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Abstract

This paper presents a Constraint Grammar-
inspired machine learner and parser,  Ling­
Pars, that assigns dependencies to morpho­
logically annotated treebanks in a function-
centred way. The system not only bases at­
tachment probabilities for PoS, case, mood, 
lemma on those features' function probabili­
ties, but also uses topological features like 
function/PoS  n-grams,  barrier  tags  and 
daughter-sequences.  In  the  CoNLL shared 
task, performance was below average on at­
tachment  scores,  but  a  relatively  higher 
score for  function tags/deprels  in  isolation 
suggests that the system's strengths were not 
fully exploited in the current architecture.

1 Introduction

This paper describes LingPars, a Constraint Gram­
mar-inspired language-independent treebank-learn­
er developed from scratch between January 9th and 
March  9th 2006  in  the  context  of  the  CoNLL-X 
2006 shared task (http://nextens.uvt.nl/~conll/), or­
ganized by Sabine Buchholz,  Erwin Marsi,  Yval 
Krymolowski and Amit Dubey. Training treebanks 
and test data were provided for  13 different  lan­
guages: Arabic (Smrž et al. 2002), Chinese (Chen 
et  al.  2003),  Czech  (Hajič  et  al.  2001), Danish 
(Kromann 2003), Dutch (van der Beek et al. 2002), 
German (Brants et.al 2002), Japanese (Kawata and 
Bartels), Portuguese (Afonso et al. 2002), Slovene 
(Džerosky  et  al.  2006),  Spanish  (Palomar  et  al. 
2004),  Swedish  (Nilsson  et  al.  2005),  Turkish 

(Oflazer et al. 2003 and Nart et.al 2003), Bulgarian 
(Simov et al. 2005). A number of these treebanks 
were not originally annotated in dependency style, 
but transformed from constituent tree style for the 
task, and all differ widely in terms of tag granulari­
ty (21-302  part-of-speech tags, 7-82 function la­
bels). Also, not all treebanks included morphologi­
cal  information,  and  only  half  offered  a  lemma 
field.  Such  descriptive  variation  proved  to  be  a 
considerable  constraint  for  our  parser  design,  as 
will  be  explained  in  chapter  2.  No  external  re­
sources and no structural preprocessing were used1.

2 Language  independence  versus  theory 
independence

While  manual  annotation  and/or  linguistic,  rule-
based parsers are necessary for the creation of its 
training data, only a machine learning based parser 
(as targeted in the CoNNL shared task) can hope to 
be  truly language independent  in  its  design.  The 
question is, however, if this necessarily implies in­
dependence of linguistic/descriptive theory.

In our own approach, LingPars, we thus depart­
ed from the Constraint Grammar descriptive model 
(Karlsson  et  al.  2005),  where  syntactic  function 
tags (called DEPREL or dependency relations  in 
the shared task) rank higher than dependency/con­
stituency and are  established  before head attach­
ments, rather than vice versa (as would be the case 
for many probabilistic, chunker based systems, or 

1The only exception is what we consider a problem in the dependency-version 
of the German TIGER treebank, where postnominal attributes of nouns appear 
as dependents of that noun's head if the latter is a preposition, but not otherwise 
(e.g. if the head's head is a preposition). LingPars  failed to learn this somewhat 
idiosyncratic distinction, but performance improved when  the analysis was pre­
processed with an additional np-layer (to be re-flattened after parsing.).
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the classical PENN treebank descriptive model). In 
our hand-written,  rule based parsers,  dependency 
treebanks are  constructed by using sequential  at­
tachment rules, generally attaching functions (e.g. 
subject, object, postnominal) to forms (finite verb, 
noun) or lexical tags (tense, auxiliary, transitive), 
with  a  direction  condition  and  the  possibility  of 
added target,  context  or  barrier  conditions  (Bick 
2005).

In LingPars, we tried to mimic this methodology 
by trying to learn probabilities for both CG style 
syntactic-function  contexts  and  function-to-form 
attachment rules.  We could not,  however, imple­
ment the straightforward idea of learning probabili­
ties and optimal ordering for an existing body of 
(manual) seeding rules,  because the 13 treebanks 
were not harmonized in their tag sets and descrip­
tive conventions2.

As  an  example,  imagine  a  linguistic  rule  that 
triggers  "subclause-hood"  for  a  verb-headed  de­
pendency-node as soon as a subordinator attaches 
to  it,  and  then,  implementing  "subclause-hood", 
tries to attach the verb not to the root, but to anoth­
er verb left of the subordinator, or right to a root-
attaching verb. For the given set of treebanks prob­
abilities and ordering priorities for this rule cannot 
be learned by one and the same parser, simply be­
cause some treebanks attach the verb to the subor­
dinator rather than vice versa, and for verb chains, 
there is no descriptive consensus as to whether the 
auxiliary/construction  verb  (e.g.  Spanish)  or  the 
main verb (e.g. Swedish) is regarded as head.

3 System architecture

The point of departure for pattern learning in Ling­
Pars  were  the  fine-grained  part  of  speech  (PoS) 
tags (POSTAG) and the LEMMA tag.  For  those 
languages that did not provide a lemma tag, lower-
cased  word  form was  used  instead.  Also,  where 
available from the FEATS field and not already in­
tegrated into the PoS tag, the following informa­
tion was integrated into the PoS tag:

a) case, which was regarded as a good predictor 
for function, as well as a good dependency-indica­
tor for e.g. preposition- and adnominal attachment

b) mood/finiteness, in order to predict subordina­
tion and verb chaining, especially in the absence of 

2 Neither was there time (and for some languages: reading knowledge) to write 
the necessary converters to and from a normalized standard formalism for each 
treebank.

auxiliary class information in the FEATS field
c) pronoun subclass, in order to predict adnomi­

nal vs. independent function as well as subordinat­
ing function (relatives and interrogatives)

A few treebanks did not classify subordinating 
words  as  conjunctions,  relatives,  interrogatives 
etc., but lumped them into the general adverb and 
pronoun classes. Danish is a case in point - here, 
the treebank classified all non-inflecting words as 
PoS 'U'3. Our solution, implemented only for Dan­
ish and Swedish, was to introduce a list of struc­
ture-words, that would get their PoS appended with 
an '-S', enabling the  learner to distinguish between 
e.g. "ordinary" ADV, and "structural" ADV-S.

3.1 The parser

In a first round, our parser calculates a preference 
list of functions and dependencies for each word, 
examining all possible mother-daughter pairs and 
n-grams in the sentence (or paragraph). Next, de­
pendencies  are  adjusted  for  function,  basically 
summing up the  frequency-,  distance- and direc­
tion-calibrated function→PoS attachment probabil­
ities  for  all  contextually  allowed  functions  for  a 
given word. Finally, dependency probabilities are 
weighted  using  linked  probabilities  for  possible 
mother-, daughter- and sister-tags in a second pass.

The result are 2 arrays, one for possible daugh­
ter→mother  pairs,  one  for  word:function  pairs. 
Values in both arrays are normalized to the 0..1 in­
terval, meaning that for instance even an originally 
low probability, long distance attachment will get 
high values after normalization if there are few or 
no competing alternatives for the word in question.

LingPars  then  attempts  to  "effectuate"  the  de­
pendency (daughter→mother) array, starting with 
the - in normalized terms - highest value4.  If  the 
daughter candidate is as yet unattached, and the de­
pendency does not produce circularities or crossing 
branches, the corresponding part of the (ordered) 
word:function array is calibrated for the suggested 
dependency, and the top-ranking function chosen.

In principle,  one pass through the  dependency 
array would suffice to parse a sentence. However, 
3For the treebank as such, no information is lost, since it will be recoverable 
from the function tag. In a training situation, however, there is much less to train 
on than in a treebank with a more syntactic definition of PoS.
4 Though we prefer to think of attachments as bottom-up choices, the value-or­
dered approach is essentially neither bottom-up nor top-down, depending on the 
language and the  salience of relations in a sentence, all runs had a great varia­
tion in the order of attachments. A middle-level attachment like case-based 
preposition-attachment, for instance, can easily outperform (low) article- or 
(high) top-node-attachment.
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due to linguistic constraints like uniqueness princi­
ple, barrier tags and "full" heads5, some words may 
be  left  unattached  or  create  conflicts  for  their 
heads. In these cases, weights are reduced for the 
conflicting functions, and increased for all daugh­
ter→mother  values  of  the  unattached  word.  The 
value arrays are then recomputed and rerun. In the 
case of unattached words, a complete rerun is per­
formed, allowing problematic words to attach be­
fore  those  words  that  would  otherwise  have 
blocked them. In the case of a function (e.g subject 
uniqueness)  conflict,  only  the  words  involved  in 
the conflict are rerun. If no conflict-free solution is 
found after 19 runs, barrier-, uniqueness- and pro­
jectivity-constraints are relaxed for a last run6.

Finally,  the  daughter-sequence  for  each  head 
(with the head itself  inserted) is  checked against 
the  probability  of  its  function  sequence  (learned 
not  from n-grams  proper,  but  from  daughter-se­
quences in the training corpus). For instance, the 
constituents of a clause would make up such a se­
quence and allow to correct a sequence like SUBJ 
VFIN  ARG2  ARG1  into  SUBJ  VFIN  ARG1 
ARG2, where ARG1 and ARG2 are object func­
tions  with  a  preferred  order  (for  the  language 
learned) of ARG1 ARG2.

3.2 Learning functions (deprels)

LingPars  computes  function  probabilities  (Vf, 
function value) at three levels: First, each lemma 
and PoS is assigned local (context-free) probabili­
ties for all possible functions. Second, the proba­
bility of  a  given function occurring at  a  specific 
place  in  a  function  n-gram (func-gram,  example 
(a))  is  calculated (with n between 2 and 6).  The 
learner only used endocentric func-grams, marking 
which  of  the  function  positions  had  their  head 
within the func-gram. If no funcgram supported a 
given function, its probability for the word in ques­
tion was set to zero. At the third level, for each en­
docentric n-gram of word classes (PoS), the proba­
bility for a given function occurring at a given po­
sition  in  the  n-gram (position  2  in  example  (b)) 
was computed. Here, only the longest possible n-
grams were used by the parser, and first and last 
positions of the n-gram were used only to provide 
context, not to assign function probabilities.

5Head types with a limited maximum number of dependents (usually, one)
6In the rare case of still missing heads or functions, these are computed using 
probabilities for a simplified set of word classes (mostly the CPOSTAG), or - as 
a last resort - set to ROOT-attachment.

(a)>N→2 SUBJ→4 <N→2 AUX MV→4 ACC→5
(b) art→2 n:SUBJ→4 adj→2 v-fin v-inf→4 n→5

3.3 Learning dependencies

In a rule based Constraint Grammar system, depen­
dency would be expressed as attachment of func­
tions to forms (i.e. subject to verb, or modifier to 
adjective).  However,  with  empty  deprel  fields, 
LingPars cannot use functions directly, only their 
probabilities. Therefore, in a first pass, it computes 
the probability for the whole possible attachment 
matrix for a sentence, using learned mother- and 
daughter-normalized  frequencies  for  attachments 
of  type  (a)  PoS→PoS,  (b)  PoS→Lex,  (c) 
Lex→PoS and (d) Lex→Lex, taking into account 
also  the  learned  directional  and  distance  prefer­
ences. Each matrix cell is then filled with a value 
Vfa ("function attachment value") - the sum of the 
individual normalized probabilities of all possible 
functions  for  that  particular  daughter  given  that 
particular  mother  multiplied  with  the  preestab­
lished,  attachment-independent  Vf  value  for  that 
token-function combination.

Inspired by the BARRIER conditions in CG rule 
contexts, our learner also records the frequency of 
those PoS and those functions (deprels) that may 
appear between a dependent of PoS A and a head 
of PoS B. The parser then regards all  other,  non-
registered interfering PoS or functions as blocking 
tokens for a given attachment pair, reducing its at­
tachment value by a factor of 1/100.

In a second pass, the attachment matrix is cali­
brated  using  the  relative  probabilities  for  depen­
dent daughters, dependent sisters and head mother 
given. This way, probabilities of object and object 
complement  sisters  will  enhance  each  other,  and 
given the fact that treebanks differ as to which ele­
ment of a verb chain arguments attach to, a verbal 
head  can  be  treated  differently  depending  on 
whether it has a high probability for another verb 
(with auxiliary,  modal  or  main verb function) as 
mother or daughter or not.

Finally, like for functions, n-grams are used to 
calculate attachment probabilities. For each endo­
centric PoS n-gram (of length 6 or less), the proba­
bilities  of  all  treebank-supported  PoS:function 
chains and their dependency arcs are learned, and 
the value for an attachment word pair occurring in 
the chain will be corrected using both the chain/n-
gram probability and the Vf value for the function 
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associated  with  the  dependent  in  that  particular 
chain. For contextual reasons, arcs central to the n-
gram are weighted higher than peripheral arcs.7

3.4 Non-projectivity and other language-spe­
cific problems

As a general rule, non-projective arcs were only al­
lowed if no other, projective head could be found 
for a given word. However, linguistic knowledge 
suggests that non-projective arcs should be particu­
larly likely in  connection with verb-chain-depen­
dencies,  where subjects  attach to  the  finite  verb, 
but objects to the non-finite verb, which can create 
crossing arcs in the case of object fronting, chain 
inversion  etc.  Since  we  also  noted  an  error-risk 
from arguments getting attached to the closest verb 
in  a  chain  rather  than  the  linguistically  correct 
one8, we chose to introduce systematic, after-parse 
raising of certain pre-defined arguments from the 
auxiliary to the main verb. This feature needs lan­
guage-dependent parameters, and time constraints 
only allowed the implementation for Danish, Span­
ish, Portuguese and Czech. For Dutch, we also dis­
covered word-class-related projectivity-errors, that 
could be  remedied by exempting certain  FEATS 
classes from the parser's general projectivity con­
straint altogether (prep-voor and V-hulp)9.

In  order  to  improve  root  accuracy,  topnode 
probability was set to zero for verbs with a safe 
subordinator dependent. However, even those tree­
banks descriptively supporting this did not all PoS-
mark  subordinators.  Therefore,  FEATS-informa­
tion was used, or as a last resort - for Danish and 
Swedish  - word forms.

A  third  language-specific  error-source  was 
punctuation, because some treebanks (cz, sl, es) al­
lowed punctuation as heads. Also, experiments for 
the Germanic and Romance languages showed that 
performance decreased when punctuation was al­
lowed as BARRIER, but increased, when a fine-
grained punctuation PoS10 was included in function 
and dependency n-grams.
7Due to BARRIER constraints, or simply because of insufficient training data in 
the face of a very detailed tag set, it may be impossible to assign all words n-
gram supported functions or dependencies. In the former case, local function 
probabilities are used, in the latter attachment is computed as function → PoS 
probability only, using the most likely function.
8 Single verbs being more frequent than verb chains, the learner tended to gener­
alize close attachment, and even (grand)daughter and (grand)mother conditions 
could not entirely remedy this problem.
9Though desirable, there was no time to implement this for other languages.
10 Only for Spanish and Swedish was there a subdivision of punctuation PoS, so 
we had to supply  this information in all other cases by adding token-informa­
tion to the POSTAG field.

4 Evaluation

Because of LingPars' strong focus on function tags, 
a separate analysis of attachment versus label per­
formance was thought to be of interest. Ill. 1 plots 
the latter (Y-axis) against the former (X-axis), with 
dot size symbolizing treebank size. In this evalua­
tion, a fixed training chunk size of 50,000 tokens11 
was used, and tested on a different sample of 5,000 
tokens (see also 5/50 evaluation in ill. 2). For most 
languages,  function  performance  was  better  than 
attachment performance (3.2 percentage points on 
average,  as opposed to 0.44 for  the CoNLL sys­
tems overall), with dots above the hyphenated "di­
agonal of balance". Interestingly, the graphics also 
makes  it  clear  that  performance  was  lower  for 
small treebanks, despite the fact that training cor­
pus size had been limited in the experiment, possi­
bly indicating correlated differences in the balance 
between tag set size and treebank size.

Illustration 1: Attachment accuracy 
(x-axis) vs. label accuracy (y-axis)

Ill.  2 keeps the information from ill. 1 (5/50-dep 
and 5/50-func), represented in the two lower lines, 
but adds performance for maximal training corpus 
size12 with  (a)  a  randomly  chosen  test  chunk  of 
5,000 tokens  not included in  the  training corpus 
(5/all-5)  and (b)  a  20,000 token chunk  from the 
training corpus (20/all). Languages were sorted ac­

11Smaller for Slovene and Arabic (for these languages: largest possible)
12Due to deadline time constraints, an upper limit of 400,000 lines was forced on 
the biggest treebanks, when training for unknown test data,  meaning that only ½ 
of the German data and 1/3 of the Czech data could be used.
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cording  to  20/all-func  accuracy.  As  can  be  seen 
from  the  dips  in  the  remaining  (lower)  curves, 
small training corpora (asterisk-marked languages) 
made it difficult for the parser (1) to match 20/all 
attachment performance on unknown data, and (2) 
to  learn  labels/functions  in  general  (dips  in  all 
function curves, even 20/all).  For the larger tree­
banks, the parser performed better (1-3 percentage 
points) for the full training set than for the 50,000 
token training set.

Illustration 2: Performance with different training cor­
pus sizes (upper 2 curves: Test data included)

5 Outlook

We have  shown that  a  probabilistic  dependency 
parser can be built on CG-inspired linguistic prin­
ciples with a strong focus on function and tag se­
quences. Given the time constraint and the fact that 
the learner had to be built from scratch, its perfor­
mance would encourage further research. In partic­
ular, a systematic parameter/performance analysis13 
should be performed for the individual languages. 
In the long term, a notational harmonization of the 
treebanks  should  allow  the  learner  to  be  seeded 
with existing hand-written dependency rules.
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cz de pt bu se nl tu 
*

ar 
*

sl  
*

da ja es 
*

zh
65

67,5

70

72,5
75

77,5

80

82,5
85

87,5

90
92,5

95

97,5

5/50 dep
5/50 func
20/all dep
20/all func
5/all-5 dep
5/all-5 func
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