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Abstract invoking an “intuitive notion of topic” (Brown and

Yule, 1998). Thematic segmentation also relates

We investigate the appropriateness of us-
ing a technique based on support vector
machines for identifying thematic struc-

ture of text streams. The thematic seg-

to several notions such as speaker’s intention, topic
flow and cohesion.
In order to find out if thematic segment identi-

fication is a feasible task, previous state-of-the-art

works appeal to experiments, in which several hu-

man subjects are asked to mark thematic segment
boundaries based on their intuition and a minimal

set of instructions. In this manner, previous studies,

e.g. (Passonneau and Litman, 1993; Galley et al.,
2003), obtained a level of inter-annotator agreement
that is statistically significant.

Automatic thematic segmentation (TS), i.e. the
segmentation of a text stream into topically coher-
ent segments, is an important component in ap-
plications dealing with large document collections
such as information retrieval and document brows-
ing. Other tasks that could benefit from the thematic
textual structure include anaphora resolution, auto-
matic summarisation and discourse understanding.

. The work presented here tackles the problem
1 Introduction of TS by adopting a supervised learning approach
(Todd, 2005) distinguishes between “local-level topfor capturing linear document structure of non-
ics (of sentences, utterances and short discourse segerlapping thematic episodes. A prerequisite for
ments)” and “discourse topics (of more extendethe input data to our system is that texts are divided
stretches of discoursey’. (Todd, 2005) points out into sentences or utterancesEach boundary be-
that “discourse-level topics are one of the most eldween two consecutive utterances is a potential the-
sive and intractable notions in semantics”. Despitgatic segmentation point and therefore, we model
this difficulty in giving a rigorous definition oflis- the TS task as a binary-classification problem, where
course topicthe task of discourse/dialogue segmeneach utterance should be classified as marking the
tation into thematic episodes can be described

mentation task is modeled as a binary-
classification problem, where the different
classes correspond to the presence or the
absence of a thematic boundary. Exper-
iments are conducted with this approach
by using features based on word distri-
butions through text. We provide em-
pirical evidence that our approach is ro-
bust, by showing good performance on
three different data sets. In particu-
lar, substantial improvement is obtained
over previously published results of word-
distribution based systems when evalua-
tion is done on a corpus of recorded and
transcribed multi-party dialogs.

20ccasionally within this document we employ the term ut-
terance to denote either a sentence or an utterance in its proper
sense.

YIn this paper, we make use of the tetapic or themeas
referring to the discourse/dialogue topic.
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presence or the absence of a topic shift in the disvhere handling high dimensionality data represen-
course/dialogue based only on observations of pafation is necessary (see section 4).
terns in vocabulary use. An alternative to dealing with high dimension
The remainder of the paper is organised as fodata may be to reduce the dimensionality of the
lows. The next section summarizes previous tecltlata representation. Therefore, linear algebra di-
nigques, describes how our method relates to themensionality reduction methods like singular value
and presents the motivations for a support vector apecomposition have been adopted by (Choi et al.,
proach. Sections 3 and 4 present our approach #901; Popescu-Belis et al., 2004) in Latent Seman-
adopting support vector learning for thematic segtic Analysis (LSA) for the task of thematic segmen-
mentation. Section 5 outlines the empirical methodation. A Probabilistic Latent Semantic Analysis
ology and describes the data used in this study. Se®LSA) approach has been adopted by (Brants et
tion 6 presents and discusses the evaluation resulé., 2002; Farahat and Chen, 2006) for the TS task.
The paper closes with Section 7, which briefly sum{Blei and Moreno, 2001) proposed a TS approach,
marizes this work and offers some conclusions angy embedding a PLSA model in an extended Hid-

future directions. den Markov Model (HMM) approach, while (Yam-
ron et al., 1998) have previously proposed a HMM
2 Related Work approach for TS.

_ o ) A shortcoming of the methods described above
As in many existing approaches to the thematic segs qe to their typically generative manner of train-

mentation task, we make the assumption that thgq e using the maximum likelihood estimation
thematic coherence of a text segment is reflected & a joint sampling model of observation and la-

lexical level and therefore we attempt to detect thgg sequences. This poses the challenge of finding
correlation between word distribution and thematic,, ;e appropriat@bjective functionsi.e. alterna-
changes throughout the text. In this manner, (Heargjyes to the log-likelihood that are more closely re-
1997; Reynar, 1998; Choi, 2000) start by using fyteq to application-relevant performance measures.
similarity measure between sentences or fixed-sizg,.qnly, efficient inference and learning for the TS
blocks of text, based on their word frequencies iRagy often requires making questionable conditional
order to find changes in vocabulary use and therg;genendence assumptions. In such cases, improved
fore the points at which the topic changes. Serberformance may be obtained by using methods
tences are then grouped together by using a clustiiin o more discriminative character, by allowing

ing algorithm. (Utiyama and Isahara, 2001) modelgjrect dependencies between a label and past/future

the problem of TS as a problem of finding the minipsenations and by efficient handling higher-order

mum cost path in a graph and therefore adopts a dypmpinations of input features. Given the discrim-

namic programming algorithm. The main advantagg,ative character of SVMs, we expect our model to
of such methods is that no training time and corporgi4in similar benefits.

are required.
By modeling TS as binary-classification problemg  gpport Vector Learning Task and
we introduce a new technique based on support vec- Thematic Segmentation
tor machines (SVMs). The main advantage offered
by SVMs with respect to methods such as those d&he theory of Vapnik and Chervonenkis (Vapnik,
scribed above is related to the distance (or similarity)995) motivated the introduction of support vector
function used. Thus, although (Choi, 2000; Hearstearning. SVMs have originally been used for clas-
1997) employ a distance function (i.€osine dis- sification purposes and their principles have been ex-
tancg to detect thematic shifts, SVMs are capableended to the task of regression, clustering and fea-
of using a larger variety of similarity functions. ture selection. (Kauchak and Chen, 2005) employed
Moreover, SVMs can employ distance functionsSVMs using features (derived for instance from in-
that operate in extremely high dimensional featuréormation given by the presence of paragraphs, pro-
spaces. This is an important property for our taskhjouns, numbers) that can be reliably used for topic
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segmentation of narrative documents. Aside frorthe parameterss and b follow from the optimi-
the fact that we consider the TS task on differensation problem, which is solved by applying La-
datasets (not only on narrative documents), our agrangian theory. The so-calleslack variabless;,
proach is different from the approach proposed bgre introduced in order to be able to handle non-
(Kauchak and Chen, 2005) mainly by the data represeparable data. The positive parameteétsandC—
sentation we propose and by the fact that we put theee calledregularization parameterand determine
emphasis on deriving the thematic structure merelyne amount up to which errors are tolerated. More
from word distribution, while (Kauchak and Chen,exactly, training data may contain noisy or outlier
2005) observed that the ‘block similarities providedata that are not representative of the underlying dis-
little information about the actual segment boundtribution. On the one hand, fitting exactly to the
aries’ on their data and therefore they concentratedhining data may lead to overfitting. On the other
on exploiting other features. hand, dismissing true properties of the data as sam-
An excellent general introduction to SVMs andpling bias in the training data will result in low accu-
other kernel methods is given for instance in (Crisracy. Therefore, the regularization parameter is used
tianini and Shawe-Taylor, 2000). In the section beto balance the trade-off between these two compet-
low, we give some highlights representing the maiimg considerations. Setting the regularization para-
elements in using SVMs for thematic segmentationmeter too low can result in poor accuracy, while set-
The support vector learnégl is given atraining ting it too high can lead to overfitting. In the TS task,
setof n examplesusually denoted by;...n= ((¢1, Wwe used an automated procedure to select the regu-
Y1), @n, yn))C (U x Y)™ drawn independently larization parameters, as further described in section
and identically distributed according to a fixed dis5.3.
tribution Pr(u,y) = Pr(ylu)Pr(u). Each train- In cases where non-linear hypothesis functions
ing example consists of a high-dimensional veeior should be optimised, eacly can be mapped into
describing an utterance and the class lapelThe ¢(u;) € F, whereF' is a higher dimensional space
utterance representations we chose are further desually calledeature spacgn order to make linear
scribed in Section 4. The class lahglhas only the relation betweeifi; andy;. Thus the original lin-
two possible values: ‘thematic boundary’ or ‘non-ear learning machine can be adopted in finding the
thematic boundary’. For notational convenience, welassification solution in the feature space.
replace these values by +1 and -1 respectively, andWhen using a mapping functiop : U — F,
thus we havey € {-1, 1}. Given a hypothesis spaceif we have a way of computing the inner product
H, of functionsh : U — {—1, +1} having the form (p(;), p(i;)) directly as a function of the origi-
h(u) = sign(< W,d > +b), the inductive sup- nal input point, then the so-called kernel function
port vector learnei’;,q seeks a decision function K (u;,1;) = (p(u;),p(u;)) is proved to simplify
hing from H, usingS:.qin SO that the expected num-the computational complexity implied by the direct
ber of erroneous predictions is minimized. Usingise of the mapping functiop. The choice of appro-
the structural risk minimization principle (Vapnik, priate kernels and its specific parameters is an empir-
1995), the support vector learner gets the optimal dézal issue. In our experiments, we used the Gaussian
cision functionh by minimizing the following cost radial basis function (RBF) kernel:

function: Lo R,
Krpr(t;, t;) = exp(—?||i; — Uj||2)'

WA (i, b, €1, 9, ey En) = & < 10 > + For the SVM calculations, we used théBSVMi-
brary (Chang and Lin, 2001).
+ oy . - 3 , ; i i
+C i:OXy:izl G+ i—0 %::_1 Sis 4 Representation of the information used

. to determine thematic boundaries
subject to:

As presented in section 3, in the thematic segmen-
tation task, an inpui; to the support vector classi-
& >0 fori=1,2,...,n. fier is a vectorial representation of the utterance to

yil< W-; > 4b] <1—=& fori=1,2,....,n;
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be classified and its context. Each dimension of thiote that the vector space representation adopted in
input vector indicates the value of a certain featuréhe previous steps will result in a sparse high dimen-
characterizing the utterance. All input features hersional input data for our system. More exactly, table
are indicator functions for a word occurring within1 shows the average number of non-zero features per
a fixed-size window centered on the utterance beingkample corresponding to each data set (further de-
labeled. More exactly, the input features are comnscribed in section 5.1).

puted in the following steps:

Data set | Non zero features
1. The text has been pre-processed by tokeniza- ICSI 3.67%
tion, elimination of stop-words and lemmatiza- DT 0.40%
tion, usingTreeTagge Schmid, 1996). Brown 0.12%

2. We make use of the so-calledg of wordsap-  Taple 1: The percentage of non-zero features per ex-
proach, by mapping each utterance tiag, i.e. ample.

a set that contains word frequencies. Therefore,

word frequencies have been computed to count

the number of times that each term (i.e. words  Experimental Setup
lemma) is used in each utterance. Then a trans-

formation of the raw word frequency counts5.1 Data sets used

is applied in order to take into account both

) In order to evaluate how robust our SVM approach
the local (i.e. for each utterance) word fre- PP

) Il as th I f . Is, we performed experiments on three English data
tqhue_nmes as wetl as the ov::‘_ra ¢ rei[que”nmf[a_s ets of approximately the same dimension (i.e. con-
eir occurrences in the entire text collec 'Ontaining about 260,000 words).

More_ exactly, we made experl_ments n paral The first dataset is a subset of the ICSI-MR cor-
lel with three such transformations, which are .

. . : pus (Janin et al., 2004), where the gold standard for
very commonly used in information retrieval

domain (Dumais, 1991)if.idf, tf.normal and _thema'uc segmentations has been provided by tak-
log.entropy ing into account the agreement of at least three hu-

man annotators (Galley et al., 2003). The corpus

3. Eachi-th utterance is represented by a vectofonsists of high-quality close talking microphone
ii;, where aj-th element ofi; is computed as: "ecordings of multi-party dialogues. Transcriptions
at word level with utterance-level segmentations are

i i+winSize also available. A test sample from this dataset con-
Ujj = Z ftj Z fei ]  sists of the transcription of an approximately one-
t=i—winSize k=i+1 hour long meeting and contains an average of about

wherewinSize > 1 and f; ; is the weighted seven thematic episodes. .
frequency (determined in the previous step) of The second data set contains documents randomly

the j-th word from the vocabulary in thieth ut- selected from the Topic Detection and Tracking
terance. In this manner, we will haug;; > 0 f (TDT) 2 collection, made available by (LDC, 2006).

and only if at least two occurrences of tjih The TDT collection includes broadcast news and
term occur within(2 - winSize) utterances on newswire text, which are segmented into topically

opposite sides of a boundary candidate. Thé:(ohesive stories. We use the story segmentation pro-
is, eachu; . is capturing how many word co- vided with the corpus as our gold standard labeling.
) 1,]

occurrences appear across the candidate utté—teSt sample from our subset contains an average

ance in an interval (of2- winSize) utterances) ©f about24 segments. o .
centered in the boundary candidate utterance. | he third dataset we use in this study was origi-
nally proposed in (Choi, 2000) and contains artifi-

4. Each attribute value from the input data isial thematic episodes. More precisely, the dataset
scaled to the intervdl, 1]. is built by concatenating short pieces of texts that
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Data set| Weighting schema| winSize v C
ICSI log.entropy 57 0.0625| 0.01
DT tf.idf 17 0.0625| 0.1
Brown tf.idf 5 0.0625| 0.001

Table 2: The optimal settings found for the SVM model, using the RBF kernel.

have been randomly extracted from the Brown corsee section 4) are addressed. We start with choosing
pus. Any test sample from this dataset consists @n appropriate term weighting scheme and a good
ten segments. Each segment contains at least thredue for thewinSize parameter. This choice is
sentences and no more than eleven sentences. based on a systematic grid search over 20 differ-
While the focus of our paper is not on the methoent values forwinSize and the three variantsidf,
of evaluation, it is worth pointing out that the per-tf.normal and log.entropyfor term weighting. We
formance on the synthetic data set is a very poaan five-fold cross validation, by using the RBF ker-
guide to the performance on naturally occurring datael with its parametey fixed toy = 1. We also set
(Georgescul et al., 2006). We include the synthetithe regularization parametérequal toC = 1.
data for comparison purposes. In the second phase of model selection, we
take the optimal parameter values selected in the
previous phase as a constant factor and search
We have a small percentage of positive examplahe most appropriate values f@f and v para-
relative to the total number of training examplesmeters. The range of values we select from is:
Therefore, in order to ensure that positive points arg' ¢ {10*3, 1072,107%, 1,10, 10%, 103} andy €
not considered as being noisy labels, we change tqg—6,2—5,2—4,,,,,24,26} and for each possible
penalty of the minority (positive) class by setting thesalue we perform five-fold cross validation. There-

5.2 Handling unbalanced data

parameteC't of this class to: fore, we ran the algorithm five times for ti9g¢ =
n 7 x 13 parameter settings. The most suitable model
Ct=2x- (n+ —1 1) O, settings found are shown in Table 2. For these set-

tings, we show the algorithm'’s results in section 6.
wheren™ is the number of positive training exam-
ples,n is the total number of training examples and® Evaluation
A is the scaling factor. In the experiments reporte .
here, we set the value for the scale factdo A = 1 2_1 Evaluation Measures
and we haveCT = 7. C~ for the synthetic data Beeferman et al. (1999) underlined that the stan-
derived from Brown corpus®'t = 18 - C~for the dard evaluation metrics qdrecisionandrecall are
TDT data andCt = 62 - C~ for the ICSI meeting inadequate for thematic segmentation, namely by

data. the fact that these metrics did not account for how
_ far away a hypothesized boundary (i.e. a boundary
5.3 Model selection found by the automatic procedure) is from the ref-

We used 80% of each dataset to determine the besence boundary. On the other hand, for instance,
model settings, while the remaining 20% is usean algorithm that places a boundary just one utter-
for testing purposes. Each training set (for eachnce away from the reference boundary should be
dataset employed) was divided into disjoint subsetsenalized less than an algorithm that places a bound-
and five-fold cross-validation was applied for modehry ten (or more) utterances away from the reference
selection. boundary.

In order to avoid too many combinations of pa- Hence the use of two other evaluation metrics
rameter settings, model selection is done in twes favored in thematic segmentation: ti& met-
phases, by distinguishing two kinds of parametersic (Beeferman et al., 1999) and tiWgindowDiff
First, the parameters involved in data representatia@rror metric (Pevzner and Hearst, 2002). In con-
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Algorithn?s SVM | C99 | Rand SVM Rand SVM GO3* | C99 | Rand
EP k| 18.54 | 11.01|52.51 20.49 | 21.36 | 60.04 21.68 | 31.91 54.62 | 68.48
EWD|19.47 | 13.58 | 80.63 23.99 | 36.28 | 91.92 25.5 | 35.88 | 25.47 | 69.41 | 95.48

Brown data TDT data ICSI data

Figure 1: Error rates of the segmentation systems.

trast to precision and recall, these metrics allow for believe that measuring differences in error rates ob-
slight vagueness in where the hypothesized thematigined on the test set is indicative of the relative per-
boundaries are placed and capture “the notion dérmance. Thus, the experimental results shown in
nearness in a principled way, gently penalizing algahis paper should be considered as illustrative rather
rithms that hypothesize boundaries that aren’t quitdhan exhaustive.

right, and scaling down with the algorithm’s degra-

dation” (Beeferman et al., 1999). That is, computb-2 Results

ing both P, and WindowDiff metrics involves the In order to determine the adequacy of our SVM ap-
use of a fixed-size (i.e. having a fixed number oproach over different genres, we ran our system over
either words or utterances) window that is movethree datasets, namely the ICSI meeting data, the
step by step over the data. At each stép,and TDT broadcast data and the Brown written genre
WindowDiff are basically increased (each metric irdata.

a slightly different way) if the hypothesized bound- By measuring the system error rates using the
aries and the reference boundaries are not within thg, and thewindowDiff metrics, Figure 1 summa-
same window. rizes the quantitative results obtained in our empir-

During the model selection phase, we used préeal evaluation. In Figure 1, our SVM approach is
cision and recall in order to measure the systemiabeled asSVM and we abbreviat®VindowDiff as
error rate. This was motivated by the fact that pos#/D. The results of ouSVM system correspond to
ing the TS task as a classification problem leads tothe parameter values detected during model selec-
loss of the sequential nature of the data, which is aion (see Table 2). We compare our system against
inconvenient in computing th&), and WindowDiff an existing thematic segmenter in the literatu @89
measures. However, during the final testing phag€hoi, 2000). We also give for comparison the
of our system, as well as for the evaluation of therror rates of a naive algorithm, labeled Rand
previous systems, we use both tRg and theWin-  algorithm, which randomly distributes boundaries
dowDiff error metric. throughout the text.

The relatively small size of our datasets does not The LCsegsystem (Galley et al., 2003), labeled
allow for dividing our test set into multiple sub-testhere as503 is to our knowledge the only word dis-
sets for applying statistical significance tests. Thifibution based system evaluated on ICSI meeting
would be desirable in order to indicate whether theélata. Therefore, we replicate the results reported by
differences in system error rates are statistically sigGalley et al., 2003) when evaluation b€segwas
nificant over different data sets. Nevertheless, wdone on ICSI data. The so-label€®d3* algorithm
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indicates the error rates obtained by (Galley et alther outperformed the other existing methods or per-
2003) when extra (meeting specific) features havierms comparably to the best. We view this as a
been adopted in a decision tree classifier. Howevestrong evidence that our approach provides a unified
note that the results reported by (Galley et al.) arand robust framework for the thematic segmentation
not directly comparable with our results because dask. The results also suggest that word distributions
a slight difference in the evaluation procedure: (Galthemselves might be a good candidate for capturing
ley et al.) performed 25-fold cross validation and théhe thematic shifts of text and that SVM learning can

averageP, andW D error rates have been computecplay an important role in building an adaptable cor-

on the held-out sets. relation.

Figure 1 illustrates the following interesting re- Our experiments also show the sensitivity of a
sults. For the ICSI meeting data, our SVM approackegmentation method to the type of a corpus on
provides the best performance relative to the conwhich it is tested. For instance, the C99 algorithm
peting word distribution based state-of-the-art methwhich achieves superior performance on a synthetic
ods. This proves that our SVM-based system is abkollection performs quite poorly on the real-life data
to build a parametric model that leads to a segment&ets.
tion that highly correlates to a human thematic seg- While we have shown empirically that our tech-
mentation. Furthermore, by taking into account th@ique can provide considerable gains by using sin-
relatively small size of the data set we used for traingle word distribution features, future work will in-
ing, it can be concluded that the SVM can buildvestigate whether the system can be improved by ex-
qualitatively good models even with a small train{loiting other features derived for instance from syn-
ing data. The work of (Galley et al., 2003) showdactic, lexical and, when available, prosodic infor-
that theGO03* algorithm is better thaiG03 by ap- mation. If further annotated meeting data becomes
proximately 10%, which indicates that on meetingavailable, it would be also interesting to replicate our
data the performance of our word-distribution baseélxperiments on a bigger data set in order to verify
approach could possibly be increased by using othetether our system performance improves.
meeting-specific features. Acknowledgments This work is partially sup-
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