 10
1100 11 1010 10
0111 01 1011 10
1011 10 1100 11
1101 11 1101 11
1110 11 1110 11
1111 11 1111 11

Table 1: Values returned by theµ1 andµ2 function
defined as a composition of theα andβ functions

4.3 Single and Multi Stack Algorithms

The classical single and multi-stack decoding al-
gorithms can be expressed/instantiated as particular
cases of the general formalism that have been pro-
posed.

Given the input sentencefJ
1

, a generalized stack
decoding algorithm withG = 0 will have the fol-
lowing features:

• The algorithm works with20 = 1 stacks.

• Such a stack may store hypotheses with2J dif-
ferent coverages. That is to say, all possible
coverages.

• The mapping function returns the same stack
identifier for each coverage

The previously defined algorithm has the same
features as a single stack algorithm.

Let us now consider the features of a generalized
stack algorithm with a granularity value ofJ :

• The algorithm works with2J stacks

• Each stack may store hypotheses with only
20 = 1 coverage.

• The mapping function returns a different stack
identifier for each coverage

The above mentioned features characterizes the
multi-stack algorithms described in the literature.

68



EUTRANS-I XEROX
Spanish English Spanish English

Training
Sentences 10,000 55,761
Words 97,131 99,292 753,607 665,400
Vocabulary size 686 513 11,051 7,957
Average sentence leng. 9.7 9.9 13.5 11.9

Test
Sentence 2,996 1,125
Words 35,023 35,590 10,106 8,370
Perplexity (Trigrams) – 3.62 – 48.3

Table 2: EUTRANS-I and XEROX corpus statistics

5 Experiments and Results

In this section, experimental results are presented for
two well-known tasks: the EUTRANS-I (Amengual
et al., 1996), a small size and easy translation task,
and the XEROX (Cubel et al., 2004), a medium size
and difficult translation task. The main statistics of
these corpora are shown in Table 2. The translation
results were obtained using a non-monotone gener-
alized stack algorithm. For both tasks, the training
of the different phrase models was carried out us-
ing the publicly availableThot toolkit (Ortiz et al.,
2005).

Different translation experiments have been car-
ried out, varying the value ofG (ranging from 0 to
8) and the maximum number of hypothesis that the
algorithm is allow to store for all used stacks (S)
(ranging from28 to 212). In these experiments the
following statistics are computed: the average score
(or logProb) that the phrase-based translation model
assigns to each hypothesis, the translation quality
(by means of WER and Bleu measures), and the av-
erage time (in secs.) per sentence3.

In Figures 4 and 5 two plots are shown: the av-
erage time per sentence (left) and the average score
(right), for EUTRANS and XEROX corpora respec-
tively. As can be seen in both figures, the bigger the
value ofG the lower the average time per sentence.
This is true up to the value ofG = 6. For higher
values ofG (keeping fixed the value ofS) the aver-
age time per sentence increase slightly. This is due
to the fact that at this point the algorithm start to
spend more time to decide which hypothesis is to be
expanded. With respect to the average score similar
values are obtained up to the value ofG = 4. Higher

3All the experiments have been executed on a PC with a
2.60 Ghz Intel Pentium 4 processor with 2GB of memory. All
the times are given in seconds.

values ofG slightly decreases the average score. In
this case, asG increases, the number of hypothe-
ses per stack decreases, taking into account that the
value of S is fixed, then the “optimal” hypothesis
can easily be pruned.

In tables 3 and 4 detailed experiments are shown
for a value ofS = 212 and different values ofG, for
EUTRANS and XEROX corpora respectively.

G WER Bleu secsXsent logprob
0 6.6 0.898 2.4 -18.88
1 6.6 0.898 1.9 -18.80
2 6.6 0.897 1.7 -18.81
4 6.6 0.898 1.3 -18.77
6 6.7 0.896 1.1 -18.83
8 6.7 0.896 1.5 -18.87

Table 3: Translation experiments for EUTRANS cor-
pus using a generalized stack algorithm with differ-
ent values ofG and a fixed value ofS = 212

G WER Bleu secsXsent logProb
0 32.6 0.658 35.1 -33.92
1 32.8 0.657 20.4 -33.86
2 33.1 0.656 12.8 -33.79
4 32.9 0.657 7.0 -33.70
6 33.7 0.652 6.3 -33.69
8 36.3 0.634 13.7 -34.10

Table 4: Translation experiments for XEROX cor-
pus using a generalized stack algorithm with differ-
ent values ofG and a fixed value ofS = 212

According to the experiments presented here we
can conclude that:

• The results correlates for the two considered
tasks: one small and easy, and other larger and
difficult.

• The proposed generalized stack decoding
paradigm can be used to make a tradeoff be-
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Figure 4: Average time per sentence (in secs.) and average score per sentence. The results are shown for
different values ofG andS for the EUTRANS corpus.
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Figure 5: Average time per sentence (in secs.) and average score per sentence. The results are shown for
different values ofG andS for the XEROX corpus.

tween the advantages of classical single and
multi-stack decoding algorithms.

• As we expected, better results (regarding effi-
ciency and accuracy) are obtained when using
a value ofG between0 andJ .

6 Concluding Remarks

In this paper, a generalization of the stack-decoding
paradigm has been proposed. This new formalism
includes the well known single and multi-stack de-
coding algorithms and a new family of stack-based
algorithms which have not been described yet in the
literature.

Essentially, generalized stack algorithms use a pa-
rameterized number of stacks during the decoding

process, and try to assign hypotheses to stacks such
that there is ”fair competition” within each stack,
i.e., brother hypotheses should cover roughly the
same number of input words (and the same words)
if possible.

The new family of stack-based algorithms allows
a tradeoff to be made between the classical single
and multi-stack decoding algorithms. For this pur-
pose, they employ a certain number of stacks be-
tween1 (the number of stacks used by a single stack
algorithm) and2J (the number of stacks used by a
multiple stack algorithm to translate a sentence with
J words.)

According to the experimental results, it has been
proved that an appropriate value ofG yields in a
stack decoding algorithm that outperforms (in effi-
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ciency and acuraccy) the single and multi-stack al-
gorithms proposed so far.

As future work, we plan to extend the experimen-
tation framework presented here to larger and more
complex tasks as HANSARDS and EUROPARL cor-
pora.
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