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Abstract

Recent work on Semantic Role Labeling
(SRL) has shown that to achieve high
accuracy a joint inference on the whole
predicate argument structure should be ap-
plied. In this paper, we used syntactic sub-
trees that span potential argument struc-
tures of the target predicate in tree ker-
nel functions. This allows Support Vec-
tor Machines to discern between correct
and incorrect predicate structures and to
re-rank them based on the joint probabil-
ity of their arguments. Experiments on the
PropBank data show that both classifica-
tion and re-ranking based on tree kernels
can improve SRL systems.

Introduction

A viable approach to generate a large number of
features has been proposed in (Collins and Duffy,
2002), where convolution kernels were used to im-
plicitly define a tree substructure space. The selec-
tion of the relevant structural features was left to the
Voted Perceptron learning algorithm. Such success-
ful experimentation shows that tree kernels are very
promising for automatic feature engineering, espe-
cially when the available knowledge about the phe-
nomenon is limited.

In a similar way, we can model SRL systems with
tree kernels to generate large feature spaces. More
in detail, most SRL systems split the labeling pro-
cess into two different steps: Boundary Detection
(i.e. to determine the text boundaries of predicate
arguments) and Role Classification (i.e. labeling
such arguments with a semantic role, e.g. Arg0 or
Argl as defined in (Kingsbury and Palmer, 2002)).
The former relates to the detection of syntactic parse
tree nodes associated with constituents that corre-

Recent work on Semantic Role Labeling (SRLPONd to arguments, whereas the latter considers the
(Carreras and Rrquez, 2005) has shown that togooundary nodes for the assignment of the suitable
achieve high labeling accuracy a joint inference oftbel. Both steps require the design and extraction
the whole predicate argument structure should b features from parse trees. As capturing the tightly
app“ed For this purpose, we need to extract feéﬂterdependent relations among a prEdicate and its
tures from the sentence’s syntactic parse tree th@fguments is a complex task, we can apply tree ker-
encodes the target semantic structure. This taski§!s on the subtrees thapanthe whole predicate
rather complex since we do not exactly know whictargument structure to generate the feature space of
are the syntactic clues that capture the relation ball the possible subtrees.

tween the predicate and its arguments. For exam-In this paper, we apply the traditional bound-
ple, to detect the interesting context, the modelingry (I'BC) and role T'RC) classifiers (Pradhan

of syntax/semantics-based features should take ingd al., 2005a), which are based on binary predi-
account linguistic aspects like ancestor nodes or seate/argument relations, to label all parse tree nodes
mantic dependencies (Toutanova et al., 2004). corresponding to potential arguments. Then, we ex-
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tract the subtrees which span the predicate-argument- if the subtree rooted im covers exactly the
dependencies of such arguments, i.e. Argument words of one argument @f, putF, , in theT™
Spanning TreesASTs). These are used in a tree set (positive examples), otherwise put it in the
kernel function to generate all possible substructures T~ set (negative examples).
that encoder-ary argument relations, i.e. we carry
out an automatic feature engineering process.  The outputs of the above algorithm are fhie and _
To validate our approach, we experimented witf]  SEts- These sets can be directly used to train a
our model and Support Vector Machines for the clagoundary classifier (e.g. an SVM). Regarding the
sification of valid and invalidASTs. The results argumenttype classifier, a binary labeler for a role
show that this classification problem can be learne§-9- @1 SVM) can be trained on tW?L_’ i.e. its pos-
with high accuracy. Moreover, we modeled SRL as Ve examples and’", i.e. its negative examples,
re-ranking task in line with (Toutanova et al., 2005)WhereT™ = T." UT,~, according to the ONE-vs-
The large number of complex features provided b(?"—'— scheme. The binary classifiers are then used

tree kernels for structured leaming allows SVMs td0 build a general role multiclassifier by simply se-
reach the state-of-the-art accuracy. lecting the argument associated with the maximum

The paper is organized as follows: Section 2 intro@Mong th_e SVM SCOres. _
Regarding the design of features for predicate-

duces the Semantic Role Labeling based on SVMs ) g
and the tree kernel spaces; Section 3 formally d&rgument pairs, we can use the attribute-values de-

fines theASTs and the algorithm for their classifi- ined in (Gildea and Jurasfky, 2002) or tree struc-
cation and re-ranking; Section 4 shows the compardrés (Moschitti, 2004).  Although we focus on
tive results between our approach and the traditionHl€ atter approach, a short description of the for-

one: Section 5 presents the related work: and finall§€" 1S still relevant as they are used By’ and
Section 6 summarizes the conclusions. RC. They include thePhrase Type Predicate

Word Head Word Governing Category Position

2 Semantic Role Labeling and Voicefeatures. For example, thiehrase Type
] ] indicates the syntactic type of the phrase labeled as

In the last years, several machine learning ap predicate argument and tRerse Tree Patiton-

proaches have been developed for automatic rojging the path in the parse tree between the predicate

labeling, e.g. (Gildea and Jurastky, 2002; Prad;nq the argument phrase, expressed as a sequence of

han et al., 2005a). Their common characteristic i§gnterminal labels linked by direction (up or down)
the adoption of attribute-value representations fcgymbols e.gV1VP| NP

predicate-argument structures. Accordingly, our ba-" o viable alternative to manual design of syntac-

sic system is similar to the one proposed in (Pradhafy, teatyres is the use of tree-kernel functions. These

etal., 2005a) and itis hereby described. implicitly define a feature space based on all possi-
We use a boundary detection classifier (for angje tree substructures. Given two trgsandTb, in-

role type) to derive the words compounding an arstead of representing them with the whole fragment

gument and a multiclassifier to assign the roles (e.gpace, we can apply the kernel function to evaluate
Arg0 or ArgM) described in PropBank (Kingsbury the number of common fragments.

and Palmer, 2002)). To prepare the training data for Formally, given a tree fragment spacEé —

both classifiers, we used the following algorithm: {fi.for- -, fir}, the indicator functionI;(n)
1. Given a sentence from theining-sef generate is equal to 1 if the targetf; is rooted at
a full syntactic parse tree; node n and equal to O otherwise. A tree-

2. Let’P and.A be respectively the set of predicatekernel function overt; and t; is K(ti,t2) =
and the set of parse-tree nodes (i.e. the potential &=,,cn,, 2 n,en,, A(11,72), whereN;, and Ny,

guments); are the sets of thg’s andt,’s nodes, respectively. In
3. For each paitp, a) € P x A: turn A(ny,ng) = SO0 XU (ny) I (ng), where

0 < XA < 1andl(f;) is the height of the subtree

- extract the feature representation get,; f;. ThusA!)) assigns a lower weight to larger frag-
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Figure 1: A sentence parse tree with two argument spanning tAe£ES)

ments. Whem\ = 1, A is equal to the number of predicate node and a node subset= {n,..,nx}
common fragments rooted at nodesandn,. As of the parse tre¢, we define as the spanning tree
described in (Collins and Duffy, 2002\ can be rootr the lowest common ancestor of, .., n; and
computed iND (| Ny, | X | Ng,]). p. The node set spanning tre¥ §7) p; is the sub-
tree oft rooted inr from which the nodes that are
neither ancestors nor descendants of angr p are
removed.

Traditional semantic role labeling systems extract Since predicate arguments are associated with
features from pairs of nodes corresponding t0 gee nodes (i.e. they exactly fit into syntactic
predicate and one of its argument, respectivelgonstituents), we can define thggument Span-
Thus, they focus on only binary relations to makejing Tree (AST) of a predicate argument set,
classification decisions. This information is pooref, {4, .. a,}}, as the NST over such nodes,
than the one expressed by the whole predicate grg. Pfay..an}- AN AST corresponds to thenin-
gument structure. As an alternative we can seleghal subtree whose leaves are all and only the
the set of potential arguments (potential argumeRjords compounding the arguments and the predi-

nodes) of a predicate and extract features from thergate. For example, Figure 1 shows the parse tree
The number of the candidate argument sets iS egf the sentenceJohn took the book and read

ponential, thus we should consider only those Cofg ijte" . 100k Argo Argr} ANATeEad Argo Arg:}

responding to the most probable correct argumegte two AST structures associated with the two

structures. predicatesook andread, respectively. All the other
The usual approach (Toutanova et al., 2005) use®ssible subtrees, i.eNST's, are not validAST's

a traditional boundary classifieFGC) to select the for these two predicates. Note that classifyjngn

set of potential argument nodes. Such set can be a$s7 or N ST for each node subsetof ¢ is equiva-
sociated with a subtree which in turn can be classjent to solve the boundary detection problem.
fied by means of a tree kernel function. This func-

tipn Intuitively measures 0 What extent a given can(l) how to design suitable features for the charac-
didate subt;ge isompatiblewith the su\k/)\;[ree of @ terization of valid structures. This requires a careful
correct predicate argument structure. We can us‘elilltiguistic investigation about their significant prop-

t(_) define tW(_)_d|ff_erent learning proplems: (a) theerties. (2) How to deal with the exponential number
simple classification of correct and incorrect predbf NSTs

icate argument structures and (b) given the best _
structures, we can train a re-ranker algorithm able to '€ first problem can be addressed by means of
exploit argument inter-dependencies. tree kernels over thed ST's. Tree kernel spaces are

an alternative to the manual feature design as the
3.1 The Argument Spanning Trees {.ST's) learning machine, (e.g. SVMs) can select the most
We consider predicate argument structures anncelevant features from a high dimensional space. In
tated in PropBank along with the correspondingther words, we can use a tree kernel function to
TreeBank data as our object space. Given the targestimate the similarity between twhST's (see Sec-

3 Tree kernel-based classification of
Predicate Argument Structures

The critical points for theAST classification are:
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Figure 2: Two-step boundary classification. a) Sentence tree; b) Two candifdte c) ExtendedAST-
Ord labeling

tion 2), hence avoiding to define explicit features. the number of overlapping nodes is usually small.

The second problem can be approached in two Figure 2 shows a working example of the multi-
ways: stage classifier. In Frame (d),BC labels as po-
(1) We can increase the recallBBC to enlarge the tential arguments (circled nodes) three overlapping
set of candidate arguments. From such set, we caodes related té\rgl . This leads to two possible
extract correct and incorrect argument structures. A®n-overlapping solutions (Frame (b)) but only the
the number of such structures will be rather smalfjrst one is correct. In fact, according to the second
we can apply theAST classifier to detect the cor- one the propositional phrasef'the book would be
rect ones. incorrectly attached to the verbal predicate, i.e. in
(2) We can consider the classification probabiliticontrast with the parse tree. TH&T classifier, ap-
provided by’ BC andT RC (Pradhan et al., 2005a) plied to the two N ST's, is expected to detect this
and select the: most probable structures. Then, wanconsistency and provide the correct output.

can apply a re-ranking approach based on SVMs and
tree kernels. 3.3 Re-ranking NST's with Tree Kernels

The re-ranking approach is the most promisingo implement the re-ranking model, we follow the
one as suggested in (Toutanova et al., 2005) butdhproach described in (Toutanova et al., 2005).
does not clearly reveal if tree kernels can be used fjst we use SVMs to implement the boundary
to learn the difference between correct or incorrect g and roleT RC local classifiers. As SVMs do
argument structures. Thus it is interesting to study; provide probabilistic output, we use the Platt's

both the above approaches. algorithm (Platt, 2000) and its revised version (Lin
o et al., 2003) to trasform scores into probabilities.
3.2 NST Classification Second, we combing’BC and T RC' probabil-

As we cannot classify all possible candidate arguties to obtain them most likely sequences of
ment structures, we apply theST classifier just to tree nodes annotated with semantic roles. As argu-
detect the correct structures from a set of overlagnent constituents of the same verb cannot overlap,
ping arguments. Given two nodes andn, of an we generate sequences that respect such node con-
N ST, they overlap if either; is ancestor of, or  straint. We adopt the same algorithm described in
vice versa. NST's that contain overlapping nodes(Toutanova et al., 2005). We start from the leaves
are not validAST's but subtrees oRSTs may be and we select the: sequences that respect the con-
valid AST's. Assuming this, we define as the set straints and at the same time have the highest joint
of potential argument nodes and we create two nodeobability of ’BC andT RC'.

setss; = s — {n1} andsy = s — {ny}. By classi- Third, we extract the following feature represen-
fying the two newN ST's p,, andps, with the AST  tation:

classifier, we can select the correct structures. @&) The AST's associated with the predicate argu-
course, this procedure can be generalized to a setraent structures. To make faster the learning process
overlapping nodes greater than 2. However, consi@nd to try to only capture the most relevant features,
ering that the Precision af BC' is generally high, we also experimented with a compact version of the
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AST which is pruned at the level of argument nodedrom the leftmost argument. For example, in the first

(b) Attribute value features (standard features) reV ST of Frame (c), we mark adP-0 andNP-1 the

lated to the whole predicate structure. These includest and second argument nodes whereas in the sec-

the features for each arguments (Gildea and Jurasad N.ST we trasform the three argument node la-

fky, 2002) and global features like the sequence ddels inNP-0, NP-1 andPP-2. We will refer to the

argument labels, e.dArg0, Argl, ArgM). resulting structure as AST-Ord (ordinal number).
Finally, we prepare the training examples for th&his simple modification allows the tree kernel to

re-ranker considering the best annotations of each generate different argument structures for the above

predicate structure. We use the approach adopt@dST's. For example, from the firsW.ST in Fig-

in (Shen et al., 2003), which generates all possiblere 2.c, the fragmentiNP-1 [NP][PP]] , [INP

pairs from then examples, i.e(g) pairs. Each pair [DT][NN]] and [PP [IN][NP]] are gener-

is assigned to a positive example if the first memated. They do not match anymore with fiNP-0

ber of the pair has a higher score than the secofdP][PP]] , [NP-1 [DT][NN]] and [PP-2

member. The score that we use is the F1 measuyi®l][NP]] fragments generated from the second

of the annotated structure with respect to the gold/ ST in Figure 2.c.

standard. More in detail, given training/testing ex-

amplese; = (t},t2, v}, v?), wheret! and¢? are two

ASTs andv} andv? are two feature vectors associ-

ated with two candidate predicate structusesand

s2, we define the following kernels:

Additionally, it should be noted that the semantic
information provided by the role type can remark-
ably help the detection of correct or incorrect predi-
cate argument structures. Thus, we can enrich the ar-
gument node label with the role type, e.g. tie-0
1) Ku(er,e2) = Ki(th, ) + K, (£2,2) andNP-1 of the correctAST of Figur(_e 2.C b_ecome

LK) — K (2, 1) NP-Arg0 andNP-Argl (not shown in the figure).

P b2 B2/ We refer to this structure adST-Arg. Of course,

wheretf is the j-th AST of the paire;, K, is the 10 apply theAST-Arg classifier, we need thatRC
tree kernel function defined in Section 2 aing <  |abels the arguments detected BC.

(1,2},
2) Kpr(er,e2) = Kp(v1,v3) + Kp(vf, v3) 4  The experiments
—Kp(v%,vg) - Kp(v%,v%),

herev’ is the i-th feat tor of the pair and The experiments were carried out within the set-
wherev; 1S thej-th Teature vector oTthe paif; an ting defined in the CoNLL-2005 Shared Task

Ky isth_e polynomial kernel applied to such Ve.CtorS(Carreras and Mrquez, 2005). In particular,
The final kernel that we use for re-ranking is th?/ve adopted the Charniak parse trees available at

following: www.Isi.upc.edu/  ~sriconll/ along with the of-
K(er, e) Ky (e1,e2) K, (e1,e2) ficial performance evaluator.
1,€62) =
[Kir(er,e2)  [Kpr(en, e2)] All the experiments were performed with

Regarding tree kernel feature engineering, ththe SVM-light-TK software available at
next section show how we can generate more effebttp://ai-nlp.info.uniroma2.it/moschitti/
tive features given an established kernel function. which encodes ST and SST kernels in SVM-light

_ . (Joachims, 1999). F&rBC andT RC, we used the

3.4 Tree kernel feature engineering linear kernel with a regularization parameter (option
Consider the Frame (b) of Figure 2, it shows twec ) equal to 1. A cost factor (optiof ) of 10 was
perfectly identicalV ST's, consequently, their frag- adopted forl’ BC' to have a higher Recall, whereas
ments will also be equal. This prevents the algorithrfor T RC, the cost factor was parameterized accord-
to learn something from such examples. To solve thiag to the maximal accuracy of each argument class
problem, we can enrich th&¥ ST's by marking their on the validation set. For th&ST-based classifiers
argument nodes with a progressive number, startinge used a\ equal t00.4 (see (Moschitti, 2004)).
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Section 21 Section 23

ASTChss| P [ R [ F FTR ] F on sections 21 and 23. For each of them, Precision,
. . . 1 . . 1

Recall andF; of different approaches to bound-

— 69.8] 77.9] 73.7] 62.2] 77.1] 68.9 _ oty
Ord 7371 8121 7731 63.7| 806 | 71.2 ary identification (bnd) and to the complete task,
Arg 736 847]787] 642]823[ 721 i.e. boundary and role classification (bnd+class)

are shown. Such approaches are based on differ-
ent strategies to remove the overlaps, i.e. with the
AST, AST-Ord andAST-Arg classifiers and using
the baseline (RND), i.e. a random selection of non-
4.1 Classification of whole predicate argument overlapping structures. The baseline corresponds to
structures the system based GhBC andT RC™:.

. _ _ We note that: (a) for any model, the boundary de-
In these experiments, we train@BC’ on sections tection £ on Section 21 is about 10 points higher
0_2.-08 wheregs, to achieve a very.accurate role clal:h-an theF, on Section 23 (e.g. 87.0% vs. 77.9%
sn‘l_er, we trainedl'RC on all sec_tlons _02'21' To for RND). As expected the parse tree quality is very
train t_heAST, AST-Ord (AST with ordinal num- important to detect argument boundaries. (b) On the
be_:rs in the argument_ nodes), aHET-Arg (AST real test (Section 23) the classification introduces la-
V\{'Fh argument pre in the argument nodes) Cla‘Q‘xieling errors which decrease the accuracy of about
sifiers, we applied thd'BC' and TRC' over sec- 50 (77.9 vs 72.9 for RND). (c) Therd and Arg
tions 09-20. Then, we considered all the structureépproaches constantly improve the baselifieof
whose automatic annotation showed at least an alhout 1%. Such poor impact does not surprise as

gulr_gegtsgve”ag'zgﬁrg these, Iy;z;xtr?cted 30|'22tﬂe overlapping structures are a small percentage of
val s an ' non-vai s, foratotal o e set, thus the overall improvement cannot be

of 183,642 arguments. very high.

First, we evaluate the accuracy of tH&T-based Third, the comparison with the CoNLL 2005 re-

jassificfars by extr_acting 1’935‘5;]TS an(;j’zzo nog- sults (Carreras and Mquez, 2005) can only be
STs from Section 21 and the 2,1585T's an carried out with respect to the whole SRL task

3’461 dnonASTs_ from _Sectlon 236 Tr:jef accurafy(bnd+class in table 2) since boundary detection ver-
erived on Section 21 Is an upperbound for our clagy; s 1 ¢lassification is generally not provided in

sifiers since it is obtained using an ideal syntacti&oNLL 2005. Moreover, our best global result, i.e.
parser (the Charnigk’s parser Wafs_trained also ©#5.9%, was obtained under two severe experimental
Section 21) and an ideal role classifier. factors: a) the use of just 1/3 of the available train-
Table 1 shows Precision, Recall affd mea- ing set, and b) the usage of the linear SVM model
sures of theAdST-based classifiers over the abovegy the TBC classifier, which is much faster than the
NSTs. Rows 2, 3 and 4 report the performance qfs|ynomial SVMs but also less accurate. However,
AST, AST-Ord, andAST-Arg classifiers, respec- e note the promising results of théST meta-
tively. We note that: (a) The impact of parsing acg|assifier, which can be used with any of the best
curacy is shown by the gap of about 6% points bq19ure CoNLL systems.
_tween sections 21 and 23. (b) The ordln_al number- Finally, the overall results suggest that the tree
ing of arguments@rd) and the role type informa- kernel model is robust to parse tree errors since pre-

]Elolnf(ATg) pr;owc_ie treti ker_n els Wlthtrr?orbe m_eanlng— erves the same improvement across trees derived
Ul Tragments since ey Improve the basic Mod&y v, gifferent accuracy, i.e. threemi-automatitrees

of about 4%. (c) The deeper §emantic informationaf Section 21 and the automatic tree of Section 23.
generated by thdrg labels provides useful clues to Moreover, it shows a high accuracy for the classi-

select correct predicate argument structures Sincefi'éation of correct and incorrect STs. This last

improves theDrd model on bOth_ sections. property is quite interesting as the best SRL systems
Second, we measured the impact of th87-

based classifiers on the accuracy of both phases o We needed to remove the overlaps from the baseline out-

semantic role labeling. Table 2 reports the resuli®me in order to apply the CoNLL evaluator.

Table 1. AST, AST-Ord, andAST-Arg perfor-
mance on sections 21 and 23.
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(Punyakanok et al., 2005; Toutanova et al., 2003he best structures according to the core roles. We
Pradhan et al., 2005b) were obtained by exploiachieved 80.68% which is practically equal to the
ing the information on the whole predicate argumeniesult obtained in (Punyakanok et al., 2005; Car-
structure. reras and Mrquez, 2005) for core roles, i.e. 81%.
Next section shows our preliminary experimentd heir overall F1 which includes all the arguments
on re-ranking using thd ST kernel based approach.was 79.44%. This confirms that the classification of

_ the non-core roles is more complex than the other
4.2 Re-ranking based on Tree Kernels arguments.

In these experiments, we used the outpuf'@C Finally, the high computation time of the re-
and TRC? to provide an SVM tree kernel with a ranker prevented us to use the larger structures
ranked list of predicate argument structures. More iwhich include all arguments. The major complexity
detail, we applied a Viterbi-like algorithm to gener-issue was the slow training and classification time
ate the 20 most likely annotations for each predica®f SVMs. The time needed for tree kernel function
structure, according to the joint probabilistic modewas not so problematic as we could use the fast eval-
of TBC andT RC'. We sorted such structures based#ation proposed in (Moschitti, 2006). This roughly
on theirF; measure and used them to learn the SVMeduces the computation time to the one required by
re-ranker described in 3.3. a polynomial kernel. The real burden is therefore the
For training, we used Sections 12, 14, 15, 1éearning time of SVMs that is quadratic in the num-
and 24, which contain 24,729 predicate structure§€r of training instances. For example, to carry out
For each of them, we considered the 5 annotatiorige re-ranking experiments required approximately
having the highest F1 score (i.e. 123,6847Ts) one month of a 64 bits machine (2.4 GHz and 4Gb
on the span of the 20 best annotations provided Hyam). To solve this problem, we are going to study
Viterbi algorithm. With such structures, we ob-the impact on the accuracy of fast learning algo-
tained 294,296 pairs used to train the SVM-baseldthms such as the Voted Perceptron.
re-ranker. As the _nu_mbgr of such struct_ures IS VerY  nelated Work
large the SVM training time was very high. Thus,
we sped up the learning process by using only thgecently, many kernels for natural language applica-
ASTs associated with the core arguments. From tH#&ns have been designed. In what follows, we high-
test sentences (which contain 5,267 structures), vight their difference and properties.
extracted the 20 best Viterbi annotated structures, The tree kernel used in this article was proposed
i.e. 102,343 (for a total of 315.531 pairs), whichin (Collins and Duffy, 2002) for syntactic parsing
were used for the following experiments: re-ranking. It was experimented with the Voted
First, we selected the best annotation (accordirfgerceptron and was shown to improve the syntac-
to the F; provided by the gold standard annotations§ic parsing. In (Cumby and Roth, 2003), a feature
out of the 20 provided by the Viterbi's algorithm. description language was used to extract structural
The resultingF; of 88.59% is the upperbound of our features from the syntactic shallow parse trees asso-
approach. ciated with named entities. The experiments on the
Second, we selected the top ranked annotation ijamed entity categorization showed that when the
dicated by the Viterbi's algorithm. This provides ourdescription language selects an adequate set of tree
baselineF; measure, i.e. 75.91%. Such outcome ifagments the Voted Perceptron algorithm increases
slightly higher than our official CONLL result (Mos- its classification accuracy. The explanation was that
chitti et al., 2005) obtained without converting SvmMthe complete tree fragment set contains many irrel-
scores into probabilities. evant features and may cause overfitting. In (Pun-
Third, we applied the SVM re-ranker to selectyakanok et al., 2005), a set of different syntactic
- parse trees, e.g. the best trees generated by the
2with the aim of improving the state-of-the-art, we appliedCharniak’s parser, were used to improve the SRL
the polynomial kernel for all basic classifiers, at this time. . .
ccuracy. These different sources of syntactic infor-

We used the models developed during our participation to th@ X .
CoNLL 2005 shared task (Moschitti et al., 2005). mation were used to generate a set of different SRL
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Section 21 Section 23

bnd bnd+class bnd bnd+class
AST Classifier AST Classifier AST Classifier AST Classifier
Ord | Arg RND Ord | Arg RND Ord | Arg RND Ord | Arg RND

pP. | 875|883 | 88.3| 86.9| 855 | 86.3| 86.4| 85.0| 786 | 79.0| 79.3| 77.8| 73.1| 73.5| 73.4| 72.3
R. | 873 | 881|883 | 87.1| 857|865| 868|856 | 781|784 | 78.7| 779| 73.8| 741 | 744 73.6
Fy | 87.4]882|883|870| 856|864 | 866|853 783|787 | 79.0| 779|734 73.8| 73.9| 72.9

Table 2: Semantic Role Labeling performance on automatic trees dsifigbased classifiers.

outputs. A joint inference stage was applied to rechad Cumby and Dan Roth. 2003. Kernel methods for re-

solve the inconsistency of the different outputs. In jational earning. InProceedings of ICMLO3Washington,
(Toutanova et al., 2005), it was observed that therI§anie| Gildea and Daniel Jurasfky. 2002. Automatic label-

are strong dependencies among the labels of the seing of semantic rolesComputational Linguistic28(3):496—
mantic argument nodes of a verb. Thus, to approach 530

_ ; Joachims. 1999. Making large-scale SVM learning practical.
the prOblem’ are r_ankmg_methOd of role sequench In B. Schilkopf, C. Burges, and A. Smola, editoisdvances
labeled by alI'RC is applied. In (Pradhan et al., in Kernel Methods - Support Vector Learning

2005b), some experiments were conducted on SRiaul Kingsbury and Martha Palmer. 2002. From Treebank to

systems trained using different syntactic views. PropBank. IrProceedings of LREC'02).as Palmas, Spain.
) H.T. Lin, C.J. Lin, and R.C. Weng. 2003. A note on platt’s
6 Conclusions probabilistic outputs for support vector machines. Technical

. . report, National Taiwan University.
Recent work on Semantic Role Labeling has showRiessandro Moschitti, Bonaventura Coppola, Daniele Pighin,

that to achieve high labeling accuracy a joint in- and Roberto Basili. 2005. Hierarchical semantic role label-

ference on the whole predicate argument structure i(’ll/?l') U‘SFXOCQEdi“gS of CoNLLOS shared tasknn Arbor

should be applied. As feature design for such task Wessandro Moschitti. 2004. A study on convolution kernels
complex, we can take advantage from kernel meth- for shallow semantic parsing. IRroceedings of ACL'04

ods to model our intuitive knowledge about the ~ Barcelona, Spain. _ _
ary predicate argument relations. Alessandro Moschitti. 2006. Making tree kernels practical

: _ for natural language learning. Proceedings of EACL'Q6
In this paper we have shown that we can exploit Trento, Italy.

the properties of tree kernels to engineer syntactik Platt. 2000. Probabilistic outputs for support vector ma-

; ; _ chines and comparison to regularized likelihood methods.
features for the semantic role labeling task. The ex- ¢ - Pross.

periments SUQQeS_t that (1) the informatior_‘ r_elategameer Pradhan, Kadri Hacioglu, Valeri Krugler, Wayne Ward,
to the whole predicate argument structure is impor- James H. Martin, and Daniel Jurafsky. 2005a. Support vec-

tant as it can improve the state-of-the-art and (2) tor learning for semantic argument classificatidvlachine

k | b di .. del Learning Journal
tree kernels can be used in a joint model to 9€sameer Pradhan, Wayne Ward, Kadri Hacioglu, James Martin,

erate relevant syntactic/semantic features. The realand Daniel Jurafsky. 2005b. Semantic role labeling using

drawback is the computational complexity of work- different syntactic views. I#roceedings ACL'05

. . : . : V. Punyakanok, D. Roth, and W. Yih. 2005. The necessity of
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an interesting future work. of IJCAI 2005
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