
Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL-X),
pages 191–195, New York City, June 2006.c©2006 Association for Computational Linguistics

Multi-lingual Dependency Parsing at NAIST

Yuchang CHENG, Masayuki ASAHARA and Yuji MATSUMOTO
Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara 630-0192, Japan
{yuchan-c, masayu-a, matsu}@is.naist.jp

Abstract

In this paper, we present a framework for
multi-lingual dependency parsing. Our
bottom-up deterministic parser adopts
Nivre’s algorithm (Nivre, 2004) with a
preprocessor. Support Vector Machines
(SVMs) are utilized to determine the word
dependency attachments. Then, a maxi-
mum entropy method (MaxEnt) is used
for determining the label of the depend-
ency relation. To improve the perform-
ance of the parser, we construct a tagger
based on SVMs to find neighboring at-
tachment as a preprocessor. Experimental
evaluation shows that the proposed exten-
sion improves the parsing accuracy of our
base parser in 9 languages. (Hajič et al.,
2004; Simov et al., 2005; Simov and
Osenova, 2003; Chen et al., 2003; Böh-
mová et al., 2003; Kromann, 2003; van
der Beek et al., 2002; Brants et al.,
2002; Kawata and Bartels, 2000; Afonso
et al., 2002; Džeroski et al., 2006; Civit
and Martí, 2002; Nilsson et al., 2005;
Oflazer et al., 2003; Atalay et al., 2003).

1 Introduction

The presented dependency parser is based on our
preceding work (Cheng, 2005a) for Chinese. The
parser is a bottom-up deterministic dependency
parser based on the algorithm proposed by (Nivre,
2004). A dependency attachment matrix is con-
structed, in which each element corresponds to a
pair of tokens. Each dependency attachment is in-
crementally constructed, with no crossing con-
straint. In the parser, SVMs (Vapnik, 1998)
deterministically estimate whether a pair of words
has either of four relations: right, left, shift and
reduce. While dependency attachment is estimated
by SVMs, we use a MaxEnt (Ratnaparkhi, 1999)
based tagger with the output of the parser to esti-

mate the label of dependency relations. This tagger
uses the same features as for the word dependency
analysis.

In our preceding work (Cheng, 2005a), we not
only adopted the Nivre algorithm with SVMs, but
also tried some preprocessing methods. We inves-
tigated several preprocessing methods on a Chi-
nese Treebank. In this shared task (Buchholz et. al,
2006), we also investigate which preprocessing
method is effective on other languages. We found
that only the method that uses a tagger to extract
the word dependency attachment between two
neighboring words works effectively in most of the
languages.

2 System Description

The main part of our dependency parser is based
on Nivre’s algorithm (Nivre, 2004), in which the
dependency relations are constructed by a bottom-
up deterministic schema. While Nivre’s method
uses memory-based learning to estimate the de-
pendency attachment and the label, we use SVMs
to estimate the attachment and MaxEnt to estimate

Fig. 1 The architecture of our parser

(i)Preprocessor (neighboring
relation tagger)

(ii)Get contextual features

(iii)Estimate dependency
attachment by SVM

(iv)Tag label by MaxEnt
Construct Subtree

No more construction

Dependency tree

False
True

Left or Right attachment

None

Input sentence (word tokens)

191

Fig. 2. The features for dependency analysis

BOS
-

BOS
BOS

-

收復
-

VC
V
-

臺灣
-

Nb
N
-

的
-

DE
DE
-

偉大
-

VH
V
-

功業
-

Nac
N
-

鄭成功
-

Na
N
-

S I

position t-1position t-2

The child of the position t-1

position n position n+1position n+2position t

A feature: the distance between the position t and n

FORM
LEMMA

CPOSTAG
POSTAG
FEATS

Key: The features for machine
learning of each token

the label. The architecture of the parser consists of
four major procedures and as in Fig.1:
(i) Decide the neighboring dependency at-

tachment between all adjacent words in the
input sentence by SVM-based tagger (as a
preprocessing)

(ii) Extract the surrounding features for the
focused pair of nodes.

(iii) Estimate the dependency attachment op-
eration of the focused pair of nodes by
SVMs.

(iv) If there is a left or right attachment, esti-
mate the label of dependency relation by
MaxEnt.

We will explain the main procedures (steps (ii)-
(iv)) in sections 2.1 and 2.2, and the preprocessing
in section 2.3.

2.1 Word dependency analysis

In the algorithm, the state of the parser is repre-
sented by a triple AIS ,, . S and I are stacks, S
keeps the words being in consideration, and I
keeps the words to be processed. A is a list of de-
pendency attachments decided in the algorithm.
Given an input word sequence W, the parser is ini-
tialized by the triple φ,,Wnil . The parser esti-
mates the dependency attachment between two
words (the top elements of stacks S and I). The
algorithm iterates until the list I becomes empty.
There are four possible operations (Right, Left,
Shift and Reduce) for the configuration at hand.
Right or Left: If there is a dependency relation
that the word t or n attaches to word n or t, add the
new dependency relation ()nt → or ()tn → into A,
remove t or n from S or I.

If there is no dependency relation between n and
t, check the following conditions.
Reduce: If there is no word 'n (In ∈') which may
depend on t, and t has a parent on its left side, the
parser removes t from the stack S.

Shift: If there is no dependency between n and t,
and the triple does not satisfy the conditions for
Reduce, then push n onto the stack S.

In this work, we adopt SVMs for estimating the
word dependency attachments. SVMs are binary
classifiers based on the maximal margin strategy.
We use the polynomial kernel: dK)1()(zxzx, ⋅+=
with d =2. The performance of SVMs is better than
that of the maximum entropy method in our pre-
ceding work for Chinese dependency analysis
(Cheng, 2005b). This is because that SVMs can
combine features automatically (using the polyno-
mial kernel), whereas the maximum entropy
method cannot. To extend binary classifiers to
multi-class classifiers, we use the pair-wise method,
in which we make 2Cn

1 binary classifiers between
all pairs of the classes (Kreβel, 1998). We use
Libsvm (Lin et al., 2001) in our experiments.

In our method, the parser considers the depend-
ency attachment of two nodes (n,t). The features of
a node are the word itself, the POS-tag and the in-
formation of its child node(s). The context features
are 2 preceding nodes of node t (and t itself), 2 suc-
ceeding nodes of node n (and n itself), and their
child nodes. The distance between nodes n and t is
also used as a feature. The features are shown in
Fig.2.

2.2 Label tagging

We adopt MaxEnt to estimate the label of depend-
ency relations. We have tried to use linear-chain
conditional random fields (CRFs) for estimating
the labels after the dependency relation analysis.
This means that the parser first analyzes the word
dependency (head-modifier relation) of the input
sentence, then the CRFs model analyzes the most
suitable label set with the basic information of in-
put sentence (FORM, LEMMA, POSTAG……etc)
and the head information (FORM and POSTAG)
of each word. However, as the number of possible
labels in some languages is large, training a CRF
model with these corpora (we use CRF++ (Kudo,
2005)) cost huge memory and time.

Instead, we combine the maximum entropy
method in the word dependency analysis to tag the
label of dependency relation. As shown in Fig. 1,
the parser first gets the contextual features to esti-
mate the word dependency. If the parsing operation

1 To estimate the current operation (Left, Right, Shift and
Reduce) by SVMs, we need to build 6 classifiers(Left-Right,
Left-Shift, Left-Reduce, Right-Shift, Right-Reduce and Shift-
Reduce).

192

is “Left” or “Right”, the parser then use MaxEnt
with the same features to tag the label of relation.
This strategy can tag the label according to the cur-
rent states of the focused word pair. We divide the
training instances according to the CPOSTAG of
the focused word n, so that a classifier is con-
structed for each of distinct POS-tag of the word n.

2.3 Preprocessing

2.3.1 Preceding work
In our preceding work (Cheng, 2005a), we dis-
cussed three problems of our basic methods (adopt
Nivre’s algorithm with SVMs) and proposed three
preprocessing methods to resolve these problems.
The methods include: (1) using global features and
a two-steps process to resolve the ambiguity be-
tween the parsing operations “Shift” and “Reduce”.
(2) using a root node finder and dividing the sen-
tence at the root node to make use of the top-down
information. (3) extracting the prepositional phrase
(PP) to resolve the problem of identifying the
boundary of PP.

We incorporated Nivre’s method with these
preprocessing methods for Chinese dependency
analysis with Penn Chinese Treebank and Sinica
Treebank (Chen et al., 2003). This was effective
because of the properties of Chinese: First, there is
no multi-root in Chinese Treebank. Second, the
boundary of prepositional phrases is ambiguous.
We found that these methods do not always im-
prove the accuracy of all the languages in the
shared task.

We have tried the method (1) in some lan-
guages to see if there is any improvement in the
parser. We attempted to use global features and
two-step analysis to resolve the ambiguity of the
operations. In Chinese (Chen et al., 2003) and
Danish (Kromann, 2003), this method can improve
the parser performance. However, in other lan-
guages, such as Arabic (Hajič et al., 2004), this
method decreased the performance. The reason is
that the sentence in some languages is too long to
use global features. In our preceding work, the
global features include the information of all the
un-analyzed words. However, for analyzing long
sentences, the global features usually include some
useless information and will confuse the two-step
process. Therefore, we do not use this method in
this shared task.

In the method (2), we construct an SVM-based
root node finder to identify the root node and di-
vided the sentence at the root node in the Chinese

Treebank. This method is based on the properties
of dependency structures “One and only one ele-
ment is independent” and “An element cannot have
modifiers lying on the other side of its own head”.
However, there are some languages that include
multi-root sentences, such as Arabic, Czech, and
Spanish (Civit and Martí, 2002), and it is difficult
to divide the sentence at the roots. In multi-root
sentences, deciding the head of the words between
roots is difficult. Therefore, we do not use the
method (2) in the share task.

The method (3) –namely PP chunker– can iden-
tify the boundary of PP in Chinese and resolve the
ambiguity of PP boundary, but we cannot guaran-
tee that to identify the boundary of PP can improve
the parser in other languages. Even we do not un-
derstand construction of PP in all languages.
Therefore, for the robustness in analyzing different
languages, we do not use this method.

2.3.2 Neighboring dependency attachment
tagger
In the bottom-up dependency parsing approach, the
features and the strategies for parsing in early stage
(the dependency between adjacent2 words) is dif-
ferent from parsing in upper stage (the dependency
between phrases). Parsing in upper stage needs the
information at the phrases not at the words alone.
The features and the strategies for parsing in early
and upper stages should be separated into distinct.
Therefore, we divide the neighboring dependency
attachment (for early stage) and normal depend-
ency attachment (for upper stage), and set the
neighboring dependency attachment tagger as a
preprocessor.

When the parser analyzes an input sentence, it
extracts the neighboring dependency attachments
first, then analyzes the sentence as described be-
fore. The results show that tagging the neighboring
dependency word-pairs can improve 9 languages
out of 12 scoring languages, although in some lan-
guages it degrades the performance a little. Poten-
tially, there may be a number of ways for
decomposing the parsing process, and the current
method is just the simplest decomposition of the
process. The best method of decomposition or dy-
namic changing of parsing models should be inves-
tigated as the future research.

2 We extract all words that depend on the adjacent word (right
or left).

193

3 Experiment

3.1 Experimental setting
Our system consists of three parts; first, the SVM-
based tagger extracts the neighboring attachment
relations of the input sentence. Second, the parser
analyzes further dependency attachments. If a new
dependency attachment is generated, the MaxEnt
based tagger estimates the label of the relation. The
three parts of our parser are trained on the avail-
able data of the languages.

In our experiment, we used the full information
of each token (FORM, LEMMA, CPOSTAG,
POSTAG, FEATS) when we train and test the
model. Fig. 2 describes the features of each token.
Some languages do not include all columns; such
that the Chinese data does not include LEMMA
and FEATURES, these empty columns are shown
by the symbol “-” in Fig. 2. The features for the
neighboring dependency tagging are the informa-
tion of the focused word, two preceding words and
two succeeding words. Fig. 2 shows the window
size of our features for estimating the word de-
pendency in the main procedures. These features
include the focused words (n, t), two preceding
words and two succeeding words and their children.
The features for estimating the relation label are
the same as the features used for word dependency
analysis. For example, if the machine learner esti-
mates the operation of this situation as “Left” or
“Right” by using the features in Fig. 2, the parser
uses the same features in Fig. 2 and the depend-
ency relation to estimate the label of this relation.

For training the models efficiently, we divided
the training instances of all languages at the
CPOSTAG of the focused word n in Fig .2. In our
preceding work, we found this procedure can get
better performance than training with all the in-
stances at once. However, only the instances in
Czech are divided at the CPOSTAG of the focused
word-pair t-n3. The performance of this procedure
is worse than using the CPOSTAG of the focused
word n, because the training instances of each
CPOSTAG-pair will become scarce. However, the
data size of Czech is much larger than other lan-
guages; we couldn’t finish the training of Czech
using the CPOSTAG of the focused word n, before
the deadline for submitting. Therefore we used this
procedure only for the experiment of Czech.

3 For example, we have 15 SVM-models for Arabic according
to the CPOSTAG of Arabic (A, C, D, F, G…etc.). However,
we have 139 SVM-models for Czech according the
CPOSTAG pair of focused words (A-A, A-C, A-D…etc.)

All our experiments were run on a Linux ma-
chine with XEON 2.4GHz and 4.0GB memory.
The program is implemented in JAVA.

3.2 Results

Table 1 shows the results of our parser. We do not
take into consideration the problem of cross rela-
tion. Although these cross relations are few in
training data, they would make our performance
worse in some languages. We expect that this is
one reason that the result of Dutch is not good. The
average length of sentences and the size of training
data may have affected the performance of our
parser. Sentences of Arabic are longer and training
data size of Arabic is smaller than other languages;
therefore our parser is worse in Arabic. Similarly,
our result in Turkish is also not good because the
data size is small.
 We compare the result of Chinese with our pre-
ceding work. The score of this shared task is better
than our preceding work. It is expected that we
selected the FORM and CPOSTAG of each nodes
as features in the preceding work. However, the
POSTAG is also a useful feature for Chinese, and
we grouped the original POS tags of Sinica Tree-
bank from 303 to 54 in our preceding work. The
number of CPOSTAG(54) in our preceding work
is more than the number of CPOSTAG(22) in this
shared task, the training data of each CPOSTAG in
our preceding work is smaller than in this work.
Therefore the performance of our preceding work
in Sinica Treebank is worse than this task.
 The last column of the Table 1 shows the unla-
beled scores of our parser without the preprocess-
ing. Because our parser estimates the label after the
dependency relation is generated. We only con-
sider whether the preprocessing can improve the
unlabeled scores. Although the preprocessing can
not improve some languages (such as Chinese,
Spanish and Swedish), the average score shows
that using preprocessing is better than parsing
without preprocessing.
 Comparing the gold standard data and the sys-
tem output of Chinese, we find the CPOSTAG
with lowest accuracy is “P (preposition)”, the accu-
racy that both dependency and head are correct is
71%. As we described in our preceding work and
Section 2.3, we found that boundaries of preposi-
tional phrases are ambiguous for Chinese. The bot-
tom-up algorithm usually wrongly parses the
prepositional phrase short. The parser does not
capture the correct information of the children of
the preposition. According to the results, this prob-
lem does not cause the accuracy of head of

194

CPOSTAG “P” decrease. Actually, the head accu-
racy of “P” is better than the CPOSTAG “C” or
“V”. However, the dep. accuracy of “P” is worse.
We should consider the properties of prepositions
in Chinese to resolve this question. In Chinese,
prepositions are derived from verbs; therefore
some prepositions can be used as a verb. Naturally,
the dependency relation of a preposition is differ-
ent from that of a verb. Important information for
distinguishing whether the preposition is a verb or
a preposition is the information of the children of
the preposition. The real POS tag of a preposition
which includes few children is usually a verb; on
the other hand, the real POS tag of a preposition is
usually a preposition.

If our parser considers the preposition which
leads a short phrase, the parser will estimate the
relation of the preposition as a verb. At the same
time, if the boundary of prepositional phrase is
analyzed incorrectly, other succeeding words will
be wrongly analyzed, too.

Error analysis of Japanese data (Kawata and
Bartels, 2000) shows that CNJ (Conjunction) is a
difficult POS tag. The parser does not have any
module to detect coordinate structures. (Kurohashi,
1995) proposed a method in which coordinate
structure with punctuation is detected by a coeffi-

cient of similarity. Similar framework is necessary
for solving the problem.

 Another characteristic error in Japanese is seen
at adnominal dependency attachment for a com-
pound noun. In such dependency relations, adjec-
tives and nouns with "no" (genitive marker) can be
a dependent and compound nouns which consist of
more than one consecutive nouns can be a head.
The constituent of compound nouns have same
POSTAG, CPOSTAG and FEATS. So, the ma-
chine learner has to disambiguate the dependency
attachment with sparce feature LEMMA and
FORM. Compound noun analysis by semantic fea-
ture is necessary for addressing the issue.

4 Conclusion
This paper reported on multi-lingual dependency
parsing on combining SVMs and MaxEnt. The
system uses SVMs for word dependency attach-
ment analysis and MaxEnt for the label tagging
when the new dependency attachment is generated.
We discussed some preprocessing methods that are
useful in our preceding work for Chinese depend-
ency analysis, but these methods, except one, can-
not be used in multi-lingual dependency parsing.
Only using the SVM-based tagger to extract the
neighbor relation could improve many languages
in our experiment, therefore we use the tagger in
the parser as its preprocessing.

References
S. Buchholz, E. Marsi, A. Dubey and Y. Krymolowski. 2006.

CoNLL-X: Shared Task on Multilingual Dependency Pars-
ing, CoNLL 2006.

Yuchang Cheng, Masayuki Asahara and Yuji Matsumoto.
2005a. Chinese Deterministic Dependency Parser: Exam-
ining Effects of Global Features and Root Node Finder,
Fourth SIGHAN Workshop, pp.17-24.

Yuchang Cheng, Masayuki Asahara and Yuji Matsumoto.
2005b. Machine Learning-based Dependency Parser for
Chinese, the International Conference on Chinese Comput-
ing, pp.66-73.

Ulrich. H.-G. Kreβel, 1998. Pairwise classification and sup-
port vector machines. In Advances in Kernel Methods, pp.
255-268. The MIT Press.

Taku Kudo. CRF++: Yet Another CRF toolkit,
http://www.chasen.org/~taku/software/CRF++/.

Sadao Kurohashi. 1995. Analyzing Coordinate Structures
Including Punctuation in English, In IWPT-95, pp. 136-147.

Chih Jen Lin, 2001. A practical guide to support vector classi-
fication, http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

Joakim Nivre, 2004. Incrementality in Deterministic Depend-
ency Parsing, In Incremental Parsing: Bringing Engineer-
ing and Cognition Together. Workshop at ACL-2004, pp.
50-57.

Adwait Ratnaparkhi, 1999. Learning to parse natural lan-
guage with maximum entropy models. Machine Learning,
34(1-3):151-175.

Vladimir N. Vapnik, 1998. Statistical Learning Theory. A
Wiley-Interscience Publication.

Language: LAS: UAS: LAcc. UAS with out
preprocessing:

Arabic 65.19 77.74 79.02 76.74
Chinese 84.27 89.46 86.42 90.03
Czech 76.24 83.4 83.52 82.88
Danish 81.72 88.64 86.11 88.45
Dutch 71.77 75.49 75.83 74.97

German 84.11 87.66 90.67 87.53
Japanese 89.91 93.12 92.40 92.99
Portugese 85.07 90.3 88.00 90.21
Slovene 71.42 81.14 80.96 80.43
Spanish 80.46 85.15 88.90 85.19
Swedish 81.08 88.57 83.99 88.83
Turkish 61.22 74.49 73.91 74.3

AV: 77.7 84.6 84.1 84.38
SD: 8.67 6.15 5.78 6.42

Bulgarian 86.34 91.3 89.27 91.44

Table 1: Results

195

