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Gülşen Eryiǧit
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Abstract

We use SVM classifiers to predict the next
action of a deterministic parser that builds
labeled projective dependency graphs in
an incremental fashion. Non-projective
dependencies are captured indirectly by
projectivizing the training data for the
classifiers and applying an inverse trans-
formation to the output of the parser. We
present evaluation results and an error
analysis focusing on Swedish and Turkish.

1 Introduction

The CoNLL-X shared task consists in parsing texts
in multiple languages using a single dependency
parser that has the capacity to learn from treebank
data. Our methodology for performing this task is
based on four essential components:

• A deterministic algorithm for building labeled
projective dependency graphs (Nivre, 2006).

• History-based feature models for predicting the
next parser action (Black et al., 1992).

• Support vector machines for mapping histories
to parser actions (Kudo and Matsumoto, 2002).

• Graph transformations for recovering non-
projective structures (Nivre and Nilsson, 2005).

All experiments have been performed using Malt-
Parser (Nivre et al., 2006), version 0.4, which is
made available together with the suite of programs
used for pre- and post-processing.1

1www.msi.vxu.se/users/nivre/research/MaltParser.html

2 Parsing Methodology

2.1 Parsing Algorithm

The parsing algorithm used for all languages is the
deterministic algorithm first proposed for unlabeled
dependency parsing by Nivre (2003) and extended
to labeled dependency parsing by Nivre et al. (2004).
The algorithm builds a labeled dependency graph in
one left-to-right pass over the input, using a stack
to store partially processed tokens and adding arcs
using four elementary actions (wheretop is the token
on top of the stack andnextis the next token):

• SHIFT: Pushnextonto the stack.
• REDUCE: Pop the stack.
• RIGHT-ARC(r): Add an arc labeledr from top

to next; pushnextonto the stack.
• LEFT-ARC(r): Add an arc labeledr from next

to top; pop the stack.

Although the parser only derives projective graphs,
the fact that graphs are labeled allows non-projective
dependencies to be captured using the pseudo-
projective approach of Nivre and Nilsson (2005) .

Another limitation of the parsing algorithm is that
it does not assign dependency labels to roots, i.e., to
tokens havingHEAD=0. To overcome this problem,
we have implemented a variant of the algorithm that
starts by pushing an artificial root token withID=0
onto the stack. Tokens havingHEAD=0 can now
be attached to the artificial root in a RIGHT-ARC(r)
action, which means that they can be assigned any
label. Since this variant of the algorithm increases
the overall nondeterminism, it has only been used
for the data sets that include informative root labels
(Arabic, Czech, Portuguese, Slovene).
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FO L C P FE D

S: top + + + + + +
S: top−1 +
I: next + + + + +
I: next+1 + +
I: next+2 +
I: next+3 +
G: head oftop +
G: leftmost dep oftop +
G: rightmost dep oftop +
G: leftmost dep ofnext +

Table 1: Base model; S: stack, I: input, G: graph;
FO: FORM, L: LEMMA , C: CPOS, P: POS,

FE: FEATS, D: DEPREL

2.2 History-Based Feature Models

History-based parsing models rely on features of the
derivation history to predict the next parser action.
The features used in our system are all symbolic
and extracted from the following fields of the data
representation:FORM, LEMMA , CPOSTAG, POSTAG,
FEATS, andDEPREL. Features of the typeDEPREL

have a special status in that they are extracted during
parsing from the partially built dependency graph
and may therefore contain errors, whereas all the
other features have gold standard values during both
training and parsing.2

Based on previous research, we defined a base
model to be used as a starting point for language-
specific feature selection. The features of this model
are shown in Table 1, where rows denote tokens in
a parser configuration (defined relative to the stack,
the remaining input, and the partially built depen-
dency graph), and where columns correspond to data
fields. The base model contains twenty features, but
note that the fieldsLEMMA , CPOSandFEATSare not
available for all languages.

2.3 Support Vector Machines

We use support vector machines3 to predict the next
parser action from a feature vector representing the
history. More specifically, we use LIBSVM (Chang
and Lin, 2001) with a quadratic kernelK(xi, xj) =
(γxT

i xj +r)2 and the built-in one-versus-all strategy
for multi-class classification. Symbolic features are

2The fieldsPHEAD andPDEPRELhave not been used at all,
since we rely on pseudo-projective parsing for the treatment of
non-projective structures.

3We also ran preliminary experiments with memory-based
learning but found that this gave consistently lower accuracy.

converted to numerical features using the standard
technique of binarization, and we split values of the
FEATSfield into its atomic components.4

For some languages, we divide the training data
into smaller sets, based on some features (normally
theCPOSor POSof the next input token), which may
reduce training times without a significant loss in
accuracy (Yamada and Matsumoto, 2003). To avoid
too small training sets, we pool together categories
that have a frequency below a certain thresholdt.

2.4 Pseudo-Projective Parsing

Pseudo-projective parsing was proposed by Nivre
and Nilsson (2005) as a way of dealing with
non-projective structures in a projective data-driven
parser. We projectivize training data by a minimal
transformation, lifting non-projective arcs one step
at a time, and extending the arc label of lifted arcs
using the encoding scheme called HEAD by Nivre
and Nilsson (2005), which means that a lifted arc is
assigned the labelr↑h, wherer is the original label
andh is the label of the original head in the non-
projective dependency graph.

Non-projective dependencies can be recovered by
applying an inverse transformation to the output of
the parser, using a left-to-right, top-down, breadth-
first search, guided by the extended arc labelsr↑h

assigned by the parser. This technique has been used
without exception for all languages.

3 Experiments

Since the projective parsing algorithm and graph
transformation techniques are the same for all data
sets, our optimization efforts have been focused on
feature selection, using a combination of backward
and forward selection starting from the base model
described in section 2.2, andparameter optimization
for the SVM learner, using grid search for an optimal
combination of the kernel parametersγ andr, the
penalty parameterC and the termination criterionǫ,
as well as the splitting features and the frequency
thresholdt. Feature selection and parameter opti-
mization have to some extent been interleaved, but
the amount of work done varies between languages.

4Preliminary experiments showed a slight improvement for
most languages when splitting theFEATS values, as opposed to
taking every combination of atomic values as a distinct value.
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Ara Bul Chi Cze Dan Dut Ger Jap Por Slo Spa Swe TurTotal
LAS 66.71 87.41 86.92 78.42 84.77 78.59 85.82 91.65 87.60 70.30 81.29 84.58 65.6880.19
UAS 77.52 91.72 90.54 84.80 89.80 81.35 88.76 93.10 91.22 78.72 84.67 89.50 75.8285.48
LAcc 80.34 90.44 89.01 85.40 89.16 83.69 91.03 94.34 91.54 80.54 90.06 87.39 78.4986.75

Table 2: Evaluation on final test set; LAS = labeled attachment score, UAS = unlabeled attachment score,
LAcc = label accuracy score; total score excluding Bulgarian

The main optimization criterion has been labeled
attachment score on held-out data, using ten-fold
cross-validation for all data sets with 100k tokens
or less, and an 80-20 split into training and devtest
sets for larger datasets. The number of features in
the optimized models varies from 16 (Turkish) to 30
(Spanish), but the models use all fields available for
a given language, except thatFORM is not used for
Turkish (only LEMMA ). The SVM parameters fall
into the following ranges:γ: 0.12–0.20;r: 0.0–0.6;
C: 0.1–0.7;ǫ: 0.01–1.0. Data has been split on the
POS of the next input token for Czech (t = 200),
German (t = 1000), and Spanish (t = 1000), and
on theCPOSof the next input token for Bulgarian
(t = 1000), Slovene (t = 600), and Turkish (t = 100).
(For the remaining languages, the training data has
not been split at all.)5 A dry run at the end of the
development phase gave a labeled attachment score
of 80.46 over the twelve required languages.

Table 2 shows final test results for each language
and for the twelve required languages together. The
total score is only 0.27 percentage points below the
score from the dry run, which seems to indicate that
models have not been overfitted to the training data.
The labeled attachment score varies from 91.65 to
65.68 but is above average for all languages. We
have the best reported score for Japanese, Swedish
and Turkish, and the score for Arabic, Danish,
Dutch, Portuguese, Spanish, and overall does not
differ significantly from the best one. The unlabeled
score is less competitive, with only Turkish having
the highest reported score, which indirectly indicates
that the integration of labels into the parsing process
primarily benefits labeled accuracy.

4 Error Analysis

An overall error analysis is beyond the scope of this
paper, but we will offer a few general observations

5Detailed specifications of the feature models and learning
algorithm parameters can be found on the MaltParser web page.

before we turn to Swedish and Turkish, focusing on
recall and precision of root nodes, as a reflection of
global syntactic structure, and on attachment score
as a function of arc length. If we start by considering
languages with a labeled attachment score of 85% or
higher, they are characterized by high precision and
recall for root nodes, typically 95/90, and by a grace-
ful degradation of attachment score as arcs grow
longer, typically 95–90–85, for arcs of length 1, 2
and 3–6. Typical examples are Bulgarian (Simov
et al., 2005; Simov and Osenova, 2003), Chinese
(Chen et al., 2003), Danish (Kromann, 2003), and
Swedish (Nilsson et al., 2005). Japanese (Kawata
and Bartels, 2000), despite a very high accuracy, is
different in that attachment score drops from 98%
to 85%, as we go from length 1 to 2, which may
have something to do with the data consisting of
transcribed speech with very short utterances.

A second observation is that a high proportion of
non-projective structures leads to fragmentation in
the parser output, reflected in lower precision for
roots. This is noticeable for German (Brants et al.,
2002) and Portuguese (Afonso et al., 2002), which
still have high overall accuracy thanks to very high
attachment scores, but much more conspicuous for
Czech (B̈ohmov́a et al., 2003), Dutch (van der Beek
et al., 2002) and Slovene (Džeroski et al., 2006),
where root precision drops more drastically to about
69%, 71% and 41%, respectively, and root recall is
also affected negatively. On the other hand, all three
languages behave like high-accuracy languages with
respect to attachment score. A very similar pattern
is found for Spanish (Civit Torruella and Martı́ An-
tońın, 2002), although this cannot be explained by
a high proportion of non-projective structures. One
possible explanation in this case may be the fact that
dependency graphs in the Spanish data are sparsely
labeled, which may cause problem for a parser that
relies on dependency labels as features.

The results for Arabic (Hajič et al., 2004; Smřz
et al., 2002) are characterized by low root accuracy
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as well as a rapid degradation of attachment score
with arc length (from about 93% for length 1 to 67%
for length 2). By contrast, Turkish (Oflazer et al.,
2003; Atalay et al., 2003) exhibits high root accu-
racy but consistently low attachment scores (about
88% for length 1 and 68% for length 2). It is note-
worthy that Arabic and Turkish, being “typological
outliers”, show patterns that are different both from
each other and from most of the other languages.

4.1 Swedish

A more fine-grained analysis of the Swedish results
reveals a high accuracy for function words, which
is compatible with previous studies (Nivre, 2006).
Thus, the labeled F-score is 100% for infinitive
markers (IM) and subordinating conjunctions (UK),
and above 95% for determiners (DT). In addition,
subjects (SS) have a score above 90%. In all these
cases, the dependent has a configurationally defined
(but not fixed) position with respect to its head.

Arguments of the verb, such as objects (DO, IO)
and predicative complements (SP), have a slightly
lower accuracy (about 85% labeled F-score), which
is due to the fact that they “compete” in the same
structural positions, whereas adverbials (labels that
end in A) have even lower scores (often below 70%).
The latter result must be related both to the relatively
fine-grained inventory of dependency labels for ad-
verbials and to attachment ambiguities that involve
prepositional phrases. The importance of this kind
of ambiguity is reflected also in the drastic differ-
ence in accuracy between noun pre-modifiers (AT)
(F> 97%) and noun post-modifiers (ET) (F≈ 75%).

Finally, it is worth noting that coordination, which
is often problematic in parsing, has high accuracy.
The Swedish treebank annotation treats the second
conjunct as a dependent of the first conjunct and as
the head of the coordinator, which seems to facil-
itate parsing.6 The attachment of the second con-
junct to the first (CC) has a labeled F-score above
80%, while the attachment of the coordinator to the
second conjunct (++) has a score well above 90%.

4.2 Turkish

In Turkish, very essential syntactic information is
contained in the rich morphological structure, where

6The analysis is reminiscent of the treatment of coordination
in the Collins parser (Collins, 1999).

concatenated suffixes carry information that in other
languages may be expressed by separate words. The
Turkish treebank therefore divides word forms into
smaller units, called inflectional groups (IGs), and
the task of the parser is to construct dependencies
between IGs, not (primarily) between word forms
(Eryiğit and Oflazer, 2006). It is then important
to remember that an unlabeled attachment score
of 75.8% corresponds to a word-to-word score of
82.7%, which puts Turkish on a par with languages
like Czech, Dutch and Spanish. Moreover, when
we break down the results according to whether the
head of a dependency is part of a multiple-IG word
or a complete (single-IG) word, we observe a highly
significant difference in accuracy, with only 53.2%
unlabeled attachment score for multiple-IG heads
versus 83.7% for single-IG heads. It is hard to say
at this stage whether this means that our methods
are ill-suited for IG-based parsing, or whether it is
mainly a case of sparse data for multiple-IG words.

When we break down the results by dependency
type, we can distinguish three main groups. The first
consists of determiners and particles, which have
an unlabeled attachment score over 80% and which
are found within a distance of 1–1.4 IGs from their
head.7 The second group mainly contains subjects,
objects and different kinds of adjuncts, with a score
in the range 60–80% and a distance of 1.8–5.2 IGs to
their head. In this group, information about case and
possessive features of nominals is important, which
is found in theFEATSfield in the data representation.
We believe that one important explanation for our
relatively good results for Turkish is that we break
down theFEATS information into its atomic com-
ponents, independently ofPOSand CPOStags, and
let the classifier decide which one to use in a given
situation. The third group contains distant depen-
dencies, such as sentence modifiers, vocatives and
appositions, which have a much lower accuracy.

5 Conclusion

The evaluation shows that labeled pseudo-projective
dependency parsing, using a deterministic parsing
algorithm and SVM classifiers, gives competitive
parsing accuracy for all languages involved in the

7Given that the average IG count of a word is 1.26 in the
treebank, this means that they are normally adjacent to the head
word.
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shared task, although the level of accuracy varies
considerably between languages. To analyze in
depth the factors determining this variation, and to
improve our parsing methods accordingly to meet
the challenges posed by the linguistic diversity, will
be an important research goal for years to come.
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S. Džeroski, T. Erjavec, N. Ledinek, P. Pajas, Z.Žabokrtsky, and
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