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Abstract

We describe a parser used in the CoNLL
2006 Shared Task, “Multingual Depen-
dency Parsing.” The parser first identi-
fies syntactic dependencies and then labels
those dependencies using a maximum en-
tropy classifier. We consider the impact of
feature engineering and the choice of ma-
chine learning algorithm, with particular
focus on Slovene, Spanish and Swedish.

1 Introduction

The system that we submitted for the CoNLL 2006
Shared Task, “Multingual Dependency Parsing,”
(Buchholz et al., 2006) is a two stage pipeline. The
first stage identifies unlabeled directed dependen-
cies using an extension of the parser described in
(Corston-Oliver et al., 2006). The second stage is a
maximum entropy classifier that labels the directed
dependencies. The system was trained on the twelve
obligatory languages, as well as the optional lan-
guage, Bulgarian (Haji€ et al., 2004; Simov et al.,
2005; Simov and Osenova, 2003; Chen et al., 2003;
Bohmova et al., 2003; Kromann, 2003; van der Beek
et al., 2002; Brants et al., 2002; Kawata and Bar-
tels, 2000; Afonso et al., 2002; DZeroski et al., 2006;
Civit Torruella and Marti Antonin, 2002; Nilsson et
al., 2005; Oflazer et al., 2003; Atalay et al., 2003).
Table 1 presents the results of the system de-
scribed in the current paper on the CoNLL shared
task, including the optional evaluation on Bulgar-
ian. For Slovene, we ranked second with a labeled
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Language | Unlabeled | Labeled
Attachment | Attachment
Arabic 78.40 63.53
Bulgarian | 90.09 83.36
Chinese 90.00 79.92
Czech 83.02 74.48
Danish 87.94 81.74
Dutch 74.83 71.43
German 87.20 83.47
Japanese | 92.84 89.95
Portugese | 88.96 84.59
Slovene 81.77 72.42
Spanish 84.87 80.36
Swedish | 89.54 79.69
Turkish 73.11 61.74

Table 1: Results on CoNLL 2006 shared task.

dependency accuracy of 72.42%. This was not sta-
tistically significantly different from the top-ranked
score of 73.44%. For Spanish, our labeled depen-
dency accuracy of 80.36% is within 0.1% of the
third-ranked score of 80.46%. Our unlabeled de-
pendency accuracy for Swedish was the best of all
the systems at 89.54%. Our labeled accuracy for
Swedish, however, at 79.69%, fell far short of the
third-best score of 82.31%. We therefore focus on
Swedish when considering the impact of our choice
of learning algorithm on our label accuracy.

2 Data

We divided the shared data into training and devel-
opment test sets, using larger development test sets

Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL-X)
pages 196-200, New York City, June 20@®2006 Association for Computational Linguistics



for the languages supplied with more data. The de-
velopment test set consisted of 250 sentences for
Arabic, Slovene, Spanish and Turkish, 500 sen-
tences for Danish and Portuguese, and 1,000 sen-
tences for the other languages.

3 The Parser

The baseline parser predicts unlabeled directed de-
pendencies. As described in (Corston-Oliver et al.,
2006), we reimplemented the parser described in
(McDonald et al., 2005) and validated their results
for Czech and English.

The parser finds the highest-scoring parse ¢
among all possible parses y € Y for a given sen-
tence:

ey

j = argmax s(y)

The score s of a given parse y is the sum of the
scores of all the dependency links (i,j) € y:

(i,5)€y (i,5)€y

2

where the link (i,j) indicates a parent-child depen-
dency between the token at position ¢ and the token
at position j. The score d(i, j) of each dependency
link (i,j) is further decomposed as the weighted sum
of its features f(i, 7).

To set w, we trained twenty averaged perceptrons
on different shuffles of the training data, using the
development test set to determine when the percep-
trons had converged. The averaged perceptrons were
then combined to make a Bayes Point Machine (Har-
rington et al., 2003). At both training and run time,
edges are scored independently, and Eisner’s O(N?3)
decoder (Eisner, 1996) is used to find the optimal
parse. This decoder produces only projective analy-
ses, although it does allow for analyses with multiple
roots.

The features used for scoring the edges prior to
applying Eisner’s algorithm are extracted from each
possible parent-child dependency. The features in-
clude the case-normalized original form and lemma'
of each token , the part of speech (POS) tag of each
token, the POS tag of each intervening token and

'If no lemma was specified, we truncated the original form
by taking the first two characters for Chinese words consisting

of two characters or more and the first five characters for words
consisting of five characters or more in the other languages.
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of each token to the left and right of the parent and
child. Additional features are created by combining
these atomic features, as described in (McDonald et
al., 2005). All features are in turn combined with
the direction of attachment and the distance between
tokens. Distance was discretized, with individual
buckets for distances 0-4, a single bucket for 5-9,
and a single bucket for 10+. In sections 3.1 and 3.2
we discuss the feature engineering we performed.

3.1 Part of Speech Features

We experimented with using the coarse POS tag and
the fine POS tag. In our official submission, we
used fine POS tags for all languages except Dutch
and Turkish. For Dutch and Turkish, using the fine
POS tag resulted in a reduction in unlabeled depen-
dency accuracy of 0.12% and 0.43% respectively
on the development test sets, apparently because of
the sparsity of the fine POS tags. For German and
Swedish, the fine and coarse POS tags are the same
so using the fine POS tag had no effect. For other
languages, using the fine POS tag showed modest
improvements in unlabeled dependency accuracy.

For Swedish, we performed an additional manipu-
lation on the POS tags, normalizing the distinct POS
tags assigned to each verbal auxiliary and modal to
a single tag “aux”. For example, in the Swedish
data all inflected forms of the verb “vara” (“be”) are
tagged as AV, and all inflected forms of the modal
“maste” (“must”) are tagged as MV. This normaliza-
tion caused unlabeled dependency accuracy on the
Swedish development set to improve from 89.23%
to0 89.45%.

3.2 Features for Root Identification

Analysis of the baseline parser’s errors suggested
the need for additional feature types to improve the
identification of the root of the sentence. In particu-
lar, the parser was frequently making errors in iden-
tifying the root of periphrastic constructions involv-
ing an auxiliary verb or modal and a participle. In
Germanic languages, for example, the auxiliary or
modal typically occurs in second position in declar-
ative main clauses or in initial position in cases of
subject-aux inversion. We added a collection of fea-
tures intended to improve the identification of the
root. The hope was that improved root identifica-
tion would have a positive cascading effect in the



identification of other dependencies, since a failure
to correctly identify the root of the sentence usually
means that the parse will have many other errors.

We extracted four feature types, the original form
of the first and last tokens in the sentence and the
POS of the first and last tokens in the sentence.
These features were intended to identify declarative
vs. interrogative sentences.

For each child and parent token being scored, we
also noted the following four features: “child/parent
is first non-punctuation token in sentence”,
“child/parent is second non-punctuation token in
sentence”. The features that identify the second
token in the sentence were intended to improve
the identification of verb-second phenomena. Of
course, this is a linguistic oversimplification. Verb-
second phenomena are actually sensitive to the order
of constituents, not words. We therefore added four
feature types that considered the sequence of POS
tags to the left of the child or parent if they occurred
within ten tokens of the beginning of the sentence
and the sequence of POS tags to the right of the
child or parent if they occurred within ten tokens of
the end of the sentence.

We also added features intended to improve the
identification of the root in sentences without a fi-
nite verb. For example, the Dutch training data
contained many simple responses to a question-
answering task, consisting of a single noun phrase.
Four simple features were used “Child/Parent is the
leftmost noun in the sentence”, “Child/Parent is a
noun but not the leftmost noun in the sentence”.
These features were combined with an indicator
“Sentence contains/does not contain a finite verb”.

Child or parent tokens that were finite verbs were
flagged as likely candidates for being the root of
the sentence if they were the leftmost finite verb in
the sentence and not preceded by a subordinating
conjunction or relative pronoun. Finite verbs were
identified by POS tags and morphological features,
e.g. in Spanish, verbs without the morphological
feature “mod=n" were identified as finite, while in
Portuguese the fine POS tag “v-fin” was used.

Similarly, various sets of POS tags were used to
identify subordinating conjunctions or relative pro-
nouns for different languages. For example, in Bul-
garian the fine POS tag “pr” (relative pronoun) and
“cs” (subordinating conjunction) were used. For
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Dutch, the morphological features “onder”, “betr”
and “voorinf” were used to identify subordinating
conjunctions and relative pronouns.

These features wreaked havoc with Turkish, a
verb-final language. For certain other languages,
dependency accuracy measured on the develop-
ment test set improved by a modest amount, with
more dramatic improvements in root accuracy (F1
measure combining precision and recall for non-
punctuation root tokens).

Since the addition of these features had been mo-
tivated by verb-second phenomena in Germanic lan-
guages, we were surprised to discover that the only
Germanic language to demonstrate a marked im-
provement in unlabeled dependency accuracy was
Danish, whose accuracy on the development set rose
from 87.51% to 87.72%, while root accuracy F1
rose from 94.12% to 94.72%. Spanish showed a
modest improvement in unlabeled dependency accu-
racy, from 85.08% to 85.13%, but root F1 rose from
80.08% to 83.57%.

The features described above for identifying the
leftmost finite verb not preceded by a subordinat-
ing conjunction or relative pronoun did not im-
prove Slovene unlabeled dependency accuracy, and
so were not included in the set of root-identifying
features in our Slovene CoNLL submission. Closer
examination of the Slovene corpus revealed that pe-
riphrastic constructions consisting of one or more
auxiliaries followed by a participle were annotated
with the participle as the head, whereas for other
languages in the shared task the consensus view ap-
pears to be that the auxiliary should be annotated
as the head. Singling out the leftmost finite verb in
Slovene when a participle ought to be selected as the
root of the sentence is therefore counter-productive.
The other root identification features did improve
root F1 in Slovene. Root F1 on the development test
set rose from 45.82% to 46.43%, although overall
unlabeled dependency accuracy on the development
test set fell slightly from 80.24% to 79.94%.

3.3 Morphological Features

As the preceding discussion shows, morphological
information was occasionally used to assist in mak-
ing finer-grained POS distinctions than were made
in the POS tags, e.g., for distinguishing subordi-
nating vs. coordinating conjunctions. Aside from



these surgical uses of the morphological information
present in the CoNLL data, morphology was not ex-
plicitly used by the baseline parser. For example,
there were no features that considered subject-verb
agreement nor agreement of an adjective with the
number or lexical gender of the noun it modified.
However, it is possible that morphological informa-
tion influenced the training of edge weights if the
information was implicit in the POS tags.

4 The Dependency Labeler

4.1 Classifier

We used a maximum entropy classifier (Berger et al.,
1996) to assign labels to the unlabeled dependen-
cies produced by the Bayes Point Machine. We used
the same training and development test split that was
used to train the dependency parser. We chose to use
maximum entropy classifiers because they can be
trained relatively quickly while still offering reason-
able classification accuracy and are robust in the face
of large numbers of superfluous features, a desirable
property given the requirement that the same parser
handle multiple languages. Furthermore, maximum
entropy classifiers provide good probability distribu-
tions over class labels. This was important to us be-
cause we had initially hoped to find the optimal set
of dependency labels for the children of a given node
by modeling the probability of each set of labels
conditioned on the lemma and POS of the parent.
For example, labeling each dependant of a parent
node independently might result in three OBJECT
relations dependent on a single verb; modeling sets
of relations ought to prevent this. Unfortunately, this
approach did not outperform labeling each node in-
dependently.

Therefore, the system we submitted labeled each
dependency independently, using the most probable
label from the maximum entropy classifier. We have
noted in previous experiments that our SVM imple-
mentation often gives better one-best classification
accuracy than our maximum entropy implementa-
tion, but did not have time to train SVM classifiers.

To see how much the choice of classification al-
gorithm affected our official results, we trained a lin-
ear SVM classifier for Swedish after the competition
had ended, tuning parameters on the development
test set. As noted in section 1, our system scored
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highest for Swedish in unlabeled dependency accu-
racy at 89.54% but fell well short of the third-ranked
system when measuring labeled dependency accu-
racy. Using an SVM classifier instead of a maxi-
mum entropy classifier, Swedish label accuracy rose
from 82.33% to 86.06%, and labeled attachment ac-
curacy rose from 79.69% to 82.95%, which falls
between the first-ranked score of 84.58% and the
second-ranked score of 82.55%. Similarly, Japanese
label accuracy rose from 93.20% to 93.96%, and
labeled attachment accuracy rose from 89.95% to
90.77% when we replaced a maximum entropy clas-
sifier with an SVM. This labeled attachment result
of 90.77% is comparable to the official second place
result of 90.71% for Japanese. We conclude that a
two stage pipeline such as ours, in which the sec-
ond stage labels dependencies in isolation, is greatly
impacted by the choice of classifier.

4.2 Features Used for Labeling

We extracted features from individual nodes in the
dependency tree, parent-child features and features
that took nodes other than the parent and child into
account.

The features extracted from each individual par-
ent and child node were the original surface form,
the lemma (see footnote 1 above), the coarse and fine
POS tags and each morphological feature.

The parent-child features are the direction of
modification, the combination of the parent and
child lemmata, all combinations of parent and child
lemma and coarse POS tag (e.g. child lemma com-
bined with coarse POS tag of the parent) and all pair-
wise combinations of parent and child morphology
features (e.g. parent is feminine and child is plural).

Additional features were verb position (whether
the parent or child is the first or last verb in the sen-
tence), coarse POS and lemma of the left and right
neighbors of the parent and child, coarse POS and
lemma of the grandparent, number and coarse POS
tag sequence of siblings to the left and to the right of
the child, total number of siblings of the child, num-
ber of tokens governed by child, whether the par-
ent has a verbal ancestor, lemma and morphological
features of the verb governing the child (if any), and
coarse POS tag combined with relative offset of each
sibling (e.g., the sibling two to the left of the child is
a determiner).



For Slovene, the label accuracy using all of the
features above was 81.91%. We retrained our max-
imum entropy classifier by removing certain classes
of features in order to determine their contribu-
tion. Removing the weight features caused a notable
drop, with label accuracy on the development test set
falling 0.52% to 81.39%. Removing the grandpar-
ent features (but including weight features) caused
an even greater drop of 1.03% to 80.88%. One place
where the grandparent features were important was
in distinguishing between Adv and Atr relations. It
appears that the relation between a noun and its gov-
erning preposition or between a verb and its govern-
ing conjunction is sensitive to the part of speech of
the grandparent. For example, we observed a num-
ber of cases where the relation between a noun and
its governing preposition had been incorrectly la-
beled as Adv when it should have been Atr. The
addition of grandparent features allowed the classi-
fier to make the distinction by looking at the POS of
the grandparent; when the POS was noun, the clas-
sifier tended to correctly choose the Atr label.

5 Conclusion

We have described a two stage pipeline that first pre-
dicts directed unlabeled dependencies and then la-
bels them. The system performed well on Slovene,
Spanish and Swedish. Feature engineering played
an important role both in predicting dependencies
and in labeling them. Finally, replacing the maxi-
mum entropy classifier used to label dependencies
with an SVM improves upon our official results.
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