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Abstract

Great strides have been made in build-
ing statistical parsers trained on anno-
tated corpora such as the Penn tree-
bank. However, recently performance
improvements have leveled off. New
information sources need to be con-
sidered to make further progress in
parsing. In this paper, we propose a
new method of using unlabeled cor-
pora for improving syntactic disam-
biguation. The method is tested on the
problem of relative clause attachment
with encouraging results.

1 Introduction

Great strides have been made in building statis-
tical parsers trained on annotated corpora such
as the Penn treebank (Marcus et al., 1993).
However, recently performance improvements
have leveled off (Bikel, 2004; Collins and Koo,
2005; Klein and Manning, 2003; Charniak and
Johnson, 2005). New information sources need
to be considered to make further progress in
parsing. One information source that is avail-
able in virtually unlimited quantity is unlabeled
text. As a large body of work on unsupervised
learning from corpora has shown, there is valu-
able syntactic and semantic information in nat-
ural language even if it is unlabeled. We propose
to combined supervised and unsupervised learn-
ing for syntactic disambiguation as sketched in
Figure 1. In the supervised phase, a probabilis-
tic parser is trained on a labeled corpus. In the
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unsupervised phase, the parser is enriched with
information from a large unlabeled corpus.

labeled supe_rvi sed parser
corpus training
unlabeled unsupervised enhanced
corpus training parser

Figure 1: The proposed framework for combin-
ing supervised and unsupervised learning.

Exploiting unlabeled resources is of particular
importance when training sets are small. Train-
ing sets are expensive and thus a major obstacle
for broad deployment of statistical NLP meth-
ods. Statistical methods have to be adapted to
new languages and new domains (e.g., a parser
trained on WSJ will not work well on manuals).
In many practical settings, training sets avail-
able during adapation will be small due to the
high cost of training set creation. This motivates
us to study the effect of training set size on the
performance of the method proposed here. Since
training sets cannot be assumed to be large in
general, it is important to investigate whether
methods are still applicable when training sets
are smaller than the standard sets used in the
research community.

There is a long tradition of using structural
analysis of unlabeled corpora for syntactic dis-
ambiguation (e.g., (Hindle and Rooth, 1991)).
One of the contributions of this paper is a gen-
eral framework for using unsupervised acquisi-
tion of lexical information for structural dis-
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ambiguation. This framework is based on lex-
ical dependencies because they are mostly lo-
cal and can therefore be extracted reliably from
unlabeled text. At the same time, these ex-
tracted dependencies can be easily incorporated
into the trained parser. Dependencies are thus
well-suited to serve as the common currency for
integrating information in combined supervised
and unsupervised learning.

2 Structural Disambiguation

Conceptually, we would like to factor the pars-
ing problem into decisions that can be made
on purely structural grounds (e.g., recognition
of base NPs) and more difficult attachment de-
cisions, in particular those that require world
knowledge, e.g. in Example 1

(1) Mr. Baker found [an opening| under [the
house| that led to a fume-filled coal mine.

Does the opening lead to the coal mine, or does
the house? We make the simplifying assumption
that “semantic” attachment decisions are inde-
pendent of each other. This is often the case on
a purely syntactic level although it is clearly not
true semantically since semantically inconsistent
attachments can give rise to incoherent readings.

We formalize an attachment ambiguity as a
phrase XP having two or more possible attach-
ment points i1,42,... in a sentence S. Let R be
the parse of a sentence S with XP removed. To
make an attachment decision, we form triples
of the form < R,i,XP > where ¢ is a possi-
ble attachment node for XP in R. We define
a set of generalization functions G = {g;} that
map triples into more general triples. Some func-
tions simply delete material, e.g., the subject of
the sentence. Others replace nouns with their
classes, e.g., “Canada” with “country”. Each g;
modifies either R or XP, but not both. The func-
tions can be applied in any order. Functions g;
that would delete the node i are not permitted.

We define a subsumption relationship C on
the set of triples produced from < R,i,XP >:
<T1,i,Y1 >C<To,0,Yo > iff T7 C Ty and Y7 C
Y5, where a phrase structure tree P is subsumed
by P, iff the nodes of P, can be mapped onto Py

94

preserving dominance and if nodes are mapped
onto identical nodes or more specific nodes (e.g.,
“country” onto “Canada”). All g; obey the con-
straint g;(< R,4,XP >) C< R,i,XP >.

Triples are evaluated by an evaluation func-
tion ¢ that assesses the support of the lexical
relationships in the triple in the unlabeled cor-
pus C: ¢(< R,i,XP >) € R. Generalization
is necessary because the particular set of words
found in a sentence will rarely occur in C' — and
even if it does we don’t know what the correct
parse of the sentence is. The functions g; pro-
duce a series of more and more abstract triples
so as to guarantee that C' contains enough data
for evaluation.

The measure we use here to evaluate triples is
pointwise mutual information with respect to an
unlabeled corpus C'. We define:

p(<T,i,Y>) = MI(<T,i,Y>)
P(< T,i,Y >)

= % MR

for P(< T,i,Y >), P(T), P(Y) # 0

o(<T,i,Y> = 0 otherwise

where the probabilities are estimated on the
unlabeled corpus C. P(T) and P(Y) are the
probabilities of dependency structures 7" and Y
occurring in C' and P(< T,4,Y >) is the proba-
bility of the dependency structures of T and Y,
with Y attached at node 7 in T, occurring in C.

The set of triples Q(< R,i,XP >, ) derived
from < R,i,XP > by successive applications of
one, two or more generalization functions g; € G
forms a lattice with respect to C. < R, 4, XP > is
the supremum and < 0,4, ) > the infimum of this
lattice. An example of such a lattice is shown in
Figure 2 (see below for more detailed discussion).
d(< 0,i,0 >) is defined as a constant, which de-
pends on the disambiguation task at hand. We
take advantage of the lattice structure to com-
pute the affinity A between R and XP which
expresses to what extent attachment of XP in R
at node 7 is supported by lexical dependencies in
C. We propose three different definitions of A:

e The maximum with respect to < on R:

A< = max<({¢(q)lg € Q})



e The sum over the lattice: Ax = 3> o #(q)

e The MI of the maximum with respect to
C: Ac = ¢(maxc({qlg € Q,9(q) # 0}))
(if there are several maximal ¢, we take the
average of their MI values)

Intuitively, we are searching for evidence in C
that XP and R fit well together like a key and a
lock. Affinity measure A selects the best fitting
generalization of the triple whereas Ay, considers
the joint evidence of all triples. Maximum and
sum can only be computed if the lattice is small.
Measure Ac has the advantage of circumventing
the need of computing the entire lattice. We
move down from the original triple until we find
a “layer” of the lattice where probabilities are
not zero. In this paper, we only report results
for A..

The actual syntactic disambiguation is per-
formed by comparing the affinities A(Q(<
R, iy, XP >)) for the possible attachment nodes
11,12, ... and selecting the node with the highest
affinity.

3 Experimental Setup

When computing the mutual information of an
attachment constellation, the required probabil-
ities are estimated based on dependency parses
of the unlabeled corpus produced by Minipar
(Lin, 1998), a dependency parser that recog-
nizes a wide range of dependencies. We use
the Reuters RCV1 corpus (Lewis et al., 2004)
as our unlabeled corpus. The first 50 weeks
(about 80,000,000 words) were parsed with Mini-
par and dependencies stored in an inverted in-
dex for easy querying. The inverted index is im-
plemented using Lucene (Lucene, 2006). This
setup enables searching for the frequency of lex-
ical dependencies. For example, we can query
for the number of times that cat was the sub-
ject of chase, and we can estimate the prob-
abilities P(T"), P(Y), and P(< T,i,Y >) as
relative frequencies by counting the number of
times the corresponding dependency structures
occur in the corpus. A constellation (T, Y, or
< T,i,Y >) is first represented as a dependency
structure and, for reasons of efficiency, the num-
ber of occurrences of this dependency structure

95

is then approximated as the number of sentences
that contain all binary dependencies in the struc-
ture. We take a trained parser (Minipar® or the
Collins parser, depending on the experiment),
run it on Penn Treebank sentences, search for the
type of attachment ambiguity we are interested
in and, if it occurs, present two triples of the
form < R,,XP > and < R, 7,XP > to the dis-
ambiguation component, where ¢ and j are two
possible attachment sites for XP in R. Sections
00-12 of the WSJ were used as the development
set, and sections 13-24 as the test set.

4 Application to Relative Clause
Attachment

Sentence 1 is a typical example of relative clause
(RC) attachment ambiguity.

Both attachments are grammatical, but intu-
itively opening is more likely to occur with the
verbs lead or lead to than house. Our hypothesis
is that this type of pragmatic knowledge (open-
ings lead to something, houses don’t) will be re-
flected in dependencies extracted from a large
corpus. Extracting dependencies is particularly
important as RC attachment is a more difficult
problem than PP attachment as the following
examples show.

(2) Texaco Inc. reported [an 11% increase| in
[third-quarter earnings|, which it attributed
partly to the company’s massive restructur-
ing [...]

Earlier this year DPC Acquisition made |a
$15-a-share offer| for [Dataproducts|, which
the Dataproducts board said it rejected |...|

(3)

(4) [...] said Edmar Mednis, [the expert com-
mentator| for [the match|, which was at-

tended by hundreds of chess fans.

RC attachment interacts with a wider range
of grammatical phenomena than PP attachment
(e.g., object vs. subject relatives, passive, and
agreement). Also, many cases of PP attachment
can be resolved structurally. For example, an

!"Minipar attaches relative clauses low by default, re-
sulting in many incorrect attachment decisions. Since
relative clauses are rare, we do not systematically elimi-
nate them when computing “unlabeled” statistics.



on-PP after rely almost always attaches to the
verb. In contrast, RC attachment is mostly se-
mantic (e.g., opening is a more typical subject
of lead to than house). For our experiments,
we extracted all sentences from the WSJ corpus
that contained a pattern of the form NP1 Prep
NP2 which/that. (See (Web Appendix, 2006)
for documentation on the patterns used.) Our
development set contained 282 which-clauses (71
with high attachment; 211 with low attachment)
and 385 that-clauses (156 with high attachment
and 229 with low attachment). The test cor-
pus contained 264 which-clauses (71 with high
attachment and 193 with low attachment) and
391 that-clauses (175 with high attachment and
216 with low attachment). For the case of rela-
tive clause attachment, we simplify the represen-
tation of triples < R,i1,XP >,< R,i9,XP > to
pairs < NP;,XP >, < NP, XP >,where NP,
and N P, are two potential attachment sites the
relative clause can attach to, and XP consists
of verb and object (if there is an object) of the
relative clause.
tive clause attachment is depicted in Figure 2.
The lattice will be smaller if there is no ob-
ject, premodifying adjective etc. The supremum
of the lattice corresponds to a query that in-
cludes the entire NP (including modifying adjec-
tives/nouns)?, the verb and its object: "weekly
mod report"” && "report subj show" && "decline
obj show". The generalizing options are:

The maximum lattice for rela-

e strip the NP of the modifying adjective/noun
(weekly report — report)

e use only the head noun of the NP (Catas-
trophic Care Act — Act)

e use the head noun in lower case (Act — act)
e for named entities use a hypernym of the NP
(American Bell Telephone Co. — company)

e strip the object from XP (company have sub-

sidiary — company have)
e don’t use any context at all. In this case the
default attachment (to the last NP) is selected.

To compute the values of ¢, we first parse

2From the Minipar output, we use all adjectives which
modify the NP via the relation mod, and all nouns, which
modify the NP via the relation nn.
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mod-Nf-v-obj

c-v

[eanty]

Figure 2: Partially ordered set of pairs of poten-
tial attachment site NP and relative clause XP,
where mod: premodifying adjective or noun, Nf:
head noun with lexical modifiers, N: head noun
only, n: head noun in lower case, c¢: class of NP,
v: verb in relative clause, obj: object of verb in
the relative clause.

the sentence with Minipar and extract the rel-
evant verb and grammatical relation. Then
we query the database for subject, object, and
modifier relations to calculate P(NP), P(XP),
and P(< NP,XP >). For example, P(<
opening, lead_to >) is estimated based on the
query “opening subj lead to”. Including further
information about the context (e.g. about the
object of the verb in the relative clause) — as
opposed to only using noun-verb co-occurrence
— proved particularly useful for light verbs like
make and have.

4.1 Named Entities

Named entities often cause sparse data prob-
lems. For this reason, we also use queries in
lower case and queries where the named entity
is replaced by its class. For Example 5 we would
have queries Act subj boost and act subj boost.

(5) Congress still is struggling to dismantle [the
unpopular Catastrophic Care Act| of [1988],
which boosted benefits for the elderly and
taxed them to pay for the new coverage.



To identify the class of a named entity we
use LingPipe (LingPipe, 2006). When LingPipe
identifies a named entity as a company or or-
ganization, we replace it with company in the
query. Locations are replaced by country. Per-
sons block RC attachment because neither which
nor that clauses attach to person names, result-
ing in an attachment of the RC to the other NP.

4.2 A Worked Example

Table 1 shows mutual information values for the
queries constructed for sentence 6.

(6) The firmness in heating oil was attributed
to colder weather in parts of the U.S. and
to the latest [weekly report] by [the Amer-
ican Petroleum Institute|, which showed a
decline in inventories of the fuel.

| queries for <weekly report, show decline> etc. | MI |

"weekly mod report" && "report subj show"
&& "decline obj show" 0

"weekly mod report" && "report subj show" 8.63
"report subj show" && "decline obj show" 5.38
"report subj show" 7.21
[ queries for <API, show decline> etc. [ MI ]

"American _Petroleum Institute subj show"

&& "decline obj show" 8.44
"Institute subj show" && "decline obj show" 0
"institute subj show" && "decline obj show" 0
"company subj show" && "decline obj show" | 1.39
"American _Petroleum Institute subj show" | 8.47

"Institute subj show" 0

"institute subj show" 4.50
"company subj show" 3.17
[empty] 6

Table 1: Queries for computing P(< NP, XP >
) (high attachment, above) and P(< N Py, XP >
) (low attachment, below) for Example 6, (in-
cluding further tuples after applying g;) and cor-
responding mutual information values (MI).

In Table 1, the highest value for the high at-
tachment site weekly report is 8.63 and the high-
est value for the low attachment site is 8.47. We
hence choose high attachment for this case. Note
that the low attachment site has a value 6 for the
empty context. This value reflects the bias for
low attachment: the majority of relative clauses
are attached low. If all MI-values are zero or
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had

4. If possible,

otherwise low, this procedure will automatically
result in low attachment.

4.3 Decision list

For increased accuracy, the structural disam-
biguation method is embedded in the following
decision list. Step 4 is the lattice-based algo-
rithm described above.

1. If Minipar has already chosen high attach-

ment, choose high attachment (only relevant
for named entities in some of the which clauses
in our data).

2. If there is agreement between the verb and

only one of the NPs, attach to this NP.

If one of the NPs is in a list of person entities,
attach to the other NP.3

use structural disambiguation
based on the affinities computed on the
Reuters corpus.

5. If none of the above strategies was successful

(e.g. in the case of parsing errors, where the
verb or the relation cannot be retrieved), at-
tach low.

5 Evaluation

that clauses accuracy
development set, baseline 59.48%
development set, algorithm | 64.42%
test set, baseline 55.24%
test set, algorithm 60.87%
which clauses accuracy
development set, baseline 74.82%
development set, Minipar 78.37%
development set, algorithm | 82.27%
test set, baseline 73.12%
test set, Minipar 75.75%
test set, algorithm 78.41%

Table 2: Evaluation results (percentage of cor-
rect attachments) for that and which clauses.

We first evaluated the accuracy of relative
clause attachment with Minipar as the base
parser. Table 2 shows the evaluation results

3This list contains 136 entries and was semiautomati-
cally computed from the Reuters corpus: Antecedents of
who relative clauses were extracted, and the top 200 were
filtered manually.



when the algorithm is run against our develop-
ment and test sets. We set ¢(< 0,i,0 >) = 6.4
The baseline is always attaching low. Minipar
always attaches low except for named entities of
the form NP Prep NP (e.g. The State Commis-
sion on Judicial Conduct), which are recognized
as a unit, resulting in high attachment for some
which relative clauses. For that clauses, Minipar
always attaches low.’

For that clauses we achieved results about 5
percentage points above the baseline; for which
clauses about 5 to 7 points above the baseline,
and about 3 points above Minipar.

set not used accuracy
development 64.42%
development | mod 64.16%
development | mod,f 63.90%
development | mod,f,obj 63.64%
development | mod,fobj,c | 63.38%
test 60.87%
test mod 60.35%
test mod,f 60.10%
test mod,f,obj 60.10%
test mod,fobj,c | 60.10%

Table 3: Accuracy on that clauses when the num-
ber of contextual features is decreased. The mid-
dle column shows what is left out (mod: the
modifier is not used, f: only the head noun is
used, obj: only the verb and not its object is
used, c: the class/hypernym is not used.)

Tables 3 and 5 show how much of a decrease
in accuracy is caused by using less context. For
the development set the accuracy drops contin-
uously as we omit an increasing number of ele-
ments of the context: pre-modifiers, lexical mod-
ifiers, objects, hypernyms. On the test set we
can also observe a drop in accuracy. However, it
is less consistent: Omitting the object does not
decrease performance, and not using classes for
named entities does have an effect on the which
test set, but not on the that test set. These re-
sults show that using a larger context than just
simple noun-verb co-occurrence improves perfor-
mance and that a number of sources of informa-

4We experimented with a number of values on our de-
velopment set. Accuracy of the algorithm is only slightly
affected for values between 4 and 7.

>Note that this property leads to a higher “Minipar”
baseline for which clauses.
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tion need to be combined for consistent improve-
ment.

5.1 Integration into a statistical parser

After having shown the success of our method in
a stand-alone evaluation, we now turn to evalu-
ating it when integrated into a statistical parser,
the Collins parser as reimplemented by (Bikel,
2004). We apply structural disambiguation (SD)
to all that- and which-sentences of Sec. 13-24
with a relative clause attached to either the first
or second NP in a pattern of the form “NP PREP
NP RC”. Sentences without an “NP PREP NP
RC” structure in the gold standard are omitted
(i.e., we don’t attempt to correct spurious RC
attachment ambiguity). Since we want to de-
velop methods that can leverage small training
sets, we perform the evaluation for 5 different
training set sizes: 50%, 25%, 5%, 1%, and 0.1%
of the Penn treebank, each a subset of Sec. 00-12
(Table 4). Note that the number of eligible rel-
ative clause constellations in the test set varies
depending on the training set.

For which sentences, SD consistently improves
parsing accuracy. For that sentences accuracy is
improved for small training sets (0.1% and 1%).
Differences that are significant according to the
x2-test are indicated in the table. This demon-
strates that our approach is successful especially
in cases where the amount of training data avail-
able is limited.

Train data || # which sent. | Coll. only | Coll.+-SD
50% 251 71.7% 78.5%
25% 250 70.0% 78.8%*
5% 238 68.9% 79.8%*
1% 245 67.8% 78.9%*
0.1% 194 60.8% 75.8%*
Train data || # that sent. Coll. only | Coll.+-SD
50% 366 72.7% 62.3%
25% 367 70.3% 61.9%
5% 356 67.4% 61.2%
1% 354 58.8% 60.2%
0.1% 314 47.5% 61.2%*
Table 4: Performance of the Collins parser

(percent correct attachments) with and without
structural disambiguation (SD). The combined
method is superior for which and for small train-
ing sets. Significant improvements are marked
with .



6 Related Work

There have been few attempts to incorporate in-
formation from unlabeled corpora directly into
the parser (Charniak, 1997; Johnson and Rie-
zler, 2000), but they were either unsuccessful
or tested on small data sets only. We know of
no other work that combines attachment disam-
biguation based on unlabeled corpora with state-
of-the-art statistical parsers.

Our lattice formalization can be viewed as
a back-off model that combines estimates from
several “backoffs” (in a typical back-off model,
there is a single more general model to back off
to). (Collins and Brooks, 1995) present a similar
approach for prepositional phrases. One variant
of their model computes the estimate in question
as the average of three “backoffs.” In contrast
to prepositional phrases, many other attachment
decisions, including relative clause attachments,
are largely semantic. Given the verb rely, verb
attachment of a PP headed by on is very likely.
There are no similar strong regularities for se-
mantic attachments: they require measuring the
semantic “fit” of the two elements being syntacti-
cally attached to each other. This is why we use
MI in this paper to disambiguate attachment.
To our knowledge, MI has not been used in a
back-off model before.

The lattice can also be viewed as a set of over-
lapping features, similar to the feature space of
many discriminative algorithms.
contrast to discriminative learning, our approach
is unsupervised.

However, in

There is a large body of literature on PP at-
tachment, e.g. (Hindle and Rooth, 1991; Volk,
2001; Calvo et al., 2005) that shares the over-
all goals of this paper: using information from
unlabeled corpora for syntactic disambiguation.
(Volk, 2001) counts the number of occurrences
of word n-grams on the web to select the correct
attachment of PPs. We believe that grammati-
cal dependencies are a more promising research
direction since they are more robust compared
to raw text if data are sparse. (Toutanova et al.,
2004)’s approach is similar to ours in that mor-
phological variants and word classes are consid-
ered, but their method differs in that they use
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both labelled corpora and unlabelled corpora for
calculating attachment decisions. Work in the

set not used accuracy
development 82.27%
development | mod 81.21%
development | mod,f 81.21%
development | mod,f,obj 80.49%
development | mod,f,obj,c | 78.72%
test 78.41%
test mod 78.41%
test mod,f 78.03%
test mod,f,0bj 78.41%
test mod,fobj,c | 78.03%

Table 5: Accuracy on which clauses, when the
number of contextual features is decreased. (cf.
Table 3 for further explanation.)

tradition of (Hindle and Rooth, 1991) is most
similar to the approach proposed here. The au-
thors parse an unannotated corpus and use de-
pendency statistics for disambiguation of PP at-
tachment. Our interest is in developing a frame-
work that can disambiguate syntactic ambigui-
ties in general, at least as far as they correspond
to attachment ambiguities, as opposed to solving
a particular syntactic ambiguity problem.

Previous work on relative clause attachment
has taken a machine learning approach where
an attachment decision is represented as a fea-
ture vector which is then fed into a classifier
trained on a labeled training set. In contrast,
our main emphasis is on exploiting information
from unlabeled corpora. (Siddharthan, 2002a;
Siddharthan, 2002b) uses WordNet classes for
constructing some of the features characterizing
attachments. For which clauses (Siddharthan,
2002b) achieves an accuracy of 76.5% on his
test set.® RC attachment is also addressed
by (Yeh and Vilain, 1998), who experiment
with a transformation-based error-driven learn-
ing approach, which aims to disambiguate vari-
ous cases of PP attachment ambiguities and sub-
ordinate clauses at the same time. They report
an overall accuracy of 75.4%, but do not give
numbers for relative clause attachment.

5We attempted to recreate Siddharthan’s training and
test sets, but were not able to based on the description
in the paper and email communication with the author.



7 Conclusion

We make three contributions in this paper.
First, we propose a lattice-based framework for
combining supervised and unsupervised meth-
ods for syntactic disambiguation. Parses from a
treebank-trained parser are refined by using ad-
ditional information from a large unannotated
corpus, represented as dependencies extracted
by a dependency parser. The lattice integrates
information obtained from variable context sizes.
This approach makes it possible to base attach-
ment decisions on the most specific context avail-
able in the unlabeled corpus.

Secondly, we evaluate attachment disambigua-
tion by comparing to the performance of a state-
of-the-art parser. Most previous work on attach-
ment ambiguity has not been evaluated against
this stringent baseline. We also argue that it
is important to compare results across different
training set sizes since in practical applications
we can expect training sets to be smaller than is
typical in academia.

Finally, we address the problem of relative
clause attachment, a problem that has received
much less attention than PP attachment. We
argue that RC attachment is a good test case
for enhancing statistical parsers with informa-
tion from unlabeled corpora because it is more
complex than PP attachment due to a wider
range of grammatical phenomena involved and
because few instances of RC attachment ambi-
guity can be resolved structurally. We also pro-
vide a baseline for future evaluations of work on
RC attachment disambiguation.
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