A Pipeline Model for Bottom-Up Dependency Parsing

Ming-Wei Chang

Quang Do

Dan Roth

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801
{mchang2l, quangdo2, danr}Quiuc.edu

Abstract

We present a new machine learning frame-
work for multi-lingual dependency pars-
ing. The framework uses a linear, pipeline
based, bottom-up parsing algorithm, with
a look ahead local search that serves to
make the local predictions more robust.
As shown, the performance of the first
generation of this algorithm is promising.

1 System Description

1.1 Parsing as a Pipeline

Pipeline computation is a common computational
strategy in natural language processing, where a task
is decomposed into several stages that are solved se-
quentially. For example, a semantic role labeling
program may start by using a part-of-speech tagger,
than apply a shallow parser to chunk the sentence
into phrases, and continue by identifying predicates
and arguments and then classifying them.

(Yamada and Matsumoto, 2003) proposed a
bottom-up dependency parsing algorithm, where the
local actions, chosen from among Shift, Left, Right,
are used to generate a dependency tree using a
shift-reduce parsing approach. Moreover, they used
SVMs to learn the parsing decisions between pairs
of consecutive words in the sentences !. This is
a true pipeline approach in that the classifiers are
trained on individual decisions rather than on the
overall quality of the parser, and chained to yield the

'A pair of words may become consecutive after the words
between them become the children of these two words

186

global structure. It suffers from the limitations of
pipeline processing, such as accumulation of errors,
but nevertheless, yields very competitive parsing re-
sults.

We devise two natural principles for enhancing
pipeline models. First, inference procedures should
be incorporated to make robust prediction for each
stage. Second, the number of predictions should
be minimized to prevent error accumulation. Ac-
cording to these two principles, we propose an im-
proved pipeline framework for multi-lingual depen-
dency parsing that aims at addressing the limitations
of the pipeline processing. Specifically, (1) we use
local search, a look ahead policy, to improve the ac-
curacy of the predicted actions, and (2) we argue that
the parsing algorithm we used minimizes the num-
ber of actions (Chang et al., 2006).

We use the set of actions: Shift, Left, Right, Wait-
Left, WaitRight for the parsing algorithm. The pure
Wait action was suggested in (Yamada and Mat-
sumoto, 2003). However, here we come up with
these five actions by separating actions Left into
(real) Left and WaitLeft, and Right into (real) Right
and WaitRight. Predicting these turns out to be eas-
ier due to finer granularity. We then use local search
over consecutive actions and better exploit the de-
pendencies among them.

The parsing algorithm is a modified shift-reduce
parser (Aho et al., 1986) that makes use of the ac-
tions described above and applies them in a left
to right manner on consecutive word pairs (a,b)
(a < b) in the word list T'. T is initialized as the full
sentence. Latter, the actions will change the contents
of T'. The actions are used as follows:

Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL-X)
pages 186-190, New York City, June 20@®2006 Association for Computational Linguistics

Shift: there is no relation between a and b.

Right: b is the parent of a,

Left: a is the parent of b

WaitLeft: a is the parent of b, but it’s possible that
b is a parent of other nodes. Action is deferred.

The actions control the procedure of building
trees. When Left or Right is performed, the algo-
rithm has found a parent and a child. Then, the func-
tion deleteWord will be called to eliminate the child
word, and the procedure will be repeated until the
tree is built. In projective languages, we discovered
that action WaifRight is not needed. Therefore, for
projective languages, we just need 4 actions.

In order to complete the description of the algo-
rithm we need to describe which pair of consecu-
tive words to consider once an action is taken. We
describe it via the notion of the focus point, which
represents the index of the current word in 7. In
fact, determining the focus point does not affect the
correctness of the algorithm. It is easy to show that
any pair of consecutive words in the sentence can
be considered next. If the correct action is chosen
for the corresponding pair, this will eventually yield
the correct tree (but may necessitate multiple cycles
through the sentence).

In practice, however, the actions chosen will be
noisy, and a wasteful focus point policy will result
in a large number of actions, and thus in error accu-
mulation. To minimize the number of actions taken,
we want to find a good focus point placement policy.

There are many natural placement policies that we
can consider (Chang et al., 2006). In this paper, ac-
cording to the policy we used, after S and WL, the
focus point moves one word to the right. After L or
R, we adopt the policy Step Back: the focus moves
back one word to the left. Although the focus place-
ment policy here is similar to (Yamada and Mat-
sumoto, 2003), they did not explain why they made
this choice. In (Chang et al., 2006), we show that
the policy movement used here minimized the num-
ber of actions during the parsing procedure. We can
also show that the algorithm can parse a sentence
with projective relationships in only one round.

Once the parsing algorithm, along with the focus
point policy, is determined, we can train the action
classifiers. Given an annotated corpus, the parsing
algorithm is used to determine the action taken for
each consecutive pair; this is used to train a classifier

187

Algorithm 1 Pseudo Code of the dependency pars-
ing algorithm. getFeatures extracts the features
describing the currently considered pair of words;
getAction determines the appropriate action for the
pair; assignParent assigns the parent for the child
word based on the action; and deleteWord deletes the
word which become child once the action is taken.
Let ¢ represents for a word and its part of speech
For sentence T = {t1,t2,...,t,}
focus=1
while focus< |T'| do
U = getFeatures(t focus, t focus+1)
a = getAction(t focus, t focus+15 V)
if o« = L or @ = R then
assignParent(t focus, tfocus+1,)
deleteWord(T, focus,)
// performing Step Back here
focus = focus — 1
else
focus = focus + 1
end if
end while

to predict one of the four actions. The details of the
classifier and the features are given in Section 3.

When we apply the trained model on new data,
the sentence is processed from left to right to pro-
duce the predicted dependency tree. The evaluation
process is somewhat more involved, since the action
classifier is not used as it is, but rather via a local
search inference step. This is described in Section 2.
Algorithm 1 depicts the pseudo code of our parsing
algorithm.

Our algorithm is designed for projective lan-
guages. For non-projective relationships in some
languages, we convert them into near projective
ones. Then, we directly apply the algorithm on mod-
ified data in training stage. Because the sentences in
some language, such as Czech, etc. , may have multi
roots, in our experiment, we ran multiple rounds of
Algorithm 1 to build the tree.

1.2 Labeling the Type of Dependencies

In our work, labeling the type of dependencies is
a post-task after the phase of predicting the head
for the tokens in the sentences. This is a multi-
class classification task. The number of the de-

pendency types for each language can be found in
the organizer’s introduction paper of the shared task
of CoNLL-X. In the phase of learning dependency
types, the parent of the tokens, which was labeled
in the first phase, will be used as features. The pre-
dicted actions can help us to make accurate predic-
tions for dependency types.

1.3 Dealing with Crossing Edges

The algorithm described in previous section is pri-
marily designed for projective languages. To deal
with non-projective languages, we use a similar ap-
proach of (Nivre and Nilsson, 2005) to map non-
projective trees to projective trees. Any single
rooted projective dependency tree can be mapped
into a projective tree by the Lift operation. The
definition of Lift is as follows: Lift(w; — wy) =
parent(w;) — wy, where a — b means that a is the
parent of b, and parent is a function which returns
the parent word of the given word. The procedure is
as follows. First, the mapping algorithm examines if
there is a crossing edge in the current tree. If there is
a crossing edge, it will perform Lift and replace the
edge until the tree becomes projective.

2 Local Search

The advantage of a pipeline model is that it can use
more information that is taken from the outcomes
of previous prediction. However, this may result in
accumulating error. Therefore, it is essential for our
algorithm to use a reliable action predictor. This mo-
tivates the following approach for making the local
prediction in a pipeline model more reliable. Infor-
mally, we devise a local search algorithm and use it
as a look ahead policy, when determining the pre-
dicted action.

In order to improve the accuracy, we might want
to examine all the combinations of actions proposed
and choose the one that maximizes the score. It is
clearly intractable to find the global optimal predic-
tion sequence in a pipeline model of the depth we
consider. The size of the possible action sequence
increases exponentially so that we can not examine
every possibility. Therefore, a local search frame-
work which uses additional information, however, is
suitable and tractable.

The local search algorithm is presented in Al-

188

Algorithm 2 Pseudo code for the local search al-
gorithm. In the algorithm, y represents the a action
sequence. The function search considers all possible
action sequences with |depth| actions and returns
the sequence with highest score.

Algo predictAction(model, depth, State)

x = getNextFeature(Srate)

y = search(x, depth, model, State)

lab = y/[1]

State = update(State, lab)

return lab

Algo search(x, depth, model, State)
maxScore = —o0
F={y |yl = depth}
for y in F' do
s = 0, TmpState = State
for : =1...depthdo
x = getNextFeature(TmpState)
s = s + log(score(y|[i], z))
TmpState = update(TmpState, y|i])
end for
if s > maxScore then
y=y
maxScore = s
end if
end for
return y

gorithm 2. The algorithm accepts two parameters,
model and depth. We assume a classifier that can
give a confidence in its prediction. This is repre-
sented here by model. depth is the parameter de-
termining the depth of the local search. Stare en-
codes the configuration of the environment (in the
context of the dependency parsing this includes the
sentence, the focus point and the current parent and
children for each node). Note that the features ex-
tracted for the action classifier depends on State, and
State changes by the update function when a predic-
tion is made. In this paper, the update function cares
about the child word elimination, relationship addi-
tion and focus point movement.

The search algorithm will perform a search of
length depth. Additive scoring is used to score the
sequence, and the first action in this sequence is per-
formed. Then, the State is updated, determining the

next features for the action classifiers and search is
called again.

One interesting property of this framework is that
we use future information in addition to past infor-
mation. The pipeline model naturally allows access
to all the past information. But, since our algorithm
uses the search as a look ahead policy, it can produce
more robust results.

3 Experiments and Results

In this work we used as our learning algorithm a
regularized variation of the perceptron update rule
as incorporated in SNoW (Roth, 1998; Carlson et
al., 1999), a multi-class classifier that is specifically
tailored for large scale learning tasks. SNoW uses
softmax over the raw activation values as its confi-
dence measure, which can be shown to be a reliable
approximation of the labels’ probabilities. This is
used both for labeling the actions and types of de-
pendencies. There is no special language enhance-
ment required for each language. The resources pro-
vided for 12 languages are described in: (Haji¢ et
al., 2004; Chen et al., 2003; Bohmova et al., 2003;
Kromann, 2003; van der Beek et al., 2002; Brants
et al., 2002; Kawata and Bartels, 2000; Afonso et
al., 2002; DzZeroski et al., 2006; Civit Torruella and
Marti Antonin, 2002; Nilsson et al., 2005; Oflazer et
al., 2003; Atalay et al., 2003).

3.1 Experimental Setting

The feature set plays an important role in the qual-
ity of the classifier. Basically, we used the same
feature set for the action selection classifiers and
for the label classifiers. In our work, each exam-
ple has average fifty active features. For each word
pair (w1, w2), we used their LEMMA, the POSTAG
and also the POSTAG of the children of w; and
ws. We also included the LEMMA and POSTAG
of surrounding words in a window of size (2,4).
We considered 2 words before wy and 4 words af-
ter wo (we agree with the window size in (Yamada
and Matsumoto, 2003)). The major difference of
our feature set compared with the one in (Yamada
and Matsumoto, 2003) is that we included the pre-
vious predicted action. We also added some con-
junctions of the above features to ensure expressive-
ness of the model. (Yamada and Matsumoto, 2003)

189

made use of the polynomial kernel of degree 2 so
they in fact use more conjunctive features. Beside
these features, we incorporated the information of
FEATS for the languages when it is available. The
columns in the data files we used for our work are
the LEMMA, POSTAG, and the FEATS, which is
treated as atomic. Due to time limitation, we did not
apply the local search algorithm for the languages
having the FEATS features.

3.2 Results

Table 1 shows our results on Unlabeled Attachment
Scores (UAS), Labeled Attachment Scores (LAS),
and Label Accuracy score (LAC) for 12 languages.
Our results are compared with the average scores
(AV) and the standard deviations (SD), of all the sys-
tems participating in the shared task of CoNLL-X.

Our average UAS for 12 languages is 83.54%
with the standard deviation 6.01; and 76.80% with
the standard deviation 9.43 for average LAS.

4 Analysis and Discussion

We observed that our UAS for Arabic is generally
lower than for other languages. The reason for the
low accuracy of Arabic is that the sentence is very
long. In the training data for Arabic, there are 25%
sentences which have more than 50 words. Since
we use a pipeline model in our algorithm, it required
more predictions to complete a long sentence. More
predictions in pipeline models may result in more
mistakes. We think that this explains our relatively
low Arabic result. Moreover, in our current system,
we use the same window size (2,4) for feature ex-
traction in all languages. Changing the windows size
seems to be a reasonable step when the sentences are
longer.

For Czech, one reason for our relatively low result
is that we did not use the whole training corpus due
to time limitation 2 . Actually, in our experiment
on the development set, when we increase the size
of training data in the training phase we got signif-
icantly higher result than the system trained on the
smaller data. The other problem for Czech is that
Czech is one of the languages with many types of
part of speech and dependency types, and also the

*Training our system for most languages takes 30 minutes

or 1 hour for both phases of labeling HEAD and DEPREL. It
takes 6-7 hours for Czech with 50% training data.

Language UAS LAS LAC
Ours | AV | SD | Ours| AV| SD| Ours| AV | SD
Arabic 76.09 | 73.48 | 4.94 || 60.92 | 59.94 [6.53 [75.69 | 75.12 | 5.49
Chinese 89.60 | 84.85 | 5.99 || 85.05 | 78.32 | 8.82 || 87.28 | 81.66 | 7.92
Czech 81.78 | 77.01 | 6.70 || 72.88 | 67.17 | 8.93 | 80.42 | 76.59 | 7.69
Danish 86.85 | 84.52 | 8.97 || 80.60 | 7831 | 11.34 | 86.51 | 84.50 | 4.35
Dutch 76.25 | 75.07 | 5.78 || 72.91 | 70.73 | 6.66 || 80.15 | 77.57 | 5.92
German 86.90 | 82.60 | 6.73 || 84.17 | 78.58 | 7.51 | 91.03 | 86.26 | 6.01
Japanese | 90.77 | 89.05 | 5.20 || 89.07 | 85.86 | 7.09 || 92.18 | 89.90 | 5.36
Portuguese || 88.60 | 86.46 | 4.17 || 83.99 | 80.63 | 5.83 || 88.84 | 8535 | 5.45
Slovene 80.32 | 76.53 | 4.67 || 69.52 | 65.16 | 6.78 || 79.26 | 76.31 | 6.40
Spanish 83.09 | 77.76 | 7.81 || 79.72 | 73.52 | 8.41 | 89.26 | 85.71 | 4.56
Swedish || 89.05 | 84.21 | 5.45 || 82.31 | 76.44 | 6.46 | 84.82 | 80.00 | 6.24
Turkish 73.15 | 69.35 | 5.51 || 60.51 | 55.95 | 7.71 || 73.75 | 69.59 | 7.94

Table 1:

Our results are compared with the average scores.

UAS=Unlabeled Attachment Score,

LAS=Labeled Attachment Score, LAC=Label Accuracy, AV=Average score, and SD=standard deviation.

length of the sentences in Czech is relatively long.
These facts make recognizing the HEAD and the
types of dependencies more difficult.

Another interesting aspect is that we have not
used the information about the syntactic and/or mor-
phological features (FEATS) properly. For the lan-
guages for which FEATS is available, we have a
larger gap, compared with the top system.

5 Further Work and Conclusion

In the shared task of CoNLL-X, we have shown that
our dependency parsing system can do well on mul-
tiple languages without requiring special knowledge
for each of the languages.

From a technical perspective, we have addressed
the problem of using learned classifiers in a pipeline
fashion, where a task is decomposed into several
stages and classifiers are used sequentially to solve
each stage. This is a common computational strat-
egy in natural language processing and is known to
suffer from error accumulation and an inability to
correct mistakes in previous stages. We abstracted
two natural principles, one which calls for making
the local classifiers used in the computation more
reliable and a second, which suggests to devise the
pipeline algorithm in such a way that it minimizes
the number of actions taken.

However, since we tried to build a single approach
for all languages, we have not fully utilized the capa-

190

bilities of our algorithms. In future work we will try
to specify both features and local search parameters
to the target language.

Acknowledgement This research is supported by
NSFITR IIS-0428472, a DOI grant under the Reflex
program and ARDA’s Advanced Question Answer-
ing for Intelligence (AQUAINT) program.

References

A. V. Aho, R. Sethi, and J. D. Ullman. 1986. Compilers:
Principles, techniques, and tools. In Addison-Wesley
Publishing Company, Reading, MA.

A. Carlson, C. Cumby, J. Rosen, and D. Roth. 1999.
The SNoW learning architecture. Technical Report
UIUCDCS-R-99-2101, UIUC Computer Science De-
partment, May.

M. Chang, Q. Do, and D. Roth. 2006. Local search
for bottom-up dependency parsing. Technical report,
UIUC Computer Science Department.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-projective
dependency parsing. In Proceedings of the 43rd An-
nual Meeting of the Association for Computational
Linguistics (ACL’05).

D. Roth. 1998. Learning to resolve natural language am-
biguities: A unified approach. In Proceedings of the
National Conference on Artificial Intelligence (AAAI),
pages 806-813.

H. Yamada and Y. Matsumoto. 2003. Statistical de-
pendency analysis with support vector machines. In
IWPT2003.

