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Abstract

Each year the Conference on Com-
putational Natural Language Learning
(CoNLL)1 features a shared task, in which
participants train and test their systems on
exactly the same data sets, in order to bet-
ter compare systems. The tenth CoNLL
(CoNLL-X) saw a shared task on Multi-
lingual Dependency Parsing. In this pa-
per, we describe how treebanks for 13 lan-
guages were converted into the same de-
pendency format and how parsing perfor-
mance was measured. We also give an
overview of the parsing approaches that
participants took and the results that they
achieved. Finally, we try to draw gen-
eral conclusions about multi-lingual pars-
ing: What makes a particular language,
treebank or annotation scheme easier or
harder to parse and which phenomena are
challenging for any dependency parser?
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1 Introduction

Previous CoNLL shared tasks focused on NP chunk-
ing (1999), general chunking (2000), clause iden-
tification (2001), named entity recognition (2002,
2003), and semantic role labeling (2004, 2005). This
shared task on full (dependency) parsing is the log-
ical next step. Parsing is an important preprocess-
ing step for many NLP applications and therefore
of considerable practical interest. It is a complex
task and as it is not straightforwardly mappable to a
“classical” segmentation, classification or sequence
prediction problem, it also poses theoretical chal-
lenges to machine learning researchers.

During the last decade, much research has been
done on data-driven parsing and performance has in-
creased steadily. For training these parsers, syntac-
tically annotated corpora (treebanks) of thousands
to tens of thousands of sentences are necessary; so
initially, research has focused on English. Dur-
ing the last few years, however, treebanks for other
languages have become available and some parsers
have been applied to several different languages.
See Section 2 for a more detailed overview of re-
lated previous research.

So far, there has not been much comparison be-
tween different dependency parsers on exactly the
same data sets (other than for English). One of the
reasons is the lack of a de-facto standard for an eval-
uation metric (labeled or unlabeled, separate root ac-
curacy?), for splitting the data into training and test-
ing portions and, in the case of constituency tree-
banks converted to dependency format, for this con-
version. Another reason are the various annotation
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schemes and logical data formats used by different
treebanks, which make it tedious to apply a parser to
many treebanks. We hope that this shared task will
improve the situation by introducing a uniform ap-
proach to dependency parsing. See Section 3 for the
detailed task definition and Section 4 for information
about the conversion of all 13 treebanks.

In this shared task, participants had two to three
months3 to implement a parsing system that could be
trained for all these languages and four days to parse
unseen test data for each. 19 participant groups sub-
mitted parsed test data. Of these, all but one parsed
all 12 required languages and 13 also parsed the op-
tional Bulgarian data. A wide variety of parsing
approaches were used: some are extensions of pre-
viously published approaches, others are new. See
Section 5 for an overview.

Systems were scored by computing thelabeled
attachment score (LAS), i.e. the percentage of
“scoring” tokens for which the system had predicted
the correct head and dependency label. Punctuation
tokens were excluded from scoring. Results across
languages and systems varied widely from 37.8%
(worst score on Turkish) to 91.7% (best score on
Japanese). See Section 6 for detailed results.

However, variations are consistent enough to al-
low us to draw some general conclusions. Section 7
discusses the implications of the results and analyzes
the remaining problems. Finally, Section 8 describes
possible directions for future research.

2 Previous research

Tesnière (1959) introduced the idea of a dependency
tree (a “stemma” in his terminology), in which
words stand in direct head-dependent relations, for
representing the syntactic structure of a sentence.
Hays (1964) and Gaifman (1965) studied the for-
mal properties ofprojective dependency grammars,
i.e. those where dependency links are not allowed to
cross. Mel’čuk (1988) describes a multistratal de-
pendency grammar, i.e. one that distinguishes be-
tween several types of dependency relations (mor-
phological, syntactic and semantic). Other theories
related to dependency grammar are word grammar

3Some though had significantly less time: One participant
registered as late as six days before the test data release (reg-
istration was a prerequisite to obtain most of the data sets)and
still went on to submit parsed test data in time.

(Hudson, 1984) and link grammar (Sleator and Tem-
perley, 1993).

Some relatively recent rule-based full depen-
dency parsers are Kurohashi and Nagao (1994) for
Japanese, Oflazer (1999) for Turkish, Tapanainen
and Järvinen (1997) for English and Elworthy
(2000) for English and Japanese.

While phrase structure parsers are usually evalu-
ated with the GEIG/PARSEVAL measures of preci-
sion and recall over constituents (Black et al., 1991),
Lin (1995) and others have argued for an alterna-
tive, dependency-based evaluation. That approach is
based on a conversion from constituent structure to
dependency structure by recursively defining a head
for each constituent.

The same idea was used by Magerman (1995),
who developed the first “head table” for the Penn
Treebank (Marcus et al., 1994), and Collins (1996),
whose constituent parser is internally based on prob-
abilities of bilexical dependencies, i.e. dependencies
between two words. Collins (1997)’s parser and
its reimplementation and extension by Bikel (2002)
have by now been applied to a variety of languages:
English (Collins, 1999), Czech (Collins et al., 1999),
German (Dubey and Keller, 2003), Spanish (Cowan
and Collins, 2005), French (Arun and Keller, 2005),
Chinese (Bikel, 2002) and, according to Dan Bikel’s
web page, Arabic.

Eisner (1996) introduced a data-driven depen-
dency parser and compared several probability mod-
els on (English) Penn Treebank data. Kudo and
Matsumoto (2000) describe a dependency parser for
Japanese and Yamada and Matsumoto (2003) an ex-
tension for English. Nivre’s parser has been tested
for Swedish (Nivre et al., 2004), English (Nivre and
Scholz, 2004), Czech (Nivre and Nilsson, 2005),
Bulgarian (Marinov and Nivre, 2005) and Chinese
Cheng et al. (2005), while McDonald’s parser has
been applied to English (McDonald et al., 2005a),
Czech (McDonald et al., 2005b) and, very recently,
Danish (McDonald and Pereira, 2006).

3 Data format, task definition

The training data derived from the original treebanks
(see Section 4) and given to the shared task partic-
ipants was in a simple column-based format that is
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an extension of Joakim Nivre’s Malt-TAB format4

for the shared task and was chosen for its processing
simplicity. All the sentences are in one text file and
they are separated by a blank line after each sen-
tence. A sentence consists of one or more tokens.
Each token is represented on one line, consisting of
10 fields. Fields are separated from each other by a
TAB.5 The 10 fields are:

1) ID: Token counter, starting at 1 for each new
sentence.

2) FORM: Word form or punctuation symbol.
For the Arabic data only, FORM is a concatenation
of the word in Arabic script and its transliteration in
Latin script, separated by an underscore. This rep-
resentation is meant to suit both those that do and
those that do not read Arabic.

3) LEMMA : Lemma or stem (depending on the
particular treebank) of word form, or an underscore
if not available. Like for the FORM, the values for
Arabic are concatenations of two scripts.

4) CPOSTAG: Coarse-grained part-of-speech
tag, where the tagset depends on the treebank.

5) POSTAG: Fine-grained part-of-speech tag,
where the tagset depends on the treebank. It is iden-
tical to the CPOSTAG value if no POSTAG is avail-
able from the original treebank.

6) FEATS: Unordered set of syntactic and/or
morphological features (depending on the particu-
lar treebank), or an underscore if not available. Set
members are separated by a vertical bar (|).

7) HEAD: Head of the current token, which is
either a value of ID, or zero (’0’) if the token links
to the virtual root node of the sentence. Note that
depending on the original treebank annotation, there
may be multiple tokens with a HEAD value of zero.

8) DEPREL: Dependency relation to the HEAD.
The set of dependency relations depends on the par-
ticular treebank. The dependency relation of a to-
ken with HEAD=0 may be meaningful or simply
’ROOT’ (also depending on the treebank).

9) PHEAD: Projective head of current token,
which is either a value of ID or zero (’0’), or an un-
derscore if not available. The dependency structure

4http://w3.msi.vxu.se/ nivre/research/MaltXML.html
5Consequently, field values cannot contain TABs. In the

shared task data, field values are also not supposed to con-
tain any other whitespace (although unfortunately some spaces
slipped through in the Spanish data).

resulting from the PHEAD column is guaranteed to
be projective (but is not available for all data sets),
whereas the structure resulting from the HEAD col-
umn will be non-projective for some sentences of
some languages (but is always available).

10) PDEPREL: Dependency relation to the
PHEAD, or an underscore if not available.

As should be obvious from the description above,
our format assumes that each token has exactly one
head. Some dependency grammars, and also some
treebanks, allow tokens to have more than one head,
although often there is a distinction between primary
and optional secondary relations, e.g. in the Danish
Dependency Treebank (Kromann, 2003), the Dutch
Alpino Treebank (van der Beek et al., 2002b) and
the German TIGER treebank (Brants et al., 2002).
For this shared task we decided to ignore any ad-
ditional relations. However the data format could
easily be extended with additional optional columns
in the future. Cycles do not occur in the shared task
data but are scored as normal if predicted by parsers.
The character encoding of all data files is Unicode
(specifically UTF-8), which is the only encoding to
cover all languages and therefore ideally suited for
multilingual parsing.

While the training data contained all 10 columns
(although sometimes only with dummy values, i.e.
underscores), the test data given to participants con-
tained only the first 6. Participants’ parsers then
predicted the HEAD and DEPREL columns (any
predicted PHEAD and PDEPREL columns were ig-
nored). The predicted values were compared to the
gold standard HEAD and DEPREL.6 The official
evaluation metric is thelabeled attachment score
(LAS), i.e. the percentage of “scoring” tokens for
which the system has predicted the correct HEAD
and DEPREL. The evaluation script defines a non-
scoring token as a token where all characters of the
FORM value have the Unicode category property
“Punctuation”.7

6The official scoring scripteval.pl, data sets for some
languages and instructions on how to get the rest, the software
used for the treebank conversions, much documentation, full
results and other related information will be available from the
permanent URLhttp://depparse.uvt.nl (also linked
from the CoNLL web page).

7Seeman perlunicode for the technical details and the
shared task website for our reasons for this decision. Note
that an underscore and a percentage sign also have the Unicode
“Punctuation” property.
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We tried to take a test set that was representative
of the genres in a treebank and did not cut through
text samples. We also tried to document how we
selected this set.8 We aimed at having roughly the
same size for the test sets of all languages: 5,000
scoring tokens. This is not an exact requirement as
we do not want to cut sentences in half. The rel-
atively small size of the test set means that even
for the smallest treebanks the majority of tokens is
available for training, and the equal size means that
for the overall ranking of participants, we can sim-
ply compute the score on the concatenation of all
test sets.

4 Treebanks and their conversion

In selecting the treebanks, practical considerations
were the major factor. Treebanks had to be actually
available, large enough, have a license that allowed
free use for research or kind treebank providers who
temporarily waived the fee for the shared task, and
be suitable for conversion into the common format
within the limited time. In addition, we aimed at a
broad coverage of different language families.9 As
a general rule, we did not manually correct errors in
treebanks if we discovered some during the conver-
sion, see also Buchholz and Green (2006), although
we did report them to the treebank providers and
several got corrected by them.

4.1 Dependency treebanks

We used the following six dependency treebanks:
Czech: Prague Dependency Treebank10 (PDT)
(Böhmová et al., 2003);Arabic : Prague Arabic De-
pendency Treebank11 (PADT) (Hajič et al., 2004;
Smrž et al., 2002);Slovene: Slovene Dependency
Treebank12 (SDT) (Džeroski et al., 2006);Danish:

8See the shared task website for a more detailed discussion.
9That was also the reason why we decided not to include

a fifth Germanic language (English) although the freely avail-
able SUSANNE treebank (Sampson, 1995) or possibly the Penn
Treebank would have qualified otherwise.

10Many thanks to Jan Hajič for granting the temporary li-
cense for CoNLL-X and talking to LDC about it, to Christo-
pher Cieri for arranging distribution through LDC and to Tony
Castelletto for handling the distribution.

11Many thanks to Yuval Krymolowski for converting the tree-
bank, Otakar Smrž for valuable help during the conversion and
thanks again to Jan Hajič, Christopher Cieri and Tony Castel-
letto.

12Many thanks to the SDT people for granting the special
license for CoNLL-X and to Tomaž Erjavec for converting the

Danish Dependency Treebank13 (Kromann, 2003);
Swedish: Talbanken0514 (Teleman, 1974; Einars-
son, 1976; Nilsson et al., 2005);Turkish : Metu-
Sabancı treebank15 (Oflazer et al., 2003; Atalay et
al., 2003).

The conversion of these treebanks was the easi-
est task as the linguistic representation was already
what we needed, so the information only had to be
converted from SGML or XML to the shared task
format. Also, the relevant information had to be dis-
tributed appropriately over the CPOSTAG, POSTAG
and FEATS columns.

For the Swedish data, no predefined distinction
into coarse and fine-grained PoS was available, so
the two columns contain identical values in our for-
mat. For the Czech data, we sampled both our train-
ing and test data from the official “training” partition
because only that one contains gold standard PoS
tags, which is also what is used in most other data
sets. The Czech DEPREL values include the suf-
fixes to mark coordination, apposition and parenthe-
sis, while these have been ignored during the con-
version of the much smaller Slovene data. For the
Arabic data, sentences with missing annotation were
filtered out during the conversion.

The Turkish treebank posed a special problem
because it analyzes each word as a sequence of
one or more inflectional groups (IGs). Each IG
consists of either a stem or a derivational suffix
plus all the inflectional suffixes belonging to that
stem/derivational suffix. The head of a whole word
is not just another word but a specific IG of another
word.16 One can easily map this representation to
one in which the head of a word is a word but that

treebank for us.
13Many thanks to Matthias Trautner Kromann and assistants

for creating the DDT and releasing it under the GNU General
Public License and to Joakim Nivre, Johan Hall and Jens Nils-
son for the conversion of DDT to Malt-XML.

14Many thanks to Jens Nilsson, Johan Hall and Joakim Nivre
for the conversion of the original Talbanken to Talbanken05
and for making it freely available for research purposes andto
Joakim Nivre again for prompt and proper respons to all our
questions.

15Many thanks to Bilge Say and Kemal Oflazer for grant-
ing the license for CoNLL-X and answering questions and to
Gülşen Eryiǧit for making many corrections to the treebank and
discussing some aspects of the conversion.

16This is a bit like saying that in “the usefulness of X for
Y”, “for Y” links to “use-” and not to “usefulness”. Only that
in Turkish, “use”, “full” and “ness” each could have their own
inflectional suffixes attached to them.
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mapping would lose information and it is not clear
whether the result is linguistically meaningful, prac-
tically useful, or even easier to parse because in the
original representation, each IG has its own PoS and
morphological features, so it is not clear how that in-
formation should be represented if all IGs of a word
are conflated. We therefore chose to represent each
IG as a separate token in our format. To make the
result a connected dependency structure, we defined
the HEAD of each non-word-final IG to be the fol-
lowing IG and the DEPREL to be “DERIV”. We as-
signed the stem of the word to the first IG’s LEMMA
column, with all non-first IGs having LEMMA ‘’,
and the actual word form to the last IG, with all non-
last IGs having FORM ‘’. As already mentioned in
Section 3, the underscore has the punctuation char-
acter property, therefore non-last IGs (whose HEAD
and DEPREL were introduced by us) are not scoring
tokens. We also attached or reattached punctuation
(see the README available at the shared task web-
site for details.)

4.2 Phrase structure with functions for all
constituents

We used the following five treebanks of this type:
German: TIGER treebank17 (Brants et al., 2002);
Japanese: Japanese Verbmobil treebank18 (Kawata
and Bartels, 2000);Portuguese: The Bosque part
of the Floresta sintá(c)tica19 (Afonso et al., 2002);
Dutch: Alpino treebank20 (van der Beek et al.,
2002b; van der Beek et al., 2002a);Chinese: Sinica

17Many thanks to the TIGER team for allowing us to use the
treebank for the shared task and to Amit Dubey for converting
the treebank.

18Many thanks to Yasuhiro Kawata, Julia Bartels and col-
leagues from Tübingen University for the construction of the
original Verbmobil treebank for Japanese and to Sandra Kübler
for providing the data and granting the special license for
CoNLL-X.

19Many thanks to Diana Santos, Eckhard Bick and other
Floresta sint(c)tica project members for creating the treebank
and making it publicly available, for answering many questions
about the treebank (Diana and Eckhard), for correcting prob-
lems and making new releases (Diana), and for sharing scripts
and explaining the head rules implemented in them (Eckhard).
Thanks also to Jason Baldridge for useful discussions and to
Ben Wing for independently reporting problems which Diana
then fixed.

20Many thanks to Gertjan van Noord and the other people at
the University of Groningen for creating the Alpino Treebank
and releasing it for free, to Gertjan van Noord for answeringall
our questions and for providing extra test material and to Antal
van den Bosch for help with the memory-based tagger.

treebank21 (Chen et al., 2003).
Their conversion to dependency format required

the definition of a head table. Fortunately, in con-
trast to the Penn Treebank for which the head ta-
ble is based on POS22 we could use the gram-
matical functions annotated in these treebanks.
Therefore, head rules are often of the form: the
head child of a VP/clause is the child with the
HD/predicator/hd/Head function. The DEPREL
value for a token is the function of the biggest con-
stituent of which this token is the lexical head. If the
constituent comprising the complete sentence did
not have a function, we gave its lexical head token
the DEPREL “ROOT”.

For the Chinese treebank, most functions are not
grammatical functions (such as “subject”, “object”)
but semantic roles (such as “agent”, “theme”). For
the Portuguese treebank, the conversion was compli-
cated by the fact that a detailed specification existed
which tokens should be the head of which other to-
kens, e.g. the finite verb must be the head of the
subject and the complementzier but the main verb
must be the head of the complements and adjuncts.23

Given that the Floresta sintá(c)tica does not use tra-
ditional VP constituents but rather verbal chunks
(consisting mainly of verbs), a simple Magerman-
Collins-style head table was not sufficient to derive
the required dependency structure. Instead we used
a head table that defined several types of heads (syn-
tactic, semantic) and a link table that specified what
linked to which type of head.24

Another problem existed with the Dutch tree-
bank. Its original PoS tag set is very coarse and
the PoS and the word stem information is not very
reliable.25 We therefore decided to retag the tree-
bank automatically using the Memory-Based Tag-
ger (MBT) (Daelemans et al., 1996) which uses a
very fine-grained tag set. However, this created a
problem with multiwords. MBT does not have the
concept of multiwords and therefore tags all of their

21Many thanks to Academia Sinica for granting the tempo-
rary license for CoNLL-X, to Keh-Jiann Chen for answering
our questions and to Amit Dubey for converting the treebank.

22containing rules such as: the head child of a VP is the left-
most “to”, or else the leftmost past tense verb, or else etc.

23Eckhard Bick, p.c.
24See the conversion scriptbosque2MALT.py and the

README file at the shared task website for details.
25http://www.let.rug.nl/vannoord/trees/Papers/diffs.pdf
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components individually. As Alpino does not pro-
vide an internal structure for multiwords, we had
to treat multiwords as one token. However, we
then lack a proper PoS for the multiword. After
much discussion, we decided to assign each multi-
word the CPOSTAG “MWU” (multiword unit) and
a POSTAG which is the concatenation of the PoS
of all the components as predicted by MBT (sepa-
rated by an underscore). Likewise, the FEATS are
a concatenation of the morphological features of all
components. This approach resulted in many dif-
ferent POSTAG values for the training set and even
in unseen values in the test set. It remains to be
tested whether our approach resulted in data sets bet-
ter suited for parsing than the original.

4.3 Phrase structure with some functions

We used two treebanks of this type:Spanish:
Cast3LB26 (Civit Torruella and Martı́ Antonı́n,
2002; Navarro et al., 2003; Civit et al., 2003);Bul-
garian: BulTreeBank27 (Simov et al., 2002; Simov
and Osenova, 2003; Simov et al., 2004; Osenova and
Simov, 2004; Simov et al., 2005).

Converting a phrase structure treebank with only
a few functions to a dependency format usually re-
quires linguistic competence in the treebank’s lan-
guage in order to create the head table and miss-
ing function labels. We are grateful to Chanev et
al. (2006) for converting the BulTreeBank to the
shared task format and to Montserrat Civit for pro-
viding us with a head table and a function mapping
for Cast3LB.28

4.4 Data set characteristics

Table 1 shows details of all data sets. Following
Nivre and Nilsson (2005) we use the following def-
inition: “an arc (i, j) is projective iff all nodes oc-
curring between i and j are dominated by i (where
dominates is the transitive closure of the arc rela-

26Many thanks to Montserrat Civit and Toni Martı́ for allow-
ing us to use Cast3LB for CoNLL-X and to Amit Dubey for
converting the treebank.

27Many thanks to Kiril Simov and Petya Osenova for allow-
ing us to use the BulTreeBank for CoNLL-X.

28Although unfortunately, due to a bug, the function list was
not used and the Spanish data in the shared task ended up with
many DEPREL values being simply ‘’. By the time we dis-
covered this, the test data release date was very close and we
decided not to release new bug-fixed training material that late.

tion)”.29

5 Approaches

Table 2 tries to give an overview of the wide variety
of parsing approaches used by participants. We refer
to the individual papers for details. There are several
dimensions along which to classify approaches.

5.1 Top-down, bottom-up

Phrase structure parsers are often classified in terms
of the parsing order: top-down, bottom-up or var-
ious combinations. For dependency parsing, there
seem to be two different interpretations of the term
“bottom-up”. Nivre and Scholz (2004) uses this
term with reference to Yamada and Matsumoto
(2003), whose parser has to find all children of a
token before it can attach that token to its head.
We will refer to this as “bottom-up-trees”. An-
other use of “bottom-up” is due to Eisner (1996),
who introduced the notion of a “span”. A span
consists of a potential dependency arcr between
two tokensi and j and all those dependency arcs
that would be spanned byr, i.e. all arcs between
tokensk and l with i ≤ k, l ≤ j. Parsing in
this order means that the parser has to find all chil-
dren and siblings on one side of a token before it
can attach that token to a head on the same side.
This approach assumes projective dependency struc-
tures. Eisner called this approach simply “bottom-
up”, while Nivre, whose parser implicitly also fol-
lows this order, called it “top-down/bottom-up” to
distinguish it from the pure “bottom-up(-trees)” or-
der of Yamada and Matsumoto (2003). To avoid
confusion, we will refer to this order as “bottom-up-
spans”.

5.2 Unlabeled parsing versus labeling

Given that the parser needs to predict the HEAD as
well as the DEPREL value, different approaches are
possible: predict the (probabilities of the) HEADs
of all tokens first, or predict the (probabilities of
the) DEPRELs of all tokens first, or predict the
HEAD and DEPREL of one token before predict-
ing these values for the next token. Within the
first approach, each dependency can be labeled in-
dependently (Corston-Oliver and Aue, 2006) or a

29Thanks to Joakim Nivre for explaining this.
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Ar Ch Cz Da Du Ge Ja Po Sl Sp Sw Tu Bu

lang. fam. Sem. Sin. Sla. Ger. Ger. Ger. Jap. Rom. Sla. Rom. Ger. Ura. Sla.
genres 1: ne 6 3 8+ 5+ 1: ne 1: di 1: ne 1: no 9 4+ 8 12
annotation d c+f d d dc+f dc+f c+f dc+f d c(+f) dc+f/d d c+t

training data
tokens (k) 54 337 1249 94 195 700 151 207 29 89 191 58 190
%non-scor. 8.8 a0.8 14.9 13.9 11.3 11.5 11.6 14.2 17.3 12.6 11.0 b33.1 14.4
units (k) 1.5 57.0 72.7 5.2 13.3 39.2 17.0 9.1 1.5 3.3 11.0 5.0 12.8
tokens/unit c37.2 d5.9 17.2 18.2 14.6 17.8 e8.9 22.8 18.7 27.0 17.3 11.5 14.8
LEMMA f(+) − + − + − − + + + − + −

CPOSTAGs 14 13+9 12 10 13 g52 20 15 11 15 37 14 11
POSTAGs 19 h294+9 63 24 i302 52 77 21 28 38 37 30 53
FEATS 19 − 61 47 81 − 4 146 51 33 − 82 50
DEPRELs 27 82 78 52 26 46 7 55 25 21 56 25 18
D.s H.=0 15 1 14 1 1 1 1 6 6 1 1 1 1
%HEAD=0 5.5 16.9 6.7 6.4 8.9 6.3 18.6 5.1 5.9 4.2 6.5 13.4 7.9
%H. preced. 82.9 24.8 50.9 75.0 46.5 50.9 8.9 60.3 47.2 60.8 52.8 6.2 62.9
%H. follow. 11.6 58.2 42.4 18.6 44.6 42.7 72.5 34.6 46.9 35.1 40.7 80.4 29.2
H.=0/unit 1.9 1.0 1.0 1.0 1.2 1.0 1.5 1.0 j0.9 1.0 1.0 1.0 1.0
%n.p. arcs 0.4 0.0 1.9 1.0 5.4 2.3 k1.1 1.3 1.9 l0.1 1.0 1.5 0.4
%n.p. units 11.2 0.0 23.2 15.6 36.4 27.8 5.3 18.9 22.2 1.7 9.8 11.6 5.4

test data
scor. tokens 4990 4970 5000 5010 4998 5008 5003 5009 5004 4991 5021 5021 5013
%new form 17.3 9.3 5.2 18.1 20.7 6.5 0.96 11.6 22.0 14.7 18.0 41.4 14.5
%new lem. 4.3 n/a 1.8 n/a 15.9 n/a n/a 7.8 9.9 9.7 n/a 13.2 n/a

Table 1: Characteristics of the data sets for the 13 languages (abbreviated by their first two letters): language family (Semitic,
Sino-Tibetan, Slavic, Germanic, Japonic (or language isolate), Romance, Ural-Altaic); number of genres, and genre ifonly one
(news, dialogue, novel); type of annotation (d=dependency, c=constituents, dc=discontinuous constituents, +f=with functions,
+t=with types). For the training data: number of tokens (times 1000); percentage of non-scoring tokens; number of parsetree units
(usually sentences, times 1000); average number of (scoring and non-scoring) tokens per parse tree unit; whether a lemma or stem
is available; how many different CPOSTAG values, POSTAG values, FEATS components and DEPREL values occur for scoring
tokens; how many different values for DEPREL scoring tokenswith HEAD=0 can have (if that number is 1, there is one designated
label (e.g. “ROOT”) for tokens with HEAD=0); percentage of scoring tokens with HEAD=0, a head that precedes or a head that
follows the token (this nicely shows which languages are predominantly head-initial or head-final); the average numberof scoring
tokens with HEAD=0 per parse tree unit; the percentage of (scoring and non-scoring) non-projective relations and of parse tree
units with at least one non-projective relation. For the test data: number of scoring tokens; percentage of scoring tokens with a
FORM or a LEMMA that does not occur in the training data.

afinal punctuation was deliberately left out during the conversion (as it is explicitly excluded from the tree structure)
bthe non-last IGs of a word are non-scoring, see Section 4.1
cin many cases the parse tree unit in PADT is not a sentence but aparagraph
din many cases the unit in Sinica is not a sentence but a comma-separated clause or phrase
ethe treebank consists of transcribed dialogues, in which some sentences are very short, e.g. just “Hai.” (“Yes.”)
fonly part of the Arabic data has non-underscore values for the LEMMA column
gno mapping from fine-grained to coarse-grained tags was available; same for Swedish
h9 values are typos; POSTAGs also encode subcategorization information for verbs and some semantic information for con-

junctions and nouns; some values also include parts in square brackets which in hindsight should maybe have gone to FEATS
idue to treatment of multiwords
jprobably due to some sentences consisting only of non-scoring tokens, i.e. punctuation
kthese are all disfluencies, which are attached to the virtualroot node
l from co-indexed items in the original treebank; same for Bulgarian
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algorithm ver. hor. search lab. non-proj learner pre post opt

all pairs
McD MST/Eisner b-s irr. opt/approx. 2nd + a MIRA − − −

Cor MST/Eisner b-s irr. optimal 2nd − BPMb+ME [SVM] + c − −

Shi MST/CLE irr. irr. optimal 1st +, CLE MIRA − − −

Can own algorithm irr. irr. approx.(?) int. + d TiMBL − − +
Rie ILP irr. irr. increment. int. + e MIRA − − +
Bic CG-inspired mpf mpf backtrack(?)int. + f MLE(?) + g + h −

stepwise
Dre hagi /Eisner/rerankb-s irr. best 1st exh 2nd − MLE − − + j

Liu own algorithm b-t mpf det./local int. − MLE − − −

Car Eisner b-s irr. approx. int. − perceptron − − −

stepwise: classifier-based
Att Y&M b-t for. determin. int. + k ME [MBL,SVM,...] stem − −

Cha Y&M b-t for. local 2nd − l perceptron (SNoW) proj − −

Yur own algorithm b-s irr. determin. int. − decision list (GPA)m − − −

Che chunker+Nivre b-s for. determin. int.n − SVM + ME [CRF] − − −

Niv Nivre b-s for. determin. int. +, ps-pr SVM proj deproj +
Joh Nivre+MST/CLE b-s f+bo N-best int.p +, CLE SVM (LIBSVM) − −

Wu Nivre+root parser b-s f/bq det.[+exh.] int. − [+] SVM (SVMLight) − [+] r −

other
Sch PCFG/CKY b-t irr. opt. int. +, traces MLE [ME] d2c c2d −

Table 2: Overview of parsing approaches taken by participating groups (identified by the first three letters
of the first author): algorithm (Y&M: Yamada and Matsumoto (2003), ILP: Integer Linear Programming),
vertical direction (irrelevant, mpf: most probable first, bottom-up-spans, bottom-up-trees), horizontal direc-
tion (irrelevant, mpf: most probable first, forward, backward), search (optimal, approximate, incremental,
best-first exhaustive, deterministic), labeling (interleaved, separate and 1st step, separate and 2nd step),
non-projective (ps-pr: through pseudo-projective approach), learner (ME: Maximum Entropy; learners in
brackets were explored but not used in the official submission), preprocessing (projectivize, d2c: dependen-
cies to constituents), postprocessing (deprojectivize, c2d: constituents to dependencies), learner parameter
optimization per language

anon-projectivity through approximate search, used for some languages
b20 averaged perceptrons combined into a Bayes Point Machine
cintroduced a single POS tag “aux” for all Swedish auxiliary and model verbs
dby having no projectivity constraint
eselective projectivity constraint for Japanese
fseveral approaches to non-projectivity
gusing some FEATS components to create some finer-grained POSTAG values
hreattachment rules for some types of non-projectivity
ihead automaton grammar
jdetermined the maximally allowed distance for relations
kthrough special parser actions
lpseudo-projectivizing training data only

mGreedy Prepend Algorithm
nbut two separate learners used for unlabeled parsing versuslabeling
oboth foward and backward, then combined into a single tree with CLE
pbut two separate SVMs used for unlabeled parsing versus labeling
qforward parsing for Japanese and Turkish, backward for the rest
rattaching remaining unattached tokens through exhaustivesearch (not for submitted runs)
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sequence classifier can label all children of a token
together (McDonald et al., 2006). Within the third
approach, HEAD and DEPREL can be predicted si-
multaneously, or in two separate steps (potentially
using two different learners).

5.3 All pairs

At the highest level of abstraction, there are two fun-
damental approaches, which we will call “all pairs”
and “stepwise”. In an “all pairs” approach, every
possible pair of two tokens in a sentence is consid-
ered and some score is assigned to the possibility
of this pair having a (directed) dependency relation.
Using that information as building blocks, the parser
then searches for the best parse for the sentence.
This approach is one of those described in Eisner
(1996). The definition of “best” parse depends on
the precise model used. That model can be one that
defines the score of a complete dependency tree as
the sum of the scores of all dependency arcs in it.
The search for the best parse can then be formalized
as the search for the maximum spanning tree (MST)
(McDonald et al., 2005b). If the parse has to be pro-
jective, Eisner’s bottom-up-span algorithm (Eisner,
1996) can be used for the search. For non-projective
parses, McDonald et al. (2005b) propose using the
Chu-Liu-Edmonds (CLE) algorithm (Chu and Liu,
1965; Edmonds, 1967) and McDonald and Pereira
(2006) describe an approximate extension of Eis-
ner’s algorithm. There are also alternatives to MST
which allow imposing additional constraints on the
dependency structure, e.g. that at most one depen-
dent of a token can have a certain label, such as “sub-
ject”, see Riedel et al. (2006) and Bick (2006). By
contrast, Canisius et al. (2006) do not even enforce
the tree constraint, i.e. they allow cycles. In a vari-
ant of the “all pairs” approach, only those pairs of
tokens are considered that are not too distant (Cani-
sius et al., 2006).

5.4 Stepwise

In a stepwise approach, not all pairs are considered.
Instead, the dependency tree is built stepwise and
the decision about what step to take next (e.g. which
dependency to insert) can be based on information
about, in theory all, previous steps and their results
(in the context of generative probabilistic parsing,
Black et al. (1993) call this the history). Stepwise

approaches can use an explicit probability model
over next steps, e.g. a generative one (Eisner, 1996;
Dreyer et al., 2006), or train a machine learner to
predict those. The approach can be deterministic (at
each point, one step is chosen) or employ various
types of search. In addition, parsing can be done in
a bottom-up-constituent or a bottom-up-spans fash-
ion (or in another way, although this was not done in
this shared task). Finally, parsing can start at the first
or the last token of a sentence. When talking about
languages that are written from left to right, this dis-
tinction is normally referred to as left-to-right ver-
sus right-to-left. However, for multilingual parsing
which includes languages that are written from right
to left (Arabic) or sometimes top to bottom (Chi-
nese, Japanese) this terminology is confusing be-
cause it is not always clear whether a left-to-right
parser for Arabic would really start with the left-
most (i.e. last) token of a sentence or, like for other
languages, with the first (i.e. rightmost). In general,
starting with the first token (“forward”) makes more
sense from a psycholinguistic point of view but start-
ing with the last (“backward”) might be beneficial
for some languages (possibly related to them being
head-initial versus head-final languages). The pars-
ing order directly determines what information will
be available from the history when the next decision
needs to be made. Stepwise parsers tend to inter-
leave the prediction of HEAD and DEPREL.

5.5 Non-projectivity

All data sets except the Chinese one contain some
non-projective dependency arcs, although their pro-
portion varies from 0.1% to 5.4%. Participants took
the following approaches to non-projectivity:

• Ignore, i.e. predict only projective parses. De-
pending on the way the parser is trained, it
might be necessary to at least projectivize the
training data (Chang et al., 2006).

• Always allow non-projective arcs, by not im-
posing any projectivity constraint (Shimizu,
2006; Canisius et al., 2006).

• Allow during parsing under certain conditions,
e.g. for tokens with certain properties (Riedel
et al., 2006; Bick, 2006) or if no alternative
projective arc has a score above the threshold
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(Bick, 2006) or if the classifier chooses a spe-
cial action (Attardi, 2006) or the parser predicts
a trace (Schiehlen and Spranger, 2006).

• Introduce through post-processing, e.g.
through reattachment rules (Bick, 2006) or
if the change increases overall parse tree
probability (McDonald et al., 2006).

• The pseudo-projective approach (Nivre and
Nilsson, 2005): Transform non-projective
training trees to projective ones but encode
the information necessary to make the inverse
transformation in the DEPREL, so that this in-
verse transformation can also be carried out on
the test trees (Nivre et al., 2006).

5.6 Data columns used

Table 3 shows which column values have
been used by participants. Nobody used the
PHEAD/PDEPREL column in any way. It is likely
that those who did not use any of the other columns
did so mainly for practical reasons, such as the
limited time and/or the difficulty to integrate it into
an existing parser.

5.6.1 FORM versus LEMMA

Lemma or stem information has often been ig-
nored in previous dependency parsers. In the shared
task data, it was available in just over half the data
sets. Both LEMMA and FORM encode lexical in-
formation. There is therefore a certain redundancy.
Participants have used these two columns in differ-
ent ways:

• Use only one (see Table 3).

• Use both, in different features. Typically, a fea-
ture selection routine and/or the learner itself
(through weights) will decide about the impor-
tance of the resulting features.

• Use a variant of the FORM as a substitute for
a missing LEMMA. Bick (2006) used the low-
ercased FORM if the LEMMA is not available,
Corston-Oliver and Aue (2006) a prefix and At-
tardi (2006) a stem derived by a rule-based sys-
tem for Danish, German and Swedish.

form lem. cpos pos feats

McD ++ a + b −? + +, co+cr.pr.
Cor + + + c ++ +, co+cr.pr.d

Shi + − + − −

Can + − − + −

Rie + e + + + f + cr.pr.
Bic (+) + + g + (+)

Dre ++ h + rer. rer. −

Liu (+) + ++ + −

Car ++ + ++ + + comp.

Att (+) + + − (+)
Cha − + − + + atomic
Yur + + + + + comp.
Che + + + + + atomic?
Niv + + + + + comp.
Joh + − + + + comp.
Wu + − + + −

Sch ? (+)i ? (+) (+)

Table 3: Overview of data columns used by partici-
pating groups. ‘−’: a column value was not used at
all. ‘+’: used in at least some features. ‘(+)’: Vari-
ant of FORM used only if LEMMA is missing, or
only parts of FEATS used. ‘++’: used more exten-
sively than another column containing related infor-
mation (where FORM and LEMMA are related, as
are CPOSTAG and POSTAG), e.g. also in combina-
tion features or features for context tokens in addi-
tion to features for the focus token(s). “rer.”: used
in the reranker only. For the last column: atomic,
comp. = components, cr.pr. = cross-product.

aalso prefix and suffix for labeler
binstead of form for Arabic and Spanish
cinstead of POSTAG for Dutch and Turkish
dfor labeler; unlab. parsing: only some for global features
ealso prefix
falso 1st character of POSTAG
gonly as backoff
hreranker: also suffix; if no lemma, use prefix of FORM
iLEMMA, POSTAG, FEATS only for back-off smoothing

5.6.2 CPOSTAG versus POSTAG

All data sets except German and Swedish had dif-
ferent values for CPOSTAG and POSTAG, although
the granularity varied widely. Again, there are dif-
ferent approaches to dealing with the redundancy:

• Use only one for all languages.
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• Use both, in different features. Typically, a fea-
ture selection routine and/or the learner itself
(through weights) will decide about the impor-
tance of the resulting features.

• Use one or the other for each language.

5.6.3 Using FEATS

By design, a FEATS column value has internal
structure. Splitting it at the ‘|’30 results in a set of
components. The following approaches have been
used:

• Ignore the FEATS.

• Treat the complete FEATS value as atomic, i.e.
do not split it into components.

• Use only some components, e.g. Bick (2006)
uses only case, mood and pronoun subclass and
Attardi (2006) uses only gender, number, per-
son and case.

• Use one binary feature for each component.
This is likely to be useful if grammatical func-
tion is indicated by case.

• Use one binary feature for each cross-product
of the FEATS components ofi and the FEATS
components ofj. This is likely to be useful for
agreement phenomena.

• Use one binary feature for each FEATS com-
ponent ofi that also exists forj. This is a more
explicit way to model agreement.

5.7 Types of features

When deciding whether there should be a depen-
dency relation between tokensi and j, all parsers
use at least information about these two tokens. In
addition, the following sources of information can
be used (see Table 4): token context (tc): a limited
number (determined by the window size) of tokens
directly preceding or followingi or j; children: in-
formation about the already found children ofi and
j; siblings: in a set-up where the decision is not “is
there a relation betweeni andj” but “is i the head of
j” or in a separate labeling step, the siblings ofi are
the already found children ofj; structural context

30or for Dutch, also at the ‘’

tc ch si sc di in gl co ac la op

McD + l + l ? l l + − l (+)a

Cor + l b l + p − + + − − (+)c

Shi + − − − + − − + − + −

Can + − − − + − − − − − −

Rie + − + d − ? ? − + − + e +
Bic + + f + g − + + h − + − ++ (+)i

Dre r r + r + r − + − r r
Liu − + − + + − − + − − −

Car + − + − + + − + − + −

Att − + + + − − − − + + (+)j

Cha + + − l − − − + + − −

Yur + + − ? − − − − − − +
Che − + + + + − − − − − −

Niv + + − + − − − − − + +
Joh + + − + − − − − − + −

Wu + + − + − − − + − + −

Sch − + − − − − − − − + −

Table 4: Overview of features used by participating
groups. See the text for the meaning of the column
abbreviations. For separate HEAD and DEPREL as-
signment: p: only for unlabeled parsing, l: only for
labeling, r: only for reranking.

aFORM versus LEMMA
bnumber of tokens governed by child
cPOSTAG versus CPOSTAG
dfor arity constraint
efor arity constraint
ffor “full” head constraint
gfor uniqueness constraint
hfor barrier constraint
iof constraints
jPOS window size

(sc) other than children/siblings: neighboring sub-
trees/spans, or ancestors ofi andj; distance fromi

to j; information derived from all the tokensin be-
tweeni andj (e.g. whether there is an intervening
verb or how many intervening commas there are);
global features (e.g. does the sentence contain a fi-
nite verb); explicit featurecombinations (depending
on the learner, these might not be necessary, e.g. a
polynomial kernel routinely combines features); for
classifier-based parsers: the previousactions, i.e.
classifications; whether information aboutlabels is
used as input for other decisions. Finally, the pre-
cise set of features can beoptimized per language.
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6 Results

Table 5 shows the official results for submitted
parser outputs.31 The two participant groups with
the highest total score are McDonald et al. (2006)
and Nivre et al. (2006). As both groups had much
prior experience in multilingual dependency pars-
ing (see Section 2), it is not too surprising that they
both achieved good results. It is surprising, how-
ever, how similar their total scores are, given that
their approaches are quite different (see Table 2).
The results show that experiments on just one or two
languages certainly give an indication of the useful-
ness of a parsing approach but should not be taken
as proof that one algorithm is better for “parsing” (in
general) than another that performs slightly worse.
The Bulgarian scores suggest that rankings would
not have been very different had it been the 13th
obligatory languages.

Table 6 shows that the same holds had we used an-
other evaluation metric. Note that a negative number
in both the third and fifth column indicates that er-
rors on HEAD and DEPREL occur together on the
same token more often than for other parsers. Fi-
nally, we checked that, had we also scored on punc-
tuation tokens, total scores as well as rankings would
only have shown very minor differences.

7 Result analysis

7.1 Across data sets

The average LAS over all data sets varies between
56.0 for Turkish and 85.9 for Japanese. Top scores
vary between 65.7 for Turkish and 91.7 for Japanese.
In general, there is a high correlation between the
best scores and the average scores. This means that
data sets are inherently easy or difficult, no mat-
ter what the parsing approach. The “easiest” one is
clearly the Japanese data set. However, it would be
wrong to conclude from this that Japanese in general
is easy to parse. It is more likely that the effect stems
from the characteristics of the data. The Japanese
Verbmobil treebank contains dialogue within a re-
stricted domain (making business appointments). As

31Unfortunately, urgent other obligations prevented two par-
ticipants (John O’Neil and Kenji Sagae) from submitting a pa-
per about their shared task work. Their results are indicated by
a smaller font. Sagae used a best-first probabilistic version of
Y&M (p.c.).

LAS unlabeled label acc.

McD 80.3 = 86.6 −1 86.7
Niv 80.2 = 85.5 +1 86.8
O’N 78.4 = 85.3 −1 85.0

Rie 77.9 = 85.0 −1 84.9
Sag 77.8 −2 83.7 +2 85.6

Che 77.7 +1 84.6 = 84.2
Cor 76.9 +1 84.4 −1 84.0
Cha 76.8 = 83.5 +1 84.1
Joh 74.9 −1 80.4 = 83.7
Car 74.7 +1 81.2 = 83.5
Wu 71.7 −1 78.4 −1 79.1
Can 70.8 +1 78.4 −1 78.6
Bic 70.0 = 77.5 a+2 80.3
Dre 65.2 −1 74.5 −1 75.2
Yur 65.0 −1 73.5 −2 70.9
Liu 63.3 −2 70.7 = 73.6
Sch 62.8 = 72.1 b+3 75.7
Att 61.2 c+4 76.2 = 70.7
Shi 34.2 = 38.7 = 39.7

Table 6: Differences in ranking depending on the
evaluation metric. The second column repeats the
official metric (LAS). The third column shows how
the ranking for each participant changes (or not: ‘=’)
if the unlabeled attachment scores, as shown in the
fourth column, are used. The fifth column shows
how the ranking changes (in comparison to LAS) if
the label accuracies, as shown in the sixth column,
are used.

aIn Bick’s method, preference is given to the assignment of
dependency labels.

bSchiehlen derived the constituent labels for his PCFG ap-
proach from the DEPREL values.

cDue to the bug (see footnote with Table 5).

can be seen in Table 1, there are very few new
FORM values in the test data, which is an indica-
tion of many dialogues in the treebank being sim-
ilar. In addition, parsing units are short on aver-
age. Finally, the set of DEPREL values is very small
and consequently the ratio between (C)POSTAG and
DEPREL values is extremely favorable. It would
be interesting to apply the shared task parsers to
the Kyoto University Corpus (Kurohashi and Nagao,
1997), which is the standard treebank for Japanese
and has also been used by Kudo and Matsumoto
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Ar Ch Cz Da Du Ge Ja Po Sl Sp Sw Tu Tot SD Bu
McD 66.9 85.9 80.2 84.8 79.2 87.390.7 86.8 73.4 82.3 82.6 63.2 80.3 8.4 87.6
Niv 66.7 86.9 78.4 84.8 78.6 85.8 91.7 87.6 70.3 81.3 84.6 65.7 80.2 8.5 87.4
O’N 66.7 86.7 76.6 82.8 77.5 85.4 90.6 84.7 71.1 79.8 81.8 57.578.4 9.4 85.2

Rie 66.7 90.0 67.4 83.6 78.6 86.2 90.5 84.4 71.2 77.4 80.7 58.677.9 10.1 0.0
Sag 62.7 84.7 75.2 81.6 76.6 84.9 90.486.0 69.1 77.7 82.0 63.2 77.8 9.0 0.0

Che 65.2 84.3 76.2 81.7 71.8 84.1 89.9 85.1 71.4 80.5 81.1 61.277.7 8.7 86.3
Cor 63.5 79.9 74.5 81.7 71.4 83.5 90.0 84.672.4 80.4 79.7 61.7 76.9 8.5 83.4
Cha 60.9 85.1 72.9 80.6 72.9 84.2 89.1 84.0 69.5 79.7 82.3 60.576.8 9.4 0.0
Joh 64.3 72.5 71.5 81.5 72.7 80.4 85.6 84.6 66.4 78.2 78.1 63.474.9 7.7 0.0
Car 60.9 83.7 68.8 79.7 67.3 82.4 88.1 83.4 68.4 77.2 78.7 58.174.7 9.7 83.3
Wu 63.8 74.8 59.4 78.4 68.5 76.5 90.1 81.5 67.8 73.0 71.7 55.171.7 9.7 79.7
Can 57.6 78.4 60.9 77.9 74.6 77.6 87.4 77.4 59.2 68.3 79.2 51.170.8 11.1 78.7
Bic 55.4 76.2 63.0 74.6 69.5 74.7 84.8 78.2 64.3 71.4 74.1 53.970.0 9.3 79.2
Dre 53.4 71.6 60.5 66.6 61.6 71.0 82.9 75.3 58.7 67.6 67.6 46.165.2 9.9 74.8
Yur 52.4 72.7 51.9 71.6 62.8 63.8 84.4 70.4 55.1 69.6 65.2 60.365.0 9.5 73.5
Liu 50.7 75.3 58.5 77.7 59.4 68.1 70.8 71.1 57.2 65.1 63.8 41.763.3 10.4 67.6
Sch 44.4 66.2 53.3 76.1 72.1 68.7 83.4 71.0 50.7 47.0 71.1 49.862.8 13.0 0.0
Att 53.8 54.9 59.8 66.4 58.2 69.8 65.4 75.4 57.2 67.4 68.8 37.8a61.2 9.9 72.9
Shi 62.8 0.0 0.0 75.8 0.0 0.0 0.0 0.0 64.6 73.2 79.5 54.234.2 36.3 0.0
Av 59.9 78.3 67.2 78.3 70.7 78.6 85.9 80.6 65.2 73.5 76.4 56.0 80.0
SD 6.5 8.8 8.9 5.5 6.7 7.5 7.1 5.8 6.8 8.4 6.5 7.7 6.3

Table 5: Labeled attachment scores of parsers on the 13 test sets. The total score (Tot) and standard devia-
tions (SD) from the average per participant are calculated over the 12 obligatory languages (i.e. excluding
Bulgarian). Note that due to the equal sizes of the test sets for all languages, the total scores, i.e. the LAS
over the concatenation of the 12 obligatory test sets, are identical (up to the first decimal digit) to the average
LAS over the 12 test sets. Averages and standard deviations per data set are calculated ignoring zero scores
(i.e. results not submitted). The highest score for each column and those not significantly worse (p < 0.05)
are shown in bold face. Significance was computed using the official scoring scripteval.pl and Dan
Bikel’s Randomized Parsing Evaluation Comparator, which implements stratified shuffling.

aAttardi’s submitted results contained an unfortunate bug which caused the DEPREL values of all tokens with HEAD=0 to
be an underscore (which is scored as incorrect). Using the simple heuristic of assigning the DEPREL value that most frequently
occured with HEAD=0 in training would have resulted in a total LAS of 67.5.

(2000), or to the domain-restricted Japanese dia-
logues of the ATR corpus (Lepage et al., 1998).32

Other relatively “easy” data sets are Portuguese
(2nd highest average score but, interestingly, the
third-longest parsing units), Bulgarian (3rd), Ger-
man (4th) and Chinese (5th). Chinese also has the
second highest top score33 and Chinese parsing units

32Unfortunately, both these treebanks need to be bought, so
they could not be used for the shared task. Note also that
Japanese dependency parsers often operate on “bunsetsus” in-
stead of words. Bunsetsus are related to chunks and consist of
a content word and following particles (if any).

33Although this seems to be somewhat of a mystery com-
pared to the ranking according to the average scores. Riedelet

are the shortest. and Chinese parsing units are the
shortest. We note that all “easier” data sets offer
large to middle-sized training sets.

The most difficult data set is clearly the Turkish
one. It is rather small, and in contrast to Arabic
and Slovene, which are equally small or smaller, it
covers 8 genres, which results in a high percentage
of new FORM and LEMMA values in the test set.
It is also possible that parsers get confused by the
high proportion (one third!) of non-scoring tokens

al. (2006)’s top score is more than 3% absolute above the sec-
ond highest score and they offer no clear explanation for their
success.
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and the many tokens with ‘’ as either the FORM or
LEMMA. There is a clear need for further research
to check whether other representations result in bet-
ter performance.

The second-most difficult data set is Arabic. It is
quite small and has by far the longest parsing units.
The third-most difficult data set is Slovene. It has
the smallest training set. However, its average as
well as top score far exceed those for Arabic and
Turkish, which are larger. Interestingly, although the
treebank text comes from a single source (a transla-
tion of Orwell’s novel “1984”), there is quite a high
proportion of new FORM and LEMMA values in the
test set. The fourth-most difficult data set is Czech
in terms of the average score and Dutch in terms of
the top score. The diffence in ranking for Czech is
probably due to the fact that it has by far the largest
training set and ironically, several participants could
not train on all data within the limited time, or else
had to partition the data and train one model for each
partition. Likely problems with the Dutch data set
are: noisy (C)POSTAG and LEMMA, (C)POSTAG
for multiwords, and the highest proportion of non-
projectivity.

Factors that have been discussed so far are: the
size of the training data, the proportion of new
FORM and LEMMA values in the test set, the ra-
tio of (C)POSTAG to DEPREL values, the average
length of the parsing unit the proportion of non-
projective arcs/parsing units. It would be interest-
ing to derive a formula based on those factors that
fits the shared task data and see how well it pre-
dicts results on new data sets. One factor that seems
to be irrelevant is the head-final versus head-initial
distinction, as both the “easiest” and the most dif-
ficult data sets are for head-final languages. There
is also no clear proof that some language families
are easier (with current parsing methods) than oth-
ers. It would be interesting to test parsers on the
Hebrew treebank (Sima’an et al., 2001), to compare
performance to Arabic, the other Semitic language
in the shared task, or on the Hungarian Szeged Cor-
pus (Csendes et al., 2004), for another agglutinative
language.

7.2 Across participants

For most parsers, their ranking for a specific lan-
guage differs at most a few places from their over-

all ranking. There are some outliers though. For
example, Johansson and Nugues (2006) and Yuret
(2006) are seven ranks higher for Turkish than over-
all, while Riedel et al. (2006) are five ranks lower.
Canisius et al. (2006) are six and Schiehlen and
Spranger (2006) even eight ranks higher for Dutch
than overall, while Riedel et al. (2006) are six ranks
lower for Czech and Johansson and Nugues (2006)
also six for Chinese. Some of the higher rankings
could be related to native speaker competence and
resulting better parameter tuning but other outliers
remain a mystery. Even though McDonald et al.
(2006) and Nivre et al. (2006) obtained very simi-
lar overall scores, a more detailed look at their per-
formance shows clear differences. Taken over all 12
obligatory languages, both obtain a recall of more
than 89% on root tokens (i.e. those with HEAD=0)
but Nivre’s precision on them is much lower than
McDonald’s (80.91 versus 91.07). This is likely to
be an effect of the different parsing approaches.

7.3 Across part-of-speech tags

When breaking down by part-of-speech the results
of all participants on all data sets, one can observe
some patterns of “easy” and “difficult” parts-of-
speech, at least in so far as tag sets are compara-
ble across treebanks. The one PoS that everybody
got 100% correct are the German infinitival mark-
ers (tag PTKZU; like “to” in English). Accuracy on
the Swedish equivalent (IM) is not far off at 98%.
Other easy PoS are articles, with accuracies in the
nineties for German, Dutch, Swedish, Portuguese
and Spanish. As several participants have remarked
in their papers, prepositions are much more difficult,
with typical accuracies in the fifties or sixties. Simi-
larly, conjunctions typically score low, with accura-
cies even in the forties for Arabic and Dutch.

8 Future research

There are many directions for interesting research
building on the work done in this shared task. One
is the question which factors make data sets “easy”
or difficult. Another is finding out how much of
parsing performance depends on annotations such
as the lemma and morphological features, which
are not yet routinely part of treebanking efforts. In
this respect, it would be interesting to repeat ex-
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periments with the recently released new version of
the TIGER treebank which now contains this in-
formation. One line of research that does not re-
quire additional annotation effort is defining or im-
proving the mapping from coarse-grained to fine-
grained PoS tags.34 Another is harvesting and using
large-scale distributional data from the internet. We
also hope that by combining parsers we can achieve
even better performance, which in turn would facili-
tate the semi-automatic enlargement of existing tree-
banks and possibly the detection of remaining er-
rors. This would create a positive feedback loop.
Finally one must not forget that almost all of the
LEMMA, (C)POSTAG and FEATS values and even
part of the FORM column (the multiword tokens
used in many data sets and basically all tokeniza-
tion for Chinese and Japanese, where words are nor-
mally not delimited by spaces) have been manually
created or corrected and that the general parsing task
has to integrate automatic tokenization, morphologi-
cal analysis and tagging. We hope that the resources
created and lessons learned during this shared task
will be valuable for many years to come but also
that they will be extended and improved by others
in the future, and that the shared task website will
grow into an informational hub on multilingual de-
pendency parsing.
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pus: a POS tagged and syntactically annotated Hungarian
natural language corpus. InProc. of the 5th Intern. Work-
shop on Linguistically Interpreteted Corpora (LINC).

W. Daelemans, J. Zavrel, P. Berck, and S. Gillis. 1996. MBT:
A memory-based part of speech tagger-generator. InProc.
of the 4th Workshop on Very Large Corpora (VLC).

A. Dubey and F. Keller. 2003. Probabilistic parsing for German
using sister-head dependencies. InProc. of the 41st Annual
Meeting of the ACL.

J. Edmonds. 1967. Optimum branchings.Journal of Research
of the National Bureau of Standards, 71B:233–240.

J. Einarsson. 1976. Talbankens skriftspråkskonkordans.
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