
Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL-X),
pages 171–175, New York City, June 2006.c©2006 Association for Computational Linguistics

LingPars, a Linguistically Inspired, Language-Independent Machine
Learner for Dependency Treebanks

Eckhard Bick
Institute of Language and Communication

University of Southern Denmark
5230 Odense M, Denmark
eckhard.bick@mail.dk

Abstract

This paper presents a Constraint Grammar-
inspired machine learner and parser, Ling­
Pars, that assigns dependencies to morpho­
logically annotated treebanks in a function-
centred way. The system not only bases at­
tachment probabilities for PoS, case, mood,
lemma on those features' function probabili­
ties, but also uses topological features like
function/PoS n-grams, barrier tags and
daughter-sequences. In the CoNLL shared
task, performance was below average on at­
tachment scores, but a relatively higher
score for function tags/deprels in isolation
suggests that the system's strengths were not
fully exploited in the current architecture.

1 Introduction

This paper describes LingPars, a Constraint Gram­
mar-inspired language-independent treebank-learn­
er developed from scratch between January 9th and
March 9th 2006 in the context of the CoNLL-X
2006 shared task (http://nextens.uvt.nl/~conll/), or­
ganized by Sabine Buchholz, Erwin Marsi, Yval
Krymolowski and Amit Dubey. Training treebanks
and test data were provided for 13 different lan­
guages: Arabic (Smrž et al. 2002), Chinese (Chen
et al. 2003), Czech (Hajič et al. 2001), Danish
(Kromann 2003), Dutch (van der Beek et al. 2002),
German (Brants et.al 2002), Japanese (Kawata and
Bartels), Portuguese (Afonso et al. 2002), Slovene
(Džerosky et al. 2006), Spanish (Palomar et al.
2004), Swedish (Nilsson et al. 2005), Turkish

(Oflazer et al. 2003 and Nart et.al 2003), Bulgarian
(Simov et al. 2005). A number of these treebanks
were not originally annotated in dependency style,
but transformed from constituent tree style for the
task, and all differ widely in terms of tag granulari­
ty (21-302 part-of-speech tags, 7-82 function la­
bels). Also, not all treebanks included morphologi­
cal information, and only half offered a lemma
field. Such descriptive variation proved to be a
considerable constraint for our parser design, as
will be explained in chapter 2. No external re­
sources and no structural preprocessing were used1.

2 Language independence versus theory
independence

While manual annotation and/or linguistic, rule-
based parsers are necessary for the creation of its
training data, only a machine learning based parser
(as targeted in the CoNNL shared task) can hope to
be truly language independent in its design. The
question is, however, if this necessarily implies in­
dependence of linguistic/descriptive theory.

In our own approach, LingPars, we thus depart­
ed from the Constraint Grammar descriptive model
(Karlsson et al. 2005), where syntactic function
tags (called DEPREL or dependency relations in
the shared task) rank higher than dependency/con­
stituency and are established before head attach­
ments, rather than vice versa (as would be the case
for many probabilistic, chunker based systems, or

1The only exception is what we consider a problem in the dependency-version
of the German TIGER treebank, where postnominal attributes of nouns appear
as dependents of that noun's head if the latter is a preposition, but not otherwise
(e.g. if the head's head is a preposition). LingPars failed to learn this somewhat
idiosyncratic distinction, but performance improved when the analysis was pre­
processed with an additional np-layer (to be re-flattened after parsing.).

171

the classical PENN treebank descriptive model). In
our hand-written, rule based parsers, dependency
treebanks are constructed by using sequential at­
tachment rules, generally attaching functions (e.g.
subject, object, postnominal) to forms (finite verb,
noun) or lexical tags (tense, auxiliary, transitive),
with a direction condition and the possibility of
added target, context or barrier conditions (Bick
2005).

In LingPars, we tried to mimic this methodology
by trying to learn probabilities for both CG style
syntactic-function contexts and function-to-form
attachment rules. We could not, however, imple­
ment the straightforward idea of learning probabili­
ties and optimal ordering for an existing body of
(manual) seeding rules, because the 13 treebanks
were not harmonized in their tag sets and descrip­
tive conventions2.

As an example, imagine a linguistic rule that
triggers "subclause-hood" for a verb-headed de­
pendency-node as soon as a subordinator attaches
to it, and then, implementing "subclause-hood",
tries to attach the verb not to the root, but to anoth­
er verb left of the subordinator, or right to a root-
attaching verb. For the given set of treebanks prob­
abilities and ordering priorities for this rule cannot
be learned by one and the same parser, simply be­
cause some treebanks attach the verb to the subor­
dinator rather than vice versa, and for verb chains,
there is no descriptive consensus as to whether the
auxiliary/construction verb (e.g. Spanish) or the
main verb (e.g. Swedish) is regarded as head.

3 System architecture

The point of departure for pattern learning in Ling­
Pars were the fine-grained part of speech (PoS)
tags (POSTAG) and the LEMMA tag. For those
languages that did not provide a lemma tag, lower-
cased word form was used instead. Also, where
available from the FEATS field and not already in­
tegrated into the PoS tag, the following informa­
tion was integrated into the PoS tag:

a) case, which was regarded as a good predictor
for function, as well as a good dependency-indica­
tor for e.g. preposition- and adnominal attachment

b) mood/finiteness, in order to predict subordina­
tion and verb chaining, especially in the absence of

2 Neither was there time (and for some languages: reading knowledge) to write
the necessary converters to and from a normalized standard formalism for each
treebank.

auxiliary class information in the FEATS field
c) pronoun subclass, in order to predict adnomi­

nal vs. independent function as well as subordinat­
ing function (relatives and interrogatives)

A few treebanks did not classify subordinating
words as conjunctions, relatives, interrogatives
etc., but lumped them into the general adverb and
pronoun classes. Danish is a case in point - here,
the treebank classified all non-inflecting words as
PoS 'U'3. Our solution, implemented only for Dan­
ish and Swedish, was to introduce a list of struc­
ture-words, that would get their PoS appended with
an '-S', enabling the learner to distinguish between
e.g. "ordinary" ADV, and "structural" ADV-S.

3.1 The parser

In a first round, our parser calculates a preference
list of functions and dependencies for each word,
examining all possible mother-daughter pairs and
n-grams in the sentence (or paragraph). Next, de­
pendencies are adjusted for function, basically
summing up the frequency-, distance- and direc­
tion-calibrated function→PoS attachment probabil­
ities for all contextually allowed functions for a
given word. Finally, dependency probabilities are
weighted using linked probabilities for possible
mother-, daughter- and sister-tags in a second pass.

The result are 2 arrays, one for possible daugh­
ter→mother pairs, one for word:function pairs.
Values in both arrays are normalized to the 0..1 in­
terval, meaning that for instance even an originally
low probability, long distance attachment will get
high values after normalization if there are few or
no competing alternatives for the word in question.

LingPars then attempts to "effectuate" the de­
pendency (daughter→mother) array, starting with
the - in normalized terms - highest value4. If the
daughter candidate is as yet unattached, and the de­
pendency does not produce circularities or crossing
branches, the corresponding part of the (ordered)
word:function array is calibrated for the suggested
dependency, and the top-ranking function chosen.

In principle, one pass through the dependency
array would suffice to parse a sentence. However,
3For the treebank as such, no information is lost, since it will be recoverable
from the function tag. In a training situation, however, there is much less to train
on than in a treebank with a more syntactic definition of PoS.
4 Though we prefer to think of attachments as bottom-up choices, the value-or­
dered approach is essentially neither bottom-up nor top-down, depending on the
language and the salience of relations in a sentence, all runs had a great varia­
tion in the order of attachments. A middle-level attachment like case-based
preposition-attachment, for instance, can easily outperform (low) article- or
(high) top-node-attachment.

172

due to linguistic constraints like uniqueness princi­
ple, barrier tags and "full" heads5, some words may
be left unattached or create conflicts for their
heads. In these cases, weights are reduced for the
conflicting functions, and increased for all daugh­
ter→mother values of the unattached word. The
value arrays are then recomputed and rerun. In the
case of unattached words, a complete rerun is per­
formed, allowing problematic words to attach be­
fore those words that would otherwise have
blocked them. In the case of a function (e.g subject
uniqueness) conflict, only the words involved in
the conflict are rerun. If no conflict-free solution is
found after 19 runs, barrier-, uniqueness- and pro­
jectivity-constraints are relaxed for a last run6.

Finally, the daughter-sequence for each head
(with the head itself inserted) is checked against
the probability of its function sequence (learned
not from n-grams proper, but from daughter-se­
quences in the training corpus). For instance, the
constituents of a clause would make up such a se­
quence and allow to correct a sequence like SUBJ
VFIN ARG2 ARG1 into SUBJ VFIN ARG1
ARG2, where ARG1 and ARG2 are object func­
tions with a preferred order (for the language
learned) of ARG1 ARG2.

3.2 Learning functions (deprels)

LingPars computes function probabilities (Vf,
function value) at three levels: First, each lemma
and PoS is assigned local (context-free) probabili­
ties for all possible functions. Second, the proba­
bility of a given function occurring at a specific
place in a function n-gram (func-gram, example
(a)) is calculated (with n between 2 and 6). The
learner only used endocentric func-grams, marking
which of the function positions had their head
within the func-gram. If no funcgram supported a
given function, its probability for the word in ques­
tion was set to zero. At the third level, for each en­
docentric n-gram of word classes (PoS), the proba­
bility for a given function occurring at a given po­
sition in the n-gram (position 2 in example (b))
was computed. Here, only the longest possible n-
grams were used by the parser, and first and last
positions of the n-gram were used only to provide
context, not to assign function probabilities.

5Head types with a limited maximum number of dependents (usually, one)
6In the rare case of still missing heads or functions, these are computed using
probabilities for a simplified set of word classes (mostly the CPOSTAG), or - as
a last resort - set to ROOT-attachment.

(a)>N→2 SUBJ→4 <N→2 AUX MV→4 ACC→5
(b) art→2 n:SUBJ→4 adj→2 v-fin v-inf→4 n→5

3.3 Learning dependencies

In a rule based Constraint Grammar system, depen­
dency would be expressed as attachment of func­
tions to forms (i.e. subject to verb, or modifier to
adjective). However, with empty deprel fields,
LingPars cannot use functions directly, only their
probabilities. Therefore, in a first pass, it computes
the probability for the whole possible attachment
matrix for a sentence, using learned mother- and
daughter-normalized frequencies for attachments
of type (a) PoS→PoS, (b) PoS→Lex, (c)
Lex→PoS and (d) Lex→Lex, taking into account
also the learned directional and distance prefer­
ences. Each matrix cell is then filled with a value
Vfa ("function attachment value") - the sum of the
individual normalized probabilities of all possible
functions for that particular daughter given that
particular mother multiplied with the preestab­
lished, attachment-independent Vf value for that
token-function combination.

Inspired by the BARRIER conditions in CG rule
contexts, our learner also records the frequency of
those PoS and those functions (deprels) that may
appear between a dependent of PoS A and a head
of PoS B. The parser then regards all other, non-
registered interfering PoS or functions as blocking
tokens for a given attachment pair, reducing its at­
tachment value by a factor of 1/100.

In a second pass, the attachment matrix is cali­
brated using the relative probabilities for depen­
dent daughters, dependent sisters and head mother
given. This way, probabilities of object and object
complement sisters will enhance each other, and
given the fact that treebanks differ as to which ele­
ment of a verb chain arguments attach to, a verbal
head can be treated differently depending on
whether it has a high probability for another verb
(with auxiliary, modal or main verb function) as
mother or daughter or not.

Finally, like for functions, n-grams are used to
calculate attachment probabilities. For each endo­
centric PoS n-gram (of length 6 or less), the proba­
bilities of all treebank-supported PoS:function
chains and their dependency arcs are learned, and
the value for an attachment word pair occurring in
the chain will be corrected using both the chain/n-
gram probability and the Vf value for the function

173

associated with the dependent in that particular
chain. For contextual reasons, arcs central to the n-
gram are weighted higher than peripheral arcs.7

3.4 Non-projectivity and other language-spe­
cific problems

As a general rule, non-projective arcs were only al­
lowed if no other, projective head could be found
for a given word. However, linguistic knowledge
suggests that non-projective arcs should be particu­
larly likely in connection with verb-chain-depen­
dencies, where subjects attach to the finite verb,
but objects to the non-finite verb, which can create
crossing arcs in the case of object fronting, chain
inversion etc. Since we also noted an error-risk
from arguments getting attached to the closest verb
in a chain rather than the linguistically correct
one8, we chose to introduce systematic, after-parse
raising of certain pre-defined arguments from the
auxiliary to the main verb. This feature needs lan­
guage-dependent parameters, and time constraints
only allowed the implementation for Danish, Span­
ish, Portuguese and Czech. For Dutch, we also dis­
covered word-class-related projectivity-errors, that
could be remedied by exempting certain FEATS
classes from the parser's general projectivity con­
straint altogether (prep-voor and V-hulp)9.

In order to improve root accuracy, topnode
probability was set to zero for verbs with a safe
subordinator dependent. However, even those tree­
banks descriptively supporting this did not all PoS-
mark subordinators. Therefore, FEATS-informa­
tion was used, or as a last resort - for Danish and
Swedish - word forms.

A third language-specific error-source was
punctuation, because some treebanks (cz, sl, es) al­
lowed punctuation as heads. Also, experiments for
the Germanic and Romance languages showed that
performance decreased when punctuation was al­
lowed as BARRIER, but increased, when a fine-
grained punctuation PoS10 was included in function
and dependency n-grams.
7Due to BARRIER constraints, or simply because of insufficient training data in
the face of a very detailed tag set, it may be impossible to assign all words n-
gram supported functions or dependencies. In the former case, local function
probabilities are used, in the latter attachment is computed as function → PoS
probability only, using the most likely function.
8 Single verbs being more frequent than verb chains, the learner tended to gener­
alize close attachment, and even (grand)daughter and (grand)mother conditions
could not entirely remedy this problem.
9Though desirable, there was no time to implement this for other languages.
10 Only for Spanish and Swedish was there a subdivision of punctuation PoS, so
we had to supply this information in all other cases by adding token-informa­
tion to the POSTAG field.

4 Evaluation

Because of LingPars' strong focus on function tags,
a separate analysis of attachment versus label per­
formance was thought to be of interest. Ill. 1 plots
the latter (Y-axis) against the former (X-axis), with
dot size symbolizing treebank size. In this evalua­
tion, a fixed training chunk size of 50,000 tokens11
was used, and tested on a different sample of 5,000
tokens (see also 5/50 evaluation in ill. 2). For most
languages, function performance was better than
attachment performance (3.2 percentage points on
average, as opposed to 0.44 for the CoNLL sys­
tems overall), with dots above the hyphenated "di­
agonal of balance". Interestingly, the graphics also
makes it clear that performance was lower for
small treebanks, despite the fact that training cor­
pus size had been limited in the experiment, possi­
bly indicating correlated differences in the balance
between tag set size and treebank size.

Illustration 1: Attachment accuracy
(x-axis) vs. label accuracy (y-axis)

Ill. 2 keeps the information from ill. 1 (5/50-dep
and 5/50-func), represented in the two lower lines,
but adds performance for maximal training corpus
size12 with (a) a randomly chosen test chunk of
5,000 tokens not included in the training corpus
(5/all-5) and (b) a 20,000 token chunk from the
training corpus (20/all). Languages were sorted ac­

11Smaller for Slovene and Arabic (for these languages: largest possible)
12Due to deadline time constraints, an upper limit of 400,000 lines was forced on
the biggest treebanks, when training for unknown test data, meaning that only ½
of the German data and 1/3 of the Czech data could be used.

174

cording to 20/all-func accuracy. As can be seen
from the dips in the remaining (lower) curves,
small training corpora (asterisk-marked languages)
made it difficult for the parser (1) to match 20/all
attachment performance on unknown data, and (2)
to learn labels/functions in general (dips in all
function curves, even 20/all). For the larger tree­
banks, the parser performed better (1-3 percentage
points) for the full training set than for the 50,000
token training set.

Illustration 2: Performance with different training cor­
pus sizes (upper 2 curves: Test data included)

5 Outlook

We have shown that a probabilistic dependency
parser can be built on CG-inspired linguistic prin­
ciples with a strong focus on function and tag se­
quences. Given the time constraint and the fact that
the learner had to be built from scratch, its perfor­
mance would encourage further research. In partic­
ular, a systematic parameter/performance analysis13
should be performed for the individual languages.
In the long term, a notational harmonization of the
treebanks should allow the learner to be seeded
with existing hand-written dependency rules.

References
Afonso, S., E. Bick, R. Haber and D. Santos. Floresta

Sintá(c)tica: A treebank of Portuguese. In Proceed­
ings of LREC'02. pp. 1698-1703 . Paris: ELRA

van der Beek, L. G. Bouma, R. Malouf, G. van Noord.
2002. The Alpino Dependency Treebank. In: Compu­
tational Linguistics in the Netherlands CLIN 2001.

13Parameters like uniqueness and directedness are already learned by the system
(through probability thresholds), while others, like function weights, structural
word classes and frequency thresholds for barriers and lexeme n-grams are used
now, but with a fixed value for all languages.

pp. 8-22. Rodopi
Bick, Eckhard. 2005. Turning Constraint Grammar Data

into Running Dependency Treebanks. In: Civit,
Montserrat & Kübler, Sandra & Martí, Ma. Antònia
(ed.), Proceedings of TLT 2005, Barcelona. pp.19-2

Brants, S., S. Dipper, S. Hansen, W. Lezius, G. Smith.
2002. The TIGER Treebank. Proc. of TLT1, Sozopol

Džerosky, S., T. Erjavec, N. Ledinek, P. Pajas, Z.
Žabokrtsky, A. Žele. 2006. Towards a Slovene De­
pendency Treebank. In Proc. of LREC'06, Genoa

Hajič, J., B. Hladká, and P. Pajas. 2001. The Prague De­
pendency Treebank: Annotation Structure and Sup­
port. In Proc. of the IRCS Workshop on Linguistic
Databases, pp. 105-114. University of Pennsylvania.

Karlsson, Fred, Atro Vouitilainen, Jukka Heikkilä and
A. Anttila. 1995. Constraint Grammar - A Language-
Independent System for Parsing Unrestricted Text.
Mouton de Gruyter: Berlin.

Kawata, Y. and J. Bartels. 2000. Stylebook for the
Japanese Treebank in VERBMOBIL. Universität
Tübingen: Verbmobil-Report 240.

Chen, Keh-Jiann, Chu-Ren Huang, Feng-Yi Chen, Chi-
Ching Luo, Ming-Chung Chang, Chao-Jan Chen, and
Zhao-Ming Gao. 2003. Sinica Treebank: Design Cri­
teria, Representational Issues and Implementation. In
A. Abeille (ed.) Treebanks Building and Using
Parsed Corpora. Dordrecht:Kluwer, pp231-248.

Kromann, M. T. 2003. The Danish Dependency Tree­
bank. In J. Nivre and E. Hinrichs (ed.) Proceedings of
TLT2003. Växjö University Press, Sweden

Nart, B. Atalay, Kemal Oflazr, Bilge Say. 2003. The
Annotation Process in the Turkish Treebank. In Pro­
ceedings of the EACL Workshop on Linguistically In­
terpreted Corpora - LINC 2003. Budapest

Nilsson, J, J. Hall and J. Nivre. 2005. MAMBA Meets
TIGER: Reconstructing a Swedish Treebank from
Antiquity. In Proceedings NODALIDA 2005. Joenssu

Oflazer, K., B. Say, D.Z. Hakkani-Tür, G. Tür. 2003.
Building a Turkish Treebank. In A. Abeillé (ed.)
Building and Exploiting Syntactically-annotated Cor­
pora. Kluwer

Palomar, M. et. al. 2004. Construcción de una base de
datos de árboles sintáctico-semánticos para el catalán,
euskera y castellano. In: Proceedings of SEPLN XX,
pp 81-88. Barcelona: ISSN 1135-5948

Simov, K., P. Osenova, A. Simov, M. Kouylekov. 2004.
Design and Implementation of the Bulgarian HPSG-
based Treebank. In E. Hinrichs and K. Simov (ed.),
Journal of Research on Language and Computation,
Vol. 2, No. 4 , pp. 495-522. Kluwer

Smrž, Otakar, Jan Šnaidauf, and Petr Zemánek. 2002.
Prague Dependency Treebank for Arabic: Multi-Lev­
el Annotation of Arabic corpus. In Proceedings of the
International Symposium on Processing of Arabic,
pages 147-155, Manouba, Tunisia, April 2002.

cz de pt bu se nl tu
*

ar
*

sl
*

da ja es
*

zh
65

67,5

70

72,5
75

77,5

80

82,5
85

87,5

90
92,5

95

97,5

5/50 dep
5/50 func
20/all dep
20/all func
5/all-5 dep
5/all-5 func

175

