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Foreword

CoNLL has turned ten! With a mix of pride and amazement over how time flies, we now celebrate
the tenth time that ACL's special interest group on natural language learning, SIGNLL, holds its yearly
conference.

Having a yearly meeting was the major pillar of the design plan for SIGNLL, drawn up by a circle of
enthusiastic like-minded people around 1995, headed by first president David Powers and first secretary
Walter Daelemans. The first CoNLL was organized as a satellite event of ACL-97 in Madrid, in the
capable hands of Mark Ellison. Since then, no single year has gone by without a CoNLL. The boards
of SIGNLL (with consecutive presidents Michael Brent, Walter Daelemans, and Dan Roth) have made
sure that CoNLL toured the world; twice it was held in the Asian-Pacific part of the world, four times

in Europe, and four times in the North-American continent.

Over time, the field of computational linguistics got to know CoNLL for its particular take on empirical
methods for NLP and the ties these methods have with areas outside the focus of the typical ACL
conference. The image of CoNLL was furthermore boosted by the splendid concept of the shared
task, the organized competition that tackles timely tasks in NLP and has produced both powerful and
sobering scientific insights. The CoNLL shared tasks have produced benchmark data sets and results
on which a significant body of work in computational linguistics is based nowadays. The first shared
task was organized in 1999 on NP bracketing, by Erik Tjong Kim Sang and Miles Osborne. With
the help of others, Erik continued the organization of shared tasks until 2003 (on syntactic chunking,
clause identification, and named-entity recognition), after whichisLiarquez and Xavier Carreras
organized two consecutive shared tasks on semantic role labeling (2004, 2005). This year’s shared task
on multi-lingual dependency parsing holds great promise in becoming a new landmark in NLP research.

With great gratitude we salute all past CoNLL programme chairs and reviewers who have made CoNLL
possible, and who have contributed to this conference series, which we believe has a shining future
ahead. We are still exploring unknown territory in the fields of language learning, where models of
human learning and natural language processing may on one day be one. We hope we will see a long
series of CoNLLs along that path.

1997 - Madrid, Spain (chair: T. Mark Ellison)

1998 - Sydney, Australia (chair: David Powers)

1999 - Bergen, Norway (chairs: Miles Osborne and Erik Tjong Kim Sang)

2000 - Lisbon, Portugal (chairs: Claire Cardie, Walter Daelemans, and Erik Tjong Kim Sang)
2001 - Toulouse, France (chairs: Walter Daelemans d@diZajac)

2002 - Taipei, Taiwan (chairs: Dan Roth and Antal van den Bosch)

2003 - Edmonton, Canada (chairs: Walter Daelemans and Miles Oshorne)

2004 - Boston, MA, USA (chairs: Hwee Tou Ng and Ellen Riloff)

2005 - Ann Arbor, MI, USA (chairs: Ido Dagan and Dan Gildea)

2006 - New York City, NY, USA (chairs: Llis Marquez and Dan Klein)

Antal van den Bosch, President
Hwee Tou Ng, Secretary






Preface

The 2006 Conference on Computational Natural Language Learning is the tenth in a series of yearly
meetings organized by SIGNLL, the ACL special interest group on natural language learning. Due to
the special occasion, we have brought out the celebratory Roman numerals: welcome to CoNLL-X!
Presumably, next year we will return to CoNLL-2007 (until 2016, when perhaps we will see CoNLL-
XX). CoNLL-X will be held in New York City on June 8-9, in conjunction with the HLT-NAACL 2006
conference.

A total of 52 papers were submitted to CoNLL's main session, from which only 18 were accepted. The
35% acceptance ratio maintains the high competitiveness of recent CoNLLs and is an indicator of this
year’s high-quality programme. We are very grateful to the CoNLL community for the large amount
of exciting, diverse, and high-quality submissions we received. We are equally grateful to the program
committee for their service in reviewing these submissions, on a very tight schedule. Your efforts made
our job a pleasure.

As in previous years, we defined a topic of special interest for the conference. This year, we particularly
encouraged submissions describing architectures, algorithms, methods, or models designed to improve
the robustness of learning-based NLP systems. While the topic of interest was directly addressed by
only a small number of the main session submissions, the shared task setting contributed significantly
in this direction.

Also following CoNLL tradition, a centerpiece of the confernence is a shared task, this year on
multilingual dependency parsing. The shared task was organized by Sabine Buchholz, Amit Dubey,
Yuval Krymolwski, and Erwin Marsi, who worked very hard to make the shared task the success it
has been. Up to 13 different languages were treated. 19 teams submitted results, from which 17 are
presenting description papers in the proceedings. In our opinion, the current shared task constitutes a
qualitative step ahead in the evolution of CoNLL shared tasks, and we hope that the resources created
and the body of work presented will both serve as a benchmark and also have a substantial impact on
future research on syntactic parsing.

Finally, we are delighted to announce that this year’s invited speakers are Michael Collins and Walter
Daelemans. In accordance with the tenth anniversary celebration, Walter Daelemans will look back at
the 10 years of CoNLL conferences, presenting the state of the art in computational natural language
learning, and suggesting a new “mission” for the future of field. Michael Collins, in turn, will talk about
one of the important current research lines in the field: global learning architectures for structural and
relational learning problems in natural language.

In addition to the program committee and shared task organizers, we are very indebted to the SIGNLL
board members for very helpful discussion and advice, Erik Tjong Kim Sang, who acted as the
information officer, and the HLT-NAACL 2006 conference organizers, in particular Robert Moore,
Brian Roark, Sanjeev Khudanpur, Lucy Vanderwende, Roberto Pieraccini, and Liz Liddy for their help
with local arrangements and the publication of the proceedings.

To all the attendees, enjoy the CoNLL-X conference!

Lluis Marquez and Dan Klein
CoNLL-X Program Co-Chairs
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A Mission for Computational Natural Language Learning

Walter Daelemans
CNTS Language Technology Group
University of Antwerp
Belgium
walter.daelemans@ua.ac.be

Abstract

In this presentation, I will look back at
10 years of CoNLL conferences and the
state of the art of machine learning of lan-
guage that is evident from this decade of
research. My conclusion, intended to pro-
voke discussion, will be that we currently
lack a clear motivation or “mission” to
survive as a discipline. I will suggest that
a new mission for the field could be found
in a renewed interest for theoretical work
(which learning algorithms have a bias
that matches the properties of language?,
what is the psycholinguistic relevance of
learner design issues?), in more sophis-
ticated comparative methodology, and in
solving the problem of transfer, reusabil-
ity, and adaptation of learned knowledge.

1 Introduction

When looking at ten years of CoNLL conferences,
it is clear that the impact and the size of the con-
ference has enormously grown over time. The tech-
nical papers you will find in this proceedings now
are comparable in quality and impact to those of
other distinguished conferences like the Conference
on Empirical Methods in Natural Language Pro-
cessing or even the main conferences of ACL, EACL
and NAACL themselves. An important factor in
the success of CoNLL has been the continued se-
ries of shared tasks (notice we don’t use terms like
challenges or competitions) that has produced a use-

1

ful set of benchmarks for comparing learning meth-
ods, and that has gained wide interest in the field.
It should also be noted, however, that the success
of the conferences is inversely proportional with
the degree to which the original topics which mo-
tivated the conference are present in the programme.
Originally, the people driving CoNLL wanted it to
be promiscuous (i) in the selection of partners (we
wanted to associate with Machine Learning, Lin-
guistics and Cognitive Science conferences as well
as with Computational Linguistics conferences) and
(i) in the range of topics to be presented. We wanted
to encourage linguistically and psycholinguistically
relevant machine learning work, and biologically in-
spired and innovative symbolic learning methods,
and present this work alongside the statistical and
learning approaches that were at that time only start-
ing to gradually become the mainstream in Compu-
tational Linguistics. It has turned out differently,
and we should reflect on whether we have become
too much of a mainstream computational linguistics
conference ourselves, a back-off for the good papers
that haven’t made it in EMNLP or ACL because of
the crazy rejection rates there (with EMNLP in its
turn a back-off for good papers that haven’t made
it in ACL). Some of the work targeted by CoNLL
has found a forum in meetings like the workshop on
Psycho-computational models of human language
acquisition, the International Colloquium on Gram-
matical Inference, the workshop on Morphological
and Phonological Learning etc. We should ask our-
selves why we don’t have this type of work more
in CoNLL. In the first part of the presentation I
will sketch very briefly the history of SIGNLL and

Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL-X)
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CoNLL and try to initiate some discussion on what
a conference on Computational Language Learning
should be doing in 2007 and after.

2 State of the Art in Computational
Natural Language Learning

The second part of my presentation will be a dis-
cussion of the state of the art as it can be found in
CoNLL (and EMNLP and the ACL conferences).
The field can be divided into theoretical, method-
ological, and engineering work. There has been
progress in theory and methodology, but perhaps
not sufficiently. I will argue that most progress has
been made in engineering with most often incre-
mental progress on specific tasks as a result rather
than increased understanding of how language can
be learned from data.

Machine Learning of Natural Language (MLNL),
or Computational Natural Language Learning
(CoNLL) is a research area lying in the intersec-
tion of computational linguistics and machine learn-
ing. I would suggest that Statistical Natural Lan-
guage Processing (SNLP) should be treated as part
of MLNL, or perhaps even as a synonym. Symbolic
machine learning methods belong to the same part
of the ontology as statistical methods, but have dif-
ferent solutions for specific problems. E.g., Induc-
tive Logic Programming allows elegant addition of
background knowledge, memory-based learning has
implicit similarity-based smoothing, etc.

There is no need here to explain the success of
inductive methods in Computational Linguistics and
why we are all such avid users of the technology:
availability of data, fast production of systems with
good accuracy, robustness and coverage, cheaper
than linguistic labor. There is also no need here
to explain that many of these arguments in favor of
learning in NLP are bogus. Getting statistical and
machine learning systems to work involves design,
optimization, and smoothing issues that are some-
thing of a black art. For many problems, getting
sufficient annotated data is expensive and difficult,
our annotators don’t sufficiently agree, our trained
systems are not really that good. My favorite exam-
ple for the latter is part of speech tagging, which is
considered a solved problem, but still has error rates
of 20-30% for the ambiguities that count, like verb-

noun ambiguity. We are doing better than hand-
crafted linguistic knowledge-based approaches but
from the point of view of the goal of robust lan-
guage understanding unfortunately not that signifi-
cantly better. Twice better than very bad is not nec-
essarily any good. We also implicitly redefined the
goals of the field of Computational Linguistics, for-
getting for example about quantification, modality,
tense, inference and a large number of other sen-
tence and discourse semantics issues which do not
fit the default classification-based supervised learn-
ing framework very well or for which we don’t have
annotated data readily available. As a final irony,
one of the reasons why learning methods have be-
come so prevalent in NLP is their success in speech
recognition. Yet, there too, this success is relative;
the goal of spontaneous speaker-independent recog-
nition is still far away.

2.1 Theory

There has been a lot of progress recently in theoret-
ical machine learning(Vapnik, 1995; Jordan, 1999).
Statistical Learning Theory and progress in Graph-
ical Models theory have provided us with a well-
defined framework in which we can relate differ-
ent approaches like kernel methods, Naive Bayes,
Markov models, maximum entropy approaches (lo-
gistic regression), perceptrons and CRFs. Insight
into the differences between generative and discrim-
inative learning approaches has clarified the rela-
tions between different learning algorithms consid-
erably.

However, this work does not tell us something
general about machine learning of language. The-
oretical issues that should be studied in MLNL are
for example which classes of learning algorithms are
best suited for which type of language processing
task, what the need for training data is for a given
task, which information sources are necessary and
sufficient for learning a particular language process-
ing task, etc. These fundamental questions all re-
late to learning algorithm bias issues. Learning is
a search process in a hypothesis space. Heuristic
limitations on the search process and restrictions on
the representations allowed for input and hypothe-
sis representations together define this bias. There is
not a lot of work on matching properties of learning
algorithms with properties of language processing



tasks, or more specifically on how the bias of partic-
ular (families of) learning algorithms relates to the
hypothesis spaces of particular (types of) language
processing tasks.

As an example of such a unifying approach,
(Roth, 2000) shows that several different algorithms
(memory-based learning, tbl, snow, decision lists,
various statistical learners, ...) use the same type
of knowledge representation, a linear representation
over a feature space based on a transformation of the
original instance space. However, the only relation
to language here is rather negative with the claim
that this bias is not sufficient for learning higher
level language processing tasks.

As another example of this type of work,
Memory-Based Learning (MBL) (Daelemans and
van den Bosch, 2005), with its implicit similarity-
based smoothing, storage of all training evidence,
and uniform modeling of regularities, subregulari-
ties and exceptions has been proposed as having the
right bias for language processing tasks. Language
processing tasks are mostly governed by Zipfian
distributions and high disjunctivity which makes it
difficult to make a principled distinction between
noise and exceptions, which would put eager learn-
ing methods (i.e. most learning methods apart from
MBL and kernel methods) at a disadvantage.

More theoretical work in this area should make it
possible to relate machine learner bias to properties
of language processing tasks in a more fine-grained
way, providing more insight into both language and
learning. An avenue that has remained largely unex-
plored in this respect is the use of artificial data emu-
lating properties of language processing tasks, mak-
ing possible a much more fine-grained study of the
influence of learner bias. However, research in this
area will not be able to ignore the “no free lunch”
theorem (Wolpert and Macready, 1995). Referring
back to the problem of induction (Hume, 1710) this
theorem can be interpreted that no inductive algo-
rithm is universally better than any other; general-
ization performance of any inductive algorithm is
zero when averaged over a uniform distribution of
all possible classification problems (i.e. assuming
a random universe). This means that the only way
to test hypotheses about bias and necessary infor-
mation sources in language learning is to perform
empirical research, making a reliable experimental

methodology necessary.

2.2 Methodology

Either to investigate the role of different information
sources in learning a task, or to investigate whether
the bias of some learning algorithm fits the proper-
ties of natural language processing tasks better than
alternative learning algorithms, comparative experi-
ments are necessary. As an example of the latter, we
may be interested in investigating whether part-of-
speech tagging improves the accuracy of a Bayesian
text classification system or not. As an example of
the former, we may be interested to know whether
a relational learner is better suited than a propo-
sitional learner to learn semantic function associa-
tion. This can be achieved by comparing the accu-
racy of the learner with and without the information
source or different learners on the same task. Crucial
for objectively comparing algorithm bias and rele-
vance of information sources is a methodology to
reliably measure differences and compute their sta-
tistical significance. A detailed methodology has
been developed for this involving approaches like
k-fold cross-validation to estimate classifier quality
(in terms of measures derived from a confusion ma-
trix like accuracy, precision, recall, F-score, ROC,
AUC, etc.), as well as statistical techniques like Mc-
Nemar and paired cross-validation t-tests for deter-
mining the statistical significance of differences be-
tween algorithms or between presence or absence of
information sources. This methodology is generally
accepted and used both in machine learning and in
most work in inductive NLP.

CoNLL has contributed a lot to this compara-
tive work by producing a successful series of shared
tasks, which has provided to the community a rich
set of benchmark language processing tasks. Other
competitive research evaluations like senseval, the
PASCAL challenges and the NIST competitions
have similarly tuned the field toward comparative
learning experiments. In a typical comparative ma-
chine learning experiment, two or more algorithms
are compared for a fixed sample selection, feature
selection, feature representation, and (default) al-
gorithm parameter setting over a number of trials
(cross-validation), and if the measured differences
are statistically significant, conclusions are drawn
about which algorithm is better suited to the problem



being studied and why (mostly in terms of algorithm
bias). Sometimes different sample sizes are used to
provide a learning curve, and sometimes parameters
of (some of the) algorithms are optimized on train-
ing data, or heuristic feature selection is attempted,
but this is exceptional rather than common practice
in comparative experiments.

Yet everyone knows that many factors potentially
play a role in the outcome of a (comparative) ma-
chine learning experiment: the data used (the sam-
ple selection and the sample size), the information
sources used (the features selected) and their repre-
sentation (e.g. as nominal or binary features), the
class representation (error coding, binarization of
classes), and the algorithm parameter settings (most
ML algorithms have various parameters that can be
tuned). Moreover,all these factors are known to in-
teract. E.g., (Banko and Brill, 2001) demonstrated
that for confusion set disambiguation, a prototypi-
cal disambiguation in context problem, the amount
of data used dominates the effect of the bias of the
learning method employed. The effect of training
data size on relevance of POS-tag information on top
of lexical information in relation finding was studied
in (van den Bosch and Buchholz, 2001). The pos-
itive effect of POS-tags disappears with sufficient
data. In (Daelemans et al., 2003) it is shown that
the joined optimization of feature selection and algo-
rithm parameter optimization significantly improves
accuracy compared to sequential optimization. Re-
sults from comparative experiments may therefore
not be reliable. I will suggest an approach to im-
prove methodology to improve reliability.

2.3 Engineering

Whereas comparative machine learning work can
potentially provide useful theoretical insights and re-
sults, there is a distinct feeling that it also leads to
an exaggerated attention for accuracy on the dataset.
Given the limited transfer and reusability of learned
modules when used in different domains, corpora
etc., this may not be very relevant. If a WSJ-trained
statistical parser looses 20% accuracy on a compa-
rable newspaper testcorpus, it doesn’t really matter
a lot that system A does 1% better than system B on
the default WSJ-corpus partition.

In order to win shared tasks and perform best on
some language processing task, various clever archi-

tectural and algorithmic variations have been pro-
posed, sometimes with the single goal of getting
higher accuracy (ensemble methods, classifier com-
bination in general, ...), sometimes with the goal of
solving manual annotation bottlenecks (active learn-
ing, co-training, semisupervised methods, ...).

This work is extremely valid from the point of
view of computational linguistics researchers look-
ing for any old method that can boost performance
and get benchmark natural language processing
problems or applications solved. But from the point
of view of a SIG on computational natural language
learning, this work is probably too much theory-
independent and doesn’t teach us enough about lan-
guage learning.

However, engineering work like this can suddenly
become theoretically important when motivated not
by a few percentage decimals more accuracy but
rather by (psycho)linguistic plausibility. For exam-
ple, the current trend in combining local classifiers
with holistic inference may be a cognitively relevant
principle rather than a neat engineering trick.

3 Conclusion

The field of computational natural language learn-
ing is in need of a renewed mission. In two par-
ent fields dominated by good engineering use of ma-
chine learning in language processing, and interest-
ing developments in computational language learn-
ing respectively, our field should focus more on the-
ory. More research should address the question what
we can learn about language from comparative ma-
chine learning experiments, and address or at least
acknowledge methodological problems.
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Abstract

Previous results have shown disappointing
performance when porting a parser trained
on one domain to another domain where
only a small amount of data is available.
We propose the use of data-defined ker-
nels as a way to exploit statistics from a
source domain while still specializing a
parser to a target domain. A probabilistic
model trained on the source domain (and
possibly also the target domain) is used to
define a kernel, which is then used in a
large margin classifier trained only on the
target domain. With a SVM classifier and
a neural network probabilistic model, this
method achieves improved performance
over the probabilistic model alone.

1 Introduction

In recent years, significant progress has been made
in the area of natural language parsing. This re-
search has focused mostly on the development of
statistical parsers trained on large annotated corpora,
in particular the Penn Treebank WSJ corpus (Marcus
et al., 1993). The best statistical parsers have shown
good results on this benchmark, but these statistical
parsers demonstrate far worse results when they are
applied to data from a different domain (Roark and
Bacchiani, 2003; Gildea, 2001; Ratnaparkhi, 1999).
This is an important problem because we cannot ex-
pect to have large annotated corpora available for
most domains. While identifying this problem, pre-
vious work has not proposed parsing methods which
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are specifically designed for porting parsers. Instead
they propose methods for training a standard parser
with a large amount of out-of-domain data and a
small amount of in-domain data.

In this paper, we propose using data-defined ker-
nels and large margin methods to specifically ad-
dress porting a parser to a new domain. Data-defined
kernels are used to construct a new parser which ex-
ploits information from a parser trained on a large
out-of-domain corpus. Large margin methods are
used to train this parser to optimize performance on
a small in-domain corpus.

Large margin methods have demonstrated sub-
stantial success in applications to many machine
learning problems, because they optimize a mea-
sure which is directly related to the expected test-
ing performance. They achieve especially good per-
formance compared to other classifiers when only
a small amount of training data is available. Most
of the large margin methods need the definition of a
kernel. Work on kernels for natural language parsing
has been mostly focused on the definition of kernels
over parse trees (e.g. (Collins and Duffy, 2002)),
which are chosen on the basis of domain knowledge.
In (Henderson and Titov, 2005) it was proposed to
apply a class of kernels derived from probabilistic
models to the natural language parsing problem.

In (Henderson and Titov, 2005), the kernel is con-
structed using the parameters of a trained proba-
bilistic model. This type of kernel is called a data-
defined kernel, because the kernel incorporates in-
formation from the data used to train the probabilis-
tic model. We propose to exploit this property to
transfer information from a large corpus to a statis-
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tical parser for a different domain. Specifically, we
propose to train a statistical parser on data including
the large corpus, and to derive the kernel from this
trained model. Then this derived kernel is used in a
large margin classifier trained on the small amount
of training data available for the target domain.

In our experiments, we consider two different
scenarios for porting parsers. The first scenario is
the pure porting case, which we call “transferring”.
Here we only require a probabilistic model trained
on the large corpus. This model is then reparameter-
ized so as to extend the vocabulary to better suit the
target domain. The kernel is derived from this repa-
rameterized model. The second scenario is a mixture
of parser training and porting, which we call “focus-
ing”. Here we train a probabilistic model on both
the large corpus and the target corpus. The kernel
is derived from this trained model. In both scenar-
ios, the kernel is used in a SVM classifier (Tsochan-
taridis et al., 2004) trained on a small amount of data
from the target domain. This classifier is trained to
rerank the candidate parses selected by the associ-
ated probabilistic model. We use the Penn Treebank
Wall Street Journal corpus as the large corpus and
individual sections of the Brown corpus as the tar-
get corpora (Marcus et al., 1993). The probabilis-
tic model is a neural network statistical parser (Hen-
derson, 2003), and the data-defined kernel is a TOP
reranking kernel (Henderson and Titov, 2005).

With both scenarios, the resulting parser demon-
strates improved accuracy on the target domain over
the probabilistic model alone. In additional experi-
ments, we evaluate the hypothesis that the primary
issue for porting parsers between domains is differ-
ences in the distributions of words in structures, and
not in the distributions of the structures themselves.
We partition the parameters of the probability model
into those which define the distributions of words
and those that only involve structural decisions, and
derive separate kernels for these two subsets of pa-
rameters. The former model achieves virtually iden-
tical accuracy to the full model, but the later model
does worse, confirming the hypothesis.

2 Data-Defined Kernels for Parsing

Previous work has shown how data-defined kernels
can be applied to the parsing task (Henderson and

Titov, 2005). Given the trained parameters of a prob-
abilistic model of parsing, the method defines a ker-
nel over sentence-tree pairs, which is then used to
rerank a list of candidate parses.

In this paper, we focus on the TOP reranking ker-
nel defined in (Henderson and Titov, 2005), which
are closely related to Fisher kernels. The rerank-
ing task is defined as selecting a parse tree from the
list of candidate trees (y1,...,ys) suggested by a
probabilistic model P(x, y|#), where d is a vector of
model parameters learned during training the prob-
abilistic model. The motivation for the TOP rerank-
ing kernel is given in (Henderson and Titov, 2005),
but for completeness we note that the its feature ex-
tractor is given by:

¢é(x7yk‘) = A A (1)
Whel’e U(.:U, Yk, é) - log P(;r) yk‘é) _

log "z, P(w,y,|6).  The first feature reflects
the score given to (x,yx) by the probabilistic
model (relative to the other candidates for x), and
the remaining features reflect how changing the
parameters of the probabilistic model would change
this score for (x, yx).

The parameters 6§ used in this feature extractor do
not have to be exactly the same as the parameters
trained in the probabilistic model. In general, we
can first reparameterize the probabilistic model, pro-
ducing a new model which defines exactly the same
probability distribution as the old model, but with a
different set of adjustable parameters. For example,
we may want to freeze the values of some parame-
ters (thereby removing them from é), or split some
parameters into multiple cases (thereby duplicating
their values in é). This flexibility allows the features
used in the kernel method to be different from those
used in training the probabilistic model. This can be
useful for computational reasons, or when the kernel
method is not solving exactly the same problem as
the probabilistic model was trained for.

3 Porting with Data-Defined Kernels

In this paper, we consider porting a parser trained on
a large amount of annotated data to a different do-
main where only a small amount of annotated data
is available. We validate our method in two different



scenarios, transferring and focusing. Also we verify
the hypothesis that addressing differences between
the vocabularies of domains is more important than
addressing differences between their syntactic struc-
tures.

3.1 Transferringto a Different Domain

In the transferring scenario, we are given just a prob-
abilistic model which has been trained on a large
corpus from a source domain. The large corpus is
not available during porting, and the small corpus
for the target domain is not available during training
of the probabilistic model. This is the case of pure
parser porting, because it only requires the source
domain parser, not the source domain corpus. Be-
sides this theoretical significance, this scenario has
the advantage that we only need to train a single
probabilistic parser, thereby saving on training time
and removing the need for access to the large cor-
pus once this training is done. Then any number of
parsers for new domains can be trained, using only
the small amount of annotated data available for the
new domain.

Our proposed porting method first constructs a
data-defined kernel using the parameters of the
trained probabilistic model. A large margin clas-
sifier with this kernel is then trained to rerank the
top candidate parses produced by the probabilistic
model. Only the small target corpus is used during
training of this classifier. The resulting parser con-
sists of the original parser plus a very computation-
ally cheap procedure to rerank its best parses.

Whereas training of standard large margin meth-
ods, like SVMs, isn’t feasible on a large corpus, it
iS quite tractable to train them on a small target cor-
pus.! Also, the choice of the large margin classifier
is motivated by their good generalization properties
on small datasets, on which accurate probabilistic
models are usually difficult to learn.

We hypothesize that differences in vocabulary
across domains is one of the main difficulties with
parser portability. To address this problem, we pro-
pose constructing the kernel from a probabilistic
model which has been reparameterized to better suit

YIn (Shen and Joshi, 2003) it was proposed to use an en-
semble of SVMs trained the Wall Street Journal corpus, but we
believe that the generalization performance of the resulting clas-
sifier is compromised in this approach.

the target domain vocabulary. As in other lexicalized
statistical parsers, the probabilistic model we use
treats words which are not frequent enough in the
training set as ‘unknown’ words (Henderson, 2003).
Thus there are no parameters in this model which
are specifically for these words. When we consider
a different target domain, a substantial proportion
of the words in the target domain are treated as un-
known words, which makes the parser only weakly
lexicalized for this domain.

To address this problem, we reparameterize the
probability model so as to add specific parameters
for the words which have high enough frequency
in the target domain training set but are treated as
unknown words by the original probabilistic model.
These new parameters all have the same values as
their associated unknown words, so the probability
distribution specified by the model does not change.
However, when a kernel is defined with this repa-
rameterized model, the kernel’s feature extractor in-
cludes features specific to these words, so the train-
ing of a large margin classifier can exploit differ-
ences between these words in the target domain. Ex-
panding the vocabulary in this way is also justified
for computational reasons; the speed of the proba-
bilistic model we use is greatly effected by vocabu-
lary size, but the large-margin method is not.

3.2 Focusing on a Subdomain

In the focusing scenario, we are given the large cor-
pus from the source domain. We may also be given
a parsing model, but as with other approaches to this
problem we simply throw this parsing model away
and train a new one on the combination of the source
and target domain data. Previous work (Roark and
Bacchiani, 2003) has shown that better accuracy can
be achieved by finding the optimal re-weighting be-
tween these two datasets, but this issue is orthogonal
to our method, so we only consider equal weighting.
After this training phase, we still want to optimize
the parser for only the target domain.

Once we have the trained parsing model, our pro-
posed porting method proceeds the same way in this
scenario as in transferring. However, because the
original training set already includes the vocabulary
from the target domain, the reparameterization ap-
proach defined in the preceding section is not nec-
essary so we do not perform it. This reparameter-



ization could be applied here, thereby allowing us
to use a statistical parser with a smaller vocabulary,
which can be more computationally efficient both
during training and testing. However, we would ex-
pect better accuracy of the combined system if the
same large vocabulary is used both by the proba-
bilistic parser and the kernel method.

3.3 Vocabulary versus Structure

It is commonly believed that differences in vo-
cabulary distributions between domains effects the
ported parser performance more significantly than
the differences in syntactic structure distributions.
We would like to test this hypothesis in our frame-
work. The probabilistic model (Henderson, 2003)
allows us to distinguish between those parameters
responsible for the distributions of individual vocab-
ulary items, and those parameters responsible for the
distributions of structural decisions, as described in
more details in section 4.2. We train two additional
models, one which uses a kernel defined in terms of
only vocabulary parameters, and one which uses a
kernel defined in terms of only structure parameters.
By comparing the performance of these models and
the model with the combined kernel, we can draw
conclusion on the relative importance of vocabulary
and syntactic structures for parser portability.

4 An Application to a Neural Network
Statistical Parser

Data-defined kernels can be applied to any kind
of parameterized probabilistic model, but they are
particularly interesting for latent variable models.
Without latent variables (e.g. for PCFG models), the
features of the data-defined kernel (except for the
first feature) are a function of the counts used to esti-
mate the model. For a PCFG, each such feature is a
function of one rule’s counts, where the counts from
different candidates are weighted using the probabil-
ity estimates from the model. With latent variables,
the meaning of the variable (not just its value) is
learned from the data, and the associated features of
the data-defined kernel capture this induced mean-
ing. There has been much recent work on latent
variable models (e.g. (Matsuzaki et al., 2005; Koo
and Collins, 2005)). We choose to use an earlier
neural network based probabilistic model of pars-

ing (Henderson, 2003), whose hidden units can be
viewed as approximations to latent variables. This
parsing model is also a good candidate for our exper-
iments because it achieves state-of-the-art results on
the standard Wall Street Journal (WSJ) parsing prob-
lem (Henderson, 2003), and data-defined kernels de-
rived from this parsing model have recently been
used with the Voted Perceptron algorithm on the
WSJ parsing task, achieving a significant improve-
ment in accuracy over the neural network parser
alone (Henderson and Titov, 2005).

4.1 TheProbabilistic Modd of Parsing

The probabilistic model of parsing in (Henderson,
2003) has two levels of parameterization. The first
level of parameterization is in terms of a history-
based generative probability model. These param-
eters are estimated using a neural network, the
weights of which form the second level of param-
eterization. This approach allows the probability
model to have an infinite number of parameters; the
neural network only estimates the bounded number
of parameters which are relevant to a given partial
parse. We define our kernels in terms of the second
level of parameterization (the network weights).

A history-based model of parsing first defines a
one-to-one mapping from parse trees to sequences
of parser decisions, dy,..., d,,, (i.e. derivations). Hen-
derson (2003) uses a form of left-corner parsing
strategy, and the decisions include generating the
words of the sentence (i.e. it is generative). The
probability of a sequence P(ds,...,d,,) is then de-
composed into the multiplication of the probabilities
of each parser decision conditioned on its history of
previous decisions IT; P(d;|d1,..., d;—1).

4.2 Deriving the Kerne

The complete set of neural network weights isn’t
used to define the kernel, but instead reparameteriza-
tion is applied to define a third level of parameteriza-
tion which only includes the network’s output layer
weights. As suggested in (Henderson and Titov,
2005) use of the complete set of weights doesn’t
lead to any improvement of the resulting reranker
and makes the reranker training more computation-
ally expensive.

Furthermore, to assess the contribution of vocab-
ulary and syntactic structure differences (see sec-



tion 3.3), we divide the set of the parameters into vo-
cabulary parameters and structural parameters. We
consider the parameters used in the estimation of the
probability of the next word given the history repre-
sentation as vocabulary parameters, and the param-
eters used in the estimation of structural decision
probabilities as structural parameters. We define the
kernel with structural features as using only struc-
tural parameters, and the kernel with vocabulary fea-
tures as using only vocabulary parameters.

5 Experimental Results

We used the Penn Treebank WSJ corpus and the
Brown corpus to evaluate our approach. We used
the standard division of the WSJ corpus into train-
ing, validation, and testing sets. In the Brown corpus
we ran separate experiments for sections F (informa-
tive prose: popular lore), K (imaginative prose: gen-
eral fiction), N (imaginative prose: adventure and
western fiction), and P (imaginative prose: romance
and love story). These sections were selected be-
cause they are sufficiently large, and because they
appeared to be maximally different from each other
and from WSJ text. In each Brown corpus section,
we selected every third sentence for testing. From
the remaining sentences, we used 1 sentence out of
20 for the validation set, and the remainder for train-
ing. The resulting datasets sizes are presented in ta-
ble 1.

For the large margin classifier, we used the SVM-
Struct (Tsochantaridis et al., 2004) implementation
of SVM, which rescales the margin with F; mea-
sure of bracketed constituents (see (Tsochantaridis
et al., 2004) for details). Linear slack penalty was
employed.?

5.1 Experimentson Transferring across
Domains

To evaluate the pure porting scenario (transferring),
described in section 3.1, we trained the SSN pars-
ing model on the WSJ corpus. For each tag, there is
an unknown-word vocabulary item which is used for
all those words not sufficiently frequent with that tag
to be included individually in the vocabulary. In the

2Training of the SVM takes about 3 hours on a standard
desktop PC. Running the SVM is very fast, once the probabilis-
tic model has finished computing the probabilities needed to
select the candidate parses.
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testing training | validation
WSJ 2,416 39,832 1,346
(54,268) | (910,196) | (31,507)
Brown F 1,054 2,005 105
(23,722) | (44,928) (2,300)
Brown K 1,293 2,459 129
(21,215) | (39,823) (1,971)
Brown N 1471 2,797 137
(22,142) | (42,071) (2,025)
Brown P 1,314 2,503 125
(21,763) | (41,112) | (1,943)

Table 1: Number of sentences (words) for each
dataset.

vocabulary of the parser, we included the unknown-
word items and the words which occurred in the
training set at least 20 times. This led to the vo-
cabulary of 4,215 tag-word pairs.

We derived the kernel from the trained model for
each target section (F, K, N, P) using reparameteriza-
tion discussed in section 3.1: we included in the vo-
cabulary all the words which occurred at least twice
in the training set of the corresponding section. This
approach led to a smaller vocabulary than that of the
initial parser but specifically tied to the target do-
main (3,613, 2,789, 2,820 and 2,553 tag-word pairs
for sections F, K, N and P respectively). There is no
sense in including the words from the WSJ which do
not appear in the Brown section training set because
the classifier won’t be able to learn the correspond-
ing components of its decision vector. The results
for the original probabilistic model (SSN-WSJ) and
for the kernel method (TOP-Transfer) on the testing
set of each section are presented in table 2.3

To evaluate the relative contribution of our porting
technique versus the use of the TOP kernel alone,
we also used this TOP kernel to train an SVM on the
WSJ corpus. We trained the SVM on data from the
development set and section 0, so that the size of this
dataset (3,267 sentences) was about the same as for
each Brown section.* This gave us a “TOP-WSJ”

3All our results are computed with the evalb program fol-
lowing the standard criteria in (Collins, 1999).

“We think that using an equivalently sized dataset provides
a fair test of the contribution of the TOP kernel alone. It would
also not be computationally tractable to train an SVM on the full
WSJ dataset without using different training techniques, which
would then compromise the comparison.



model, which we tested on each of the four Brown
sections. In each case, the TOP-WSJ model did
worse than the original SSN-WSJ model, as shown
in table 2. This makes it clear that we are getting no
improvement from simply using a TOP kernel alone
or simply using more data, and all our improvement
is from the proposed porting method.

5.2 Experimentson Focusing on a Subdomain

To perform the experiments on the approach sug-
gested in section 3.2 (focusing), we trained the SSN
parser on the WSJ training set joined with the train-
ing set of the corresponding section. We included
in the vocabulary only words which appeared in the
joint training set at least 20 times. Resulting vocab-
ularies comprised 4,386, 4,365, 4,367 and 4,348 for
sections F, K, N and P, respectively.> Experiments
were done in the same way as for the parser transfer-
ring approach, but reparameterization was not per-
formed. Standard measures of accuracy for the orig-
inal probabilistic model (SSN-WSJ+Br) and the ker-
nel method (TOP-Focus) are also shown in table 2.

For the sake of comparison, we also trained the
SSN parser on only training data from one of the
Brown corpus sections (section P), producing a
“SSN-Brown” model. This model achieved an F}
measure of only 81.0% for the P section testing
set, which is worse than all the other models and
is 3% lower than our best results on this testing set
(TOP-Focus). This result underlines the need to port
parsers from domains in which there are large anno-
tated datasets.

5.3 Experiments Comparing Vocabulary to
Structure

We conducted the same set of experiments with the
kernel with vocabulary features (TOP-Voc-Transfer
and TOP-Voc-Focus) and with the kernel with the
structural features (TOP-Str-Transfer and TOP-Str-
Focus). Average results for classifiers with these
kernels, as well as for the original kernel and the
baseline, are presented in table 3.

SWe would expect some improvement if we used a smaller
threshold on the target domain, but preliminary results suggest
that this improvement would be small.
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section | LR | LP | Fg—y
TOP-WSJ F 83.9 | 849 | 84.4
SSN-WSJ F 84.4 | 85.2 | 84.8
TOP-Transfer F 845 | 85.6 | 85.0
SSN-WSJ+Br F 84.2 | 85.2 | 84.7
TOP-Focus F 84.6 | 86.0 | 85.3
TOP-WSJ K 81.8 | 823 | 82.1
SSN-WSJ K 82.2 | 82.6 | 824
TOP-Transfer K 82.4 | 835 | 83.0
SSN-WSJ+Br K 83.1 | 84.2 | 83.6
TOP-Focus K 83.6 | 85.0 | 84.3
TOP-WSJ N 83.3 | 845 | 83.9
SSN-WSJ N 83.5 | 84.6 | 84.1
TOP-Transfer N 84.3 | 85.7 | 85.0
SSN-WSJ+Br N 85.0 | 86.5 | 85.7
TOP-Focus N 85.0 | 86.7 | 85.8
TOP-WSJ P 81.3 | 82.1 | 81.7
SSN-WSJ P 82.3 | 83.0 | 82.6
TOP-Transfer P 82.7 | 83.8 | 83.2
SSN-WSJ+Br P 83.1 | 84.3 | 83.7
TOP-Focus P 83.3 | 84.8 | 84.0

Table 2: Percentage labeled constituent recall (LR),
precision (LP), and a combination of both (Fg—1) on
the individual test sets.

5.4 Discussion of Results

For the experiments which directly test the useful-
ness of our proposed porting technique (SSN-WSJ
versus TOP-Transfer), our technique demonstrated
improvement for each of the Brown sections (ta-
ble 2), and this improvement was significant for
three out of four of the sections (K, N, and P).6 This
demonstrates that data-defined kernels are an effec-
tive way to port parsers to a new domain.

For the experiments which combine training a
new probability model with our porting technique
(SSN-WSJ+Br versus TOP-Focus), our technique
still demonstrated improvement over training alone.
There was improvement for each of the Brown sec-
tions, and this improvement was significant for two

5We measured significance in i measure at the 5% level
with the randomized significance test of (Yeh, 2000). We think
that the reason the improvement on section F was only signif-
icant at the 10% level was that the baseline model (SSN-WSJ)
was particularly lucky, as indicated by the fact that it did even
better than the model trained on the combination of datasets
(SSN-WSJ+Br).



LR | LP | Fg—;
SSN-WSJ 83.1 | 83.8 | 835
TOP-Transfer 835 | 84.7 | 84.1
TOP-Voc-Transfer || 83.5 | 84.7 | 84.1
TOP-Str-Transfer || 83.1 | 84.3 | 83.7
SSN-WSJ+Br 83.8 | 85.0 | 84.4
TOP-Focus 84.1 | 85.6 | 84.9
TOP-Voc-Focus 84.1 | 85.6 | 84.8
TOP-Str-Focus 83.9 | 854 | 84.7

Table 3. Average accuracy of the models on chapters
F, K, N and P of the Brown corpus.

out of four of the sections (F and K). This demon-
strates that, even when the probability model is well
suited to the target domain, there is still room for
improvement from using data-defined kernels to op-
timize the parser specifically to the target domain
without losing information about the source domain.

One potential criticism of these conclusions is that
the improvement could be the result of reranking
with the TOP kernel, and have nothing to do with
porting. The lack of an improvement in the TOP-
WSJ results discussed in section 5.1 clearly shows
that this cannot be the explanation. The opposite
criticism is that the improvement could be the result
of optimizing to the target domain alone. The poor
performance of the SSN-Brown model discussed in
section 5.2 makes it clear that this also cannot be
the explanation. Therefore reranking with data de-
fined kernels must be both effective at preserving
information about the source domain and effective
at specializing to the target domain.

The experiments which test the hypothesis that
differences in vocabulary distributions are more im-
portant than difference in syntactic structure distri-
butions confirm this belief. Results for the classi-
fier which uses the kernel with only vocabulary fea-
tures are better than those for structural features in
each of the four sections with both the Transfer and
Focus scenarios. In addition, comparing the results
of TOP-Transfer with TOP-Voc-Transfer and TOP-
Focus with TOP-Voc-Focus, we can see that adding
structural features in TOP-Focus and TOP-Transfer
leads to virtually no improvement. This suggest that
differences in vocabulary distributions are the only
issue we need to address, although this result could
possibly also be an indication that our method did
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not sufficiently exploit structural differences.

In this paper we concentrate on the situation
where a parser is needed for a restricted target do-
main, for which only a small amount of data is avail-
able. We believe that this is the task which is of
greatest practical interest. For this reason we do not
run experiments on the task considered in (Gildea,
2001) and (Roark and Bacchiani, 2003), where they
are porting from the restricted domain of the WSJ
corpus to the more varied domain of the Brown cor-
pus as a whole. However, to help emphasize the
success of our proposed porting method, it is rele-
vant to show that even our baseline models are per-
forming better than this previous work on parser
portability. We trained and tested the SSN parser in
their “de-focusing” scenario using the same datasets
as (Roark and Bacchiani, 2003). When trained
only on the WSJ data (analogously to the SSN-
WSJ baseline for TOP-Transfer) it achieves results
of 82.9%/83.4% LR/LP and 83.2% I, and when
trained on data from both domains (analogously
to the SSN-WSJ+Br baselines for TOP-Focus) it
achieves results of 86.3%/87.6% LR/LP and 87.0%
Fy. These results represent a 2.2% and 1.3% in-
crease in I over the best previous results, respec-
tively (see the discussion of (Roark and Bacchiani,
2003) below).

6 Related Work

Most research in the field of parsing has focused on
the Wall Street Journal corpus. Several researchers
have addressed the portability of these WSJ parsers
to other domains, but mostly without addressing the
issue of how a parser can be designed specifically
for porting to another domain. Unfortunately, no di-
rect empirical comparison is possible between our
results and results with other parsers, because there
is no standard portability benchmark to date where a
small amount of data from a target domain is used.
(Ratnaparkhi, 1999) performed portability exper-
iments with a Maximum Entropy parser and demon-
strated that the parser trained on WSJ achieves far
worse results on the Brown corpus sections. Adding
a small amount of data from the target domain im-
proves the results, but accuracy is still much lower
than the results on the WSJ. They reported results
when their parser was trained on the WSJ training



set plus a portion of 2,000 sentences from a Brown
corpus section. They achieved 80.9%/80.3% re-
call/precision for section K, and 80.6%/81.3% for
section N.” Our analogous method (TOP-Focus)
achieved much better accuracy (3.7% and 4.9% bet-
ter F1, respectively).

In addition to portability experiments with the
parsing model of (Collins, 1997), (Gildea, 2001)
provided a comprehensive analysis of parser porta-
bility. On the basis of this analysis, a tech-
nique for parameter pruning was proposed leading
to a significant reduction in the model size with-
out a large decrease of accuracy. Gildea (2001)
only reports results on sentences of 40 or less
words on all the Brown corpus sections combined,
for which he reports 80.3%/81.0% recall/precision
when training only on data from the WSJ corpus,
and 83.9%/84.8% when training on data from the
WSJ corpus and all sections of the Brown corpus.

(Roark and Bacchiani, 2003) performed experi-
ments on supervised and unsupervised PCFG adap-
tation to the target domain. They propose to use
the statistics from a source domain to define pri-
ors over weights. However, in their experiments
they used only trivial sub-cases of this approach,
namely, count merging and model interpolation.
They achieved very good improvement over their
baseline and over (Gildea, 2001), but the absolute
accuracies were still relatively low (as discussed
above). They report results with combined Brown
data (on sentences of 100 words or less), achieving
81.3%/80.9% when training only on the WSJ cor-
pus and 85.4%/85.9% with their best method using
the data from both domains.

7 Conclusions

This paper proposes a novel technique for improv-
ing parser portability, applying parse reranking with
data-defined kernels. First a probabilistic model of
parsing is trained on all the available data, including
a large set of data from the source domain. This
model is used to define a kernel over parse trees.
Then this kernel is used in a large margin classifier

"The sizes of Brown sections reported in (Ratnaparkhi,
1999) do not match the sizes of sections distributed in the Penn
Treebank 3.0 package, so we couldn’t replicate their split. We
suspect that a preliminary version of the corpus was used for
their experiments.
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trained on a small set of data only from the target do-
main. This classifier is used to rerank the top parses
produced by the probabilistic model on the target do-
main. Experiments with a neural network statistical
parser demonstrate that this approach leads to im-
proved parser accuracy on the target domain, with-
out any significant increase in computational cost.
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Abstract phrase (QP in the Penn Treebank) appears in a sen-
tence, the likelihood of finding another QP in that
same sentence is greatly increased. This kind of ef-
fect is neither surprising nor unknown — for exam-
ple, Bock and Loebell (1990) show experimentally
that human language generation demonstrates prim-
ing effects. The mediating variables can not only in-
clude priming effects but also genre or stylistic con-
ventions, as well as many other factors which are not
adequately modeled by local phrase structure.

A reasonable way to add a latent variable to a
generative model is to use a mixture of estimators,
in this case a mixture of PCFGs (see Section 3).
The general mixture of estimators approach was first
suggested in the statistics literature by Titterington
The probabilistic context-free grammar (PCFG) foret al. (1962) and has since been adopted in machine
malism is the basis of most modern statisticalearning (Ghahramani and Jordan, 1994). In a mix-
parsers. The symbols in a PCFG encode contextire approach, we have a new global variable on
freedom assumptions about statistical dependenciesich all PCFG productions for a given sentence
in the derivations of sentences, and the relative coman be conditioned. In this paper, we experiment
ditional probabilities of the grammar rules inducewith a finite mixture of PCFGs. This is similar to the
scores on trees. Compared to a basic treebatitent nonterminals used in Matsuzaki et al. (2005),
grammar (Charniak, 1996), the grammars of highbut because the latent variable we use is global, our
accuracy parsers weaken independence assumpti@pproach is more oriented toward learning non-local
by splitting grammar symbols and rules with ei-structure. We demonstrate that a mixture fit with the
ther lexical (Charniak, 2000; Collins, 1999) or non-EM algorithm gives improved parsing accuracy and
lexical (Klein and Manning, 2003; Matsuzaki et al. test data likelihood. We then investigate what is and
2005) conditioning information. While such split-is not being learned by the latent mixture variable.
ting, or conditioning, can cause problems for stawhile mixture components are difficult to interpret,
tistical estimation, it can dramatically improve thewe demonstrate that the patterns learned are better
accuracy of a parser. than random splits.

However, the configurations exploited in PCFG
parsers are quite local: rules’ probabilities may de2  Empirical Motivation
pend on parents or head words, but do not depend
on arbitrarily distant tree configurations. For examit is commonly accepted that the context freedom
ple, it is generally not modeled that if one quantifiemssumptions underlying the PCFG model are too

While most work on parsing with PCFGs
has focused on local correlations between
tree configurations, we attempt to model
non-local correlations using a finite mix-
ture of PCFGs. A mixture grammar fit
with the EM algorithm shows improve-
ment over a single PCFG, both in parsing
accuracy and in test data likelihood. We
argue that this improvement comes from
the learning of specialized grammars that
capture non-local correlations.

1 Introduction
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increasedCD NN TO NP IN NP VP — VBD NP NP PP 28.4
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11 % to QP from QP ADJP— QP 13.3
T T PP— IN NP ADVP 12.3

#CD CD # CD CD NP — NP PRN 12.3

[ [ I [ VP — VBN PP PP PP 11.6

# 2.5 billion # 2.25 hillion ADVP — NP RBR 10.1

Figure 1: Self-triggering: QP- # CD CD. If one British financial occurs in the sentence, thabpbility of
seeing a second one in the same sentence is highly inredsexk i$ also a similar, but weaker, correlation
for the American financial ($). On the right hand side we shbe/ten rules whose likelihoods are most
increased in a sentence containing this rule.

strong and that weakening them results in bettawe aim to capture some of this interdependence be-
models of language (Johnson, 1998; Gildea, 200tween rules.
Klein and Manning, 2003). In particular, certain Correlations at short distances have been cap-
grammar productions often cooccur with other protured effectively in previous work (Johnson, 1998;
ductions, which may be either near or distant in th&lein and Manning, 2003); vertical markovization
parse tree. In general, there exist three types of cq@annotating nonterminals with their ancestor sym-
relations: (i) local (e.g. parent-child), (ii) non-local, bols) does this by simply producing a different dis-
and (iii) self correlations (which may be local ortribution for each set of ancestors. This added con-
non-local). text leads to substantial improvement in parsing ac-
In order to quantify the strength of a correlation,curacy. With local correlations already well cap-
we use a likelihood ratio (LR). For two rules % «  tured, our main motivation for introducing a mix-

and Y — (3, we compute ture of grammars is to capture long-range rule cooc-
currences, something that to our knowledge has not
P XY i
LR(X — a,Y — f) = (o, BIX,Y) been done successfully in the past.
P(a|X,Y)P(B|X,Y) As an example, the rule QP # CD CD, rep-

_ resenting a quantity of British currency, cooc-
This measures how much more often the rules o¢y,rs with itself 132 times as often as if oc-

cur together than they would in the case of indepensrrences were independent.  These cooccur-

dence. For rules that are correlated, this score Wilknces appear in cases such as seen in Figure 1.

be high & 1); if the rules are independent, it will gimilarly, the rules VP— VBD NP PP, S and

be around 1, and if they are anti-correlated, it willb&;p _, vBG NP PP PP cooccur in the Penn Tree-

near 0. bank 100 times as often as we would expect if they
Among the correlations present in the Penn Treguere independent. They appear in sentences of a

bank, the local correlations are the strongest onegary particular form, telling of an action and then

they contribute 65% of the rule pairs with LR scoregiving detail about it; an example can be seen in Fig-

above 90 and 85% of those with scores over 20Qye 2.

Non-local and self correlations are in general com-

mon but weaker, with non-local correlations con3 Mixtures of PCEGs

tributing approximately 85% of all correlatichsBy

adding a latent variable conditioning all productions|n a probabilistic context-free grammar (PCFG),

- each rule X— « is associated with a conditional
1Q_uantifying the amount of non-local correlation is prob-probability P(a|X) (Manning and Schiitze, 1999).

lematic; most pairs of cooccuring rules are non-local ant wi Jogether, these rules induce a distribution over trees

due to small sample effects, have LR ratios greater thani ev X X X
if they were truly independent in the limit. P(T). A mixture of PCFGs enriches the basic model
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Figure 2. Tree fragments demonstrating coocurrences. n@)(@ Repeated formulaic structure in one
grammar: rules VR VBD NP PP, S and VR> VBG NP PP PP and rules VP VBP RB ADJP
and VP— VBP ADVP PP. (b) Sibling effects, though not parallel sturet rules: NX— NNS and
NX — NN NNS. (d) A special structure for footnotes has rules ROOX and X — SYM coocurring
with high probability.

by allowing for multiple grammars(;, which we 3.1 Hierarchical Estimation

call |nd|V|du\;a\1/I_tﬁrar:1||’nars 6;5 oppos?td to a single So far, there is nothing in the formal mixture model
grammar. thout foss of generality, we can asg, say that rule probabilities in one component have
sume that the individual grammars share the sa

t of rul Theref h original rule_x %y relation to those in other components. However,
set ot rles.  Therelore, each onginal rue=a o have a strong intuition that many rules, such as
is now associated with a vector of probabilities

. . - . NP — DT NN, will be common in all mixture com-
P(a’X’.Z)' I, |n_add|t|on, t_h_e_ mc!mdual grammars ponents. Moreover, we would like to pool our data
are aSS|gned prlor_probqblllFlés(_z), then the gnure across components when appropriate to obtain more
mixture induces a joint distribution oveerivations reliable estimators
P(T,i) = P(i)P(T|¢) from which we recover a dis- '

N ) This can be accomplished with a hierarchical es-
tribution over trees by summing over the gramma{. . .
indexi imator for the rule probabilities. We introduce a

shared grammaiz;. Associated to each rewrite is
now a latent variabld. = {s,1} which indicates
As a generative derivation process, we can thinwhether the used rule was derived from the shared

of this in two ways. First, we can imagir@ to be grammarG; or one of the individual grammars;:
a latent variable on which all productions are con- P(a|X, i)
ditioned. This view emphasizes that any otherwise ] )
unmodeled variable or variables can be captured by AP(a]X,1,6=1) + (1 = )P(alX, 4, £=5),

the latent variableg7. Second, we can imagine se-where A\ = P(¢ = 1) is the probability of
lecting an individual gramma¢; and then gener- choosing the individual grammar and can also
ating a sentence using that grammar. This view ise viewed as a mixing coefficient. Note that
associated with the expectation that there are muli®(«| X, i,/=s) = P(«a|X,¢=Ss), since the shared
ple grammars for a language, perhaps representiggammar is the same for all individual grammars.
different genres or styles. Formally, of course, th&his kind of hierarchical estimation is analogous to
two views are the same. that used in hierarchical mixtures of naive-Bayes for
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text categorization (McCallum et al., 1998). 3.3 Learning: Training

The hierarchical estimator is most easily detraining a mixture of PCFGs from a treebank is an
scribed as a generative model. First, we choosejgeomplete data problem. We need to decide which
individual grammar;. Then, for each_nontermlnal, individual grammar gave rise to a given observed
we select a level from the back-off hierarchy gramyee. Moreover, we need to select a generation path
mar: the individual grammat; with probability A, (individual grammar or shared grammar) for each
and the shared grammaf; with probability 1 — A. e in the tree. To learn estimate parameters, we

Finally, we select a rewrite from the chosen level. Te 5, use a standard Expectation-Maximization (EM)
emphasize: the derivation of a phrase-structure @@ proach.

in a hierarchically-estimated mixture of PCFGs in- | the E-step, we compute the posterior distribu-
volves two kinds of hidden variables: the grammafiong of the latent variables, which are in this case
G used for each sentence, and the lelielised at otk the componert of each sentence and the hier-
each tree node. These hidden variables will 'mpa%ﬁchy levelL of each rewrite. Note that, unlike dur-

both learning and inference in this model. ing parsing, there is no uncertainty over the actual
3.2 Inference: Parsing rules used, so the E-step does not require summing

L . . over possible trees. Specifically, for the variable
Parsing involves inference for a given senteiste we have

One would generally like to calculate theost prob- P(T. 1)
able parse- that is, the tred” which has the high-  P(i|T) = ——~-"—.

est probability P(T'|S) « 3, P())P(Ti). How- 2; P(T5)

ever, this is difficult for mixture models. For a singleFor the hierarchy level we can write
grammar we have: P =1|X — a,i,T) =

P(T,i) = P(i) P(a|X, ).
X—I;IET )‘P(O“ngzl)

This score decomposes into a product and it is sim- AP(alX,i, 6=1) + (1 = A)P(a] X, (=5)’

ple to construct a dynamic programming algorithmyhere we slightly abuse notation since the rule
to find the optimall’ (Baker, 1979). However, fora x _, , can occur multiple times in a tree T.

mixture of grammars we need to sum over the indi- In the M-step, we find the maximum-likelihood

vidual grammars: model parameters given these posterior assign-
Z P(T,i) = Z P(i) H P(alX, ). ments; i.e., we find the best grammars given the way
P i X oaeT the training data’s rules are distributed between in-

Because of the outer sum, this expression umcog_ivi_dual and shared_grammars. This is done_ exactly
tunately does not decompose into a product ovéS in the standard single-grammar model using refa-
scores of subparts. In particular, a tree which maxiiVe €xpected frequencies. The updates are shown in
mizes the sum need not be a top tree for any singﬁa(':“‘-:}[ure 3.3, wher§ = {T1,T3,...} is the training

set.

component. o . . ,
As is true for many other grammar formalisms in We initialize the algorithm by setting the assign-

which there is a derivation / parse distinction, an alM€nts from sentences to grammars to be uniform
ternative to finding the most probable parse is to fingetween all the individual grammars, with a small
the most probable derivatior(Vijay-Shankar and andom perturbation to break symmetry.
Jos_h|,11985; Bod, 1992; Steeo_lm_an, 2000). Ipstee&:l Results

of finding the treel” which maximizesy_, P(T, 1),

we find both the tre@” and componentwhich max- We ran our experiments on the Wall Street Jour-
imize P(T, 7). The most probable derivation can benal (WSJ) portion of the Penn Treebank using the
found by simply doing standard PCFG parsing oncstandard setup: We trained on sections 2 to 21,
for each component, then comparing the resultingnd we used section 22 as a validation set for tun-
trees’ likelihoods. ing model hyperparameters. Results are reported
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Figure 3: Parameter updates. The shared grammar’s pararaetere-estimated in the same manner.

P(i)

P(alX, il =1) —

on all sentences of 40 words or less from sectiothe data. Since local correlations can be captured
23. We use a markovized grammar which was arby adding parent annotation, we combine our mix-
notated with parent and sibling information as d@ure model with a grammar in which node probabil-
baseline (see Section 4.2). Unsmoothed maximunities depend on the parent (the last vertical ancestor)
likelihood estimates were used for rule probabili-and the closest sibling (the last horizontal ancestor).
ties as in Charniak (1996). For the tagging probaKlein and Manning (2003) refer to this grammar as
bilities, we used maximume-likelihood estimates fora markovized grammar of vertical order = 2 and hor-
P(tag|lword). Add-one smoothing was applied toizontal order = 1. Because many local correlations
unknown and rare (seen ten times or less duringre captured by the markovized grammar, there is a
training) words before inverting those estimates tgreater hope that observed improvements stem from
give P(word|tag). Parsing was done with a sim- non-local correlations.
ple Java implementation of an agenda-based chartin fact, we find that the mixture does capture
parser. non-local correlations. We measure the degree to
which a grammar captures correlations by calculat-
ing the total squared error between LR scores of the
The EM algorithm is guaranteed to continuously ingrammar and corpus, weighted by the probability
crease the likelihood on the training set until converef seeing nonterminals. This is 39422 for a sin-
gence to a local maximum. However, the likelihoodyle PCFG, but drops to 37125 for a mixture with
on unseen data will start decreasing after a numbéve individual grammars, indicating that the mix-
of iterations, due to overfitting. This is demonstratedure model better captures the correlations present
in Figure 4. We use the likelihood on the validationin the corpus. As a concrete example, in the Penn
set to stop training before overfitting occurs. Treebank, we often see the rules FRAGADJP

In order to evaluate the performance of our modebhnd PRN— , SBAR , cooccurring; their LR is 134.
we trained mixture grammars with various number§Vhen we learn a single markovized PCFG from the
of components. For each configuration, we used EMeebank, that grammar gives a likelihood ratio of
to obtain twelve estimates, each time with a differenbnly 61. However, when we train with a hierarchi-
random initialization. We show the;Fscore for the cal model composed of a shared grammar and four
model with highest log-likelihood on the validationindividual grammars, we find that the grammar like-
set in Figure 4. The results show that a mixture ofihood ratio for these rules goes up to 126, which is
grammars outperforms a standard, single grammaery similar to that of the empirical ratio.
PCFG parset.

4.1 Parsing Accuracy

4.3 Genre

4.2 Capturing Rule Correlations _ .
As described in Section 2, we hope that the mix--r.he mixture of grammars model can equwale_ntly be
. . . viewed as capturing either non-local correlations or
ture model will capture long-range correlations in_ . . : .
variations in grammar. The latter view suggests that

’This effect is statistically significant. the model might benefit when the syntactic structure
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Figure 4: (a) Log likelihood of training, validation, andstedata during training (transformed to fit on the
same plot). Note that when overfitting occurs the likelihoodhe validation and test data starts decreasing
(after 13 iterations). (b) The accuracy of the mixture ofngnaars model withh = 0.4 versus the number of
grammars. Note the improvement over a 1-grammar PCFG model.

varies significantly, as between different genres. Werop (R = 79.37, LL=-242100). When we use
tested this with the Brown corpus, of which we usedEM with a random initialization, so that sentences
8 different genresf(g, k, I, m, n, p, andr). We fol- are not assigned directly to grammars, the scores go
low Gildea (2001) in using the ninth and tenth sendown even further (F= 79.16, LL=-242459). This
tences of every block of ten as validation and teshdicates that the model can capture variation be-
data, respectively, because a contiguous test sectitmeen genres, but that maximum training data likeli-
might not be representative due to the genre vari®tood does not necessarily give maximum accuracy.
tion. Presumably, with more genre-specific data avail-
To test the effects of genre variation, we evaluable, learning would generalize better. So, genre-
ated various training schemes on the Brown corpuspecific grammar variation is real, but it is difficult
The single grammar baseline for this corpus givet® capture via EM.
F1 = 79.75, with log likelihood (LL) on the testing ,
data=-242561. The first test, then, was to estimafé4 Smoothing Effects
each individual grammar from only one genre. WanNhile the mixture of grammars captures rule cor-
did this by assigning sentences to individual grameelations, it may also enhance performance via
mars by genre, without using any EM training. Thissmoothing effects. Splitting the data randomly could
increases the data likelihood, though it reduces theroduce a smoothed shared gramm@r, that is
Fy score (k = 79.48, LL=-242332). The increase a kind of held-out estimate which could be supe-
in likelihood indicates that therare genre-specific rior to the unsmoothed ML estimates for the single-
features that our model can represent. (The lack @dmponent grammar.
F1 improvement may be attributed to the increased We tested the degree of generalization by eval-
difficulty of estimating rule probabilities after divid- uating the shared grammar alone and also a mix-
ing the already scant data available in the Brown cokure of the shared grammar with the known sin-
pus. This small quantity of data makes overfittingyle grammar. Those shared grammars were ex-
almost certain.) tracted after training the mixture model with four in-
However, local minima and lack of data cause difdividual grammars. We found that both the shared
ficulty in learning genre-specific features. If we stargrammar alone (=79.13, LL=-333278) and the
with sentences assigned by genre as before, but thetmared grammar mixed with the single grammar
train with EM, both F and test data log likelihood (F1=79.36, LL=-331546) perform worse than a sin-
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gle PCFG (F=79.37, LL=-327658). This indicates C. Manning and H. Schiitze. 1998oundations of Sta-
that smoothing is not the primary learning effect tistical Natural Language Processinghe MIT Press,
contributing to increased . Cambridge, Massachusetts.

T. Matsuzaki, Y. Miyao, and J. Tsujii. 2005. Probabilis-

5 Conclusions tic CFG with latent annotations. IRroc. of the 43rd

. . Meeting of the Association for Computational Linguis-
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Abstract

We present an improved approach for
learning dependency parsers from tree-
bank data. Our technique is based on two
ideas for improving large margin train-
ing in the context of dependency parsing.
First, we incorporate local constraints that
enforce the correctness of each individ-
ual link, rather than just scoring the global
parse tree. Second, to cope with sparse
data, we smooth the lexical parameters ac-
cording to their underlying word similar-
ities using Laplacian Regularization. To
demonstrate the benefits of our approach,
we consider the problem of parsing Chi-
nese treebank data using only lexical fea-
tures, that is, without part-of-speech tags
or grammatical categories. We achieve
state of the art performance, improving
upon current large margin approaches.

1 Introduction

Over the past decade, there has been tremendous
progress on learning parsing models from treebank
data (Collins, 1997; Charniak, 2000; Wang et al.,
2005; McDonald et al., 2005). Most of the early
work in this area was based on postulating gener-
ative probability models of language that included
parse structure (Collins, 1997). Learning in this con-
text consisted of estimating the parameters of the
model with simple likelihood based techniques, but
incorporating various smoothing and back-off esti-
mation tricks to cope with the sparse data problems
(Collins, 1997; Bikel, 2004). Subsequent research
began to focus more on conditional models of parse
structure given the input sentence, which allowed
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discriminative training techniques such as maximum
conditional likelihood (i.e. “maximum entropy”)
to be applied (Ratnaparkhi, 1999; Charniak, 2000).
In fact, recently, effective conditional parsing mod-
els have been learned using relatively straightfor-
ward “plug-in” estimates, augmented with similar-
ity based smoothing (Wang et al., 2005). Currently,
the work on conditional parsing models appears to
have culminated in large margin training (Taskar
et al., 2003; Taskar et al., 2004; Tsochantaridis et
al., 2004; McDonald et al., 2005), which currently
demonstrates the state of the art performance in En-
glish dependency parsing (McDonald et al., 2005).

Despite the realization that maximum margin
training is closely related to maximum conditional
likelihood for conditional models (McDonald et
al., 2005), a sufficiently unified view has not yet
been achieved that permits the easy exchange of
improvements between the probabilistic and non-
probabilistic approaches. For example, smoothing
methods have played a central role in probabilistic
approaches (Collins, 1997; Wang et al., 2005), and
yet they are not being used in current large margin
training algorithms. However, as we demonstrate,
not only can smoothing be applied in a large mar-
gin training framework, it leads to generalization im-
provements in much the same way as probabilistic
approaches. The second key observation we make is
somewhat more subtle. It turns out that probabilistic
approaches pay closer attention to the individual er-
rors made by each component of a parse, whereas
the training error minimized in the large margin
approach—the “structured margin loss” (Taskar et
al., 2003; Tsochantaridis et al., 2004; McDonald et
al., 2005)—is a coarse measure that only assesses
the total error of an entire parse rather than focusing
on the error of any particular component.
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Figure 1: A dependency tree

In this paper, we make two contributions to the
large margin approach to learning parsers from su-
pervised data. First, we show that smoothing based
on lexical similarity is not only possible in the large
margin framework, but more importantly, allows
better generalization to new words not encountered
during training. Second, we show that the large mar-
gin training objective can be significantly refined to
assess the error of each component of a given parse,
rather than just assess a global score. We show that
these two extensions together lead to greater train-
ing accuracy and better generalization to novel input
sentences than current large margin methods.

To demonstrate the benefit of combining useful
learning principles from both the probabilistic and
large margin frameworks, we consider the prob-
lem of learning a dependency parser for Chinese.
This is an interesting test domain because Chinese
does not have clearly defined parts-of-speech, which
makes lexical smoothing one of the most natural ap-
proaches to achieving reasonable results (Wang et
al., 2005).

2 Lexicalized Dependency Parsing

A dependency tree specifies which words in a sen-
tence are directly related. That is, the dependency
structure of a sentence is a directed tree where the
nodes are the words in the sentence and links rep-
resent the direct dependency relationships between
the words; see Figure 1. There has been a grow-
ing interest in dependency parsing in recent years.
(Fox, 2002) found that the dependency structures
of a pair of translated sentences have a greater de-
gree of cohesion than phrase structures. (Cherry and
Lin, 2003) exploited such cohesion between the de-
pendency structures to improve the quality of word
alignment of parallel sentences. Dependency rela-
tions have also been found to be useful in informa-
tion extraction (Culotta and Sorensen, 2004; Yan-
garber et al., 2000).

A key aspect of a dependency tree is that it does
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not necessarily report parts-of-speech or phrase la-
bels. Not requiring parts-of-speech is especially
beneficial for languages such as Chinese, where
parts-of-speech are not as clearly defined as En-
glish. In Chinese, clear indicators of a word’s part-
of-speech such as suffixes “-ment”, “-ous” or func-
tion words such as “the”, are largely absent. One
of our motivating goals is to develop an approach to
learning dependency parsers that is strictly lexical.
Hence the parser can be trained with a treebank that
only contains the dependency relationships, making
annotation much easier.

Of course, training a parser with bare word-to-
word relationships presents a serious challenge due
to data sparseness. It was found in (Bikel, 2004) that
Collins’ parser made use of bi-lexical statistics only
1.49% of the time. The parser has to compute back-
off probability using parts-of-speech in vast majority
of the cases. In fact, it was found in (Gildea, 2001)
that the removal of bi-lexical statistics from a state
of the art PCFG parser resulted in very little change
in the output. (Klein and Manning, 2003) presented
an unlexicalized parser that eliminated all lexical-
ized parameters. Its performance was close to the
state of the art lexicalized parsers.

Nevertheless, in this paper we follow the re-
cent work of (Wang et al., 2005) and consider a
completely lexicalized parser that uses no parts-of-
speech or grammatical categories of any kind. Even
though a part-of-speech lexicon has always been
considered to be necessary in any natural language
parser, (Wang et al., 2005) showed that distributional
word similarities from a large unannotated corpus
can be used to supplant part-of-speech smoothing
with word similarity smoothing, to still achieve state
of the art dependency parsing accuracy for Chinese.

Before discussing our modifications to large mar-
gin training for parsing in detail, we first present the
dependency parsing model we use. We then give
a brief overview of large margin training, and then
present our two modifications. Subsequently, we
present our experimental results on fully lexical de-
pendency parsing for Chinese.

3 Dependency Parsing Model

Given a sentence W (w1, ...,wp) we are in-
terested in computing a directed dependency tree,



T, over W. In particular, we assume that a di-
rected dependency tree 1" consists of ordered pairs
(w; = w;) of words in W such that each word ap-
pears in at least one pair and each word has in-degree
at most one. Dependency trees are usually assumed
to be projective (no crossing arcs), which means that
if there is an arc (w; — wj), then w; is an ancestor
of all the words between w; and w;. Let (W) de-
note the set of all the directed, projective trees that
span W.

Given an input sentence W, we would like to be
able to compute the best parse; that is, a projective
tree, T' € ®(W), that obtains the highest “score”.
In particular, we follow (Eisner, 1996; Eisner and
Satta, 1999; McDonald et al., 2005) and assume that
the score of a complete spanning tree 1" for a given
sentence, whether probabilistically motivated or not,
can be decomposed as a sum of local scores for each
link (a word pair). In which case, the parsing prob-
lem reduces to

>

(w; —w; YET

T* = arg max
Te®(W)

s(w; = wj) (1)
where the score s(w; — w;) can depend on any
measurable property of w; and w; within the tree
T'. This formulation is sufficiently general to capture
most dependency parsing models, including proba-
bilistic dependency models (Wang et al., 2005; Eis-
ner, 1996) as well as non-probabilistic models (Mc-
Donald et al., 2005). For standard scoring functions,
parsing requires an O(n?®) dynamic programming
algorithm to compute a projective tree that obtains
the maximum score (Eisner and Satta, 1999; Wang
et al., 2005; McDonald et al., 2005).

For the purpose of learning, we decompose each
link score into a weighted linear combination of fea-
tures

= OTf(w,- — ’LUj) 2)

s(wi — wj)

where 0 are the weight parameters to be estimated
during training.

Of course, the specific features used in any real
situation are critical for obtaining a reasonable de-
pendency parser. The natural sets of features to con-
sider in this setting are very large, consisting at the
very least of features indexed by all possible lexical
items (words). For example, natural features to use
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for dependency parsing are indicators of each possi-
ble word pair

fuo(wi = wj) = Lw=u)Lw,;=v)

which allows one to represent the tendency of two
words, u and v, to be directly linked in a parse. In
this case, there is a corresponding parameter 8, to
be learned for each word pair, which represents the
strength of the possible linkage.

A large number of features leads to a serious risk
of over-fitting due to sparse data problems. The stan-
dard mechanisms for mitigating such effects are to
combine features via abstraction (e.g. using parts-
of-speech) or smoothing (e.g. using word similarity
based smoothing). For abstraction, a common strat-
egy is to use parts-of-speech to compress the feature
set, for example by only considering the tag of the
parent

foo(wi = wj) = Lpos(uws)=p) L (w;=v)

However, rather than use abstraction, we will follow
a purely lexical approach and only consider features
that are directly computable from the words them-
selves (or statistical quantities that are directly mea-
surable from these words).

In general, the most important aspect of a link
feature is simply that it measures something about
a candidate word pair that is predictive of whether
the words will actually be linked in a given sen-
tence. Thus, many other natural features, beyond
parts-of-speech and abstract grammatical categories,
immediately suggest themselves as being predictive
of link existence. For example, one very useful fea-
ture is simply the degree of association between the
two words as measured by their pointwise mutual
information

frm(wi = w;) = PMI(w;, w;)
(We describe in Section 6 below how we compute
this association measure on an auxiliary corpus of
unannotated text.) Another useful link feature is
simply the distance between the two words in the
sentence; that is, how many words they have be-
tween them

fasi(wi = wj;) = |position(w;) — position(w;)|



In fact, the likelihood of a direct link between two
words diminishes quickly with distance, which mo-
tivates using more rapidly increasing functions of
distance, such as the square

Faiso(wi — w;) = (position(w;) — position(w;))*

In our experiments below, we used only these sim-
ple, lexically determined features, {fuy}. femrs faist
and fyi, without the parts-of-speech {fp,}. Cur-
rently, we only use undirected forms of these fea-
tures, where, for example, f,, = fy, for all pairs
(or, put another way, we tie the parameters 6, =
0y, together for all u,v). Ideally, we would like
to use directed features, but we have already found
that these simple undirected features permit state of
the art accuracy in predicting (undirected) depen-
dencies. Nevertheless, extending our approach to di-
rected features and contextual features, as in (Wang
et al., 2005), remains an important direction for fu-
ture research.

4 Large Margin Training

Given a training set of sentences annotated with their
correct dependency parses, (W1,T4), ..., Wn, Tn),
the goal of learning is to estimate the parameters of
the parsing model, @. In particular, we seek values
for the parameters that can accurately reconstruct the
training parses, but more importantly, are also able
to accurately predict the dependency parse structure
on future test sentences.

To train @ we follow the large margin training ap-
proach of (Taskar et al., 2003; Tsochantaridis et al.,
2004), which has been applied with great success to
dependency parsing (Taskar et al., 2004; McDonald
et al., 2005). Large margin training can be expressed
as minimizing a regularized loss (Hastie et al., 2004)

3)

ZmL%XA(Li,Ti) — (s(0,T3) — 5(0,L;))

min éBTG +
0 2

where T; is the target tree for sentence W;; L;
ranges over all possible alternative trees in ®(W;);
5(0,T) = E(wi—)w]')ET 0Tf(wi - wj); and
A(L;,T;) is a measure of distance between the two
trees L; and T;.
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Using the techniques of (Hastie et al., 2004) one
can show that minimizing (4) is equivalent to solving
the quadratic program

§0T0 +e'¢

& > AT, Li) + (0, Li) — 5(6,T;)
for all 7, L; € ®(W;)

“4)

subject to

which corresponds to the training problem posed in
(McDonald et al., 2005).

Unfortunately, the quadratic program (4) has three
problems one must address. First, there are expo-
nentially many constraints—corresponding to each
possible parse of each training sentence—which
forces one to use alternative training procedures,
such as incremental constraint generation, to slowly
converge to a solution (McDonald et al., 2005;
Tsochantaridis et al., 2004). Second, and related,
the original loss (4) is only evaluated at the global
parse tree level, and is not targeted at penalizing any
specific component in an incorrect parse. Although
(McDonald et al., 2005) explicitly describes this
as an advantage over previous approaches (Ratna-
parkhi, 1999; Yamada and Matsumoto, 2003), below
we find that changing the loss to enforce a more de-
tailed set of constraints leads to a more effective ap-
proach. Third, given the large number of bi-lexical
features { fy, } in our model, solving (4) directly will
over-fit any reasonable training corpus. (Moreover,
using a large [ to shrink the @ values does not mit-
igate the sparse data problem introduced by having
so many features.) We now present our refinements
that address each of these issues in turn.

5 Training with Local Constraints

We are initially focusing on training on just an
undirected link model, where each parameter in the
model is a weight 8,,, between two words, w and
w', respectively. Since links are undirected, these
weights are symmetric @,y = 8y, and we can
also write the score in an undirected fashion as:
s(w,w') = @"f(w,w'). The main advantage of
working with the undirected link model is that the
constraints needed to ensure correct parses on the
training data are much easier to specify in this case.
Ignoring the projective (no crossing arcs) constraint
for the moment, an undirected dependency parse can



be equated with a maximum score spanning tree of a
sentence. Given a target parse, the set of constraints
needed to ensure the target parse is in fact the max-
imum score spanning tree under the weights @, by
at least a minimum amount, is a simple set of lin-
ear constraints: for any edge wjws that is not in the
target parse, one simply adds two constraints

OTf(wl,w'l) > BTf(wl,wz)—l—l
0Tf(w2,w'2) > 0Tf(w1,w2)+1

®)

where the edges wiw| and wews are the adjacent
edges that actually occur in the target parse that are
also on the path between w; and ws. (These would
have to be the only such edges, or there would be
a loop in the parse tree.) These constraints behave
very naturally by forcing the weight of an omitted
edge to be smaller than the adjacent included edges
that would form a loop, which ensures that the omit-
ted edge would not be added to the maximum score
spanning tree before the included edges.

In this way, one can simply accumulate the set of
linear constraints (5) for every edge that fails to be
included in the target parse for the sentences where
it is a candidate. We denote this set of constraints by

A {HTf(wl,w'l) > 0Tf(w1,w2) +1}

Importantly, the constraint set A is convex in the link
weight parameters @, as it consists only of linear
constraints.

Ignoring the non-crossing condition, the con-
straint set A is exact. However, because of the
non-crossing condition, the constraint set A is more
restrictive than necessary. For example, consider
the word sequence ...w;w;1W;2W;3..., where the
edge w;1w;y3 is in the target parse. Then the edge
w;w;+2 can be ruled out of the parse in one of two
ways: it can be ruled out by making its score less
than the adjacent scores as specified in (5), or it
can be ruled out by making its score smaller than
the score of w;1w;+3. Thus, the exact constraint
contains a disjunction of two different constraints,
which creates a non-convex constraint in 6. (The
union of two convex sets is not necessarily convex.)
This is a weakening of the original constraint set A.
Unfortunately, this means that, given a large train-
ing corpus, the constraint set A can easily become
infeasible.
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min
13

Nevertheless, the constraints in A capture much
of the relevant structure in the data, and are easy
to enforce. Therefore, we wish to maintain them.
However, rather than impose the constraints exactly,
we enforce them approximately through the intro-
duction of slack variables &. The relaxed constraints
can then be expressed as

0Tf(w1, w'l)ZOTf(wl, ’LUQ) +1-— §wlw2,wlw/1 (6)

and therefore a maximum soft margin solution can
then be expressed as a quadratic program

subject to

(7

{0Tf(wla wll) > 0Tf(w1’ wQ) +1-— €w1w2,w1w’1}
for all constraints in A

§0T0 +¢'e

)

where e denotes the vector of all 1’s.

Even though the slacks are required because we
have slightly over-constrained the parameters, given
that there are so many parameters and a sparse data
problem as well, it seems desirable to impose a
stronger set of constraints. A set of solution pa-
rameters achieved in this way will allow maximum
weight spanning trees to correctly parse nearly all
of the training sentences, even without the non-
crossing condition (see the results in Section 8).

This quadratic program has the advantage of pro-
ducing link parameters that will correctly parse most
of the training data. Unfortunately, the main draw-
back of this method thus far is that it does not of-
fer any mechanism by which the link weights 6,
can be generalized to new or rare words. Given the
sparse data problem, some form of generalization is
necessary to achieve good test results. We achieve
this by exploiting distributional similarities between
words to smooth the parameters.

6 Distributional Word Similarity

Treebanks are an extremely precious resource. The
average cost of producing a treebank parse can run
as high as 30 person-minutes per sentence (20 words
on average). Similarity-based smoothing, on the
other hand, allows one to tap into auxiliary sources
of raw unannotated text, which is practically unlim-
ited. With this extra data, one can estimate parame-
ters for words that have never appeared in the train-
ing corpus.



The basic intuition behind similarity smoothing
is that words that tend to appear in the same con-
texts tend to have similar meanings. This is known
as the Distributional Hypothesis in linguistics (Har-
ris, 1968). For example, the words test and exam are
similar because both of them can follow verbs such
as administer, cancel, cheat on, conduct, etc.

Many methods have been proposed to compute
distributional similarity between words, e.g., (Hin-
dle, 1990; Pereira et al., 1993; Grefenstette, 1994;
Lin, 1998). Almost all of the methods represent a
word by a feature vector where each feature corre-
sponds to a type of context in which the word ap-
peared. They differ in how the feature vectors are
constructed and how the similarity between two fea-
ture vectors is computed.

In our approach below, we define the features of
a word w to be the set of words that occurred within
a small window of w in a large corpus. The con-
text window of w consists of the closest non-stop-
word on each side of w and the stop-words in be-
tween. The value of a feature w’ is defined as the
pointwise mutual information between the w’ and
w: PMI(w',w) = log(%q)‘};—“({u%). The similarity
between two words, S(w1,ws), is then defined as
the cosine of the angle between their feature vectors.

We use this similarity information both in training
and in parsing. For training, we smooth the parame-
ters according to their underlying word-pair similar-
ities by introducing a Laplacian regularizer, which
will be introduced in the next section. For parsing,
the link scores in (1) are smoothed by word similar-
ities (similar to the approach used by (Wang et al.,
2005)) before the maximum score projective depen-
dency tree is computed.

7 Laplacian Regularization

We wish to incorporate similarity based smoothing
in large margin training, while using the more re-
fined constraints outlined in Section 5.

Recall that most of the features we use, and there-
fore most of the parameters we need to estimate are
based on bi-lexical parameters 6,,, that serve as
undirected link weights between words w and w' in
our dependency parsing model (Section 3). Here we
would like to ensure that two different link weights,

7] ’ and 6 that involve similar words also

wiw wawlh>
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take on similar values. The previous optimization
(7) needs to be modified to take this into account.

Smoothing the link parameters requires us to first
extend the notion of word similarity to word-pair
similarities, since each link involves two words.
Given similarities between individual words, com-
puted above, we then define the similarity between
word pairs by the geometric mean of the similarities
between corresponding words.

S(uw), wowh) = \/S(w17 wa) S (wy, wy)(8)

where S(wy,ws) is defined as in Section 6 above.
Then, instead of just solving the constraint system
(7) we can also ensure that similar links take on sim-
ilar parameter values by introducing a penalty on
their deviations that is weighted by their similarity
value. Specifically, we use

> > Slwrwh, wew) (G, w,

wiw) waw)

- ewzw'z)Q

= 20'"L(S)0 )

Here L(S) is the Laplacian matrix of S, which
is defined by L(S) D(S) — S where D(S)
is a diagonal matrix such that Dy, !

P uwwy S(wiwh, waws). Also, @' corresponds to the
vector of bi-lexical parameters. In this penalty func-
tion, if two edges wyw} and wew), have a high sim-
ilarity value, their parameters will be encouraged to
take on similar values. By contrast, if two edges
have low similarity, then there will be little mutual
attraction on their parameter values.

Note, however, that we do not smooth the param-
eters, Opyy, Ouisiy Baisi2, corresponding to the point-
wise mutual information, distance, and squared dis-
tance features described in Section 5, respectively.
We only apply similarity smoothing to the bi-lexical
parameters.

The Laplacian regularizer (9) provides a natural
smoother for the bi-lexical parameter estimates that
takes into account valuable word similarity informa-
tion computed as above. The Laplacian regularizer
also has a significant computational advantage: it is
guaranteed to be a convex quadratic function of the
parameters (Zhu et al., 2001). Therefore, by com-
bining the constraint system (7) with the Laplacian
smoother (9), we can obtain a convex optimization



Table 1: Accuracy Results on CTB Test Set

Features used Trained w/ | Trained w/

local loss global loss
Pairs 0.6426 0.6184
+ Lap 0.6506 0.5622
+ Dist 0.6546 0.6466
+ Lap + Dist 0.6586 0.5542
+ MI + Dist 0.6707 0.6546
+ Lap + MI + Dist 0.6827 n/a

Table 2: Accuracy Results on CTB Dev Set

Features used Trained w/ | Trained w/
local loss global loss

Pairs 0.6130 0.5688

+ Lap 0.6390 0.4935

+ Dist 0.6364 0.6130

+ Lap + Dist 0.6494 0.5299

+ MI + Dist 0.6312 0.6182

+ Lap + MI + Dist 0.6571 n/a

procedure for estimating the link parameters

min

)

gng,(S)o +¢Te  subject to (10)

{eTf(wla wll) > eTf(wla ’UJ2) +1- €w1w2,w1w’1}
for all constraints in A

where I~J(S ) does not apply smoothing to @py;, Oy,
Oaisiz-

Clearly, (10) describes a large margin training
program for dependency parsing, but one which uses
word similarity smoothing for the bi-lexical param-
eters, and a more refined set of constraints devel-
oped in Section 5. Although the constraints are
more refined, they are fewer in number than (4).
That is, we now only have a polynomial number of
constraints corresponding to each word pair in (5),
rather than the exponential number over every pos-
sible parse tree in (4). Thus, we obtain a polynomial
size quadratic program that can be solved for moder-
ately large problems using standard software pack-
ages. We used CPLEX in our experiments below.
As before, once optimized, the solution parameters
6 can be introduced into the dependency model (1)
according to (2).

8 Experimental Results

We tested our method experimentally on the Chinese
Treebank (CTB) (Xue et al., 2004). The parse trees
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Table 3: Accuracy Results on CTB Training Set

Features used Trained w/ | Trained w/
local loss global loss
Pairs 0.9802 0.8393
+ Lap 0.9777 0.7216
+ Dist 0.9755 0.8376
+ Lap + Dist 0.9747 0.7216
+ MI + Dist 0.9768 0.7985
+ Lap + MI + Dist 0.9738 n/a

in CTB are constituency structures. We converted
them into dependency trees using the same method
and head-finding rules as in (Bikel, 2004). Follow-
ing (Bikel, 2004), we used Sections 1-270 for train-
ing, Sections 271-300 for testing and Sections 301-
325 for development. We experimented with two
sets of data: CTB-10 and CTB-15, which contains
sentences with no more than 10 and 15 words re-
spectively. Table 1, Table 2 and Table 3 show our
experimental results trained and evaluated on Chi-
nese Treebank sentences of length no more than 10,
using the standard split. For any unseen link in the
new sentences, the weight is computed as the simi-
larity weighted average of similar links seen in the
training corpus. The regularization parameter 3 was
set by 5-fold cross-validation on the training set.

We evaluate parsing accuracy by comparing the
undirected dependency links in the parser outputs
against the undirected links in the treebank. We de-
fine the accuracy of the parser to be the percentage
of correct dependency links among the total set of
dependency links created by the parser.

Table 1 and Table 2 show that training based on
the more refined local loss is far superior to training
with the global loss of standard large margin train-
ing, on both the test and development sets. Parsing
accuracy also appears to increase with the introduc-
tion of each new feature. Notably, the pointwise mu-
tual information and distance features significantly
improve parsing accuracy—and yet we know of no
other research that has investigated these features in
this context. Finally, we note that Laplacian regular-
ization improved performance as expected, but not
for the global loss, where it appears to systemati-
cally degrade performance (n/a results did not com-
plete in time). It seems that the global loss model
may have been over-regularized (Table 3). However,
we have picked the § parameter which gave us the



best resutls in our experiments. One possible ex-
planation for this phenomenon is that the interaction
between the Laplician regularization in training and
the similarity smoothing in parsing, since distribu-
tional word similarities are used in both cases.
Finally, we compared our results to the probabilis-
tic parsing approach of (Wang et al., 2005), which on
this data obtained accuracies of 0.7631 on the CTB
test set and 0.6104 on the development set. How-
ever, we are using a much simpler feature set here.

9 Conclusion

We have presented two improvements to the stan-
dard large margin training approach for dependency
parsing. To cope with the sparse data problem, we
smooth the parameters according to their underlying
word similarities by introducing a Laplacian regular-
izer. More significantly, we use more refined local
constraints in the large margin criterion, rather than
the global parse-level losses that are commonly con-
sidered. We achieve state of the art parsing accuracy
for predicting undirected dependencies in test data,
competitive with previous large margin and previous
probabilistic approaches in our experiments.

Much work remains to be done. One extension
is to consider directed features, and contextual fea-
tures like those used in current probabilistic parsers
(Wang et al., 2005). We would also like to apply our
approach to parsing English, investigate the confu-
sion showed in Table 3 more carefully, and possibly
re-investigate the use of parts-of-speech features in
this context.
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Abstract

We explore a novel computational ap-
proach to identifying “constructions” or
“multi-word expressions” (MWESs) in an
annotated corpus. In this approach,
MWE:s have no special status, but emerge
in a general procedure for finding the best
statistical grammar to describe the train-
ing corpus. The statistical grammar for-
malism used is that of stochastic tree sub-
stitution grammars (STSGs), such as used
in Data-Oriented Parsing. We present an
algorithm for calculating the expected fre-
quencies of arbitrary subtrees given the
parameters of an STSG, and a method
for estimating the parameters of an STSG
given observed frequencies in a tree bank.
We report quantitative results on the ATIS
corpus of phrase-structure annotated sen-
tences, and give examples of the MWEs
extracted from this corpus.

1 Introduction

Many current theories of language use and acquisi-
tion assume that language users store and use much
larger fragments of language than the single words
and rules of combination of traditional linguistic
models. Such fragments are often called construc-
tions, and the theories that assign them a central
role “construction grammar” (Goldberg, 1995; Kay
and Fillmore, 1999; Tomasello, 2000; Jackendoff,
2002, among others). For construction grammar-

29

ians, multi-word expressions (MWESs) such as id-
ioms, collocations, fixed expressions and compound
verbs and nouns, are not so much exceptions to the
rule, but rather extreme cases that reveal some fun-
damental properties of natural language.

In the construction grammar tradition, co-
occurrence statistics from corpora have often been
used as evidence for hypothesized constructions.
However, such statistics are typically gathered on
a case-by-case basis, and no reliable procedure ex-
ists to automatically identify constructions. In con-
trast, in computational linguistics, many automatic
procedures are studied for identifying MWEs (Sag
et al., 2002) — with varying success — but here they
are treated as exceptions: identifying multi-word ex-
pressions is a pre-processing step, where typically
adjacent words are grouped together after which the
usual procedures for syntactic or semantic analysis
can be applied. In this paper I explore an alter-
native formal and computational approach, where
multi-word constructions have no special status,
but emerge in a general procedure to find the best
statistical grammar to describe a training corpus.
Crucially, I use a formalism known as “Stochastic
Tree Substitution Grammars” (henceforth, STSGs),
which can represent single words, contiguous and
noncontiguous MWEs, context-free rules or com-
plete parse trees in a unified representation.

My approach is closely related to work in statisti-
cal parsing known as Data-Oriented Parsing (DOP),
an empirically highly successful approach with la-
beled recall and precision scores on the Penn Tree
Bank that are among the best currently obtained
(Bod, 2003). DOP, first proposed in (Scha, 1990),

Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL-X)
pages 29-36, New York City, June 20@®2006 Association for Computational Linguistics



can be seen as an early formalization and combina-
tion of ideas from construction grammar and statis-
tical parsing. Its key innovations were (i) the pro-
posal to use fragments of trees from a tree bank as
the symbolic backbone; (ii) the proposal to allow, in
principle, trees of arbitrary size and shape as the el-
ementary units of combination; (iii) the proposal to
use the occurrence and co-occurrence frequencies as
the basis for structural disambiguation in parsing.

The model I develop in this paper is true to these
general DOP ideals, although it differs in impor-
tant respects from the many DOP implementations
that have been studied since its first inception (Bod,
1993; Goodman, 1996; Bod, 1998; Sima’an, 2002;
Collins and Duffy, 2002; Bod et al., 2003, and many
others). The crucial difference is in the estimation
procedure for choosing the weights of the STSG
based on observed frequencies in a corpus. Existing
DOP models converge to STSGs that either (i) give
all subtrees of the observed trees nonzero weights
(Bod, 1993; Bod, 2003), or (ii) give only the largest
possible fragments nonzero weights (Sima’an and
Buratto, 2003; Zollmann and Sima’an, 2005). The
model in this paper, in contrast, aims at finding the
smallest set of productive units that explain the oc-
currences and co-occurrences in a corpus. Large
subtrees only receive non-zero weights, if they occur
more frequently than can be expected on the basis of
the weights of smaller subtrees.

2 Formalism, Notation and Definitions

2.1 Stochastic Tree Substitution Grammars

STSGs are a simple generalization of Stochas-
tic Context Free Grammars (henceforth, SCFGs),
where the productive units are elementary trees of
arbitrary size instead of the rewrite rules in SCFGs
(which can be viewed as trees of depth 1). STSGs
form a restricted subclass of Stochastic Tree Adjoin-
ing Grammars (henceforth, STAGs) (Resnik, 1992;
Schabes, 1992), the difference being that STSGs
only allow for substitution and not for adjunction
(Joshi and Sarkar, 2003). This limits the genera-
tive capacity to that of context-free grammars, and
means STSGs cannot be fully lexicalized. These
limitations notwithstanding, the close relationship
with STAGs is an attractive feature with extensions
to the class of mildly context-sensitive languages

30

(Joshi et al., 1991) in mind. Most importantly, how-
ever, STSGs are already able to model a vast range
of statistical dependencies between words and con-
stituents, which allows them to rightly predict the
occurrences of many constructions (Bod, 1998).

For completeness, we include the usual defi-
nitions of STSGs, the substitution operation and
derivation and parse probabilities (Bod, 1998), us-
ing our own notation. An STSG is a 5-tuple
(Vi Vi, S, T, w), where V, is the set of non-terminal
symbols; V; is the set of terminal symbols; S € V,, is
the start symbol; T is a set of elementary trees, such
that for every ¢ € T the unique root node r(t) € V,,,
the set of internal nodes i(¢) C V,, and the set of leaf
nodes [(t) C V, UV finally, w : T — [0,1] is a
probability (weight) distribution over the elementary
trees, such that forany ¢ € T', -y c gy w(t') =1,
where R(t) is the set of elementary trees with the
same root label as ¢. It will prove useful to also de-
fine the set of all possible trees 6 over the defined
alphabets (with the same conditions on root, internal
and leaf nodes as for T"), and the set of all possible
complete parse trees O (with r(¢) = S and all leaf
nodes [(t) C V;). Obviously, 7' C # and © C 6.

The substitution operation o is defined if the left-
most nonterminal leaf in ¢; is identical to the root of
to. Performing substitution ¢ o to yields t3, if ¢3 is
identical to t; with the leftmost nonterminal leaf re-
placed by to. A derivation is a sequence of elemen-
tary trees, where the first tree ¢ € 7' has root-label
S and every next tree combines through substitution
with the result of the substitutions before it. The
probability of a derivation d is defined as the prod-
uct of weights of the elementary trees involved:

Pd=tyo...0ty) =] (w(t)).

i=1

)]

A parsetreeis any tree t € ©. Multiple derivations
can yield the same parse tree; the probability of a
parse tree p equals the sum of the probabilities of
the different derivations that yield that same tree:

> (P),

d:d=p

2

where d is the tree derived by derivation d.
In this paper, we are only concerned with gram-
mars that define proper probability distributions over



trees, such that the probability of all derivations sum
up to 1 and no probability mass gets lost in deriva-
tions that never reach a terminal yield. We require:

Y Plp)= > P =1

pEO d:de®

3)

2.2 Usage Frequency and Occurrence
Frequency

In addition to these conventional definitions, we will
make use in this paper of the concepts “usage fre-
quency” and “occurrence frequency”’. When we
consider an arbitrary subtree ¢, the usage frequency
u(t) describes the relative frequency with which el-
ementary tree ¢ is involved in a set of derivations.
Given a grammar G € STSG, the expected usage
frequency is:
u(t) = 3 (P(d)C(td)),

d:ited

4)

where C (t,d) gives the number of occurrences of
t in d. The set of derivations, and hence usage fre-
quency, is usually considered hidden information.
The occurrence frequency f(t) describes the rela-
tive frequency with which ¢ occurs as a subtree of a
set of parse trees, which is usually assumed to be
observable information. If grammar G is used to
generate trees, it will create a tree bank where each
parse tree will occur with an expected frequency as
in equation (2). More generally, the expected oc-
currence frequency f(t) (relative to the number n of
complete trees in the tree bank) of a subtree ¢ is:

E[f®)] = Y (P()Ct.p"),

p:tep*

®)

where p* is the multiset of all subtrees of p.

Hence, w(t), u(t) and f(t) all assign values (the
latter two not necessarily between 0 and 1) to trees.
An important question is how these different val-
ues can be related. For STSGs which have only
elementary trees of depth 1, and are thus equiva-
lent to SCFGs, these relations are straightforward:
the usage frequency of an elementary tree simply
equals its expected frequency, and can be derived
from the weights by multiplying inside and out-
side probabilities (Lari and Young, 1990). Estimat-
ing the weights of an (unconstrained and untrans-
formed) SCFG from an tree bank is straightforward,
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as weights, in the limit, simply equal the relative
frequency of each depth-1 subtree (relative to other
depth-1 subtrees with the same root label).

When elementary trees can be of arbitrary depth,
however, many different derivations can yield the
same tree, and a given subtree ¢ can emerge with-
out the corresponding elementary tree ever having
been used. The expected frequencies are sums of
products, and — if one wants to avoid exhaustively
enumerating all possible parse trees — surprisingly
difficult to calculate, as will become clear below.

2.3 From weightsto usage frequencies and
back

Relating usage frequencies to weights is relatively
simple. With a bit of algebra we can work out the
following relations:

ifr(t)=2S5
Z u(t')C!  otherwise
tr(t)el(t!)
(6)
where C! gives the number of occurrences of the
root label r(¢) of ¢t among the leaves of ¢'. The in-

verse relation is straightforward:

u(t)

w(t) = =——"——. 7
Zt’eR(t) u(t')
2.4 From usage frequency to expected
frequency

The two remaining problems — calculating expected
frequencies from weights and estimating the weights
from observed frequencies — are surprisingly dif-
ficult and heretofore not satisfactorily solved. In
(Zuidema, 2006) we evaluate existing estimation
methods for Data-Oriented Parsing, and show that
they are ill-suited for learning tasks such as stud-
ied in this paper. In the next section, we present a
new algorithm for estimation, which makes use of
a method for calculating expected frequencies that
we sketch in this section. This method makes use of
sub- and supertree relations that we explain first.
We define two types of subtrees of a given tree ¢,
which, for lack of better terminology, we will call
“twigs” and “prunes” of ¢. Twigs are those subtrees
headed by any of ¢’s internal nodes and everything



below. Prunes are those subtrees headed by t’s root-
node, pruned at any number (> 0) of internal nodes.
Using o to indicate left-most substitution, we write:

e t1 is a twig of to, if either t; = ¢y or Jt3, such
that t3 o t1 = to;

e t1isapruneof to, if either t1 = t9 or Itg ... ¢,
such thatt; otg...ot, = t9;

o t' = pr,(t), if x is a set of nodes in ¢, such that
if ¢ is pruned at each 7 € x it equals ¢’

Thus defined, the set of all subtrees st(t) of ¢ cor-
responds to the set of all prunes of all twigs of ¢:
st(t) = {t"|3' (' € tw(t) Nt" € pr(t))).

We further define the sets of supertwigs, super-
prunes and supertrees as follows:

o tw(t) = {t'|t € tw(t')}

o a(t) = {V]t = pra(t)}

o st(t) = {t'|t € st(t')}.

Using these sets, and the set of derivations D(¢) of

the fragment ¢, a general expression for the expected
frequency of ¢ is:

Ef(t)] = ) ap
deD(t)
a = Z Z u(t)
retw(dy) T EPTL(1) (T)
sg= I > w) ®
gy T PO )
where (di,...,dy) is the sequence of elementary

trees in derivation d. A derivation of this equation
is provided on the author’s website!. Note that it

"http://staff.science.uva.nl/~jzuidema. The intuition behind
it is as follows. Observe first that there are many ways in which
an arbitrary fragment ¢ can emerge, many of which do not in-
volve the usage of the elementary tree ¢. It is useful to partition
the set of all derivations of complete parse trees according to the
substitution sites inside ¢ that they involve, and hence according
to the corresponding derivations of ¢. The first summation in (8)
simply sums over all these cases.

Each derivation of ¢ involves a first elementary tree di, and
possibly a sequence of further elementary trees (da, ..., dn).
Roughly speaking, the a-term in equation (8) describes the fre-
quency with which a d; will be generated. The (§-term then
describes the probability that d; will be expanded as t. The
equation simplifies considerably for those fragments that have
no nonterminal leaves: the set pr,,;) then only contains ¢, and
the two summations over this set disappear. The equation fur-
ther simplifies if only depth-1 elementary trees have nonzero
weights (i.e. for SCFGs): o and (3 then essentially give outside
and inside probabilities (Lari and Young, 1990). However, for
unconstrained STSGs we need all sums and products in (8).
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will, in general, be computationally extremely ex-
pensive to calculate E[f(¢)] . We will come back to
computational efficiency issues in the discussion.

3 Estimation: push-n-pull

The goal of this paper is an automatic discovery
procedure for finding “constructions” based on oc-
currence and co-occurrence frequencies in a corpus.
Now that we have introduced the necessary termi-
nology, we can reformulate this goal as follows:
What are the elementary trees with multiple words
with the highest usage frequency in the STSG esti-
mated from an annotated corpus? Thus phrased, the
crucial next step is to decide on an estimation proce-
dure for learning an STSG from a corpus.

Here we develop an estimation procedure we call
“push-n-pull”. The basic idea is as follows. Given
an initial setting of the parameters, the method cal-
culates the expected frequency of all complete and
incomplete trees. If a tree’s expected frequency is
higher than its observed frequency, the method sub-
tracts the difference from the tree’s score, and dis-
tributes (“pushes”) it over the trees involved in its
derivations. If it is lower, it “pulls” the difference
from these same derivations. The method includes a
bias for moving probability mass to smaller elemen-
tary trees, to avoid overfitting; its effects become
smaller as more data gets observed.

Because the method for calculating estimated fre-
quency works with usage-frequencies, the push-n-
pull algorithm also uses these as parameters. More
precisely, it manipulates a “score”, which is the
product of usage frequency and the total number of
parse trees observed. Implicit here is the assumption
that by shifting usage frequencies between different
derivations, the relation with weights remains as in
equation (6). Simulations suggest this is reasonable.

In the current implementation, the method starts
with all frequency mass in the longest derivations,
i.e. in the depth-1 elementary trees. Finally, the cur-
rent implementation is incremental. It keeps track of
the frequencies with which it observes subtrees in a
corpus. For each tree received, it finds all derivations
and all probabilities, updates frequencies and scores
according to the rules sketched above. In pseudo-
code, the push-n-pull algorithm is as follows:

for each observed parse tree p



for each depth-1 subtree ¢ in p
update-score(t, 1.0)
for each subtree ¢ of p
A =min(se(t), B+ v(E[f ()] — £(1)))
A'=0
for each of n derivations d of ¢
let ' ...t" be all elementary trees in d
0 =min(sc(t'),...,sc(t"),—A/n)
A—=4§
for each elementary tree ¢’ in d
update-score(t’, §)
update-score (¢, A')

where sc(t) is the score of ¢, B is the bias to-
wards smaller subtrees, + is the learning rate param-
eter and f(t) is the observed frequency of t. A’ thus
gives the actual change in the score of ¢, based on
the difference between expected and observed fre-
quency, bias, learning rate and how much scores can
be pushed or pulled”. For computational efficiency,
only subtrees with a depth no larger than d = 3 or
d = 4 and only derivations involving 2 elementary
trees are considered.

4 Results

We have implemented the algorithms for calculat-
ing the expected frequency, and the push-n-pull al-
gorithm for estimation. We have evaluated the algo-
rithms on a number of simple example STSGs and
found that the expected frequency algorithm cor-
rectly predicts observed frequencies. We have fur-
ther found that — unlike existing estimation meth-
ods — the push-n-pull algorithm converges to STSGs
that closely model the observed frequencies (i.e. that
maximize the likelihood of the data) without putting
all probability mass in the largest elementary trees
(i.e. whilst retaining generalizations about the data).

Here we report first quantitative results on the
ATIS3 corpus (Hemphill et al., 1990). Before pro-
cessing, all trees (train and test set) were converted
to a format that our current implementation requires
(all non-terminal labels are unique, all internal nodes
have two daughters, all preterminal nodes have a
single lexical daughter; all unary productions and
all traces were removed). The set of trees was ran-
domly split in a train set of 462 trees, and a test set

2 An important topic for future research is to clarify the rela-
tion between push-n-pull and Expectation Maximization.
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of 116 trees. The push-n-pull algorithm was then
run in 10 passes over the train set, with d = 3,
B = 0and v = 0.1. By calculating the most proba-
ble parse® for each yield of the trees in test set, and
running “evalb” we arrive at the following quantita-
tive results: a string set coverage of 84% (19 failed
parses), labeled recall of 95.07, and labeled preci-
sion of 95.07. We obtained almost identical num-
bers on the same data with a reimplementation of
the DOP1 algorithm (Bod, 1998).

method ‘ #rules Cov. LR LP EM
DOP1 77852  84% 95.07 95.07 83.5
p-n-p 58799 84% 95.07 95.07 83.5

Table 1: Parseval scores of DOP1 and push-n-pull
on the same 462-116 random train-testset split of a
treebank derived from the ATIS3 corpus (we empha-
size that all trees, also those of the test-set, were con-
verted to Chomsky Normal Form, whereby unary
production and traces were removed and top-nodes
relabeled “TOP”. These results are thus not compa-
rable to previous methods evaluated on the ATIS3
corpus.) EM is “exact match”.

method ‘ #rmules Cov. LR LP EM
sc¢>03]| 8593 77% 80.8 80.8 46.3
sc>0.11| 98443 77% 819 819 488

Table 2: Parseval scores using a p-n-p induced
STSG on the same treebank as in table 1, using a
different random 525-53 train-testset split. Shown
are results were only elementary trees with scores
higher than 0.3 and 0.1 respectively are used.

However, more interesting is a qualitative anal-
ysis of the STSG induced, which shows that, un-
like DOP1, push-n-pull arrives at a grammar that
gives high weights (and scores) to those elementary

3We approximated the most probable parse as follows (fol-
lowing (Bod, 2003)). We first converted the induced STSG to
an isomorph SCFG, by giving the internal nodes of every ele-
mentary tree ¢ unique address-labels, and reading off all CFG
productions (all with weight 1.0, except for the top-production,
which receives the weight of ¢). An existing SCFG parser
(Schmid, 2004) was then used, with a simple unknown word
heuristic, to generate the Viterbi n-best parses with n = 100,
and, after removing the address labels, all equal parses and their
probabilities were summed, and the one with highest probabil-
ity chosen.



trees that best explain the overrepresentation of cer-
tain constructions in the data. For instance, in a run
with d = 4,7 = 1.0,B = 1.0, the 50 elemen-
tary trees with the highest scores, as shown in fig-
ure 1, are all exemplary of frequent formulas in the
ATIS corpus such as “show me X, “I'd like to X,
“which of these”, “what is the X”, “cheapest fare”
and “flights from X to Y. In short, the push-n-pull
algorithm — while starting out considering all possi-
ble subtrees — converges to a grammar which makes
linguistically relevant generalizations. This allows
for a more compact grammar (58799 rules in the
SCFG reduction, vs. 77852 for DOP1), whilst re-
taining DOP’s excellent empirical performance.

5 Discussion

Calculating E[f(¢)] using equation (8) can be ex-
tremely expensive in computational terms. One will
typically want to calculate this value for all subtrees,
the number of which is exponential in the size of the
trees in the training data. For each subtree ¢, we will
need to consider the set of all its derivations (expo-
nential in the size of t), and for each derivation the
set of supertwigs of the first elementary trees and,
for incompletely lexicalized subtrees, the set of su-
perprunes of all elementary trees in their derivations.
The latter two sets, however, need not be constructed
for every time the expected frequency E|[f(t)] is cal-
culated. Instead, we can, as we do in the current im-
plementation, keep track of the two sums for every
change of the weights.

However, there are many further possibilities for
improving the efficiency of the algorithm that are
currently not implemented. Equation (8) remains
valid under various restrictions on the elementary
trees that we are willing to consider as productive
units. Some of these will remove the exponential de-
pendence on the size of the trees in the training data.
For instance, in the case where we restrict the pro-
ductive units (with nonzero weights) to depth-1 trees
(i.e. CFG rules), equation (8) collapses to the prod-
uct of inside and outside probabilities, which can be
calculated using dynamical programming in polyno-
mial time (Lari and Young, 1990). A major topic for
future research is to define linguistically motivated
restrictions that allow for efficient computation.

Another concern is the size of the grammar the
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estimation procedure produces, and hence the time
and space efficiency of the resulting parser. Ta-
ble 1 already showed that push-n-pull leads to a
more concise grammar. The reason is that many po-
tential elementary trees receive a score (and weight)
0. More generally, push-n-pull generates extremely
tilted score distributions, which allows for even
more compact but highly accurate approximations.
In table 2 we show, for the d = 4 grammar of fig-
ure 1, that a 10-fold reduction of the grammar size
by pruning elementary trees with low scores, leads
only to a small decrease in the LP and LR measures.

Another interesting question is if and how the
current algorithm can be extended to the full class
of Stochastic Tree-Adjoining Grammars (Schabes,
1992; Resnik, 1992). With the added operation of
adjunction, equation (8) is not valid anymore. Given
the computational complexities that it already gives
rise to, however, it seems that issue of linguisti-
cally motivated restrictions (other than lexicaliza-
tion) should be considered first. Finally, given that
the current approach is dependent on the availability
of a large annotated corpus, an important question
is if and how it can be extended to work with un-
labeled data. That is, can we transform the push-n-
pull algorithm to perform the unsupervised learning
of STSGs? Although most work on unsupervised
grammar learning concerns SCFGs (including some
of our own (Zuidema, 2003)) it is interesting to note
that much of the evidence for construction grammar
in fact comes from the language acquisition litera-
ture (Tomasello, 2000).

6 Conclusions

Theoretical linguistics has long strived to account
for the unbounded productivity of natural language
syntax with as few units and rules of combination
as possible. In contrast, construction grammar and
related theories of grammar postulate a heteroge-
neous and redundant storage of “constructions”. If
this view is correct, we expect to see statistical sig-
natures of these constructions in the distributional
information that can be derived from corpora of nat-
ural language utterances. How can we recover those
signatures? In this paper we have presented an ap-
proach to identifying the relevant statistical correla-
tions in a corpus based on the assumption that the



TOP WHNP-1 TOP

VB VP WDT PP
\ | /\ NNS NP*
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“OF” PP-DIR PP-DIR*
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NP N | | N
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"FROM" NNP NNP*

(a) The “show me NP PP” frame, (b) The complete parse tree (c) The frame for “flights from NP to

which occurs very frequently in for the sentence “Which of NP~
the training data and is repre- these flights”, which occurs

sented in several elementary trees 16 times in training data.

with high weight.

((TOP (VB "SHOW”) (VP* (PRP "ME”) (NP (NP* DT NNS) (NP** PP-DIR PP-DIR*)))) 17.79 0.008 30)
((TOP (VB "SHOW”) (VP* (PRP "ME”) (NP (NP* DT NNS) NP*+))) 10.34 0.004 46

(TOP (PRP "I”) (VP (MD "WOULD") (VP* (VB "LIKE”) (VP** TO VP#*#%)))) 10.02 0.009 20

(WHNP-1 (WDT "WHICH”) (PP (IN "OF”) (NP (DT "THESE”) (NNS "FLIGHTS")))) 8.80 0.078 16

(TOP (WP "WHAT”) (SQ (VBZ ”IS”) (NP-SBJ (DT "THE”) (NN "PRICE")))) 8.76 0.005 20

(TOP (WHNP (WDT "WHAT”) (NNS "FLIGHTS")) (SQ (VBP "ARE”) (SQ* (EX "THERE”) SQ**))) 8.25 0.006 36

(VP* (PRP "ME”) (NP (NP* (DT "THE”) (NNS "FLIGHTS”)) (NP** (PP-DIR IN NNP) (PP-DIR* TO NNP*)))) 7.90 0.023 18

(TOP (WHNP (WDT "WHAT”) (NNS "FLIGHTS")) (SQ (VBP "ARE”) (SQ* (EX "THERE”) (SQ** PP-DIR-3 PP-DIR-4)))) 6.64 0.005 26
(TOP (PRP "I”) (VP MD (VP* (VB "LIKE”) (VP** TO VP**%)))) 6.48 0.006 20

10. (TOP (PRP "I”) (VP (VBP "NEED”) (NP (NP* DT NN) (NP** PP-DIR NP**+)))) 5.01 0.004 10

11. (TOP (VB "SHOW”) (VP* (PRP "ME”) (NP (DT "THE”) NNS))) 4.94 0.002 16

12. (TOP WP (SQ (VBZ ”IS”) (NP-SBJ (DT "THE”) (NN "PRICE”)))) 4.91 0.0028 20

13. (TOP (WHNP (WDT "WHAT”) (NNS "FLIGHTS")) (SQ (VBP "ARE”) (SQ* EX (SQ** PP-DIR-3 PP-DIR-4)))) 4.16 0.003 26

14. (TOP (VB "SHOW”) (VP* (PRP "ME”) (NP (NNS "FLIGHTS”) NP*))) 4.01 0.001 16

15. (TOP (VB "SHOW”) (VP* (PRP "ME”) (NP (DT "THE”) NP*))) 3.94 0.002 12

16. (TOP (WHNP (WDT "WHAT”) (NNS “FLIGHTS")) (SQ (VBP "ARE”) (SQ* EX SQ**))) 3.92 0.003 36

17. (TOP (PRP ”I”) (VP (VBP "NEED”) (NP (NP* DT NN) NP*+))) 3.85 0.003 14

18. (TOP (WP "WHAT”) (SQ VBZ (NP-SBJ (DT "THE”) (NN "PRICE”)))) 3.79 0.002 20

19. (WHNP-1 (WDT "WHICH”) (PP (IN "OF”) (NP (DT "THESE”) NNS))) 3.65 0.032 16

20. (TOP (VB "SHOW”) (VP* (PRP "ME”) (NP NP* (SBAR WDT VP*%)))) 3.64 0.002 14

21. (TOP (VB "SHOW”) (VP* PRP (NP (NP* DT NNS) (NP** PP-DIR PP-DIR*)))) 3.61 0.002 30

22. (TOP (WHNP (WDT "WHAT”) NNS) (SQ (VBP "ARE”) (SQ* (EX "THERE”) (SQ** PP-DIR-3 PP-DIR-4)))) 3.30 0.002 26

23. (VP (MD "WOULD”) (VP* (VB "LIKE”) (VP** (TO "TO”) (VP#** VB* VP*#+)))) 325 0.012 16

24. (TOP (WDT "WHICH”) VP) 3.1460636 0.001646589 12

25. (TOP (VB "SHOW”) (VP* (PRP "ME”) (NP (NP* DT NP**) NP*#%))) 3.03 0.001 12

26. (TOP (VB "SHOW”) (VP* (PRP "ME”) (NP NP* (NP#** PP-DIR PP-DIR*)))) 2.97 0.001 12

27. (PP (IN "OF”) (NP* (NN* "FLIGHT”) (NP** NNP (NP*#* NNP* NP*+#%)))) 2.95 0.015 8

28. (TOP (VB "SHOW”) (VP* (PRP "ME”) (NP (DT "THE”) (NNS "FARES")))) 2.85 0.001 8

29. (VP (VBP "NEED”) (NP (NP* (DT ”A”) (NN "FLIGHT”)) (NP** PP-DIR NP*+#*))) 2.77 0.009 12

30. (TOP (VB "SHOW?”) (VP* (PRP "ME”) (NP NP* (NP** PP-DIR PP-DIR*)))) 2.77 0.001 34

31. (TOP (JIS "CHEAPEST”) (NN "FARE")) 2.74 0.001 6

32. (TOP (VB "SHOW?”) (VP* (PRP "ME”) (NP (NP* DT NP**) (NP*#* PP-DIR PP-DIR*)))) 2.71 0.001 8

33. (TOP (NN "PRICE”) (PP (IN "OF”) (NP* (NN* "FLIGHT") (NP** NNP NP*#%)))) 2.69 0.001 6

34. (TOP (NN "PRICE”) (PP (IN "OF”) (NP* (NN* "FLIGHT”) NP**))) 2.68 0.001 8

35. (PP-DIR (IN "FROM”) (NP (NNP "WASHINGTON") (NP* (NNP* "D”) (NNP** "C")))) 2.67 0.006 6

36. (PP-DIR (IN "FROM”) (NP** (NNP "NEWARK”) (NP*** (NNP* "NEW”) (NNP** "JERSEY")))) 2.60 0.005 6

37. (S* (PRP ”I”) (VP (MD "WOULD”) (VP* (VB "LIKE”) (VP** TO VP*%+)))) 2,59 0.11 8

38. (TOP (VBZ "DOES”) (SQ* (NP-SBJ DT (NN "FLIGHT”)) (VP (VB "SERVE”) (NN* "DINNER")))) 2.48 0.002 8

39. (TOP (PRP ”I) (VP (MD "WOULD”) (VP* (VB "LIKE”) VP*+))) 2.37 0.002 20

40. (TOP (WP "WHAT”) (SQ (VBZ ”IS”) (NP-SBJ DT (NN "PRICE”)))) 2.33 0.001 20

41. (S* (PRP "I”) (VP MD (VP* (VB "LIKE”) (VP** TO VP*##)))) 2,33 0.100 8

42, (WHNP###% (PP-TMP (IN* "ON”) (NNP** "FRIDAY”)) (PP-LOC (IN** "ON”) (NP (NNP*#* " AMERICAN”) (NNP*##* ”AIRLINES”)))) 2.30 0.086 6
43. (VP* (PRP "ME”) (NP (NP* (DT "THE”) NNS) (NP** (PP-DIR IN NNP) (PP-DIR* TO NNP*)))) 2.29 0.007 18

44. (TOP (WHNP* (WDT "WHAT”) (NNS "FLIGHTS”)) (WHNP** (PP-DIR (IN "FROM”) NNP) (WHNP*#* (PP-DIR* TO NNP*) (PP-TMP IN* NNP**)))) 2.28 0.001 12
45. (SQ (VBP ”ARE”) (SQ* EX (SQ** (PP-DIR-3 IN NNP) (PP-DIR-4 TO NNP*)))) 2.26 0.015 14

46. (TOP (VB "SHOW”) (VP* (PRP "ME”) (NP (NP* DT NNS) (SBAR WDT VP*+)))) 2.22 0.001 8

47. (TOP (NNS “FLIGHTS”) (NP* (PP-DIR (IN "FROM”) (NP** NNP NNP*)) (PP-DIR* (TO "T0”) NNP**))) 2.20 0.001 10)

48. (VP (VBP "NEED”) (NP (NP* (DT ”A”) (NN “ELIGHT”)) (NP** (PP-DIR IN NNP) NP*#+%))) 2.1346128 0.007185978 10)

49. (NP (NP* (DT *THE”) (NNS "FLIGHTS")) (NP** (PP-DIR (IN "FROM”) (NNP "BALTIMORE”)) (PP-DIR* (TO "TO”) (NNP* "OAKLAND")))) 2.1335514 0.00381956 10)
50. ((TOP (VB "SHOW”) (VP* (PRP "ME”) (NP (NP* DT NNS) (NP#* PP-DIR NP*+¥)))) 2.09 0.001 8)

WENANR L=

Figure 1: Three examples and a list of the first 50 elementary trees with multiple words of an STSG induced
using the push-n-pull algorithm on the ATIS3 corpus. For use in the current implementation, the parse
trees have been converted to Chomsky Normal Form (all occurrences of A — B, B — w are replaced by
A — w; all occurrences of A — BCw are replaced by A — BAx, Ax — Cw), all non-terminal labels are
made unique for a particular parse tree (address labeling not shown) and all top nodes are replaced by the
non-terminal “TOP”. Listed are the elementary trees of the induced STSG with for each tree the score, the
weight and the frequency with which it occurs in the training set.

35



corpus is generated by an STSG, and by inferring
the properties of that underlying STSG. Given our
best guess of the STSG that generated the data, we
can start to ask questions like: which subtrees are
overrepresented in the corpus? Which correlations
are so strong that it is reasonable to think of the cor-
related phrases as a single unit? We presented a new
algorithm for estimating weights of an STSG from a
corpus, and reported promising empirical results on
a small corpus.
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Abstract

We demonstrate an original and success-
ful approach for both resolving and gen-
erating definite anaphora. We propose
and evaluate unsupervised models for ex-
tracting hypernym relations by mining co-
occurrence data of definite NPs and po-
tential antecedents in an unlabeled cor-
pus. The algorithm outperforms a stan-
dard WordNet-based approach to resolv-
ing and generating definite anaphora. It
also substantially outperforms recent re-
lated work using pattern-based extraction
of such hypernym relations for corefer-
ence resolution.

1 Introduction

Successful resolution and generation of definite
anaphora requires knowledge of hypernym and hy-
ponym relationships. For example, determining the
antecedent to the definite anaphor “the drug” in text
requires knowledge of what previous noun-phrase
candidates could be drugs. Likewise, generating a
definite anaphor for the antecedent “Morphine” in
text requires both knowledge of potential hypernyms
(e.g. “the opiate”, “the narcotic”, “the drug”, and
“the substance”), as well as selection of the most ap-
propriate level of generality along the hypernym tree
in context (i.e. the “natural” hypernym anaphor).
Unfortunately existing manual hypernym databases
such as WordNet are very incomplete, especially
for technical vocabulary and proper names. Word-
Nets are also limited or non-existent for most of the
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world’s languages. Finally, WordNets also do not
include notation of the “natural” hypernym level for
anaphora generation, and using the immediate par-
ent performs quite poorly, as quantified in Section 5.
In first part of this paper, we propose a novel ap-
proach for resolving definite anaphora involving hy-
ponymy relations. We show that it performs substan-
tially better than previous approaches on the task of
antecedent selection. In the second part we demon-
strate how this approach can be successfully ex-
tended to the problem of generating a natural def-
inite NP given a specific antecedent.

In order to explain the antecedent selection task for
definite anaphora clearly, we provide the follow-
ing example taken from the LDC Gigaword corpus
(Graff et al., 2005).

(1)...pseudoephedrine is found in an allergy treat-
ment, which was given to Wilson by a doctor when
he attended Blinn junior college in Houston. In a
unanimous vote, the Norwegian sports confedera-
tion ruled that Wilson had not taken the drug to en-
hance his performance...

In the above example, the task is to resolve
the definite NP the drug to its correct antecedent
pseudoephedrine, among the potential antecedents
<pseudoephedrine, allergy, blinn, college, hous-
ton, vote, confederation, wilson>. Only Wilson can
be ruled out on syntactic grounds (Hobbs, 1978).
To be able to resolve the correct antecedent from
the remaining potential antecedents, the system re-
quires the knowledge that pseudoephedrine is a
drug. Thus, the problem is to create such a knowl-
edge source and apply it to this task of antecedent
selection. A total of 177 such anaphoric examples

Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL-X)
pages 37-44, New York City, June 20@®2006 Association for Computational Linguistics



were extracted randomly from the LDC Gigaword
corpus and a human judge identified the correct an-
tecedent for the definite NP in each example (given a
context of previous sentences).! Two human judges
were asked to perform the same task over the same
examples. The agreement between the judges was
92% (of all 177 examples), indicating a clearly de-
fined task for our evaluation purposes.

We describe an unsupervised approach to this task
that extracts examples containing definite NPs from
a large corpus, considers all head words appearing
before the definite NP as potential antecedents and
then filters the noisy <antecedent, definite-NP> pair
using Mutual Information space. The co-occurence
statistics of such pairs can then be used as a mecha-
nism for detecting a hypernym relation between the
definite NP and its potential antecedents. We com-
pare this approach with a WordNet-based algorithm
and with an approach presented by Markert and Nis-
sim (2005) on resolving definite NP coreference that
makes use of lexico-syntactic patterns such as "X
and Other Ys’ as utilized by Hearst (1992).

2 Related work

There is a rich tradition of work using lexical and se-
mantic resources for anaphora and coreference res-
olution. Several researchers have used WordNet as
a lexical and semantic resource for certain types of
bridging anaphora (Poesio et al., 1997; Meyer and
Dale, 2002). WordNet has also been used as an im-
portant feature in machine learning of coreference
resolution using supervised training data (Soon et
al., 2001; Ng and Cardie, 2002). However, sev-
eral researchers have reported that knowledge incor-
porated via WordNet is still insufficient for definite
anaphora resolution. And of course, WordNet is not
available for all languages and is missing inclusion
of large segments of the vocabulary even for cov-
ered languages. Hence researchers have investigated
use of corpus-based approaches to build a Word-
Net like resource automatically (Hearst, 1992; Cara-

The test examples were selected as follows: First, all
the sentences containing definite NP “The Y were extracted
from the corpus. Then, the sentences containing instances
of anaphoric definite NPs were kept and other cases of defi-
nite expressions (like existential NPs “The White House”,"The
weather”) were discarded. From this anaphoric set of sentences,
177 sentence instances covering 13 distinct hypernyms were
randomly selected as the test set and annotated for the correct
antecedent by human judges.
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ballo, 1999; Berland and Charniak, 1999). Also,
several researchers have applied it to resolving dif-
ferent types of bridging anaphora (Clark, 1975).
Poesio et al. (2002) have proposed extracting lexical
knowledge about part-of relations using Hearst-style
patterns and applied it to the task of resolving bridg-
ing references. Poesio et al. (2004) have suggested
using Google as a source of computing lexical dis-
tance between antecedent and definite NP for mere-
ological bridging references (references referring to
parts of an object already introduced). Markert et al.
(2003) have applied relations extracted from lexico-
syntactic patterns such as ‘X and other Ys’ for Other-
Anaphora (referential NPs with modifiers other or
another) and for bridging involving meronymy.
There has generally been a lack of work in the exist-
ing literature for automatically building lexical re-
sources for definite anaphora resolution involving
hyponyms relations such as presented in Example
(1). However, this issue was recently addressed by
Markert and Nissim (2005) by extending their work
on Other-Anaphora using lexico syntactic pattern "X
and other Y’s to antecedent selection for definite NP
coreference. However, our task is more challeng-
ing since the anaphoric definite NPs in our test set
include only hypernym anaphors without including
the much simpler cases of headword repetition and
other instances of string matching. For direct eval-
uation, we also implemented their corpus-based ap-
proach and compared it with our models on identical
test data.

We also describe and evaluate a mechanism for com-
bining the knowledge obtained from WordNet and
the six corpus-based approaches investigated here.
The resulting models are able to overcome the weak-
nesses of a WordNet-only model and substantially
outperforms any of the individual models.

3 Models for Lexical Acquisition

3.1 TheY-Model

Our algorithm is motivated by the observation that in
a discourse, the use of the definite article (“the”) in a
non-deictic context is primarily licensed if the con-
cept has already been mentioned in the text. Hence a
sentence such as “The drug is very expensive” gen-
erally implies that either the word drug itself was
previously mentioned (e.g. “He is taking a new drug
for his high cholesterol.”) or a hyponym of drug was



previously mentioned (e.g. “He is taking Lipitor for
his high cholesterol.”). Because it is straightforward
to filter out the former case by string matching, the
residual instances of the phrase “the drug” (without
previous mentions of the word “drug” in the dis-
course) are likely to be instances of hypernymic def-
inite anaphora. We can then determine which nouns
earlier in the discourse (e.g. Lipitor) are likely an-
tecedents by unsupervised statistical co-occurrence
modeling aggregated over the entire corpus. All we
need is a large corpus without any anaphora annota-
tion and a basic tool for noun tagging and NP head
annotation. The detailed algorithm is as follows:

1. Find each sentence in the training corpus that
contains a definite NP (’the Y’) and does not
contain 'a Y’, ’an Y’ or other instantiations of
Y? appearing before the definite NP within a
fixed window.?

In the sentences that pass the above definite NP
and a/an test, regard all the head words (X) oc-
curring in the current sentence before the defi-
nite NP and the ones occurring in previous two
sentences as potential antecedents.

. Count the frequency ¢(X,Y) for each pair ob-
tained in the above two steps and pre-store it in
a table.* The frequency table can be modified
to give other scores for pair(X,Y) such as stan-
dard TF-IDF and Mutual Information scores.

Given a test sentence having an anaphoric def-
inite NP Y, consider the nouns appearing be-
fore Y within a fixed window as potential an-
tecedents. Rank the candidates by their pre-
computed co-occurence measures as computed
in Step 3.
Since we consider al/l head words preceding the defi-
nite NP as potential correct antecedents, the raw fre-
quency of the pair (X,Y’) can be very noisy. This
can be seen clearly in Table 1, where the first col-
umn shows the top potential antecedents of definite
NP the drug as given by raw frequency. We nor-
malize the raw frequency using standard TF-IDF
*While matching for both ’the Y’ and ’a/an Y’, we also ac-
count for Nouns getting modified by other words such as adjec-
tives. Thus 'the Y’ will still match to ’the green and big Y.
3Window size was set to two sentences, we also experi-
mented with a larger window size of five sentences and the re-

sults obtained were similar.
“Note that the count c¢(X,Y) is asymmetric
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Rank | Raw freq TF-IDF MI
1 today kilogram amphetamine
2 police heroin cannabis
3 kilogram police cocaine
4 year cocaine heroin
5 heroin today marijuana
6 dollar trafficker pill
7 country officer hashish
8 official | amphetamine tablet

Table 1: A sample of ranked hyponyms proposed for
the definite NP The drug by TheY-Model illustrat-
ing the differences in weighting methods.

Acc | Accyqy | Av Rank
MI 0.531 | 0.577 4.82
TF-IDF | 0.175 | 0.190 6.63
Raw Freq | 0.113 | 0.123 7.61

Table 2: Results using different normalization tech-
niques for the TheY-Model in isolation. (60 million
word corpus)

and Mutual Information scores to filter the noisy
pairs.>  In Table 2, we report our results for an-
tecedent selection using Raw frequency ¢(X,Y), TF-
IDF ¢ and MI in isolation. Accuracy is the fraction
of total examples that were assigned the correct an-
tecedent and Accuracyyqg is the same excluding the
examples that had POS tagging errors for the cor-
rect antecedent.” Av Rank is the rank of the true
antecedent averaged over the number of test exam-
ples.® Based on the above experiment, the rest of
this paper assumes Mutual Information scoring tech-
nique for TheY-Model.

’Note that MI(X,Y) = log % and this is directly
proportional to P(Y|X) = CY&? for a fixed Y. Thus, we

can simply use this conditional probability during implementa-
tion since the definite NP Y is fixed for the task of antecedent
selection.

SFor the purposes of TF-IDF computation, document fre-
quency df(X) is defined as the number of unique definite NPs
for which X appears as an antecedent.

"Since the POS tagging was done automatically, it is possi-
ble for any model to miss the correct antecedent because it was
not tagged correctly as a noun in the first place. There were 14
such examples in the test set and none of the model variants can
find the correct antecdent in these instances.

$Knowing average rank can be useful when a n-best ranked
list from coreference task is used as an input to other down-
stream tasks such as information extraction.



Acc | Accyqg | Av Rank
TheY+WN | 0.695 | 0.755 3.37
WordNet | 0.593 | 0.644 3.29
TheY 0.531 | 0.577 4.82

Table 3: Accuracy and Average Rank showing com-
bined model performance on the antecedent selec-
tion task. Corpus Size: 60 million words.

3.2 WordNet-Model (WN)
Because WordNet is considered as a standard re-

source of lexical knowledge and is often used in
coreference tasks, it is useful to know how well
corpus-based approaches perform as compared to
a standard model based on the WordNet (version
2.0).” The algorithm for the WordNet-Model is as
follows:

Given a definite NP Y and its potential antecedent
X, choose X if it occurs as a hyponym (either direct
or indirect inheritance) of Y. If multiple potential an-
tecedents occur in the hierarchy of Y, choose the one
that is closest in the hierarchy.

3.3 Combination: TheY+WordNet Model

Most of the literature on using lexical resources
for definite anaphora has focused on using individ-
ual models (either corpus-based or manually build
resources such as WordNet) for antecedent selec-
tion. Some of the difficulties with using WordNet is
its limited coverage and its lack of empirical rank-
ing model. We propose a combination of TheY-
Model and WordNet-Model to overcome these prob-
lems. Essentially, we rerank the hypotheses found
in WordNet-Model based on ranks of TheY-model
or use a backoff scheme if WordNet-Model does not
return an answer due to its limited coverage. Given
a definite NP Y and a set of potential antecedents Xs
the detailed algorithm is specified as follows:

1. Rerank with TheY-Model: Rerank the potential
antecedents found in the WordNet-Model ta-
ble by assiging them the ranks given by TheY-
Model. If TheY-Model does not return a rank
for a potential antecedent, use the rank given by

“We also computed the accuracy using a weaker baseline,
namely, selecting the closest previous headword as the correct
antecedent. This recency based baseline obtained a low accu-
racy of 15% and hence we used the stronger WordNet based
model for comparison purposes.
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the WordNet-Model. Now pick the top ranked
antecedent after reranking.

2. Backoff: If none of the potential antecedents
were found in the WordNet-Model then pick
the correct antecedent from the ranked list of
The-Y model. If none of the models return an
answer then assign ranks uniformly at random.

The above algorithm harnesses the strength of
WordNet-Model to identify good hyponyms and the
strength of TheY-model to identify which are more
likely to be used as an antecedent. Note that this
combination algorithm can be applied using any
corpus-based technique to account for poor-ranking
and low-coverage problems of WordNet and the
Sections 3.4, 3.5 and 3.6 will show the results for
backing off to a Hearst-style hypernym model. Ta-
ble 4 shows the decisions made by TheY-model,
WordNet-Model and the combined model for a sam-
ple of test examples. It is interesting to see how both
the models mutually complement each other in these
decisions. Table 3 shows the results for the models
presented so far using a 60 million word training text
from the Gigaword corpus. The combined model re-
sults in a substantially better accuracy than the indi-
vidual WordNet-Model and TheY-Model, indicating
its strong merit for the antecedent selection task.'”
3.4 OtherY-Modely,,

This model is a reimplementation of the corpus-
based algorithm proposed by Markert and Nissim
(2005) for the equivalent task of antecedent selec-
tion for definite NP coreference. We implement their
approach of using the lexico-syntactic pattern X and
A* other B* Y{pl} for extracting (X,Y) pairs.The A*
and B* allow for adjectives or other modifiers to be
placed in between the pattern. The model presented
in their article uses the raw frequency as the criteria
for selecting the antecedent.

3.5 OtherY-Model,;;(normalized)

We normalize the OtherY-Model using Mutual In-
formation scoring method. Although Markert and
Nissim (2005) report that using Mutual Information
performs similar to using raw frequency, Table 5
shows that using Mutual Information makes a sub-
stantial impact on results using large training cor-
pora relative to using raw frequency.

0The claim is statistically significant with a p < 0.01 ob-
tained by sign-test



Summary Keyword True TheY | Truth | WordNet | Truth | TheY+WN | Truth

(Def. Ana) | Antecedent || Choice | Rank Choice Rank Choice Rank
Both metal gold gold 1 gold 1 gold 1
correct sport soccer soccer 1 soccer 1 soccer 1
TheY-Model drug steroid steroid 1 NA NA steroid 1
helps drug azt azt 1 medication 2 azt 1
WN-Model | instrument trumpet king 10 trumpet 1 trumpet 1
helps drug naltrexone || alcohol 14 naltrexone 1 naltrexone 1
Both weapon bomb artillery 3 NA NA artillery 3
incorrect instrument voice music 9 NA NA music 9

Table 4: A sample of output from different models on antecedent selection (60 million word corpus).

3.6 Combination: TheY+OtherY ;;; Model
Our two corpus-based approaches (TheY and Oth-

erY) make use of different linguistic phenomena and
it would be interesting to see whether they are com-
plementary in nature. We used a similar combina-
tion algorithm as in Section 3.3 with the WordNet-
Model replaced with the OtherY-Model for hyper-
nym filtering, and we used the noisy TheY-Model
for reranking and backoff. The results for this ap-
proach are showed as the entry TheY+OtherY 5,7 in
Table 5. We also implemented a combination (Oth-
erY+WN) of Other-Y model and WordNet-Model
by replacing TheY-Model with OtherY-Model in the
algorithm described in Section 3.3. The respective
results are indicated as OtherY+WN entry in Table
5.

4 Further Anaphora Resolution Results

Table 5 summarizes results obtained from all the
models defined in Section 3 on three different sizes
of training unlabeled corpora (from Gigaword cor-
pus). The models are listed from high accuracy to
low accuracy order. The OtherY-Model performs
particularly poorly on smaller data sizes, where cov-
erage of the Hearst-style patterns maybe limited,
as also observed by Berland and Charniak (1999).
We further find that the Markert and Nissim (2005)
OtherY-Model and our MI-based improvement do
show substantial relative performance growth at in-
creased corpus sizes, although they still underper-
form our basic TheY-Model at all tested corpus
sizes. Also, the combination of corpus-based mod-
els (TheY-Model+OtherY-model) does indeed per-
forms better than either of them in isolation. Fi-
nally, note that the basic TheY-algorithm still does
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‘ Acc ‘ Accqg | Av Rank
60 million words

TheY+WN 0.695 | 0.755 3.37
OtherY ;7+WN | 0.633 | 0.687 3.04
WordNet 0.593 | 0.644 3.29
TheY 0.531 | 0.577 4.82
TheY+OtherY ;7 | 0.497 | 0.540 4.96
OtherY y; 0.356 | 0.387 5.38
OtherY f;.¢4 0.350 | 0.380 5.39

230 million words
TheY+WN 0.678 | 0.736 3.61
OtherY ;7+WN | 0.650 | 0.705 2.99
WordNet 0.593 | 0.644 3.29
TheY+OtherY ;7 | 0.559 | 0.607 4.50
TheY 0.519 | 0.564 4.64
OtherY p; 0.503 | 0.546 4.37
OtherY ;.4 0.418 | 0.454 4.52

380 million words
TheY+WN 0.695 | 0.755 3.47
OtherY ;7+WN | 0.644 | 0.699 3.03
WordNet 0.593 | 0.644 3.29
TheY+OtherY ;7 | 0.554 | 0.601 4.20
TheY 0.537 | 0.583 4.26
OtherY p; 0.525 | 0.571 4.20
OtherY ;.4 0.446 | 0.485 4.36

Table 5: Accuracy and Average Rank of Models de-
fined in Section 3 on the antecedent selection task.




relatively well by itself on smaller corpus sizes,
suggesting its merit on resource-limited languages
with smaller available online text collections and the
unavailability of WordNet. The combined models
of WordNet-Model with the two corpus-based ap-
proaches still significantly (p < 0.01) outperform
any of the other individual models.'!

5 Generation Task

Having shown positive results for the task of an-
tecedent selection, we turn to a more difficult task,
namely generating an anaphoric definite NP given
a nominal antecedent. In Example (1), this would
correspond to generating “the drug” as an anaphor
knowing that the antecedent is pseudoephedrine.
This task clearly has many applications: current gen-
eration systems often limit their anaphoric usage to
pronouns and thus an automatic system that does
well on hypernymic definite NP generation can di-
rectly be helpful. It also has strong potential appli-
cation in abstractive summarization where rewriting
a fluent passage requires a good model of anaphoric
usage.

There are many interesting challenges in this prob-
lem: first of all, there maybe be multiple acceptable
choices for definite anaphor given a particular an-
tecedent, complicating automatic evaluation. Sec-
ond, when a system generates a definite anaphora,
the space of potential candidates is essentially un-
bounded, unlike in antecdent selection, where it is
limited only to the number of potential antecedents
in prior context. In spite of the complex nature
of this problem, our experiments with the human
judgements, WordNet and corpus-based approaches
show a simple feasible solution. We evaluate our
automatic approaches based on exact-match agree-
ment with definite anaphora actually used in the cor-
pus (accuracy) and also by agreement with definite
anaphora predicted independently by a human judge
in an absence of context.

"Note that syntactic co-reference candidate filters such as
the Hobbs algorithm were not utilized in this study. To assess
the performance implications, the Hobbs algorithm was applied
to a randomly selected 100-instance subset of the test data. Al-
though the Hobbs algorithm frequently pruned at least one of
the coreference candidates, in only 2% of the data did such can-
didate filtering change system output. However, since both of
these changes were improvements, it could be worthwhile to

utilize Hobbs filtering in future work, although the gains would
likely be modest.
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5.1 Human experiment

We extracted a total of 103 <true antecedent, defi-
nite NP> pairs from the set of test instances used in
the resolution task. Then we asked a human judge (a
native speaker of English) to predict a parent class
of the antecedent that could act as a good definite
anaphora choice in general, independent of a par-
ticular context. Thus, the actual corpus sentence
containing the antecedent and definite NP and its
context was not provided to the judge. We took
the predictions provided by the judge and matched
them with the actual definite NPs used in the corpus.
The agreement between corpus and the human judge
was 79% which can thus be considered as an upper
bound of algorithm performance. Table 7 shows a
sample of decisions made by the human and how
they agree with the definite NPs observed in the cor-
pus. It is interesting to note the challenge of the
sense variation and figurative usage. For example,
“corruption” is refered to as a “tool” in the actual
corpus anaphora, a metaphoric usage that would be
difficult to predict unless given the usage sentence
and its context. However, a human agreement of
79% indicate that such instances are relatively rare
and the task of predicting a definite anaphor with-
out its context is viable. In general, it appears from
our experiements that humans tend to select from
a relatively small set of parent classes when gener-
ating hypernymic definite anaphora. Furthermore,
there appears to be a relatively context-independent
concept of the “natural” level in the hypernym hi-
erarchy for generating anaphors. For example, al-
though < “alkaloid”, “organic compound”, “com-
pound”, “substance”, “entity”> are all hypernyms
of “Pseudoephederine” in WordNet, “the drug”
appears to be the preferred hypernym for definite
anaphora in the data, with the other alternatives be-
ing either too specific or too general to be natural.
This natural level appears to be difficult to define by
rule. For example, using just the immediate parent
hypernym in the WordNet hierarchy only achieves
4% match with the corpus data for definite anaphor
generation.

5.2 Algorithms

The following sections presents our corpus-based al-
gorithms as more effective alternatives.



Agreement | Agreement Antecedent || Corpus | Human | TheY+OtherY
w/ human | w/ corpus Def Ana | Choice +WN
judge racing sport sport sport
TheY+OtherY+WN 47 % 46 % azt drug drug drug
OtherY +WN 43% 43% missile weapon | weapon weapon
TheY+WN 42% 37% alligator animal | animal animal
TheY +OtherY 39% 36% steel metal metal metal
OtherY 39% 36% osteporosis || disease | disease condition
WordNet 4% 4% grenade device | weapon device
Human judge 100% 79% baikonur site city station
Corpus 79% 100% corruption tool crime activity
Table 6: Agreement of different generation models Table 7: Sample of decisions made by hu-

with human judge and with definite NP used in the
corpus.

5.2.1 Individual Models

For the corpus-based approaches, the TheY-Model
and OtherY-Model were trained in the same manner
as for the antecedent selection task. The only differ-
ence was that in the generation case, the frequency
statistics were reversed to provide a hypernym given
a hyponym. Additionally, we found that raw fre-
quency outperformed either TF-IDF or Mutual In-
formation and was used for all results in Table 6.
The stand-alone WordNet model is also very simple:
Given an antecedent, we lookup its direct hypernym
(using first sense) in the WordNet and use it as the
definite NP, for lack of a better rule for preferred hy-
pernym location.

5.2.2 Combining corpus-based approaches and
WordNet

Each of the corpus-based approaches was combined
with WordNet resulting in two different models as
follows: Given an antecedent X, the corpus-based
approach looks up in its table the hypernym of X,
for example Y, and only produces Y as the output if
Y also occurs in the WordNet as hypernym. Thus
WordNet is used as a filtering tool for detecting vi-
able hypernyms. This combination resulted in two
models: 'TheY+WN’ and 'OtherY+WN'.

We also combined all the three approaches, "TheY”,
"OtherY’ and WordNet resulting in a single model
"TheY+OtherY+WN’. This was done as follows: We
first combine the models 'TheY’ and ’OtherY’ using
a backoff model. The first priority is to use the hy-
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man judge and our best performing model
(TheY+OtherY+WN) on the generation task.

pernym from the model 'OtherY’, if not found then
use the hypernym from the model 'TheY’. Given a
definite NP from the backoff model, apply the Word-
Net filtering technique, specifically, choose it as the
correct definite NP if it also occurs as a hypernym in
the WordNet hierarchy of the antecedent.

5.3 Evaluation of Anaphor Generation

We evaluated the resulting algorithms from Section
5.2 on the definite NP prediction task as described
earlier. Table 6 shows the agreement of the algo-
rithm predictions with the human judge as well as
with the definite NP actually observed in the corpus.
It is interesting to see that WordNet by itself per-
forms very poorly on this task since it does not have
any word-specific mechanism to choose the correct
level in the hierarchy and the correct word sense for
selecting the hypernym. However, when combined
with our corpus-based approaches, the agreement
increases substantially indicating that the corpus-
based approaches are effectively filtering the space
of hypernyms that can be used as natural classes.
Likewise, WordNet helps to filter the noisy hyper-
nyms from the corpus predictions. Thus, this inter-
play between the corpus-based and WordNet algo-
rithm works out nicely, resulting in the best model
being a combination of all three individual models
and achieving a substantially better agreement with
both the corpus and human judge than any of the in-
dividual models. Table 7 shows decisions made by
this algorithm on a sample test data.



6 Conclusion

This paper provides a successful solution to the
problem of incomplete lexical resources for definite
anaphora resolution and further demonstrates how
the resources built for resolution can be naturally ex-
tended for the less studied task of anaphora genera-
tion. We first presented a simple and noisy corpus-
based approach based on globally modeling head-
word co-occurrence around likely anaphoric definite
NPs. This was shown to outperform a recent ap-
proach by Markert and Nissim (2005) that makes use
of standard Hearst-style patterns extracting hyper-
nyms for the same task. Even with a relatively small
training corpora, our simple TheY-model was able
to achieve relatively high accuracy, making it suit-
able for resource-limited languages where annotated
training corpora and full WordNets are likely not
available. We then evaluated several variants of this
algorithm based on model combination techniques.
The best combined model was shown to exceed 75%
accuracy on the resolution task, beating any of the
individual models. On the much harder anaphora
generation task, where the stand-alone WordNet-
based model only achieved an accuracy of 4%, we
showed that our algorithms can achieve 35%-47%
accuracy on blind exact-match evaluation, thus mo-
tivating the use of such corpus-based learning ap-
proaches on the generation task as well.

Acknowledgements
Thanks to Charles Schafer for sharing his tools on
POS/Headword tagging for the Gigaword corpus.

References

M. Berland and E. Charniak. 1999. Finding parts in
very large corpora. In Proceedings of the 37th Annual
Meeting of the Association for Computational Linguis-
tics, pages S7-64.

S. Caraballo. 1999. Automatic construction of a
hypernym-labeled noun hierarchy from text. In Pro-
ceedings of the 37th Annual Meeting of the Association
for Computational Linguistics, pages 120-126.

H. H. Clark. 1975. Bridging. In Proceedings of the
Conference on Theoretical Issues in Natural Language
Processing, pages 169-174.

D. Connoly, J. D. Burger, and D. S. Day. 1997. A ma-
chine learning approach to anaphoric reference. In
Proceedings of the International Conference on New
Methods in Language Processing, pages 133-144.

D. Graff, J. Kong, K. Chen, and K. Maeda. 2005. En-

glish Gigaword Second Edition. Linguistic Data Con-
sortium, catalog number LDC2005T12.

44

S. Harabagiu, R. Bunescu, and S. J. Maiorano. 2001.
Text and knowledge mining for coreference resolu-
tion. In Proceedings of the Second Meeting of the
North American Chapter of the Association for Com-
putational Linguistics, pages 55-62.

M. Hearst. 1992. Automatic acquisition of hyponyms
from large text corpora. In Proceedings of the 14th In-
ternational Conference on Computational Linguistics,
pages 539-545.

J. Hobbs. 1978. Resolving pronoun references. Lingua,
44:311-338.

K. Markert and M. Nissim. 2005. Comparing knowl-
edge sources for nominal anaphora resolution. Com-
putational Linguistics, 31(3):367-402.

K. Markert, M. Nissim, and N. N. Modjeska. 2003. Us-
ing the web for nominal anaphora resolution. In Pro-
ceedings of the EACL Workshop on the Computational
Treatment of Anaphora, pages 39—46.

. Meyer and R. Dale. 2002. Mining a corpus to sup-
port associative anaphora resolution. In Proceedings
of the Fourth International Conference on Discourse
Anaphora and Anaphor Resolution.

V. Ng and C. Cardie. 2002. Improving machine learn-
ing approaches to coreference resolution. In Proceed-
ings of the 40th Annual Meeting of the Association for
Computational Linguistics, pages 104-111.

M. Poesio, R. Vieira, and S. Teufel. 1997. Resolving
bridging references in unrestricted text. In Proceed-
ings of the ACL Workshop on Operational Factors in
Robust Anaphora, pages 1-6.

M. Poesio, T. Ishikawa, S. Schulte im Walde, and
R. Viera. 2002. Acquiring lexical knowledge for
anaphora resolution. In Proccedings of the Third Con-

ference on Language Resources and Evaluation, pages
1220-1224.

M. Poesio, R. Mehta, A. Maroudas, and J. Hitzeman.
2004. Learning to resolve bridging references. In Pro-
ceedings of the 42nd Annual Meeting of the Associa-
tion for Computational Linguistics, pages 143—150.

W. M. Soon, H. T. Ng, and D. C. Y. Lim. 2001. A ma-
chine learning approach to coreference resolution of
noun phrases. Computational Linguistics, 27(4):521—
544.

M. Strube, S. Rapp, and C. Miiller. 2002. The influ-
ence of minimum edit distance on reference resolution.
In Proceedings of the 2002 Conference on Empirical
Methods in Natural Language Processing, pages 312—
319.

R. Vieira and M. Poesio. 2000. An empirically-based
system for processing definite descriptions. Computa-
tional Linguistics, 26(4):539-593.

X. Yang, G. Zhou, J. Su, and C. L. Tan. 2003. Corefer-
ence resolution using competition learning approach.
In Proceedings of the 41st Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 176—183.



Investigating Lexical Substitution Scoring for Subtitle Generation

Oren Glickman and Ido Dagan
Computer Science Department
Bar Ilan University
Ramat Gan, Israel

{glikmao,dagan}@cs.biu.ac.il

Mikaela Keller and Samy Bengio
IDIAP Research Institute
Martigny,

Switzerland
{mkeller,bengio}@idiap.ch

Walter Daelemans
CNTS
Antwerp, Belgium
walter.daelemans@Qua.ac.be

Abstract

This paper investigates an isolated setting
of the lexical substitution task of replac-
ing words with their synonyms. In par-
ticular, we examine this problem in the
setting of subtitle generation and evaluate
state of the art scoring methods that pre-
dict the validity of a given substitution.
The paper evaluates two context indepen-
dent models and two contextual models.
The major findings suggest that distribu-
tional similarity provides a useful comple-
mentary estimate for the likelihood that
two Wordnet synonyms are indeed substi-
tutable, while proper modeling of contex-
tual constraints is still a challenging task
for future research.

1 Introduction

Lexical substitution - the task of replacing a word
with another one that conveys the same meaning -
is a prominent task in many Natural Language Pro-
cessing (NLP) applications. For example, in query
expansion for information retrieval a query is aug-
mented with synonyms of the original query words,
aiming to retrieve documents that contain these syn-
onyms (Voorhees, 1994). Similarly, lexical substi-
tutions are applied in question answering to identify
answer passages that express the sought answer in
different terms than the original question. In natu-
ral language generation it is common to seek lex-
ical alternatives for the same meaning in order to
reduce lexical repetitions. In general, lexical sub-
stitution aims to preserve a desired meaning while
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coping with the lexical variability of expressing that
meaning. Lexical substitution can thus be viewed
within the general framework of recognizing entail-
ment between text segments (Dagan et al., 2005), as
modeling entailment relations at the lexical level.

In this paper we examine the lexical substitu-
tion problem within a specific setting of text com-
pression for subtitle generation (Daelemans et al.,
2004). Subtitle generation is the task of generat-
ing target language TV subtitles for video recordings
of a source language speech. The subtitles should
be of restricted length, which is often shorter than
the full translation of the original speech, yet they
should maintain as much as possible the meaning
of the original content. In a typical (automated)
subtitling process the original speech is first trans-
lated fully into the target language and then the tar-
get translation is compressed to optimize the length
requirements. One of the techniques employed in
the text compression phase is to replace a target lan-
guage word in the original translation with a shorter
synonym of it, thus reducing the character length of
the subtitle. This is a typical lexical substitution
task, which resembles similar operations in other
text compression and generation tasks (e.g. (Knight
and Marcu, 2002)).

This paper investigates the task of assigning like-
lihood scores for the correctness of such lexical sub-
stitutions, in which words in the original translation
are replaced with shorter synonyms. In our experi-
ments we use WordNet as a source of candidate syn-
onyms for substitution. The goal is to score the like-
lihood that the substitution is admissible, i.e. yield-
ing a valid sentence that preserves the original mean-
ing. The focus of this paper is thus to utilize the
subtitling setting in order to investigate lexical sub-
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stitution models in isolation, unlike most previous
literature in which this sub-task has been embedded
in larger systems and was not evaluated directly.

We examine four statistical scoring models, of
two types. Context independent models score the
general likelihood that the original word is “replace-
able” with the candidate synonym, in an arbitrary
context. That is, trying to filter relatively bizarre
synonyms, often of rare senses, which are abundant
in WordNet but are unlikely to yield valid substitu-
tions. Contextual models score the “fitness” of the
replacing word within the context of the sentence, in
order to filter out synonyms of senses of the original
word that are not the right sense in the given context.

We set up an experiment using actual subti-
tling data and human judgements and evaluate the
different scoring methods. Our findings suggest
the dominance, in this setting, of generic context-
independent scoring. In particular, considering dis-
tributional similarity amongst WordNet synonyms
seems effective for identifying candidate substitu-
tions that are indeed likely to be applicable in actual
texts. Thus, while distributional similarity alone is
known to be too noisy as a sole basis for meaning-
preserving substitutions, its combination with Word-
Net allows reducing the noise caused by the many
WordNet synonyms that are unlikely to correspond
to valid substitutions.

2 Background and Setting

2.1 Subtitling

Automatic generation of subtitles is a summariza-
tion task at the level of individual sentences or occa-
sionally of a few contiguous sentences. Limitations
on reading speed of viewers and on the size of the
screen that can be filled with text without the image
becoming too cluttered, are the constraints that dy-
namically determine the amount of compression in
characters that should be achieved in transforming
the transcript into subtitles. Subtitling is not a trivial
task, and is expensive and time-consuming when ex-
perts have to carry it out manually. As for other NLP
tasks, both statistical (machine learning) and linguis-
tic knowledge-based techniques have been consid-
ered for this problem. Examples of the former are
(Knight and Marcu, 2002; Hori et al., 2002), and of
the latter are (Grefenstette, 1998; Jing and McKe-
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own, 1999). A comparison of both approaches in
the context of a Dutch subtitling system is provided
in (Daelemans et al., 2004). The required sentence
simplification is achieved either by deleting mate-
rial, or by paraphrasing parts of the sentence into
shorter expressions with the same meaning. As a
special case of the latter, lexical substitution is often
used to achieve a compression target by substituting
a word by a shorter synonym. It is on this subtask
that we focus in this paper. Table 1 provides a few
examples. E.g. by substituting “happen” by “occur”
(example 3), one character is saved without affecting
the sentence meaning .

2.2 Experimental Setting

The data used in our experiments was collected in
the context of the MUSA (Multilingual Subtitling of
Multimedia Content) project (Piperidis et al., 2004)'
and was kindly provided for the current study. The
data was provided by the BBC in the form of Hori-
zon documentary transcripts with the corresponding
audio and video. The data for two documentaries
was used to create a dataset consisting of sentences
from the transcripts and the corresponding substitu-
tion examples in which selected words are substi-
tuted by a shorter Wordnet synonym. More con-
cretely, a substitution example thus consists of an
original sentence s wiy ... W ... Wy, a specific
source word w; in the sentence and a target (shorter)
WordNet synonym w’ to substitute the source. See
Table 1 for examples. The dataset consists of 918
substitution examples originating from 231 different
sentences.

An annotation environment was developed to al-
low efficient annotation of the substitution examples
with the classes frue (admissible substitution, in the
given context) or false (inadmissible substitution).
About 40% of the examples were judged as true.
Part of the data was annotated by an additional an-
notator to compute annotator agreement. The Kappa
score turned out to be 0.65, corresponding to ”Sub-
stantial Agreement” (Landis and Koch, 1997). Since
some of the methods we are comparing need tuning
we held out a random subset of 31 original sentences
(with 121 corresponding examples) for development
and kept for testing the resulting 797 substitution ex-

"http://sinfos.ilsp.gr/musa/



id | sentence source target | judgment
1 The answer may be found in the behaviour of animals. answer reply false
2 ...and the answer to that was - Yes answer reply true
i We then wanted to know what would happen if happen oceur true
., subject topic false
5 we delay the movement of the subject’s left hand subiect th fal
subjec eme alse
6 people weren’t laughing they were going stone sober. stone rock false
7 if we can identify a place where the seizures are coming from then we can go in | identify place false
and remove just that small area.
8 my approach has been the first to look at the actual structure of the laugh sound. approach | attack | false
9 He quickly ran into an unexpected problem. problem | job false
10 | today American children consume 5 times more Ritalin than the rest of the world | consume | devour | false
combined

Table 1: Substitution examples from the dataset along with their annotations

amples from the remaining 200 sentences.

3 Compared Scoring Models

We compare methods for scoring lexical substitu-
tions. These methods assign a score which is ex-
pected to correspond to the likelihood that the syn-
onym substitution results in a valid subtitle which
preserves the main meaning of the original sentence.

We examine four statistical scoring models, of
two types. The context independent models score
the general likelihood that the source word can be
replaced with the target synonym regardless of the
context in which the word appears. Contextual mod-
els, on the other hand, score the fitness of the target
word within the given context.

3.1 Context Independent Models

Even though synonyms are substitutable in theory,
in practice there are many rare synonyms for which
the likelihood of substitution is very low and will be
substitutable only in obscure contexts. For exam-
ple, although there are contexts in which the word
job is a synonym of the word problem?, this is not
typically the case and overall job is not a good tar-
get substitution for the source problem (see example
9 in Table 1). For this reason synonym thesauruses
such as WordNet tend to be rather noisy for practi-
cal purposes, raising the need to score such synonym
substitutions and accordingly prioritize substitutions
that are more likely to be valid in an arbitrary con-
text.

2WordNet lists job as a possible member of the synset for a
state of difficulty that needs to be resolved, as might be used in
sentences like “it is always a job to contact him”

a7

As representative approaches for addressing this
problem, we chose two methods that rely on statisti-
cal information of two types: supervised sense dis-
tributions from SemCor and unsupervised distribu-
tional similarity.

3.1.1 WordNet based Sense Frequencies
(semcor)

The obvious reason that a target synonym cannot
substitute a source in some context is if the source
appears in a different sense than the one in which
it is synonymous with the target. This means that a
priori, synonyms of frequent senses of a source word
are more likely to provide correct substitutions than
synonyms of the word’s infrequent senses.

To estimate such likelihood, our first measure is
based on sense frequencies from SemCor (Miller et
al., 1993), a corpus annotated with Wordnet senses.
For a given source word u and target synonym v the
score is calculated as the percentage of occurrences
of u in SemCor for which the annotated synset con-
tains v (i.e. w’s occurrences in which its sense is
synonymous with v). This corresponds to the prior
probability estimate that an occurrence of w (in an
arbitrary context) is actually a synonym of v. There-
fore it is suitable as a prior score for lexical substi-
tution.’

3.1.2 Distributional Similarity (sim)

The SemCor based method relies on a supervised
approach and requires a sense annotated corpus. Our

*Note that WordNet semantic distance measures such as
those compared in (Budanitsky and Hirst, 2001) are not appli-
cable here since they measure similarity between synsets rather
than between synonymous words within a single synset.



second method uses an unsupervised distributional
similarity measure to score synonym substitutions.
Such measures are based on the general idea of
Harris’ Distributional Hypothesis, suggesting that
words that occur within similar contexts are seman-
tically similar (Harris, 1968).

As a representative of this approach we use Lin’s
dependency-based distributional similarity database.
Lin’s database was created using the particular dis-
tributional similarity measure in (Lin, 1998), applied
to a large corpus of news data (64 million words) 4.
Two words obtain a high similarity score if they oc-
cur often in the same contexts, as captured by syn-
tactic dependency relations. For example, two verbs
will be considered similar if they have large common
sets of modifying subjects, objects, adverbs etc.

Distributional similarity does not capture directly
meaning equivalence and entailment but rather a
looser notion of meaning similarity (Geffet and Da-
gan, 2005). It is typical that non substitutable words
such as antonyms or co-hyponyms obtain high sim-
ilarity scores. However, in our setting we apply
the similarity score only for WordNet synonyms in
which it is known a priori that they are substitutable
is some contexts. Distributional similarity may thus
capture the statistical degree to which the two words
are substitutable in practice. In fact, it has been
shown that prominence in similarity score corre-
sponds to sense frequency, which was suggested as
the basis for an unsupervised method for identifying
the most frequent sense of a word (McCarthy et al.,
2004).

3.2 Contextual Models

Contextual models score lexical substitutions based
on the context of the sentence. Such models
try to estimate the likelihood that the target word
could potentially occur in the given context of the
source word and thus may replace it. More con-
cretely, for a given substitution example consist-
ing of an original sentence s Wy ... W ... Wy,
and a designated source word w;, the contextual
models we consider assign a score to the substi-
tution based solely on the target synonym v and
the context of the source word in the original sen-

“available at http://www.cs.ualberta.ca/
~lindek/downloads.htm
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tence, {wi, ..., Wi—1,Wit1, ..., Wy}, which is rep-
resented in a bag-of-words format.

Apparently, this setting was not investigated much
in the context of lexical substitution in the NLP lit-
erature. We chose to evaluate two recently proposed
models that address exactly the task at hand: the first
model was proposed in the context of lexical model-
ing of textual entailment, using a generative Naive
Bayes approach; the second model was proposed
in the context of machine learning for information
retrieval, using a discriminative neural network ap-
proach. The two models were trained on the (un-
annotated) sentences of the BNC 100 million word
corpus (Burnard, 1995) in bag-of-words format. The
corpus was broken into sentences, tokenized, lem-
matized and stop words and tokens appearing only
once were removed. While training of these models
is done in an unsupervised manner, using unlabeled
data, some parameter tuning was performed using
the small development set described in Section 2.

3.2.1 Bayesian Model (bayes)

The first contextual model we examine is the one
proposed in (Glickman et al., 2005) to model tex-
tual entailment at the lexical level. For a given tar-
get word this unsupervised model takes a binary text
categorization approach. Each vocabulary word is
considered a class, and contexts are classified as to
whether the given target word is likely to occur in
them. Taking a probabilistic Naive-Bayes approach
the model estimates the conditional probability of
the target word given the context based on corpus co-
occurrence statistics. We adapted and implemented
this algorithm and trained the model on the sen-
tences of the BNC corpus.

For a Dbag-of-words context C
{wy,...,wi—1,wit1,...,wy,} and target word
v the Naive Bayes probability estimation for the
conditional probability of a word v may occur in a
given a context C' is as follows:

P(v|C) =
P(Clv) P(v) ~
P(Clv) P(v)+P(C-v) P(-v)
P) [, cc Pw]v)
P() [[,,cc P@lv)+P(0) [ [, e Pwl-v)

)

where P(w|v) is the probability that a word w ap-
pears in the context of a sentence containing v and
correspondingly P(w|—w) is the probability that w



appears in a sentence not containing v. The prob-
ability estimates were obtained from the processed
BNC corpus as follows:

__ |w appears in sentences containing v|
|[words in sentences containing |

P(w|v)

_ |w occurs in sentences not containing v|

P(w|-w) = |[words in sentences not containing v|

To avoid O probabilities these estimates were
smoothed by adding a small constant to all counts
and normalizing accordingly. The constant value
was tuned using the development set to maximize
average precision (see Section 4.1). The estimated
probability, P(v|C), was used as the confidence
score for each substitution example.

3.2.2 Neural Network Model (nntr)

As a second contextual model we evaluated the
Neural Network for Text Representation (NNTR)
proposed in (Keller and Bengio, 2005). NNTR is
a discriminative approach which aims at modeling
how likely a given word v is in the context of a piece
of text C', while learning a more compact represen-
tation of reduced dimensionality for both v and C'.

NNTR is composed of 3 Multilayer Perceptrons,
noted mipa(), mlpg() and mipc(), connected as
follow:

NNTR(v,C) = mlpcimlpa(v), mipp(C)].

mipa(v) and mipg(C') project respectively the
vector space representation of the word and text
into a more compact space of lower dimensionality.
mlpc() takes as input the new representations of v
and C and outputs a score for the contextual rele-
vance of v to C.

As training data, couples (v,C) from the BNC cor-
pus are provided to the learning scheme. The target
training value for the output of the systemis 1 if v is
indeed in C' and -1 otherwise. The hope is that the
neural network will be able to generalize to words
which are not in the piece of text but are likely to be
related to it.

In essence, this model is trained by minimizing
the weighted sum of the hinge loss function over
negative and positive couples, using stochastic Gra-
dient Descent (see (Keller and Bengio, 2005) for fur-
ther details). The small held out development set of
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the substitution dataset was used to tune the hyper-
parameters of the model, maximizing average preci-
sion (see Section 4.1). For simplicity mlp () and
mlpp() were reduced to Perceptrons. The output
size of mip_4() was set to 20, mipg() to 100 and the
number of hidden units of mipc¢() was set to 500.

There are a couple of important conceptual differ-
ences of the discriminative NNTR model compared
to the generative Bayesian model described above.
First, the relevancy of v to C' in NNTR is inferred
in a more compact representation space of reduced
dimensionality, which may enable a higher degree
of generalization. Second, in NNTR we are able to
control the capacity of the model in terms of num-
ber of parameters, enabling better control to achieve
an optimal generalization level with respect to the
training data (avoiding over or under fitting).

4 Empirical Results

4.1 Evaluation Measures

We compare the lexical substitution scoring methods
using two evaluation measures, offering two differ-
ent perspectives of evaluation.

4.1.1 Accuracy

The first evaluation measure is motivated by simu-
lating a decision step of a subtitling system, in which
the best scoring lexical substitution is selected for
each given sentence. Such decision may correspond
to a situation in which each single substitution may
suffice to obtain the desired compression rate, or
might be part of a more complex decision mecha-
nism of the complete subtitling system. We thus
measure the resulting accuracy of subtitles created
by applying the best scoring substitution example
for every original sentence. This provides a macro
evaluation style since we obtain a single judgment
for each group of substitution examples that corre-
spond to one original sentence.

In our dataset 25.5% of the original sentences
have no correct substitution examples and for 15.5%
of the sentences all substitution examples were an-
notated as correct. Accordingly, the (macro aver-
aged) accuracy has a lower bound of 0.155 and up-
per bound of 0.745.



4.1.2 Average Precision

As a second evaluation measure we compare the
average precision of each method over all the exam-
ples from all original sentences pooled together (a
micro averaging approach). This measures the po-
tential of a scoring method to ensure high precision
for the high scoring examples and to filter out low-
scoring incorrect substitutions.

Average precision is a single figure measure com-
monly used to evaluate a system’s ranking ability
(Voorhees and Harman, 1999). It is equivalent to the
area under the uninterpolated recall-precision curve,

defined as follows:

SN PO)T()
S TG

1=1

average precision =

Z. @)
p(i) = 2= 1)

where N is the number of examples in the test
set (797 in our case), T'(i) is the gold annotation
(true=1, false=0) and 7 ranges over the examples
ranked by decreasing score. An average precision
of 1.0 means that the system assigned a higher score
to all true examples than to any false one (perfect
ranking). A lower bound of 0.26 on our test set cor-
responds to a system that ranks all false examples
above the true ones.

4.2 Results

Figure 1 shows the accuracy and average precision
results of the various models on our test set. The ran-
dom baseline and corresponding significance levels
were achieved by averaging multiple runs of a sys-
tem that assigned random scores. As can be seen in
the figures, the models’ behavior seems to be con-
sistent in both evaluation measures.

Overall, the distributional similarity based
method (sim) performs much better than the
other methods. In particular, Lin’s similarity
also performs better than semcor, the other
context-independent model. Generally, the context
independent models perform better than the contex-
tual ones. Between the two contextual models, nntr
is superior to Bayes. In fact the Bayes model is not
significantly better than random scoring.

4.3 Analysis and Discussion

When analyzing the data we identified several rea-
sons why some of the WordNet substitutions were
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judged as false. In some cases the source word as
appearing in the original sentence is not in a sense
for which it is a synonym of the target word. For ex-
ample, in many situations the word answer is in the
sense of a statement that is made in reply to a ques-
tion or request. In such cases, such as in example 2
from Table 1, answer can be successfully replaced
with reply yielding a substitution which conveys the
original meaning. However, in situations such as in
example 1 the word answer is in the sense of a gen-
eral solution and cannot be replaced with reply. This
is also the case in examples 4 and 5 in which subject
does not appear in the sense of topic or theme.

Having an inappropriate sense, however, is not the
only reason for incorrect substitutions. In example 8
approach appears in a sense which is synonymous
with attack and in example 9 problem appears in a
sense which is synonymous with a quite uncommon
use of the word job. Nevertheless, these substitu-
tions were judged as unacceptable since the desired
sense of the target word after the substitution is not
very clear from the context. In many other cases,
such as in example 7, though semantically correct,
the substitution was judged as incorrect due to stylis-
tic considerations.

Finally, there are cases, such as in example 6
in which the source word is part of a collocation
and cannot be replaced with semantically equivalent
words.

When analyzing the mistakes of the distributional
similarity method it seems as if many were not nec-
essarily due to the method itself but rather to imple-
mentation issues. The online source we used con-
tains only the top most similar words for any word.
In many cases substitutions were assigned a score of
zero since they were not listed among the top scoring
similar words in the database. Furthermore, the cor-
pus that was used for training the similarity scores
was news articles in American English spelling and
does not always supply good scores to words of
British spelling in our BBC dataset (e.g. analyse,
behavioural, etc.).

The similarity based method seems to perform
better than the SemCor based method since, as noted
above, even when the source word is in the appro-
priate sense it not necessarily substitutable with the
target. For this reason we hypothesize that apply-
ing Word Sense Disambiguation (WSD) methods to
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Figure 1: Accuracy and Average Precision Results

classify the specific WordNet sense of the source and
target words may have only a limited impact on per-
formance.

Overall, context independent models seem to per-
form relatively well since many candidate synonyms
are a priori not substitutable. This demonstrates that
such models are able to filter out many quirky Word-
Net synonyms, such as problem and job.

Fitness to the sentence context seems to be a less
frequent factor and not that trivial to model. Local
context (adjacent words) seems to play more of a
role than the broader sentence context. However,
these two types of contexts were not distinguished in
the bag-of-words representations of the two contex-
tual methods that we examined. It will be interesting
to investigate in future research using different fea-
ture types for local and global context, as commonly
done for Word Sense Disambiguation (WSD). Yet,
it would still remain a challenging task to correctly
distinguish, for example, the contexts for which an-
swer is substitutable by reply (as in example 2) from
contexts in which it is not (as in example 1).

So far we have investigated separately the perfor-
mance of context independent and contextual mod-
els. In fact, the accuracy performance of the (con-
text independent) sim method is not that far from
the upper bound, and the analysis above indicated a
rather small potential for improvement by incorpo-
rating information from a contextual method. Yet,
there is still a substantial room for improvement in
the ranking quality of this model, as measured by av-
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erage precision, and it is possible that a smart com-
bination with a high-quality contextual model would
yield better performance. In particular, we would
expect that a good contextual model will identify the
cases in which for potentially good synonyms pair,
the source word appears in a sense that is not substi-
tutable with the target, such as in examples 1, 4 and
5 in Table 1. Investigating better contextual models
and their optimal combination with context indepen-
dent models remains a topic for future research.

5 Conclusion

This paper investigated an isolated setting of the lex-
ical substitution task, which has typically been em-
bedded in larger systems and not evaluated directly.
The setting allowed us to analyze different types of
state of the art models and their behavior with re-
spect to characteristic sub-cases of the problem.
The major conclusion that seems to arise from
our experiments is the effectiveness of combining a
knowledge based thesaurus such as WordNet with
distributional statistical information such as (Lin,
1998), overcoming the known deficiencies of each
method alone. Furthermore, modeling the a pri-
ori substitution likelihood captures the majority of
cases in the evaluated setting, mostly because Word-
Net provides a rather noisy set of substitution candi-
dates. On the other hand, successfully incorporating
local and global contextual information, as similar
to WSD methods, remains a challenging task for fu-
ture research. Overall, scoring lexical substitutions



is an important component in many applications and
we expect that our findings are likely to be broadly
applicable.
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Abstract

We present a method for recognizing se-
mantic role arguments using a kernel on
weighted marked ordered labeled trees
(the WMOLT kernel). We extend the
kernels on marked ordered labeled trees
(Kazama and Torisawa, 2005) so that the
mark can be weighted according to its im-
portance. We improve the accuracy by
giving more weights on subtrees that con-
tain the predicate and the argument nodes
with this ability. Although Kazama and
Torisawa (2005) presented fast training
with tree kernels, the slow classification
during runtime remained to be solved. In
this paper, we give a solution that uses an
efficient DP updating procedure applica-
ble in argument recognition. We demon-
strate that the WMOLT kernel improves
the accuracy, and our speed-up method
makes the recognition more than 40 times
faster than the naive classification.

1 Introduction

Semantic role labeling (SRL) is a task that recog-
nizes the arguments of a predicate (verb) in a sen-
tence and assigns the correct role to each argument.
As this task is recognized as an important step after
(or the last step of) syntactic analysis, many stud-
ies have been conducted to achieve accurate seman-
tic role labeling (Gildea and Jurafsky, 2002; Mos-
chitti, 2004; Hacioglu et al., 2004; Punyakanok et
al., 2004; Pradhan et al., 2005a; Pradhan et al.,
2005b; Toutanova et al., 2005).

Most of the studies have focused on machine
learning because of the availability of standard
datasets, such as PropBank (Kingsbury and Palmer,
2002). Naturally, the usefulness of parse trees in
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this task can be anticipated. For example, the recent
CoNLL 2005 shared task (Carreras and Marquez,
2005) provided parse trees for use and their useful-
ness was ensured. Most of the methods heuristically
extract features from parse trees, and from other
sources, and use them in machine learning methods
based on feature vector representation. As a result,
these methods depend on feature engineering, which
is time-consuming.

Tree kernels (Collins and Duffy, 2001; Kashima
and Koyanagi, 2002) have been proposed to directly
handle trees in kernel-based methods, such as SVMs
(Vapnik, 1995). Tree kernels calculate the similar-
ity between trees, taking into consideration all of the
subtrees, and, therefore there is no need for such fea-
ture engineering.

Moschitti and Bejan (2004) extensively studied
tree kernels for semantic role labeling. However,
they reported that they could not successfully build
an accurate argument recognizer, although the role
assignment was improved. Although Moschitti et al.
(2005) reported on argument recognition using tree
kernels, it was a preliminary evaluation because they
used oracle parse trees.

Kazama and Torisawa (2005) proposed a new tree
kernel for node relation labeling, as which SRL can
be cast. This kernel is defined on marked ordered la-
beled trees, where a node can have a mark to indicate
the existence of a relation. We refer to this kernel
as the MOLT kernel. Compared to (Moschitti and
Bejan, 2004) where tree fragments are heuristically
extracted before applying tree kernels, the MOLT
kernel is general and desirable since it does not re-
quire such fragment extraction. However, the eval-
uation conducted by Kazama and Torisawa (2005)
was limited to preliminary experiments for role as-
signment. In this study, we first evaluated the per-
formance of the MOLT kernel for argument recogni-
tion, and found that the MOLT kernel cannot achieve
a high accuracy if used in its original form.

Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL-X)
pages 53-60, New York City, June 20@®2006 Association for Computational Linguistics
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Figure 1: (a)-(c): Argument recognition as node relation recognition. (a’): relation (a) represented as marked

ordered tree.

Therefore, in this paper we propose a modifica-
tion of the MOLT kernel, which greatly improves
the accuracy. The problem with the original MOLT
kernel is that it treats subtrees with one mark, i.e.,
those including only the argument or the predicate
node, and subtrees with two marks, i.e., those in-
cluding both the argument and the predicate nodes
equally, although the latter is likely to be more im-
portant for distinguishing difficult arguments. Thus,
we modified the MOLT kernel so that the marks can
be weighted in order to give large weights to the sub-
trees with many marks. We call the modified kernel
the WMOLT kernel (the kernel on weighted marked
ordered labeled trees). We show that this modifica-
tion greatly improves the accuracy when the weights
for marks are properly tuned.

One of the issues that arises when using tree ker-
nels is time complexity. In general, tree kernels can
be calculated in O(|71||7%|) time, where |T;| is the
number of nodes in tree 7}, using dynamic program-
ming (DP) procedures (Collins and Dufty, 2001;
Kashima and Koyanagi, 2002). However, this cost
is not negligible in practice. Kazama and Torisawa
(2005) proposed a method that drastically speeds up
the calculation during training by converting trees
into efficient vectors using a tree mining algorithm.
However, the slow classification during runtime re-
mained an open problem.

We propose a method for speeding up the runtime
classification for argument recognition. In argument
recognition, we determine whether a node is an ar-
gument or not for all the nodes in a tree . This
requires a series of calculations between a support
vector tree and a tree with slightly different mark-
ing. By exploiting this property, we can efficiently
update DP cells to obtain the kernel value with less
computational cost.

In the experiments, we demonstrated that the
WMOLT kernel drastically improved the accuracy
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and that our speed-up method enabled more than
40 times faster argument recognition. Despite these
successes, the performance of our current system is
F; = 78.22 on the CoNLL 2005 evaluation set when
using the Charniak parse trees, which is far worse
than the state-of-the-art system. We will present
possible reasons and future directions.

2 Semantic Role Labeling

Semantic role labeling (SRL) recognizes the argu-
ments of a given predicate and assigns the correct
role to each argument. For example, the sentence “I
saw a cat in the park” will be labeled as follows with
respect to the predicate “see”.

[AOI] [V saw] [A1 a cat] [AM-LOC in the park]

In the example, AO, A1, and AM-LOC are the roles
assigned to the arguments. In the CoNLL 2005
dataset, there are the numbered arguments (AX)
whose semantics are predicate dependent, the ad-
juncts (AM-X), and the references (R-X) for rel-
ative clauses.

Many previous studies employed two-step SRL
methods, where (1) we first recognize the argu-
ments, and then (2) classify the argument to the cor-
rect role. We also assume this two-step processing
and focus on the argument recognition.

Given a parse tree, argument recognition can be
cast as the classification of tree nodes into two
classes, “ARG” and “NO-ARG”. Then, we consider
the words (a phrase) that are the descendants of an
“ARG” node to be an argument. Since arguments
are defined for a given predicate, this classification
is the recognition of a relation between the predicate
and tree nodes. Thus, we want to build a binary clas-
sifier that returns a +1 for correct relations and a -1
for incorrect relations. For the above example, the
classifier will output a +1 for the relations indicated
by (a), (b), and (c) in Figure 1 and a -1 for the rela-
tions between the predicate node and other nodes.



Since the task is the classification of trees with
node relations, tree kernels for usual ordered la-
beled trees, such as those proposed by Collins and
Duffy (2001) and Kashima and Koyanagi (2002),
are not useful. Kazama and Torisawa (2005) pro-
posed to represent a node relation in a tree as a
marked ordered labeled tree and presented a kernel
for it (MOLT kernel). We adopted the MOLT kernel
and extend it for accurate argument recognition.

3 Kernels for Argument Recognition

3.1 Kernel-based classification

Kernel-based methods, such as support vector ma-
chines (SVMs) (Vapnik, 1995), consider a mapping
®(x) that maps the object z into a, (usually high-
dimensional), feature space and learn a classifier in
this space. A kernel function K (z;, z;) is a function
that calculates the inner product (®(z;), ®(z;)) in
the feature space without explicitly computing ®(z),
which is sometimes intractable. Then, any classifier
that is represented by using only the inner products
between the vectors in a feature space can be re-
written using the kernel function. For example, an
SVM classifier has the form:

f(z) = ZaiK(azi,x) + b,

where «; and b are the parameters learned in the
training. With kernel-based methods, we can con-
struct a powerful classifier in a high-dimensional
feature space. In addition, objects = do not need
to be vectors as long as a kernel function is defined
(e.g., x can be strings, trees, or graphs).

3.2 MOLT kernel

A marked ordered labeled tree (Kazama and Tori-
sawa, 2005) is an ordered labeled tree in which each
node can have a mark in addition to a label. We can
encode a k-node relation by using & distinct marks.
In this study, we determine an argument node with-
out considering other arguments of the same pred-
icate, i.e., we represent an argument relation as a
two-node relation using two marks. For example,
the relation (a) in Figure 1 can be represented as the
marked ordered labeled tree (a’).!

"Note that we use mark *0 for the predicate node and mark
*1 for the argument node.
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Table 1: Notations for MOLT kernel.

n; denotes a node of a tree. In this paper, n; is an ID assigned in the
post-order traversal.

|T; | denotes the number of nodes in tree T7;.
I(n;) returns the label of node n;.

m(n;) returns the mark of node n,. If n; has no mark, m(n;)
returns the special mark no-mark.

marked(n;) returns true iff m(n;) is not no-mark.
nc(n;) is the number of children of node n;.
chy,(n;) is the k-th child of node n;.

pa(n;) is the parent of node n;.

root(T;) is the root node of T;

n; >~ n; means that n; is an elder sister of n ;.

Kazama and Torisawa (2005) presented a kernel
on marked ordered trees (the MOLT kernel), which
is defined as:?

E

K(Th,Tz) = Y W(Si) - #s,(Th) - #s,(T2),

i=1

where S; is a possible subtree and #g,(Tj) is
the number of times S; is included in T;. The
mapping corresponding to this kernel is ®(7")
(VW(SD#s,(T), -, /W(SE)#s,(T)). which
maps the tree into the feature space of all the possi-
ble subtrees.

The tree inclusion is defined in many ways. For
example, Kashima and Koyanagi (2002) presented
the following type of inclusion.

1 DEFINITION S is included in T iff there exists a
one-to-one function 1 from a node of S to a node
of T, such that (i) pa(v¥(n;)) = ¥(pa(n;)), (ii)
Y(n;) = Y(ng) iff ni = ny, , and (iii) (1 (n;)) =
I(n;) (and m(v(n;)) = m(n;) in the MOLT kernel).

See Table 1 for the meaning of each function. This
definition means that any subtrees preserving the
parent-child relation, the sibling relation, and label-
marks, are allowed. In this paper, we employ this
definition, since Kazama and Torisawa (2005) re-
ported that the MOLT kernel with this definition has
a higher accuracy than one with the definition pre-
sented by Collins and Duffy (2001).

W (S;) is the weight of subtree S;. The weight-
ing in Kazama and Torisawa (2005) is written as fol-

2This notation is slightly different from (Kazama and Tori-
sawa, 2005).



Table 2: Example of subtree inclusion and sub-
tree weights. The last row shows the weights for
WMOLT kernel.

T included subtrees
AO ‘0 . AO
A0
AV I 2 B < B B AN
A AT A A1 [ A AT
WESH 0 | X | X | A | X | N
(W)L 0 [ M [ Ay [Ny [N ] N ]
lows.
NSilif marked(S;),
WS, = i mar.e (Si) 0
0 otherwise,

where marked(S;) returns true iff marked(n;) =
true for at least one node in tree S;. By this weight-
ing, only the subtrees with at least one mark are con-
sidered. The idea behind this is that subtrees having
no marks are not useful for relation recognition or
labeling. A (0 < A\ < 1)1is a factor to prevent the ker-
nel values from becoming too large, which has been
used in previous studies (Collins and Duffy, 2001;
Kashima and Koyanagi, 2002).

Table 2 shows an example of subtree inclusion
and the weights given to each included subtree. Note
that the subtrees are treated differently when the
markings are different, even if the labels are the
same.

Although the dimension of the feature space
is exponential, tree kernels can be calculated in
O(|T1]|T%|) time using dynamic programming (DP)
procedures (Collins and Duffy, 2001; Kashima and
Koyanagi, 2002). The MOLT kernel also has an
O(|T1||T2|) DP procedure (Kazama and Torisawa,
2005).

3.3 WMOLT Kkernel

Although Kazama and Torisawa (2005) evaluated
the MOLT kernel for SRL, the evaluation was only
on the role assignment task and was preliminary. We
evaluated the MOLT kernel for argument recogni-
tion, and found that the MOLT kernel cannot achieve
a high accuracy for argument recognition.

The problem is that the MOLT kernel treats sub-
trees with one mark and subtrees with two marks
equally, although the latter seems to be more impor-
tant in distinguishing difficult arguments.

Consider the sentence, “He said industry should
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build plants”. For “say”, we have the following la-
beling.

[AO He] [V said] [A1 industry should build plants]
On the other hand, for “build”, we have

He said [AO industry] [AM-MOD should] [V build]
[A1 plants].

As can be seen, “he” is the AO argument of “say”,
but not an argument of “build”. Thus, our classifier
should return a +1 for the tree where “he” is marked
when the predicate is “say”, and a -1 when the pred-
icate is “build”. Although the subtrees around the
node for “say” and “build” are different, the subtrees
around the node for “he” are identical for both cases.
If “he” is often the AO argument in the corpus, it is
likely that the classifier returns a +1 even for “build”.
Although the subtrees containing both the predicate
and the argument nodes are considered in the MOLT
kernel, they are given relatively small weights by Eq.
(1), since such subtrees are large.

Thus, we modify the MOLT kernel so that the
mark can be weighted according to its importance
and the more marks the subtrees contain, the more
weights they get. The modification is simple. We
change the definition of W (.5;) as follows.

{

where v(m) (> 1) is the weight of mark m. We
call a kernel with this weight the WMOLT kernel.
In this study, we assume ~y(no-mark) 1 and
v(*0) = ~(*1) = ~. Then, the weight is simpli-
fied as follows.

where #,,(.S;) is the number of marked nodes in
Si. The last row in Table 2 shows how the subtree
weights change by introducing this mark weighting.

For the WMOLT kernel, we can derive
O(|T1||T>|) DP procedure by slightly modify-
ing the procedure presented by Kazama and
Torisawa (2005). The method for speeding up
training described in Kazama and Torisawa (2005)
can also be applied with a slight modification.

NSITT, g v(m(ng)) if marked(S;),

W(S
0

i) =

otherwise,

MSily#m(S)if marked(S;),
0

W (S; )
otherwise,



Algorithm 3.1: WMOLT-KERNEL(71,7%)

for ny < 1to |T1| do //nodes are ordered by the post-order traversal
m «— marked(ni)
for ny < 1to |T2| do // actually iterate only on ng with I(n1) = (n2)
if I(n1) # l(n2) or m(n1) # m(n2) then
C(n1,n2) —0 Cr(n17n2) —0
else if n; and no are leaf nodes then
if m then C(ni,n2) — A-v; C"(ni,n2) — X-v else C(ni,n2) <— A; C"(ni,n2) — 0
else
S(0,4) — 1, S(5,0)—1 (i€ [0,ne(n1)],j € [0, ne(ns)))
if m then S"(0,7) — 1, S"(3,0) — 1 else S"(0,5) — 0, S"(¢,0) — 0
for i — 1tonc(ni)do
for j — 1 to nc(n2) do
S(i,j) = S(i—1,4) + S(i,j—1) = S(i—1,j—1) + S(i—1,j—1) - C(chi(m
S"(i,j) — 8"(i=1,5) + 8" (i,j—1) = §"(i—1,j~1) + §"(i—1,j—1) - C(c

A

if m then C(ni,n2) «— X -v-S(nc(ni),nc(nz)) else C(ni,n2) «— A-S(nc(ny
if m then C"(ni,n2) — X-~v-S"(nc(n1),nc(nz)) else C"(ni,n2) — X-S"(nc

(

return (ZLTll:ll STl O (n,m2))

na=1

We describe this DP procedure in some detail.
The key is the use of two DP matrices of size
|T7| x |T5]. The first is C(n1, ng) defined as:

C(n1,m2)=3g W(Si) - #s,(Th A na) - #s,(Tz A ma2),

where #g, (T A ny,) represents the number of times
subtree .S; is included in tree T); with ¢)(root(S;)) =
ng. W'(S;) is defined as W'(S;) = N Sily#m(Si),
This means that this matrix records the values that
ignore whether marked(S;) = true or not. The
second is C"(n1, n2) defined as:

C’T(nl, nQ)E ZSi W(Sz) . #Si(Tl A TL1) . #si (T2 A nz).

With these matrices, the kernel is calculated as:

K(Ti,T) = Y > C'(n1,na).

n1€T1 na€l’

C(ni,n2) and C"(ny1,ng) are calculated recur-
sively, starting from the leaves of the trees. The re-
cursive procedure is shown in Algorithm 3.1. See
also Table 1 for the meaning of the functions used.

4 Fast Argument Recognition

We use the SVMs for the classifiers in argument
recognition in this study and describe the fast clas-
sification method based on SVMs.> We denote a
marked ordered labeled tree where node n; of an
ordered labeled tree U is marked by mark X, n; by
Y,andsoon, by UQ{n; = X,n; =Y,... }.

3The method can be applied to a wide range of kernel-based
methods that have the same structure as SVMs.
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Algorithm 4.1: CALCULATE-T(U, Tj)

procedure FAST-UPDATE(ny,)
diff — 0, m(ng) —*1, U — ¢
for ny <« 1to |T;| do change(nz) < true
niy < Nk
while n, # nil do
for ny — 1to |T};| do
// actually iterate only on ng with I(pa(n1)) = I(n2)
nchange(ng) < false
for no — 1to |T};| do
/l actually iterate only on ng with [(n1) = I(n2)
if change(nz) then
pre «— C"(n1,n2), U —UU (ni,n2)
update C(n1,n2) and C" (n1,n2)
using (A) of Algorithm 3.1
diff += (C"(n1,n2) — pre)
if pa(n2) # nil then nchange(pa(nz)) <« true
ni1 < pa(ni), change « nchange
for (n1,n2) € U do //restore DP cells
C(n1,n2) « C'(n1,n2), C"(n1,n2) — C"'(n1,n2)
m(nk) < no-mark
return (diff)

main
m(ny) < *0, k + WMOLT-KERNEL(U, T})
Cl(nl,nQ) — C(nl,ng), CT/(TLI’TLQ) — CT(nl,ng)
for ny — 1to|U|do (nk # ny)
diff < FAST-UPDATE(ny), t(ng) < k+ diff

Given a sentence represented by tree U and the
node for the target predicate n,,, the argument recog-
nition requires the calculation of:

s(ng) = Z a; K(UQ{n,=*0,n,="*1},T;)+b,
T;€e8V
2
for all n, € U (# ny), where SV represents the
support vectors. Naively, this requires O(|U]| x
|SV| x |U||Tj|) time, which is rather costly in prac-
tice.



However, if we exploit the fact that UQ{n, =
*0, ng, = *1} is different from UQ{n, = *0} at one
node, we can greatly speed up the above calculation.
At first, we calculate K(U@{n, = *0},T}) using
the DP procedure presented in the previous section,
and then calculate K(UQ{n, = *0,n; = *1},T})
using a more efficient DP that updates only the val-
ues of the necessary DP cells of the first DP. More
specifically, we only need to update the DP cells in-
volving the ancestor nodes of 7.

Here we show the procedure for calculating
t(ng) K{U@{n, = *0,n; = *1},T}) for all
ny, for a given support vector 7}, which will suf-
fice for calculating s(ny). Algorithm 4.1 shows the
procedure. For each ng, this procedure updates at
most (ny’s depth) x |T}| cells, which is much less
than |U| x |Tj| cells. In addition, when updating
the cells for (n1,n2), we only need to update them
when the cells for any child of n9 have been updated
in the calculation of the cells for the children of n;.
To achieve this, change(nz) in the algorithm stores
whether the cells of any child of ny have been up-
dated. This technique will also reduce the number
of updated cells.

5 Non-overlapping Constraint

Finally, in argument recognition, there is a strong
constraint that the arguments for a given predicate
do not overlap each other. To enforce this constraint,
we employ the approach presented by Toutanova
et al. (2005). Given the local classification proba-
bility p(nr = Xi) (Xr € {ARG,NO-ARG}),
this method finds the assignment that maximizes
[I;p(nr = Xj) while satisfying the above non-
overlapping constraint, by using a dynamic pro-
gramming procedure. Since the output of SVMs is
not a probability value, in this study we obtain the
probability value by converting the output from the
SVM, s(ny), using the sigmoid function:*

p(nk = ARG) = 1/(1 + exp(—s(ng))).

6 Evaluation

6.1 Setting

For our evaluation we used the dataset pro-
vided for the CoNLL 2005 SRL shared task

*Parameter fitting (Platt, 1999) is not performed.
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(www.Isi.upc.edu/ srlconll). We used only the train-
ing part and divided it into our training, develop-
ment, and test sets (23,899, 7,966, and 7,967 sen-
tences, respectively). We used the outputs of the
Charniak parser provided with the dataset. We also
used POS tags, which were also provided, by insert-
ing the nodes labeled by POS tags above the word
nodes. The words were downcased.

We used TinySVM? as the implementation of the
SVMs, adding the WMOLT kernel. We normalized
the kernel as: K(T;,1;)/v/K(Ti, T;) x K(T;,T}).

To train the classifiers, for a positive example we
used the marked ordered labeled tree that encodes
an argument in the training set. Although nodes
other than the argument nodes were potentially neg-
ative examples, we used 1/5 of these nodes that were
randomly-sampled, since the number of such nodes
is so large that the training cannot be performed in
practice. Note that we ignored the arguments that
do not match any node in the tree (the rate of such
arguments was about 3.5% in the training set).

6.2 Effect of mark weighting

We first evaluated the effect of the mark weight-
ing of the WMOLT kernel. For several fixed v, we
tuned A and the soft-margin constant of the SVM, C,
and evaluated the recognition accuracy. We tested
30 different values of C' € [0.1...500] for each
A € [0.05,0.1,0.15,0.2,0.25,0.3]. The tuning was
performed using the method for speeding up the
training with tree kernels described by Kazama and
Torisawa (2005). We conducted the above experi-
ment for several training sizes.

Table 3 shows the results. This table shows the
best setting of A and C, the performance on the de-
velopment set with the best setting, and the perfor-
mance on the test set. The performance is shown
in the F7 measure. Note that we treated the region
labeled C-k in the CoNLL 2005 dataset as an inde-
pendent argument.

We can see that the mark weighting greatly im-
proves the accuracy over the original MOLT kernel
(i.e., v = 1). In addition, we can see that the best
setting for vy is somewhere around v = 4,000. In
this experiment, we could only test up to 1,000 sen-
tences due to the cost of SVM training, which were

Schasen.org/ taku/software/TinySVM



Table 3: Effect of v in mark weighting of WMOLT kernel.

training size (No. of sentences)
250 500 700 1,000

setting | dev test setting | dev test setting | dev test setting | dev test
Y AC) | () | (1) AO) | ()| () \O) | () | ) AO) | ()| (1)
1 0.15,20.50 | 63.66 | 65.13 || 0.2,20.50 | 69.01 | 70.33 || 0.2,20.50 | 72.11 | 73.57 || 0.25, 12.04 | 75.38 | 76.25
100 0.3, 12.04 | 80.13 | 80.85 0.3,500 | 82.25 | 82.98 || 0.3,34.92 | 83.93 | 84.72 0.3,3.18 | 85.09 | 85.85
1,000 0.2,2.438 | 82.65 | 83.36 || 0.2,2.438 | 84.80 | 85.45 || 0.2,3.182 | 85.58 | 86.20 || 0.2,7.071 | 86.40 | 86.80
2,000 0.2,2.438 | 83.43 | 84.12 || 0.2,2.438 | 85.56 | 86.24 || 0.2,2.438 | 86.23 | 86.80 || 0.2,12.04 | 86.61 | 87.18
4,000 0.2,2.438 | 83.87 | 84.50 || 0.15,4.15 | 84.94 | 85.61 || 0.15,7.07 | 85.84 | 86.32 || 0.2, 12.04 | 86.82 | 87.31
4,000 (w/o) ]| [ 80.81 [ 81.41 ]| [80.71 [ 81.51 ]| [81.86 [ 82.33 ] [ 84.27]84.63 ]

empirically O(L?) where L is the number of train-
ing examples, regardless of the use of the speed-up
method (Kazama and Torisawa, 2005), However, we
can observe that the WMOLT kernel achieves a high
accuracy even when the training data is very small.

6.3 Effect of non-overlapping constraint

Additionally, we observed how the accuracy
changes when we do not use the method described
in Section 5 and instead consider the node to be an
argument when s(n;) > 0. The last row in Ta-
ble 3 shows the accuracy for the model obtained
with v = 4,000. We could observe that the non-
overlapping constraint also improves the accuracy.

6.4 Recognition speed-up

Next, we examined the method for fast argument
recognition described in Section 4. Using the clas-
sifiers with v = 4,000, we measured the time re-
quired for recognizing the arguments for 200 sen-
tences with the naive classification of Eq. (2) and
with the fast update procedure shown in Algorithm
4.1. The time was measured using a computer with
2.2-GHz dual-core Opterons and 8-GB of RAM.

Table 4 shows the results. We can see a constant
speed-up by a factor of more than 40, although the
time was increased for both methods as the size of
the training data increases (due to the increase in the
number of support vectors).

Table 4: Recognition time (sec.) with naive classifi-
cation and proposed fast update.

training size (No. of sentences)

250 | 500 | 750 | 1,000
naive 11,266 | 13,008 | 18,313 | 30,226
proposed 226 310 442 731
speed-up 4984 | 4196 | 4143 | 41.34

6.5 Evaluation on CoNLL 2005 evaluation set

To compare the performance of our system with
other systems, we conducted the evaluation on the
official evaluation set of the CoNLL 2005 shared
task. We used a model trained using 2,000 sen-
tences (57,547 examples) with (y = 4,000,\ =
0.2,C = 12.04), the best setting in the previous ex-
periments. This is the largest model we have suc-
cessfully trained so far, and has F; = 88.00 on the
test set in the previous experiments.

The accuracy of this model on the official evalua-
tion set was F; = 79.96 using the criterion from the
previous experiments where we treated a C-k argu-
ment as an independent argument. The official eval-
uation script returned Fy; = 78.22. This difference
is caused because the official script takes C-k argu-
ments into consideration, while our system cannot
output C-k labels since it is just an argument rec-
ognizer. Therefore, the performance will become
slightly higher than F} = 78.22 if we perform the
role assignment step. However, our current system
is worse than the systems reported in the CoNLL
2005 shared task in any case, since it is reported that
they had F7 = 79.92 to 83.78 argument recognition
accuracy (Carreras and Marquez, 2005).

7 Discussion

Although we have improved the accuracy by intro-
ducing the WMOLT kernel, the accuracy for the offi-
cial evaluation set was not satisfactory. One possible
reason is the accuracy of the parser. Since the Char-
niak parser is trained on the same set with the train-
ing set of the CoNLL 2005 shared task, the pars-
ing accuracy is worse for the official evaluation set
than for the training set. For example, the rate of the
arguments that do not match any node of the parse
tree is 3.93% for the training set, but 8.16% for the
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evaluation set. This, to some extent, explains why
our system, which achieved F; = 88.00 for our test
set, could only achieved F; = 79.96. To achieve a
higher accuracy, we need to make the system more
robust to parsing errors. Some of the non-matching
arguments are caused by incorrect treatment of quo-
tation marks and commas. These errors seem to be
solved by using simple pre-processing. Other major
non-matching arguments are caused by PP attach-
ment errors. To solve these errors, we need to ex-
plore more, such as using n-best parses and the use
of several syntactic views (Pradhan et al., 2005b).

Another reason for the low accuracy is the size of
the training data. In this study, we could train the
SVM with 2,000 sentences (this took more than 30
hours including the conversion of trees), but this is
a very small fraction of the entire training set. We
need to explore the methods for incorporating a large
training set within a reasonable training time. For
example, the combination of small SVMs (Shen et
al., 2003) is a possible direction.

The contribution of this study is not the accuracy
achieved. The first contribution is the demonstration
of the drastic effect of the mark weighting. We will
explore more accurate kernels based on the WMOLT
kernel. For example, we are planning to use dif-
ferent weights depending on the marks. The sec-
ond contribution is the method of speeding-up argu-
ment recognition. This is of great importance, since
the proposed method can be applied to other tasks
where all nodes in a tree should be classified. In ad-
dition, this method became possible because of the
WMOLT kernel, and it is hard to apply to Moschitti
and Bejan (2004) where the tree structure changes
during recognition. Thus, the architecture that uses
the WMOLT kernel is promising, if we assume fur-
ther progress is possible with the kernel design.

8 Conclusion

We proposed a method for recognizing semantic role
arguments using the WMOLT kernel. The mark
weighting introduced in the WMOLT kernel greatly
improved the accuracy. In addition, we presented
a method for speeding up the recognition, which re-
sulted in more than a 40 times faster recognition. Al-
though the accuracy of the current system is worse
than the state-of-the-art system, we expect to further
improve our system.
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Abstract

Recent work on Semantic Role Labeling
(SRL) has shown that to achieve high
accuracy a joint inference on the whole
predicate argument structure should be ap-
plied. In this paper, we used syntactic sub-
trees that span potential argument struc-
tures of the target predicate in tree ker-
nel functions. This allows Support Vec-
tor Machines to discern between correct
and incorrect predicate structures and to
re-rank them based on the joint probabil-
ity of their arguments. Experiments on the
PropBank data show that both classifica-
tion and re-ranking based on tree kernels
can improve SRL systems.

Introduction

A viable approach to generate a large number of
features has been proposed in (Collins and Duffy,
2002), where convolution kernels were used to im-
plicitly define a tree substructure space. The selec-
tion of the relevant structural features was left to the
Voted Perceptron learning algorithm. Such success-
ful experimentation shows that tree kernels are very
promising for automatic feature engineering, espe-
cially when the available knowledge about the phe-
nomenon is limited.

In a similar way, we can model SRL systems with
tree kernels to generate large feature spaces. More
in detail, most SRL systems split the labeling pro-
cess into two different steps: Boundary Detection
(i.e. to determine the text boundaries of predicate
arguments) and Role Classification (i.e. labeling
such arguments with a semantic role, e.g. Arg0 or
Argl as defined in (Kingsbury and Palmer, 2002)).
The former relates to the detection of syntactic parse
tree nodes associated with constituents that corre-

Recent work on Semantic Role Labeling (SRLPONd to arguments, whereas the latter considers the
(Carreras and Rrquez, 2005) has shown that togooundary nodes for the assignment of the suitable
achieve high labeling accuracy a joint inference oftbel. Both steps require the design and extraction
the whole predicate argument structure should b features from parse trees. As capturing the tightly
app“ed For this purpose, we need to extract feéﬂterdependent relations among a prEdicate and its
tures from the sentence’s syntactic parse tree th@fguments is a complex task, we can apply tree ker-
encodes the target semantic structure. This taski§!s on the subtrees thapanthe whole predicate
rather complex since we do not exactly know whictargument structure to generate the feature space of
are the syntactic clues that capture the relation ball the possible subtrees.

tween the predicate and its arguments. For exam-In this paper, we apply the traditional bound-
ple, to detect the interesting context, the modelingry (I'BC) and role T'RC) classifiers (Pradhan

of syntax/semantics-based features should take ingd al., 2005a), which are based on binary predi-
account linguistic aspects like ancestor nodes or seate/argument relations, to label all parse tree nodes
mantic dependencies (Toutanova et al., 2004). corresponding to potential arguments. Then, we ex-
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tract the subtrees which span the predicate-argument- if the subtree rooted im covers exactly the
dependencies of such arguments, i.e. Argument words of one argument @f, putF, , in theT™
Spanning TreesASTs). These are used in a tree set (positive examples), otherwise put it in the
kernel function to generate all possible substructures T~ set (negative examples).
that encoder-ary argument relations, i.e. we carry
out an automatic feature engineering process.  The outputs of the above algorithm are fhie and _
To validate our approach, we experimented witf]  SEts- These sets can be directly used to train a
our model and Support Vector Machines for the clagoundary classifier (e.g. an SVM). Regarding the
sification of valid and invalidASTs. The results argumenttype classifier, a binary labeler for a role
show that this classification problem can be learne§-9- @1 SVM) can be trained on tW?L_’ i.e. its pos-
with high accuracy. Moreover, we modeled SRL as Ve examples and’", i.e. its negative examples,
re-ranking task in line with (Toutanova et al., 2005)WhereT™ = T." UT,~, according to the ONE-vs-
The large number of complex features provided b(?"—'— scheme. The binary classifiers are then used

tree kernels for structured leaming allows SVMs td0 build a general role multiclassifier by simply se-
reach the state-of-the-art accuracy. lecting the argument associated with the maximum

The paper is organized as follows: Section 2 intro@Mong th_e SVM SCOres. _
Regarding the design of features for predicate-

duces the Semantic Role Labeling based on SVMs ) g
and the tree kernel spaces; Section 3 formally d&rgument pairs, we can use the attribute-values de-

fines theASTs and the algorithm for their classifi- ined in (Gildea and Jurasfky, 2002) or tree struc-
cation and re-ranking; Section 4 shows the compardrés (Moschitti, 2004).  Although we focus on
tive results between our approach and the traditionHl€ atter approach, a short description of the for-

one: Section 5 presents the related work: and finall§€" 1S still relevant as they are used By’ and
Section 6 summarizes the conclusions. RC. They include thePhrase Type Predicate

Word Head Word Governing Category Position

2 Semantic Role Labeling and Voicefeatures. For example, thiehrase Type
] ] indicates the syntactic type of the phrase labeled as

In the last years, several machine learning ap predicate argument and tRerse Tree Patiton-

proaches have been developed for automatic rojging the path in the parse tree between the predicate

labeling, e.g. (Gildea and Jurastky, 2002; Prad;nq the argument phrase, expressed as a sequence of

han et al., 2005a). Their common characteristic i§gnterminal labels linked by direction (up or down)
the adoption of attribute-value representations fcgymbols e.gV1VP| NP

predicate-argument structures. Accordingly, our ba-" o viable alternative to manual design of syntac-

sic system is similar to the one proposed in (Pradhafy, teatyres is the use of tree-kernel functions. These

etal., 2005a) and itis hereby described. implicitly define a feature space based on all possi-
We use a boundary detection classifier (for angje tree substructures. Given two trgsandTb, in-

role type) to derive the words compounding an arstead of representing them with the whole fragment

gument and a multiclassifier to assign the roles (e.gpace, we can apply the kernel function to evaluate
Arg0 or ArgM) described in PropBank (Kingsbury the number of common fragments.

and Palmer, 2002)). To prepare the training data for Formally, given a tree fragment spacEé —

both classifiers, we used the following algorithm: {fi.for- -, fir}, the indicator functionI;(n)
1. Given a sentence from theining-sef generate is equal to 1 if the targetf; is rooted at
a full syntactic parse tree; node n and equal to O otherwise. A tree-

2. Let’P and.A be respectively the set of predicatekernel function overt; and t; is K(ti,t2) =
and the set of parse-tree nodes (i.e. the potential &=,,cn,, 2 n,en,, A(11,72), whereN;, and Ny,

guments); are the sets of thg’s andt,’s nodes, respectively. In
3. For each paitp, a) € P x A: turn A(ny,ng) = SO0 XU (ny) I (ng), where

0 < XA < 1andl(f;) is the height of the subtree

- extract the feature representation get,; f;. ThusA!)) assigns a lower weight to larger frag-
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Figure 1: A sentence parse tree with two argument spanning tAe£ES)

ments. Whem\ = 1, A is equal to the number of predicate node and a node subset= {n,..,nx}
common fragments rooted at nodesandn,. As of the parse tre¢, we define as the spanning tree
described in (Collins and Duffy, 2002\ can be rootr the lowest common ancestor of, .., n; and
computed iND (| Ny, | X | Ng,]). p. The node set spanning tre¥ §7) p; is the sub-
tree oft rooted inr from which the nodes that are
neither ancestors nor descendants of angr p are
removed.

Traditional semantic role labeling systems extract Since predicate arguments are associated with
features from pairs of nodes corresponding t0 gee nodes (i.e. they exactly fit into syntactic
predicate and one of its argument, respectivelgonstituents), we can define thggument Span-
Thus, they focus on only binary relations to makejing Tree (AST) of a predicate argument set,
classification decisions. This information is pooref, {4, .. a,}}, as the NST over such nodes,
than the one expressed by the whole predicate grg. Pfay..an}- AN AST corresponds to thenin-
gument structure. As an alternative we can seleghal subtree whose leaves are all and only the
the set of potential arguments (potential argumeRjords compounding the arguments and the predi-

nodes) of a predicate and extract features from thergate. For example, Figure 1 shows the parse tree
The number of the candidate argument sets iS egf the sentenceJohn took the book and read

ponential, thus we should consider only those Cofg ijte" . 100k Argo Argr} ANATeEad Argo Arg:}

responding to the most probable correct argumegte two AST structures associated with the two

structures. predicatesook andread, respectively. All the other
The usual approach (Toutanova et al., 2005) use®ssible subtrees, i.eNST's, are not validAST's

a traditional boundary classifieFGC) to select the for these two predicates. Note that classifyjngn

set of potential argument nodes. Such set can be a$s7 or N ST for each node subsetof ¢ is equiva-
sociated with a subtree which in turn can be classjent to solve the boundary detection problem.
fied by means of a tree kernel function. This func-

tipn Intuitively measures 0 What extent a given can(l) how to design suitable features for the charac-
didate subt;ge isompatiblewith the su\k/)\;[ree of @ terization of valid structures. This requires a careful
correct predicate argument structure. We can us‘elilltiguistic investigation about their significant prop-

t(_) define tW(_)_d|ff_erent learning proplems: (a) theerties. (2) How to deal with the exponential number
simple classification of correct and incorrect predbf NSTs

icate argument structures and (b) given the best _
structures, we can train a re-ranker algorithm able to '€ first problem can be addressed by means of
exploit argument inter-dependencies. tree kernels over thed ST's. Tree kernel spaces are

an alternative to the manual feature design as the
3.1 The Argument Spanning Trees {.ST's) learning machine, (e.g. SVMs) can select the most
We consider predicate argument structures anncelevant features from a high dimensional space. In
tated in PropBank along with the correspondingther words, we can use a tree kernel function to
TreeBank data as our object space. Given the targestimate the similarity between twhST's (see Sec-

3 Tree kernel-based classification of
Predicate Argument Structures

The critical points for theAST classification are:
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Figure 2: Two-step boundary classification. a) Sentence tree; b) Two candifdte c) ExtendedAST-
Ord labeling

tion 2), hence avoiding to define explicit features. the number of overlapping nodes is usually small.

The second problem can be approached in two Figure 2 shows a working example of the multi-
ways: stage classifier. In Frame (d),BC labels as po-
(1) We can increase the recallBBC to enlarge the tential arguments (circled nodes) three overlapping
set of candidate arguments. From such set, we caodes related té\rgl . This leads to two possible
extract correct and incorrect argument structures. A®n-overlapping solutions (Frame (b)) but only the
the number of such structures will be rather smalfjrst one is correct. In fact, according to the second
we can apply theAST classifier to detect the cor- one the propositional phrasef'the book would be
rect ones. incorrectly attached to the verbal predicate, i.e. in
(2) We can consider the classification probabiliticontrast with the parse tree. TH&T classifier, ap-
provided by’ BC andT RC (Pradhan et al., 2005a) plied to the two N ST's, is expected to detect this
and select the: most probable structures. Then, wanconsistency and provide the correct output.

can apply a re-ranking approach based on SVMs and
tree kernels. 3.3 Re-ranking NST's with Tree Kernels

The re-ranking approach is the most promisingo implement the re-ranking model, we follow the
one as suggested in (Toutanova et al., 2005) butdhproach described in (Toutanova et al., 2005).
does not clearly reveal if tree kernels can be used fjst we use SVMs to implement the boundary
to learn the difference between correct or incorrect g and roleT RC local classifiers. As SVMs do
argument structures. Thus it is interesting to study; provide probabilistic output, we use the Platt's

both the above approaches. algorithm (Platt, 2000) and its revised version (Lin
o et al., 2003) to trasform scores into probabilities.
3.2 NST Classification Second, we combing’BC and T RC' probabil-

As we cannot classify all possible candidate arguties to obtain them most likely sequences of
ment structures, we apply theST classifier just to tree nodes annotated with semantic roles. As argu-
detect the correct structures from a set of overlagnent constituents of the same verb cannot overlap,
ping arguments. Given two nodes andn, of an we generate sequences that respect such node con-
N ST, they overlap if either; is ancestor of, or  straint. We adopt the same algorithm described in
vice versa. NST's that contain overlapping nodes(Toutanova et al., 2005). We start from the leaves
are not validAST's but subtrees oRSTs may be and we select the: sequences that respect the con-
valid AST's. Assuming this, we define as the set straints and at the same time have the highest joint
of potential argument nodes and we create two nodeobability of ’BC andT RC'.

setss; = s — {n1} andsy = s — {ny}. By classi- Third, we extract the following feature represen-
fying the two newN ST's p,, andps, with the AST  tation:

classifier, we can select the correct structures. @&) The AST's associated with the predicate argu-
course, this procedure can be generalized to a setraent structures. To make faster the learning process
overlapping nodes greater than 2. However, consi@nd to try to only capture the most relevant features,
ering that the Precision af BC' is generally high, we also experimented with a compact version of the
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AST which is pruned at the level of argument nodedrom the leftmost argument. For example, in the first

(b) Attribute value features (standard features) reV ST of Frame (c), we mark adP-0 andNP-1 the

lated to the whole predicate structure. These includest and second argument nodes whereas in the sec-

the features for each arguments (Gildea and Jurasad N.ST we trasform the three argument node la-

fky, 2002) and global features like the sequence ddels inNP-0, NP-1 andPP-2. We will refer to the

argument labels, e.dArg0, Argl, ArgM). resulting structure as AST-Ord (ordinal number).
Finally, we prepare the training examples for th&his simple modification allows the tree kernel to

re-ranker considering the best annotations of each generate different argument structures for the above

predicate structure. We use the approach adopt@dST's. For example, from the firsW.ST in Fig-

in (Shen et al., 2003), which generates all possiblere 2.c, the fragmentiNP-1 [NP][PP]] , [INP

pairs from then examples, i.e(g) pairs. Each pair [DT][NN]] and [PP [IN][NP]] are gener-

is assigned to a positive example if the first memated. They do not match anymore with fiNP-0

ber of the pair has a higher score than the secofdP][PP]] , [NP-1 [DT][NN]] and [PP-2

member. The score that we use is the F1 measuyi®l][NP]] fragments generated from the second

of the annotated structure with respect to the gold/ ST in Figure 2.c.

standard. More in detail, given training/testing ex-

amplese; = (t},t2, v}, v?), wheret! and¢? are two

ASTs andv} andv? are two feature vectors associ-

ated with two candidate predicate structusesand

s2, we define the following kernels:

Additionally, it should be noted that the semantic
information provided by the role type can remark-
ably help the detection of correct or incorrect predi-
cate argument structures. Thus, we can enrich the ar-
gument node label with the role type, e.g. tie-0
1) Ku(er,e2) = Ki(th, ) + K, (£2,2) andNP-1 of the correctAST of Figur(_e 2.C b_ecome

LK) — K (2, 1) NP-Arg0 andNP-Argl (not shown in the figure).

P b2 B2/ We refer to this structure adST-Arg. Of course,

wheretf is the j-th AST of the paire;, K, is the 10 apply theAST-Arg classifier, we need thatRC
tree kernel function defined in Section 2 aing <  |abels the arguments detected BC.

(1,2},
2) Kpr(er,e2) = Kp(v1,v3) + Kp(vf, v3) 4  The experiments
—Kp(v%,vg) - Kp(v%,v%),

herev’ is the i-th feat tor of the pair and The experiments were carried out within the set-
wherev; 1S thej-th Teature vector oTthe paif; an ting defined in the CoNLL-2005 Shared Task

Ky isth_e polynomial kernel applied to such Ve.CtorS(Carreras and Mrquez, 2005). In particular,
The final kernel that we use for re-ranking is th?/ve adopted the Charniak parse trees available at

following: www.Isi.upc.edu/  ~sriconll/ along with the of-
K(er, e) Ky (e1,e2) K, (e1,e2) ficial performance evaluator.
1,€62) =
[Kir(er,e2)  [Kpr(en, e2)] All the experiments were performed with

Regarding tree kernel feature engineering, ththe SVM-light-TK software available at
next section show how we can generate more effebttp://ai-nlp.info.uniroma2.it/moschitti/
tive features given an established kernel function. which encodes ST and SST kernels in SVM-light

_ . (Joachims, 1999). F&rBC andT RC, we used the

3.4 Tree kernel feature engineering linear kernel with a regularization parameter (option
Consider the Frame (b) of Figure 2, it shows twec ) equal to 1. A cost factor (optiof ) of 10 was
perfectly identicalV ST's, consequently, their frag- adopted forl’ BC' to have a higher Recall, whereas
ments will also be equal. This prevents the algorithrfor T RC, the cost factor was parameterized accord-
to learn something from such examples. To solve thiag to the maximal accuracy of each argument class
problem, we can enrich th&¥ ST's by marking their on the validation set. For th&ST-based classifiers
argument nodes with a progressive number, startinge used a\ equal t00.4 (see (Moschitti, 2004)).
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Section 21 Section 23

ASTChss| P [ R [ F FTR ] F on sections 21 and 23. For each of them, Precision,
. . . 1 . . 1

Recall andF; of different approaches to bound-

— 69.8] 77.9] 73.7] 62.2] 77.1] 68.9 _ oty
Ord 7371 8121 7731 63.7| 806 | 71.2 ary identification (bnd) and to the complete task,
Arg 736 847]787] 642]823[ 721 i.e. boundary and role classification (bnd+class)

are shown. Such approaches are based on differ-
ent strategies to remove the overlaps, i.e. with the
AST, AST-Ord andAST-Arg classifiers and using
the baseline (RND), i.e. a random selection of non-
4.1 Classification of whole predicate argument overlapping structures. The baseline corresponds to
structures the system based GhBC andT RC™:.

. _ _ We note that: (a) for any model, the boundary de-
In these experiments, we train@BC’ on sections tection £ on Section 21 is about 10 points higher
0_2.-08 wheregs, to achieve a very.accurate role clal:h-an theF, on Section 23 (e.g. 87.0% vs. 77.9%
sn‘l_er, we trainedl'RC on all sec_tlons _02'21' To for RND). As expected the parse tree quality is very
train t_heAST, AST-Ord (AST with ordinal num- important to detect argument boundaries. (b) On the
be_:rs in the argument_ nodes), aHET-Arg (AST real test (Section 23) the classification introduces la-
V\{'Fh argument pre in the argument nodes) Cla‘Q‘xieling errors which decrease the accuracy of about
sifiers, we applied thd'BC' and TRC' over sec- 50 (77.9 vs 72.9 for RND). (c) Therd and Arg
tions 09-20. Then, we considered all the structureépproaches constantly improve the baselifieof
whose automatic annotation showed at least an alhout 1%. Such poor impact does not surprise as

gulr_gegtsgve”ag'zgﬁrg these, Iy;z;xtr?cted 30|'22tﬂe overlapping structures are a small percentage of
val s an ' non-vai s, foratotal o e set, thus the overall improvement cannot be

of 183,642 arguments. very high.

First, we evaluate the accuracy of tH&T-based Third, the comparison with the CoNLL 2005 re-

jassificfars by extr_acting 1’935‘5;]TS an(;j’zzo nog- sults (Carreras and Mquez, 2005) can only be
STs from Section 21 and the 2,1585T's an carried out with respect to the whole SRL task

3’461 dnonASTs_ from _Sectlon 236 Tr:jef accurafy(bnd+class in table 2) since boundary detection ver-
erived on Section 21 Is an upperbound for our clagy; s 1 ¢lassification is generally not provided in

sifiers since it is obtained using an ideal syntacti&oNLL 2005. Moreover, our best global result, i.e.
parser (the Charnigk’s parser Wafs_trained also ©#5.9%, was obtained under two severe experimental
Section 21) and an ideal role classifier. factors: a) the use of just 1/3 of the available train-
Table 1 shows Precision, Recall affd mea- ing set, and b) the usage of the linear SVM model
sures of theAdST-based classifiers over the abovegy the TBC classifier, which is much faster than the
NSTs. Rows 2, 3 and 4 report the performance qfs|ynomial SVMs but also less accurate. However,
AST, AST-Ord, andAST-Arg classifiers, respec- e note the promising results of théST meta-
tively. We note that: (a) The impact of parsing acg|assifier, which can be used with any of the best
curacy is shown by the gap of about 6% points bq19ure CoNLL systems.
_tween sections 21 and 23. (b) The ordln_al number- Finally, the overall results suggest that the tree
ing of arguments@rd) and the role type informa- kernel model is robust to parse tree errors since pre-

]Elolnf(ATg) pr;owc_ie treti ker_n els Wlthtrr?orbe m_eanlng— erves the same improvement across trees derived
Ul Tragments since ey Improve the basic Mod&y v, gifferent accuracy, i.e. threemi-automatitrees

of about 4%. (c) The deeper §emantic informationaf Section 21 and the automatic tree of Section 23.
generated by thdrg labels provides useful clues to Moreover, it shows a high accuracy for the classi-

select correct predicate argument structures Sincefi'éation of correct and incorrect STs. This last

improves theDrd model on bOth_ sections. property is quite interesting as the best SRL systems
Second, we measured the impact of th87-

based classifiers on the accuracy of both phases o We needed to remove the overlaps from the baseline out-

semantic role labeling. Table 2 reports the resuli®me in order to apply the CoNLL evaluator.

Table 1. AST, AST-Ord, andAST-Arg perfor-
mance on sections 21 and 23.
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(Punyakanok et al., 2005; Toutanova et al., 2003he best structures according to the core roles. We
Pradhan et al., 2005b) were obtained by exploiachieved 80.68% which is practically equal to the
ing the information on the whole predicate argumeniesult obtained in (Punyakanok et al., 2005; Car-
structure. reras and Mrquez, 2005) for core roles, i.e. 81%.
Next section shows our preliminary experimentd heir overall F1 which includes all the arguments
on re-ranking using thd ST kernel based approach.was 79.44%. This confirms that the classification of

_ the non-core roles is more complex than the other
4.2 Re-ranking based on Tree Kernels arguments.

In these experiments, we used the outpuf'@C Finally, the high computation time of the re-
and TRC? to provide an SVM tree kernel with a ranker prevented us to use the larger structures
ranked list of predicate argument structures. More iwhich include all arguments. The major complexity
detail, we applied a Viterbi-like algorithm to gener-issue was the slow training and classification time
ate the 20 most likely annotations for each predica®f SVMs. The time needed for tree kernel function
structure, according to the joint probabilistic modewas not so problematic as we could use the fast eval-
of TBC andT RC'. We sorted such structures based#ation proposed in (Moschitti, 2006). This roughly
on theirF; measure and used them to learn the SVMeduces the computation time to the one required by
re-ranker described in 3.3. a polynomial kernel. The real burden is therefore the
For training, we used Sections 12, 14, 15, 1éearning time of SVMs that is quadratic in the num-
and 24, which contain 24,729 predicate structure§€r of training instances. For example, to carry out
For each of them, we considered the 5 annotatiorige re-ranking experiments required approximately
having the highest F1 score (i.e. 123,6847Ts) one month of a 64 bits machine (2.4 GHz and 4Gb
on the span of the 20 best annotations provided Hyam). To solve this problem, we are going to study
Viterbi algorithm. With such structures, we ob-the impact on the accuracy of fast learning algo-
tained 294,296 pairs used to train the SVM-baseldthms such as the Voted Perceptron.
re-ranker. As the _nu_mbgr of such struct_ures IS VerY  nelated Work
large the SVM training time was very high. Thus,
we sped up the learning process by using only thgecently, many kernels for natural language applica-
ASTs associated with the core arguments. From tH#&ns have been designed. In what follows, we high-
test sentences (which contain 5,267 structures), vight their difference and properties.
extracted the 20 best Viterbi annotated structures, The tree kernel used in this article was proposed
i.e. 102,343 (for a total of 315.531 pairs), whichin (Collins and Duffy, 2002) for syntactic parsing
were used for the following experiments: re-ranking. It was experimented with the Voted
First, we selected the best annotation (accordirfgerceptron and was shown to improve the syntac-
to the F; provided by the gold standard annotations§ic parsing. In (Cumby and Roth, 2003), a feature
out of the 20 provided by the Viterbi's algorithm. description language was used to extract structural
The resultingF; of 88.59% is the upperbound of our features from the syntactic shallow parse trees asso-
approach. ciated with named entities. The experiments on the
Second, we selected the top ranked annotation ijamed entity categorization showed that when the
dicated by the Viterbi's algorithm. This provides ourdescription language selects an adequate set of tree
baselineF; measure, i.e. 75.91%. Such outcome ifagments the Voted Perceptron algorithm increases
slightly higher than our official CONLL result (Mos- its classification accuracy. The explanation was that
chitti et al., 2005) obtained without converting SvmMthe complete tree fragment set contains many irrel-
scores into probabilities. evant features and may cause overfitting. In (Pun-
Third, we applied the SVM re-ranker to selectyakanok et al., 2005), a set of different syntactic
- parse trees, e.g. the best trees generated by the
2with the aim of improving the state-of-the-art, we appliedCharniak’s parser, were used to improve the SRL
the polynomial kernel for all basic classifiers, at this time. . .
ccuracy. These different sources of syntactic infor-

We used the models developed during our participation to th@ X .
CoNLL 2005 shared task (Moschitti et al., 2005). mation were used to generate a set of different SRL
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Section 21 Section 23

bnd bnd+class bnd bnd+class
AST Classifier AST Classifier AST Classifier AST Classifier
Ord | Arg RND Ord | Arg RND Ord | Arg RND Ord | Arg RND

pP. | 875|883 | 88.3| 86.9| 855 | 86.3| 86.4| 85.0| 786 | 79.0| 79.3| 77.8| 73.1| 73.5| 73.4| 72.3
R. | 873 | 881|883 | 87.1| 857|865| 868|856 | 781|784 | 78.7| 779| 73.8| 741 | 744 73.6
Fy | 87.4]882|883|870| 856|864 | 866|853 783|787 | 79.0| 779|734 73.8| 73.9| 72.9

Table 2: Semantic Role Labeling performance on automatic trees dsifigbased classifiers.

outputs. A joint inference stage was applied to rechad Cumby and Dan Roth. 2003. Kernel methods for re-

solve the inconsistency of the different outputs. In jational earning. InProceedings of ICMLO3Washington,
(Toutanova et al., 2005), it was observed that therI§anie| Gildea and Daniel Jurasfky. 2002. Automatic label-

are strong dependencies among the labels of the seing of semantic rolesComputational Linguistic28(3):496—
mantic argument nodes of a verb. Thus, to approach 530

_ ; Joachims. 1999. Making large-scale SVM learning practical.
the prOblem’ are r_ankmg_methOd of role sequench In B. Schilkopf, C. Burges, and A. Smola, editoisdvances
labeled by alI'RC is applied. In (Pradhan et al., in Kernel Methods - Support Vector Learning

2005b), some experiments were conducted on SRiaul Kingsbury and Martha Palmer. 2002. From Treebank to

systems trained using different syntactic views. PropBank. IrProceedings of LREC'02).as Palmas, Spain.
) H.T. Lin, C.J. Lin, and R.C. Weng. 2003. A note on platt’s
6 Conclusions probabilistic outputs for support vector machines. Technical

. . report, National Taiwan University.
Recent work on Semantic Role Labeling has showRiessandro Moschitti, Bonaventura Coppola, Daniele Pighin,

that to achieve high labeling accuracy a joint in- and Roberto Basili. 2005. Hierarchical semantic role label-

ference on the whole predicate argument structure i(’ll/?l') U‘SFXOCQEdi“gS of CoNLLOS shared tasknn Arbor
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Abstract

This paper investigates whether human as-
sociations to verbs as collected in a web
experiment can help us to identify salient
verb features for semantic verb classes.
Assuming that the associations model as-
pects of verb meaning, we apply a clus-
tering to the verbs, as based on the as-
sociations, and validate the resulting verb
classes against standard approaches to se-
mantic verb classes, i.e. GermaNet and
FrameNet. Then, various clusterings of
the same verbs are performed on the basis
of standard corpus-based types, and eval-
uated against the association-based clus-
tering as well as GermaNet and FrameNet
classes. We hypothesise that the corpus-
based clusterings are better if the instan-
tiations of the feature types show more
overlap with the verb associations, and
that the associations therefore help to
identify salient feature types.

1 Introduction

There are a variety of manual semantic verb clas-
sifications; major frameworks are the Levin classes
(Levin, 1993), WordNet (Fellbaum, 1998), and
FrameNet (Fontenelle, 2003). The different frame-
works depend on different instantiations of seman-
tic similarity, e.g. Levin relies on verb similarity
referring to syntax-semantic alternation behaviour,
WordNet uses synonymy, and FrameNet relies on
situation-based agreement as defined in Fillmore’s
frame semantics (Fillmore, 1982). As an alterna-
tive to the resource-intensive manual classifications,
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automatic methods such as classification and clus-
tering are applied to induce verb classes from cor-
pus data, e.g. (Merlo and Stevenson, 2001; Joanis
and Stevenson, 2003; Korhonen et al., 2003; Steven-
son and Joanis, 2003; Schulte im Walde, 2003; Fer-
rer, 2004). Depending on the types of verb classes
to be induced, the automatic approaches vary their
choice of verbs and classification/clustering algo-
rithm. However, another central parameter for the
automatic induction of semantic verb classes is the
selection of verb features.

Since the target classification determines the sim-
ilarity and dissimilarity of the verbs, the verb fea-
ture selection should model the similarity of inter-
est. For example, Merlo and Stevenson (2001) clas-
sify 60 English verbs which alternate between an in-
transitive and a transitive usage, and assign them to
three verb classes, according to the semantic role as-
signment in the frames; their verb features are cho-
sen such that they model the syntactic frame alterna-
tion proportions and also heuristics for semantic role
assignment. In larger-scale classifications such as
(Korhonen et al., 2003; Stevenson and Joanis, 2003;
Schulte im Walde, 2003), which model verb classes
with similarity at the syntax-semantics interface, it
is not clear which features are the most salient. The
verb features need to relate to a behavioural com-
ponent (modelling the syntax-semantics interplay),
but the set of features which potentially influence
the behaviour is large, ranging from structural syn-
tactic descriptions and argument role fillers to ad-
verbial adjuncts. In addition, it is not clear how
fine-grained the features should be; for example,
how much information is covered by low-level win-
dow co-occurrence vs. higher-order syntactic frame
fillers?

Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL-X)
pages 69-76, New York City, June 20@®2006 Association for Computational Linguistics



In this paper, we investigate whether human asso-
ciations to verbs can help us to identify salient verb
features for semantic verb classes. We collected as-
sociations to German verbs in a web experiment, and
hope that these associations represent a useful ba-
sis for a theory-independent semantic classification
of the German verbs, assuming that the associations
model a non-restricted set of salient verb meaning
aspects. In a preparatory step, we perform an un-
supervised clustering on the experiment verbs, as
based on the verb associations. We validate the re-
sulting verb classes (henceforth: assoc-classes) by
demonstrating that they show considerable overlap
with standard approaches to semantic verb classes,
i.e. GermaNet and FrameNet. In the main body of
this work, we compare the associations underlying
the assoc-classes with standard corpus-based feature
types: We check on how many of the associations we
find among the corpus-based features, such as ad-
verbs, direct object nouns, etc.; we hypothesise that
the more associations are found as instantiations in a
feature set, the better is a clustering as based on that
feature type. We assess our hypothesis by applying
various corpus-based feature types to the experiment
verbs, and comparing the resulting classes (hence-
forth: corpus-classes) against the assoc-classes. On
the basis of the comparison we intend to answer the
question whether the human associations help iden-
tify salient features to induce semantic verb classes,
i.e. do the corpus-based feature types which are
identified on the basis of the associations outperform
previous clustering results? By applying the fea-
ture choices to GermaNet and FrameNet, we address
the question whether the same types of features are
salient for different types of semantic verb classes?

In what follows, the paper presents the association
data in Section 2 and the association-based classes in
Section 3. In Section 4, we compare the associations
with corpus-based feature types, and in Section 5 we
apply the insights to induce semantic verb classes.

2 Verb Association Data

We obtained human associations to German verbs
from native speakers in a web experiment (Schulte
im Walde and Melinger, 2005). 330 verbs were se-
lected for the experiment (henceforth: experiment
verbs), from different semantic categories, and dif-
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ferent corpus frequency bands. Participants were
given 55 verbs each, and had 30 seconds per verb
to type as many associations as they could. 299
native German speakers participated in the experi-
ment, between 44 and 54 for each verb. In total,
we collected 81,373 associations from 16,445 trials;
each trial elicited an average of 5.16 responses with
a range of 0-16.

All data sets were pre-processed in the following
way: For each target verb, we quantified over all re-
sponses in the experiment. Table 1 lists the 10 most
frequent response types for the verb klagen ‘com-
plain, moan, sue’. The responses were not distin-
guished according to polysemic senses of the verbs.

klagen ‘complain, moan, sue’
Gericht ‘court’ 19
jammern ‘moan’ 18
weinen ‘ery’ 13
Anwalt ‘lawyer’ 11
Richter ‘judge’ 9
Klage ‘complaint’ 7
Leid ‘suffering’ 6
Trauer ‘mourning’ 6
Klagemauer | ‘Wailing Wall’ 5
laut ‘noisy’ 5

Table 1: Association frequencies for target verb.

In the clustering experiments to follow, the verb
associations are considered as verb features. The
underlying assumption is that verbs which are se-
mantically similar tend to have similar associations,
and are therefore assigned to common classes. Ta-
ble 2 illustrates the overlap of associations for the
polysemous klagen with a near-synonym of one of
its senses, jammern ‘moan’. The table lists those as-
sociations which were given at least twice for each
verb; the total overlap was 35 association types.

klagen/jammern ‘moan’
Frauen ‘women’ 2/3
Leid ‘suffering’ 6/3
Schmerz | ‘pain’ 3/7
Trauer ‘mourning’ | 6/2
bedauern | ‘regret’ 2/2
beklagen | ‘bemoan’ 4/3
heulen ‘ery’ 2/3
nervig ‘annoying’ 2/2
nolen ‘moan’ 2/3
traurig ‘sad’ 2/5
weinen ‘ery’ 13/9

Table 2: Association overlap for target verbs.



3 Association-based Verb Classes

We performed a standard clustering on the 330 ex-
periment target verbs: The verbs and their features
were taken as input to agglomerative (bottom-up)
hierarchical clustering. As similarity measure in
the clustering procedure (i.e. to determine the dis-
tance/similarity for two verbs), we used the skew
divergence, a smoothed variant of the Kullback-
Leibler divergence (Lee, 2001). The goal of these
experiments was not to explore the optimal feature
combination; thus, we rely on previous experiments
and parameter settings, cf. Schulte im Walde (2003).

Our claim is that the hierarchical verb classes
and their underlying features (i.e. the verb as-
sociations) represent a useful basis for a theory-
independent semantic classification of the German
verbs. To support this claim, we validated the
assoc-classes against standard approaches to seman-
tic verb classes, i.e. GermaNet as the German Word-
Net (Kunze, 2000), and the German counterpart of
FrameNet in the Salsa project (Erk et al., 2003). De-
tails of the validation can be found in (Schulte im
Walde, 2006); the main issues are as follows.

We did not directly compare the assoc-classes
against the GermaNet/FrameNet classes, since not
all of our 330 experiments verbs were covered
by the two resources. Instead, we replicated the
above cluster experiment for a reduced number of
verbs: We extracted those classes from the resources
which contain association verbs; light verbs, non-
association verbs, other classes as well as singletons
were disregarded. This left us with 33 classes from
GermaNet, and 38 classes from FrameNet. These
remaining classifications are polysemous: The 33
GermaNet classes contain 71 verb senses which dis-
tribute over 56 verbs, and the 38 FrameNet classes
contain 145 verb senses which distribute over 91
verbs. Based on the 56/91 verbs in the two gold
standard resources, we performed two cluster anal-
yses, one for the GermaNet verbs, and one for the
FrameNet verbs. As for the complete set of ex-
periments verbs, we performed a hierarchical clus-
tering on the respective subsets of the experiment
verbs, with their associations as verb features. The
actual validation procedure then used the reduced
classifications: The resulting analyses were evalu-
ated against the resource classes on each level in
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the hierarchies, i.e. from 56/91 classes to 1 class.
As evaluation measure, we used a pair-wise measure
which calculates precision, recall and a harmonic f-
score as follows: Each verb pair in the cluster anal-
ysis was compared to the verb pairs in the gold stan-
dard classes, and evaluated as true or false positive
(Hatzivassiloglou and McKeown, 1993).

The association-based clusters show overlap with
the lexical resource classes of an f-score of 62.69%
(for 32 verb classes) when comparing to GermaNet,
and 34.68% (for 10 verb classes) when comparing
to FrameNet. The corresponding upper bounds are
82.35% for GermaNet and 60.31% for FrameNet. '
The comparison therefore demonstrates consider-
able overlap between association-based classes and
existing semantic classes. The different results for
the two resources are due to their semantic back-
ground (i.e. capturing synonymy Vvs. situation-based
agreement), the numbers of verbs, and the degrees
of ambiguity (an average of 1.6 senses per verb in
FrameNet, as compared to 1.3 senses in GermaNet).

The purpose of the validation against semantic
resources was to demonstrate that a clustering as
based on the verb associations and a standard clus-
tering setting compares well with existing semantic
classes. We take the positive validation results as
justification to use the assoc-classes as source for
cluster information: The clustering defines the verbs
in a common association-based class, and the fea-
tures which are relevant for the respective class. For
example, the 100-class analysis contains a class with
the verbs bedauern ‘regret’, heulen ‘cry’, jammern
‘moan’, klagen ‘complain, moan, sue’, verzweifeln
‘become desperate’, and weinen ‘cry’, with the
most distinctive features Trauer ‘mourning’, weinen
‘cry’, traurig ‘sad’, Trénen ‘tears’, jammern ‘moan’,
Angst “fear’, Mitleid ‘pity’, Schmerz ‘pain’.

4 Exploring Semantic Class Features

Our claim is that the features underlying the
association-based classes help us guide the feature
selection process in future clustering experiments,
because we know which semantic classes are based

'The upper bounds are below 100%, because the hierarchi-
cal clustering assigns a verb to only one cluster, but the lexical
resources contain polysemy. We created a hard version of the
lexical resource classes where we randomly chose one sense of
each polysemous verb, to calculate the upper bounds.



on which associations/features. We rely on the
assoc-classes in the 100-class analysis of the hier-
archical clustering? and features which exist for at
least two verbs in a common class (and therefore
hint to a minimum of verb similarity), and compare
the associations underlying the assoc-classes with
standard corpus-based feature types: We check on
how many of the associations we find among the
corpus-based features, such as adverbs, direct object
nouns, etc. There are various possibilities to deter-
mine corpus-based features that potentially cover the
associations; we decided in favour of feature types
which have been suggested in related work:

a) Grammar-based relations. Previous work
on distributional similarity has focused either on
a specific word-word relation (such as Pereira et
al. (1993) and Rooth et al. (1999) referring to a direct
object noun for describing verbs), or used any syn-
tactic relationship detected by a chunker or a parser
(such as Lin (1998) and McCarthy et al. (2003)). We
used a statistical grammar (Schulte im Walde, 2003)
to filter all verb-noun pairs where the nouns repre-
sent nominal heads in NPs or PPs in syntactic rela-
tion to the verb (subject, object, adverbial function,
etc.), and to filter all verb-adverb pairs where the ad-
verbs modify the verbs.

b) Co-occurrence window: In previous work
(Schulte im Walde and Melinger, 2005), we showed
that only 28% of all noun associates were identi-
fied by the above statistical grammar as subcate-
gorised nouns, but 69% were captured by a 20-word
co-occurrence window in a 200-million word news-
paper corpus. This finding suggests to use a co-
occurrence window as alternative source for verb
features, as compared to specific syntactic relations.
We therefore determined the co-occurring words for
all experiment verbs in a 20-word window (i.e. 20
words preceding and following the verb), irrespec-
tive of the part-of-speech of the co-occurring words.

Relying on the verb information extracted for a)
and b), we checked for each verb-association pair
whether it occurred among the grammar or window
pairs. Table 3 illustrates which proportions of the
associations we found in the two resource types.
For the grammar-based relations, we checked argu-

The exact number of classes or the verb-per-class ratio are
not relevant for investigating the use of associations.
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ment NPs and PPs (as separate sets and together),
and in addition we checked verb-noun pairs in the
most common specific NP functions: n refers to the
(nominative) intransitive subject, na to the transi-
tive subject, and na to the transitive (accusative) ob-
ject. For the windows, all checks on co-occurrence
of verbs and associations in the whole 200-million
word corpus. cut also checks the whole corpus, but
disregards the most and least frequent co-occurring
words: verb-word pairs were only considered if the
co-occurrence frequency of the word over all verbs
was above 100 (disregarding low frequency pairs)
and below 200,000 (disregarding high frequency
pairs). Using the cut-offs, we can distinguish the
relevance of high- and low-frequency features. Fi-
nally, ADJ, ADV, N, V perform co-occurrence checks
for the whole corpus, but breaks down the all results
with respect to the association part-of-speech.

As one would have expected, most of the as-
sociations (66%) were found in the 20-word co-
occurrence window, because the window is neither
restricted to a certain part-of-speech, nor to a certain
grammar relation; in addition, the window is poten-
tially larger than a sentence. Applying the frequency
cut-offs reduces the overlap of association types and
co-occurring words to 58%. Specifying the window
results for the part-of-speech types illustrates that
the nouns play the most important role in describing
verb meaning (39% of the verb association types in
the assoc-classes were found among the nouns in the
corpus windows, 16% among the verbs, 9% among
the adjectives, and 2% among the adverbs).?

The proportions of the nouns with a specific
grammar relationship to the verbs show that we find
more associations among direct objects than intran-
sitive/transitive subjects. This insight confirms the
assumption in previous work where only direct ob-
ject nouns were used as salient features in distribu-
tional verb similarity, such as Pereira et al. (1993).
However, the proportions are all below 10%. Con-
sidering all NPs and/or PPs, we find that the pro-
portions increase for the NPs, and that the NPs play
a more important role than the PPs. This insight
confirms work on distributional similarity where not
only direct object nouns, but all functional nouns

3Caveat: These numbers correlate with the part-of-speech
types of all associate responses: 62% of the responses were
nouns, 25% verbs, 11% adjectives, and 2% adverbs.



Features

grammar relations

n [ na [ na | NP | PP [ NP&PP || ADV
| Cov. (%) || 3.82 | 4.32 | 6.93 || 12.23 | 5.36 | 14.08 || 3.63 |
Features co-occurrence: window-20
all [ cut JADJTADV] N [ V

[Cov. (%) || 66.15 [ 57.79 ]| 9.13 | 1.72 | 39.27 | 15.51 |

Table 3: Coverage of verb association features by grammar/window resources.

were considered as verb features, such as Lin (1998)
and McCarthy et al. (2003). Of the adverb associ-
ations, we find only a small proportion among the
parsed adverbs. All in all, the proportions of asso-
ciation types among the nouns/adverbs with a syn-
tactic relationship to the verbs are rather low. Com-
paring the NP/PP proportions with the window noun
proportions shows that salient verb features are not
restricted to certain syntactic relationships, but also
appear in a less restricted context window.

5 Inducing Verb Classeswith

Corpus-based Features

In the final step, we applied the corpus-based fea-
ture types to clusterings. The goal of this step was
to determine whether the feature exploration helped
to identify salient verb features, and whether we can
outperform previous clustering results. The cluster-
ing experiments were as follows: The 330 experi-
ment verbs were instantiated by the feature types we
explored in Section 4. As for the assoc-classes, we
then performed an agglomerative hierarchical clus-
tering. We cut the hierarchy at a level of 100 clus-
ters, and evaluated the clustering against the 100-
class analysis of the original assoc-classes. We ex-
pect that feature types with a stronger overlap with
the association types result in a better clustering re-
sult. The assumption is that the associations are
salient feature for verb clustering, and the better
we model the associations with grammar-based or
window-based features, the better the clustering.
For checking the clusterings with respect to the
semantic class type, we also applied the corpus-
based features to GermaNet and FrameNet classes.

e GermaNet: We randomly extracted 100 verb
classes from all GermaNet synsets, and created
a hard classification for these classes, by ran-
domly deleting additional senses of a verb so

73

as to leave only one sense for each verb. This
selection made the GermaNet classes compara-
ble to the assoc-classes in size and polysemy.
The 100 classes contain 233 verbs. Again, we
performed an agglomerative hierarchical clus-
tering on the verbs (as modelled by the different
feature types). We cut the hierarchy at a level
of 100 clusters, which corresponds to the num-
ber of GermaNet classes, and evaluated against
the GermaNet classes.

FrameNet: In a pre-release version from May
2005, there were 484 verbs in 214 German
FrameNet classes. We disregarded the high-
frequency verbs gehen, geben, sehen, kommen,
bringen which were assigned to classes mostly
on the basis of multi-word expressions they are
part of. In addition, we disregarded two large
classes which contained mostly support verbs,
and we disregarded singletons. Finally, we cre-
ated a hard classification of the classes, by ran-
domly deleting additional senses of a verb so as
to leave only one sense for each verb. The clas-
sification then contained 77 classes with 406
verbs. Again, we performed an agglomerative
hierarchical clustering on the verbs (as mod-
elled by the different feature types). We cut the
hierarchy at a level of 77 clusters, which corre-
sponds to the number of FrameNet classes, and
evaluated against the FrameNet classes.

For the evaluation of the clustering results, we calcu-
lated the accuracy of the clusters, a cluster similarity
measure that has been applied before, cf. (Stevenson
and Joanis, 2003; Korhonen et al., 2003).4 Accuracy
is determined in two steps:

“Note that we can use accuracy for the evaluation because
we have a fixed cut in the hierarchy as based on the gold stan-
dard, as opposed to the evaluation in Section 3 where we ex-
plored the optimal cut level.



frames grammar relations
f-pp | f-pp-pref n | na [ na ]| NP | PP | NP&PP [[ ADV
Assoc || 37.50 37.80 3590 | 37.18 | 39.25 || 39.14 | 37.97 | 41.28 38.53
GN 46.98 49.14 58.01 | 53.37 | 51.90 || 53.10 | 54.21 51.77 51.82
FN 33.50 32.76 29.46 | 30.13 | 32.74 || 34.16 | 28.72 | 3391 35.24
co-occurrence: window-20
all | cut [ ADJJADV] N [ V
Assoc 39.33 | 39.45 || 37.31 | 36.89 | 39.33 | 38.84
GN 51.53 | 52.42 || 50.88 | 47.79 | 52.86 | 49.12
FN missing | 32.84 || 31.08 | 31.00 | 34.24 | 31.75

Table 4: Accuracy for induced verb classes.

1. For each class in the cluster analysis, the gold
standard class with the largest intersection of
verbs is determined. The number of verbs in the
intersection ranges from one verb only (in case
all clustered verbs are in different classes in the
gold standard) to the total number of verbs in
a cluster (in case all clustered verbs are in the
same gold standard class).

. Accuracy is calculated as the proportion of the
verbs in the clusters covered by the same gold
standard classes, divided by the total number
of verbs in the clusters. The upper bound of the
accuracy measure is 1.

Table 4 shows the accuracy results for the three
types of classifications (assoc-classes, Germalet,
FrameNet), and the grammar-based and window-
based features. We added frame-based features, as
to compare with earlier work: The frame-based fea-
tures provide a feature description over 183 syntac-
tic frame types including PP type specification (f-
pp), and the same information plus coarse selec-
tional preferences for selected frame slots, as ob-
tained from GermaNet top-level synsets (f-pp-pref),
cf. (Schulte im Walde, 2003). The following ques-
tions are addressed with respect to the result table.

1. Do the results of the clusterings with respect
to the underlying feature types correspond to
the overlap of associations and feature types,
cf. Table 3?7

Do the corpus-based feature types which were
identified on the basis of the associations out-
perform previous clustering results?

. Do the results generalise over the semantic
class type?
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First of all, there is no correlation between the
overlap of associations and feature types on the one
hand and the clustering results as based on the fea-
ture types on the other hand (Pearson’s correlation,
p>.1), neither for the assoc-classes or the GermaNet
or FrameNet classes. The human associations there-
fore did not contribute to identify salient feature
types, as we had hoped. In some specific cases, we
find corresponding patterns; for example, the clus-
tering results for the intransitive and transitive sub-
ject and the transitive object correspond to the over-
lap values for the assoc-classes and FrameNet: n <
na < na. Interestingly, the GermaNet clusterings be-
have in the opposite direction.

Comparing the grammar-based relations with
each other shows that for the assoc-classes using
all NPs is better than restricting the NPs to (sub-
ject) functions, and using both NPs and PPs is best;
similarly for the FrameNet classes where using all
NPs is the second best results (but adverbs). Differ-
ently, for the GermaNet classes the specific function
of intransitive subjects outperforms the more gen-
eral feature types, and the PPs are still better than
the NPs. We conclude that not only there is no cor-
relation between the association overlap and feature
types, but in addition the most successful feature
types vary strongly with respect to the gold stan-
dard. None of the differences within the feature
groups (n/na/na and NP/PP/NP&PP) are significant
o2 df = 1,a 0.05). The adverbial features
are surprisingly successful in all three clusterings, in
some cases outperforming the noun-based features.

Comparing the grammar-based clustering results
with previous results, the grammar-based features
outperform the frame-based features in all cluster-
ings for the GermaNet verbs. For the FrameNet



verbs and the experiment verbs, they outperform the
frame-based features only in specific cases. The
adverbial features outperform the frame-based fea-
tures in any clustering. However, none of the differ-
ences between the frame-based clusterings and the
grammar-based clusterings are significant (x 2, df =
1, = 0.05).

For all gold standards, the best window-based
clustering results are below the best grammar-based
results.  Especially the all results demonstrate
once more the missing correlation between associa-
tion/feature overlap and clustering results. However,
it is interesting that the clusterings based on win-
dow co-occurrence are not significantly worse (and
in some cases even better) than the clusterings based
on selected grammar-based functions. This means
that a careful choice and extraction of specific rela-
tionships for verb features does not have a signifi-
cant impact on semantic classes.

Comparing the window-based features against
each other shows that even though we discovered
a much larger proportion of association types in an
unrestricted window all than elsewhere, the results
in the clusterings do not differ accordingly. Apply-
ing the frequency cut-offs has almost no impact on
the clustering results, which means that it does no
harm to leave away the rather unpredictable features.
Somehow expected but nevertheless impressive is
the fact that only considering nouns as co-occurring
words is as successful as considering all words inde-
pendent of the part-of-speech.

Finally, the overall accuracy values are much
better for the GermaNet clusterings than for the
experiment-based and the FrameNet clusterings.
The differences are all significant (x2,df = 1, =
0.05). The reason for these large differences could
be either (a) that the clustering task was easier for
the GermaNet verbs, or (b) that the differences are
caused by the underlying semantics. We argue
against case (a) since we deliberately chose the same
number of classes (100) as for the association-based
gold standard; however, the verbs-per-class ratio for
GermaNet vs. the assoc-classes and the FrameNet
classes is different (2.33 vs. 3.30/5.27) and we can-
not be sure about this influence. In addition, the
average verb frequencies in the GermaNet classes
(calculated in a 35 million word newspaper corpus)
are clearly below those in the other two classifica-
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tions (1,040 as compared to 2,465 and 1,876), and
there are more low-frequency verbs (98 out of 233
verbs (42%) have a corpus frequency below 50, as
compared to 41 out of 330 (12%) and 54 out of 406
(13%)). In the case of (b), the difference in the se-
mantic class types is modelling synonyms with Ger-
maNet as opposed to situation-based agreement in
FrameNet. The association-based class semantics
is similar to FrameNet, because the associations are
unrestricted in their semantic relation to the experi-
ment verb (Schulte im Walde and Melinger, 2005).

6 Summary

The questions we posed in the beginning of this pa-
per were (i) whether human associations help iden-
tify salient features to induce semantic verb classes,
and (ii) whether the same types of features are
salient for different types of semantic verb classes.
An association-based clustering with 100 classes
served as source for identifying a set of potentially
salient verb features, and a comparison with stan-
dard corpus-based features determined proportions
of feature overlap. Applying the standard feature
choices to verbs underlying three gold standard verb
classifications showed that (a) in our experiments
there is no correlation between the overlap of associ-
ations and feature types and the respective clustering
results. The associations therefore did not help in the
specific choice of corpus-based features, as we had
hoped. However, the assumption that window-based
features do contribute to semantic verb classes — this
assumption came out of an analysis of the associ-
ations — was confirmed: simple window-based fea-
tures were not significantly worse (and in some cases
even better) than selected grammar-based functions.
This finding is interesting because window-based
features have often been considered too simple for
semantic similarity, as opposed to syntax-based fea-
tures. (b) Several of the grammar-based nomi-
nal and adverbial features and also the window-
based features outperformed feature sets in previ-
ous work, where frame-based features (plus prepo-
sitional phrases and coarse selectional preference
information) were used. Surprisingly well did ad-
verbs: they only represent a small number of verb
features, but obviously this small selection can out-
perform frame-based features and even some nomi-



nal features. (c) The clustering results were signif-
icantly better for the GermaNet clusterings than for
the experiment-based and the FrameNet clusterings,
so the chosen feature sets might be more appropri-
ate for the synonymy-based than the situation-based
classifications.

Acknowledgements Thanks to Christoph Clodo
and Marty Mayberry for their system administrative
help when running the cluster analyses.
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Applying Alternating Structure Optimization
to Word Sense Disambiguation
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Abstract task has only 10 labeled training examples per sense
, o on average, which is in contrast to nearly 6K training
This paper presents a new application of o, 2 njes per name class (on average) used for the
the recently proposed machine learning  coN 2003 named entity chunking shared fask
method Alternating Structure Optimiza- One problem is that there are so many words and so
tion (ASO) to word sense disambiguation 5y senses that it is hard to make available a suf-
(WSD). Given a set of WSD problems  giiant number of labeled training examples for each
and their respective labeled examples, we of a large number of target words.
seek to |mpr0\{e overall performance on On the other hand, this indicates that the total
that s_et by using all the labeled exam- number of available labeled examples (irrespective
ple_s (wrespectlve 0 f targgt WorF’S) for the of target words) can be relatively large. A natural
ent|re_se_t n learning a dlsamblguator for guestion to ask is whether we can effectively alie
each |nd|y|dl_ng problem. Thus, in effect, the labeled examples (irrespective of target words)
on ea<_:h '”d'}{'d‘,{a' problem_ eg. dls_am— for learning on each individual WSD problem.
oo o Based on e chseatons, v s e
disambiguation of “bar”, “canal”, and so, application of Alternating Structure Optimization
- ' ’ . (ASO)(Ando and Zhang, 2005a; Ando and Zhang,
forth). We emplrlqally study t.h € effecnvg 2005b) to WSD. ASO is a recently proposed ma-
tjassekjngssgr:i)-rsﬂgserF\)/liJsrggSIEa:?nEES (r;)unl;:g chine_lear_ning me_thod for learning p_redictive struc-
urations. Our performance results rival ture (|.e: ’ mformgnqn useful for pre.dlc.thns) sha_lr_ed
or exceed those of the previous best sys- by ”.‘“'“p'? _prgdlgtlon problems via joint empiri-
tems on several Senseval lexical sample cal risk minimization. It has been S.h own that on
task data sets several tasks, per_formanc_e can be_3|g_n|f|cantly im-
' proved by a semi-supervised application of ASO,
which obtains useful information froranlabeled
data by learning automatically created prediction

Word sense disambiguation (WSD) is the task ofroblems. In addition to such semi-supervised learn-
assigning pre-defined senses to words occurring iRg, this paper explores AS@ulti-task learning
some context. An example is to disambiguate an o¥thich learns a number of WSD problems simul-
currence of “bank” between the “money bank” senstaneously to exploit the inherent predictive struc-
and the “river bank” sense. Previous studies e.gfyre shared by these WSD problems. Thus, in ef-
(Lee and Ng, 2002; Florian and Yarowsky, 2002)fect, each individual problem (e.g., disambiguation
have applied supervised learning techniques to WS®f “art”) benefits fromlabeled training examples for
with success. other problemge.g., disambiguation of “bar”, dis-
A practical issue that arises in supervised WS@mbiguation of “canal”, and so forth).

is the paucity of labeled examples (sense-annotatedThe notion of benefiting from training data for
data) available for training. For example, the trainother word senses is not new by itself. For instance,
ing set of the SensevakZnglish lexical sample

1 Introduction

been evaluated in the series of Senseval workshops.
http://www.cs.unt.edufada/senseval/. WSD systems have 2http://www.cnts.ua.ac.be/conll2003/ner/

e
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on the WSD task with respect to WordNet synsetggegularization) on the: labeled training examples
Kohomban and Lee (2005) trained classifiers for thg¢(X;, Y;) }:

top-level synsets of the WordNet semantic hierar- "

chy, consolidating labeled examples assomated Wlthf — arg min Z LX), Y) +r(f)] . @
the WordNet sub-trees. To disambiguate test in- o\

stances, these coarse-grained classifiers are first ap- ) - )
plied, and then fine-grained senses are determinéy 0SS functionZ(-) quantifies the difference be-

using a heuristic mapping. By contrast, our apteen the predictiorf(X;) and the true output;,
proach does not require pre-defined relations amof@'d” () is @ regularization term to control the model
senses such as the WordNet hierarchy. Rather, \f@MPIexity.

let the machine learning algorithm ASO automati- 5  j4int linear models for ASO

cally and implicitly find relations with respect to theC i dicti bl indexed
disambiguation problems (i.e., finding shared pre-lonSI erm prehlc !ohn pro erlns )'24 (;;(Ze ; b& <
dictive structure). Interestingly, in our experiments,{ )+-+m}, each withn, samples(X;, ¥7°) for i €

seemingly unrelated or only loosely related word({j,l’ "' ,@g},landdgs§ume that thehre eé('zts :mISow-
sense pairs help to improve performance. imensional predictive structure shared by these

This paper makes two contributions. First, Weoroblems. Ando and Zhang (2005a) extend the

present a new application of ASO to WSD. We emaPove traditional linear model to a joint Iinegr model
pirically study the effective use of ASO and show° that a predictor for problefis in the form:
that labeled examples of all the words can be effec- fi(©,x) =wix+vliex, 00T =1, 2)
tively exploited in learning each individual disam-

biguator. Second, we report performance results thethere I is the identity matrix. w, and v, are

rival or exceed the state-of-the-art systems on Sekeight vectors specific to each problem Predic-

seval lexical sample tasks. tive structure is parameterized by tsucture ma-
trix © shared by all then predictors. The goal of
2 Alternating structure optimization this model can also be regarded as learning a com-

mon good feature maPx used for all then prob-
This section gives a brief summary of ASO. We firsiems.
introduce a standard linear prediction model for a
single task and then extend it to a joint linear mode?-3  ASO algorithm
used by ASO. Analogous to (1), we comput® and predictors so

that they minimize the empirical risk summed over
all the problems:

2.1 Standard linear prediction models
In the standard formulation of su ised | iNgo, {f:}] = S (W L(fe(6,X0). YY) )
pervised learningp, {f,}] =argmin Y * [ Y~ ===l g (fy) |
we seek gpredictor that maps an input vector (or Olfe} =1 " 2
feature vectorx € X to the corresponding output 3

y € Y. For NLP tasks, binary features are often usett has been shown in (Ando and Zhang, 2005a) that

— for example, if the word to the left is “money”, setth€ optimization problem (3) has a simple solution
- . ' ~~"usingsingular value decomposition (SViadhen we
the corresponding entry afto 1; otherwise, setitto

A choose square regularization:(f,) = X|lwy||3

binary classification problems, regarding output  w, + ©”'v, . Then (3) becomes the minimization

i=1

+1 andy = —1 as “in-class” and “out-of-class”, of the joint empirical risk written as:
respectively. (P Y
Predictors based dimear prediction modelsake > (Z . eTvz||§> NG
(=1 i=1

the form: f(x) = w!x, wherew is called aweight
vector A common method to obtain a predictorThis minimization can be approximately solved by
f is regularizedempirical risk minimizationwhich  repeating the following alternating optimization pro-
minimizes an empirical loss of the predictor (withcedure until a convergence criterion is met:
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Nouns art, authority, bar, bum, chair, channel, child, church;ut, day, detention, dyke, facility, fatigue, feeling
grip, hearth, holiday, lady, material, mouth, nation, matyost, restraint, sense, spade, stress, yew
Verbs begin, call, carry, collaborate, develop, draw, dresst, dhive, face, ferret, find, keep, leave, live, match,
play, pull, replace, see, serve strike, train, treat, tuse, wander wash, work
Adjectives | blind, colourless, cool, faithful, fine, fit, free, gracefgteen, local, natural, oblique, simple, solemn, vita

Figure 1:Words to be disambiguated; Senseval-2 English lexical satapk.

i ; i word uni-grams in 5-word window,
= FI.X .(6.’ {ve}), (:.ln.d flndm. predlgtors{ug} that Local | word bi- and tri-grams ofw_»,w_1),
minimizes the joint empirical risk (4). context | (w1, wss), (wor1,wi),

(UJ737 w-2, wfl)v (w+17 w42, w+3)'
2. Fixm predictors{u,}, and find(©, {v,}) that f(lllll—z,w—l,w+1), (w_l,w+1,w+zf). —
S ‘i i ; Syntactic | full parser output; see Section 3 for detajl.
minimizes the joint empirical risk (4). Global | all the words excluding stopwords.
POS uni-, bi-, and tri-grams in 5-word window{

The first step is equivalent to training predictors
independently. The second step, which couples dfigure 2: Features. w; stands for the word at position
the predictors, can be done by setting the rows 6?Iative to the word to be disambiguated. The 5-word win-
v . y g dow is[—2, +2]. Local context and POS features are position-
© to the most significanieft singular vectorsf the  sensitive. Global context features are position insers(t bag
predictor (weight) matrixU = [uy,...,u,,], and ofwords).
settingv, = Ouy. That is, the structure matri® is
cqmputed so that the projection of the predicf[or Ma- The goal of this section is to empirically study
trix U onto the subspace spanned@ rows gives e effective use of ASO for improving overall per-
the best approximation (in the least squares sensg}mance on these seemingly unrelated disambigua-
of U for the given row-dimension 0B Thus, in- tion problems. Below we first describe the task set-
tuitively, © captures the commonality of the pre-  (ing * features, and algorithms used in our imple-
dictors. ~ mentation, and then experiment with the Senseval-
ASO has been shown to be useful in #8mi- 5 Engjish lexical sample data set (with the offi-
supervised learningonfiguration, where the above cjg| training / test split) for the development of our
algorithm is applied to a number afixiliary prob-  methods. We will then evaluate the methods de-
lemsthat areautomatically createdrom_ the unla_l— veloped on the Senseval-2 data set by carrying out
beled data. By contrast, the focus of this paper is thge senseval-3 tasks, i.e., training on the Senseval-3
multi-task learningconfiguration, where the ASO training data and then evaluating the results on the

algorithm is applied to a number oéal problems  (ynseen) Senseval-3 test sets in Section 4.
with the goal of improving overall performance on

these problems. Task setting In this work, we focus on the Sense-
val lexical sample taskWe are given a set of target
3 Effective use of ASO on word sense words, each of which is associated with several pos-
disambiguation sible senses, and their labeled instances for training.

Each instance contains an occurrence of one of the

The essence of ASO is to learn information usefL{Iarget words and its surrounding words, typically a

for prediction (predictive structure) shared by mulse,, sentences. The task is to assign a sense to each
tiple tasks, assuming the existence of such sharegd instance.

structure. From this viewpoint, consider the target

words of the Senseval-2 lexical sample task, showReatures We adopt the feature design used by Lee
in Figure 1. Here we have multiple disambiguatiorand Ng (2002), which consists of the following
tasks; however, at a first glance, it is not entirelyfour types: (1)Local context n-grams of nearby
clear whether these tasks share predictive structuneords (position sensitive); (2plobal context all

(or are related to each other). There is no direct séhe words (excluding stopwords) in the given con-
mantic relationship (such as synonym or hyponyntext (position-insensitive; a bag of words); BPS
relations) among these words. parts-of-speechm-grams of nearby words; (8yn-
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tactic relations syntactic information obtained from the corresponding sub-matrix of the predictor ma-
parser output. To generate syntactic relation fedrix U, which is the gray region of Figure 3 (a). The
tures, we use the Slot Grammar-based full parsstructure matrice®; for j ¢ F' (associated with the
ESG (McCord, 1990). We use as features syntactighite regions in the figure) should be regarded as
relation types (e.g., subject-of, object-of, and noubeing fixed to the zero matrices. Similarly, it is pos-
modifier), participants of syntactic relations, and bisible to compute a structure matrix from a subset of
grams of syntactic relations / participants. Details ofhe predictors (such as noun disambiguators only),
the other three types are shown in Figure 2. as in Figure 3 (b). In this example, we apply the

) ) ) extension of ASO with" = {SR} to three sets of
Implementation  Our implementation  follows ,,pems (disambiguation of nouns, verbs, and ad-
Anqlo and Zhang (2005a). We use a moc_"f']ectives, respectively) separately.
cation of the Huber's robust loss for regression:

L = (max(0.1— 2 jf > —1;and—4 m predictors predictors predictors predictors
(p,y) = ( (0, PY)) by =2 Py Pk N for noups for yerbsfor adjectives

otherwise; with square regularization & 10~%), LC
and perform empirical risk minimization by
. . GC GC
stochastic gradient descent (SGBEe e.g., Zhang v Osr Osrag
(2004)). We perform one ASO iteration. SR SR ’
PO< POS, Osr verb
3.1 Exploring the multi-task learning Predictor matrixJ Oy 5, Predictor matriy
configuration (a) Partitioned by features: (b) Partitioned by = { SR }
F={SR} and problem types.

The goal is to effectively apply ASO to the set of
word disambiguation problems so that overall pe

ture splitandpartitioning of prediction problems  our WSD problems, consider the disambiguation of
“bank” and the disambiguation of “save”. Since a
“bank” as in “money bank” and a “save” as in “sav-
ing money” may occur in similar global contexts,

four feature groupslocal context L.C), global con- coain global context features effective for recog-
text (GC), syntactic relation§R), and POS features. nizing the “money bank” sense may be also effective

To exploit such a natural feature split, we explore th¢,, disambiguating “save”, and vice versa. However,

following extension of the joint linear model: with respect to the position-sensitive local context
T , features, these two disambiguation problems may
fe({0;},x) = wix + ZVE” ©,;x) | (5) not have much in common since, for instance, we
jer sometimes say “the bank announced”, but we rarely
_ ~ say “the save announced”. That is, whether prob-
where®;07 = Iforj € F, F is a set of dis- |ems share predictive structure may depend on fea-
joint feature groups, angd(’) (or véj >) is a portion ture types, and in that case, seeking predictive struc-
of the feature vectox (or the weight vector,) cor- ture for each feature group separately may be more
responding to the feature groviprespectively. This effective. Hence, we experiment with the configu-
is a slight modification of the extension presenterations with and without various feature splits using
in (Ando and Zhang, 2005a). Using this modelthe extension of ASO.
ASO computes the structure matfix for each fea- Our target words are nouns, verbs, and adjec-
ture group separately. That is, SVD is applied tdives. As in the above example of “bank” (noun)
the sub-matrix of the predictor (weight) matrix cor-and “save” (verb), the predictive structure of global
responding to each feature grogpwhich results context features may be shared by the problems ir-
in more focused dimension reduction of the predicrespective of the parts of speech of the target words.
tor matrix. For example, suppose that= {SR}. However, the other types of features may be more
Then, we compute the structure matfixgr from dependent on the target word part of speech. There-

Figure 3:Examples of feature split and problem partitioning.

3.1.1 Feature split and problem partitioning
Our features described above inherently consist
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fore, we explore two types of configuration. Oneion problems at once. It turned out that the con-
applies ASO to all the disambiguation problems afiguration ¥ = {POS} does not improve the per-
once. The other applies ASO separately to each &frmance over the baseline. Therefore, we exclude
the three sets of disambiguation problems (noun di®OS from the feature group sEtin the rest of our
ambiguation problems, verb disambiguation probexperiments. Comparison &f = {L.C+ SR+ GC}
lems, and adjective disambiguation problems) anflreating the features of these three types as one
uses the structure matré&; obtained from the noun group) andFF = {L.C, SR, GC} indicates that use
disambiguation problems only for disambiguatingof this feature split indeed improves performance.
nouns, and so forth. Among the configurations shown in Figure 4, the
Thus, we explore combinations of two paramebest performance (67.8%) is obtained by applying
ters. One is the set of feature groupsn the model ASO to the three sets of problems (corresponding
(5). The other is the partitioning of disambiguationto nouns, verbs, and adjectives) separately, with the
problems. feature splitF = {L.C, SR, GC}.
ASO has one parameter, the dimensionality of the

3.1.2 Empirical results structure matrix®; (i.e., the number of left singular

68 vectors to compute). The performance shown in Fig-
675 Problem partitioning ure 4 is the ceiling performance obtained at the best
67 Ao-feature— Oall problems at dimensionality (in{10, 25,50, 100,150,---}). In
665 once Figure 5, we show the performance dependency on
66 S i ) : )
655 Enouns, verbs, ©,’s dimensionality when ASO is applied to all the
65 adjectves, problems at once (Figure 5 left), and when ASO is
64 separael applied to the set of the noun disambiguation prob-
Baseline {LC} (GC) {SRHPOS) (LC.SRGC) pplied | , ambig pr
Feature group set F {LC+SR+GC} lems (Figure 5 right). In the left figure, the config-

Figure 4: F-measure on Senseval-2 English test set. MulgHration £ = {GC} (QIObaI_ConteXt) p!’OdUC?S be_t'
task configurations varying feature group $etand problem ter performance at a relatively low dimensionality.
partitioning. Performance at the best dimensionalitPof(in | the other configurations shown in these two fig-
{10, 25, 50, 100, - - - }) is shown. . .

ures, performance is relatively stable as long as the

In Figure 4, we compare performance on th‘g|men3|onallty Is not 100 low.

Senseval-2 test set produced by training on tl 45 7
Senseval-2 training set using the various configur 67
tions discussed above. As the evaluation metric, \ 65
use the F-measure (micro-average@}urned by the 6:?
official Senseval scorer. Our baseline is the stande ¢ " 70
single-taskconfiguration using the same loss func 645 69

tion (modified Huber) and the same training algc 0 100 200 300 400 500 0 100 200 300

. dimensionality dimensionality
fithm (SGD). Fi 5: Left: Appl Il th bl
P ; ; igure 9: Left: Applying ASO to all the WSD problems at
The results are in I.In(.a with our expectation. T once. Right: Applying ASO to noun disambiguation problems
learn the shared predictive structure of local conte only and testing on the noun disambiguation problems arty.

(LC) and syntactic relations (SR), it is more advant: axis: dimensionality 0B;.
geous to apply ASO to each of the three sets of prc
lems (disambiguation of nouns, verbs, and adje
tives, respectively), separately. By contrast, glob
context features (GC) can be more effectively e
ploited when ASO is applied to all the disambigue

73
72
71

3.2 Multi-task learning procedure for WSD

Based on the above results on the Senseval-2 test set,
we develop the following procedure using the fea-
- ture split and problem partitioning shown in Figure
*Our precision and recall are always the same since ours g | et A/ V, and.A be sets of disambiguation prob-
tems assign exactly one sense to each instance. That is, | h’ t t d b d ad
F-measure is the same as ‘micro-averaged recall’ or ‘acgura ems whose target words are nouns, verbs, and ad-

used in some of previous studies we will compare with. jectives, respectively. We writ® ; , for the struc-
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predictors predictors predictors ASO multi-task learning (optimum config.)68.1
for no@r_vgbf&)/radjectlves classifier combination [FY02] 66.5
polynomial KPCA [WSC04] 65.8

LC We compute seven structure SVM [LNOZ2] 65.4

GC matriceso; ;each fr_om the Our single-task baseline 65.3

SR seven shaded regions of the Senseval-2 (2001) best participant 64.2

POS predictor matrixJ.

Figure 7: Performance comparison with previous best sys-

Figure 6:Effective feature split and problem partitioning.  tems on Senseval-2 English lexical sample test set. FYG£ (Fl
rian and Yarowsky, 2002), WSCO04 (Wu et al., 2004), LNO2 (Lee
and Ng, 2002)

ture matrix associated with the feature grgupnd
computed from a problem set That is, we replace

i ; the unseenSenseval-3 test sets.) Nevertheless, it i
©; in (5) with @(j’g). uns Sevi st sets.) v SS, IU1IS

worth noting that our potential performance (68.1%)

e Apply ASO to the three sets of disambigua-exceeds those of the previous best systems.
tion problems (corresponding to nouns, verbs, Our single-task baseline performance is almost

and adjectives), separately, using the extenddhe same as LNO2 (Lee and Ng, 2002), which
model (5) withF = {LC,SR}. As a result, uses SVM. This is consistent with the fact that we

we obtain®, ,, for every(j, s) € {LC,SR} x  adopted LNOZ2's feature design. FY02 (Florian and
(4:5) > ’ : - :
{N,V, A}. Yarowsky, 2002) combines classifiers by linear av-
erage stacking. The best system of the Senseval-2
e Apply ASO to all the disambiguation problemscompetition was an early version of FY02. WSC04
at once using the extended model (5) with=  used a polynomial kernel via the kernel Principal
{GC} to obtain® (qc auvua)- Component Analysis (KPCA) method (Scholkopf et

al., 1998) with nearest neighbor classifiers.
e For a problen¥ € P € {N,V, A}, our final ) g

predictor is based on the model: 4 Evaluation on Senseval-3 tasks

. T .
fex) =wix+ > vl O j.x") In this section, we evaluate the methods developed
(4,8)€T on the Senseval-2 data set above on the standard

Senseval-3 lexical sample tasks.
whereT = {(LC, P), (SR, P), (GC,N UV U

A)}. We obtain predictoff, by minimizing the 4.1  Qur methods in multi-task and

andv,. . : : . :
In addition to the multi-task configuration described

We fix the dimension of the structure matrix cor-in Section 3.2, we test the following semi-supervised
responding to global context features to 50. The diapplication of ASO. We first create auxiliary prob-
mensions of the other structure matrices are set t@ms following Ando and Zhang (2005a)’s partially-
0.9 times the maximum possible rank to ensure relgupervised strategy (Figure 8) with distinct fea-
tively high dimensionality. This procedure producegure maps¥; and ¥, each of which uses one of
68.1% on the Senseval-2 English lexical sample testL.C, GC, SR}. Then, we apply ASO to these auxil-
set. iary problems using the feature split and the problem
partitioning described in Section 3.2.

Note that the difference between the multi-task
Figure 7 compares our performance with those aind semi-supervised configurations is the source of
previous best systems on the Senseval-2 English leixformation. The multi-task configuration utilizes
ical sample test set. Since we used this test set for thiee label informationof the training examples that
development of our method above, our performancare labeled for the rest of the multiple tasks, and
should be understood as tphetential performance the semi-supervised learning configuration exploits
(In Section 4, we will present evaluation results ora large amount ofinlabeled data

3.3 Previous systems on Senseval-2 data set
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1. Train a classifie€; only using feature mag¥; on the #words | #train | avg #sense avg #train
labeled data for the target task. perword | per sense
2. Auxiliary problems are to predict the labels assigned by | English 73 8611 10.7 10.0
C, to the unlabeled data, using the other feature Map Senseval-3 data sets
3. Apply ASO to the auxiliary problems to obtain English 57 7860 6.5 21.3
4. Using the joint linear model (2), train the final Catalan 27 4469 3.1 53.2
predictor by minimizing the empirical risk for fixe@ Italian 45 5145 6.2 18.4
on the labeled data for the target task. Spanish 46 8430 3.3 556.5

Figu.re 8: Ando and Zhang (2005a)'s ASO semi-supervisedrigure 9:Data statistics of Senseval-2 English lexical sample
learning method using partially-supervised procedurefeat-  data set (first row) and Senseval-3 data sets. On each data set
ing relevant auxiliary problems. of test instances is about one half of that of training instan

4.2 Data and evaluation metric single-task baseline on all the data sets. The best

We conduct evaluations on four Senseval-3 lexicglerformance is achieved when we combine multi-
sample tasks (English, Catalan, Italian, and Spanistgsk learning and semi-supervised learning by using
using the official training / test splits. Data statis-all the corresponding structure matrig@s; ;) pro-

tics are shown in Figure 9. On the Spanish, Cataluced by both multi-task and semi-supervised learn-
lan, and Italian data sets, we use part-of-speech iimg, in the final predictors. This combined configu-
formation (as features) and unlabeled examples (feation outperforms the single-task supervised base-
semi-supervised learning) provided by the organizeline by up to 5.7%.

Since the English data set was not provided with performance improvements over the supervised
these additional resources, we use an in-house P(B&se“ne are re|ative|y small on Eng“sh and Span-
tagger trained with the PennTree Bank corpus, angh. We conjecture that this is because the supervised
extract 100K unlabeled examples from the Reuter%’erformance is a|ready close to the h|ghest perfor-
RCV1 corpus. On each language, the number of Upnance that automatic methods could achieve. On
labeled examples is 5—15times Iarger than that of thﬁese two |anguage5, our (and previous) systems out-
labeled training examples. We use syntactic relatiogerform inter-human agreement, which is unusual

features only for English data set. As in Section 3yt can be regarded as an indication that these tasks
we report micro-averaged F measure. are difficult.

The performance of the output-based method

» ] . (baseline) is relatively low. This indicates that out-
In addition to the standard single-task superwsegut values or proposed labels are not expressive

configuration as in Section 3, we test the followingy g1 to integrate information from other predic-
method as an additional baseline. tors effectively on this task. We conjecture that for

Output-based method The goal of our multi-task this method to be effective, the problems are re-
learning configuration is to benefit from having theduired to be more closely related to each other as
labeled training examples of a number of words. A Florian et al. (2003)'s named entity experiments.
alternative to ASO for this purpose is to use directly A practical advantage of ASO multi-task learning
as features the output values of classifiers traineaver ASO semi-supervised learning is that shorter
for disambiguating the other words, which we calcomputation time is required to produce similar
‘output-based method’ (cf. Florian et al. (2003)).performance. On this English data set, training
We explore several variations similarly to Sectiorfor multi-task learning and semi-supervised learning
3.1 and report the ceiling performance. takes 15 minutes and 92 minutes, respectively, using
a Pentium-4 3.20GHz computer. The computation
time mostly depends on the amount of the data on
Figure 10 shows F-measure results on the fowrhich auxiliary predictors are learned. Since our ex-
Senseval-3 data sets using the official training / tepteriments use unlabeled data 5-15 times larger than
splits. Both ASO multi-task learning and semi-labeled training data, semi-supervised learning takes
supervised learning improve performance over thienger, accordingly.

4.3 Baseline methods

4.4 Evaluation results

83



methods English Catalan Italian Spanish
multi-task learning 73.8(+0.8) | 89.5 (+1.5)| 63.2 (+4.9)| 89.0 (+1.0)
ASO semi-supervised learning 73.5(+0.5) | 88.6 (+0.6)| 62.4 (+4.1)| 88.9 (+0.9)
multi-task+semi-supervised 74.1 (+1.1) | 89.9 (+1.9)| 64.0 (+5.7)| 89.5 (+1.5)
baselines| output-based 73.0(0.0) | 88.3(+0.3)| 58.0(-0.3) | 88.2 (+0.2)
single-task supervised learning 73.0 88.0 58.3 88.0
previous | SVM with LSA kernel [GGS05]| 73.3 89.0 61.3 88.2
systems | Senseval-3 (2004) best systemis 72.9[co4] 85.2(s6G04] | 53.1[sGGo4] | 84.2[sGGo4]
| | inter-annotator agreement [ 67.3 [ 931 [ 89.0 [ 853 |

Figure 10: Performance results on the Senseval-3 lexical sampledtst Mumbers in the parentheses are performance gains
compared with the single-task supervised baseline (izalit). [G04] Grozea (2004); [SGGO04] Strapparava et al. 4200

GGSO05 combined various kernels, which includefeferences
the LSA kernel that exploits unlabeled data withrije Kubota Ando and Tong Zhang. 2005a. A framework
global context features. Our implementation of the for learning predictive structures from multiple tasks and
. . unlabeled data. Journal of Machine Learning Research
LSA kernel with our classifier (and _Ou_r other fea- 6(Nov):1817-1853. An early version was published as IBM
tures) also produced performance similar to that of Research Report (2004).
GGS05. While the LSA kernel is closely Ifela‘tedRie Kubota Ando and Tong Zhang. 2005b. High performance

to a special case of the semi-supervised application semi-supervised learning for text chunking. Rroceedings
of ASO (see the discussion of PCA in Ando and ©of ACL-2005

Zhang (2005a)), our approach here is more generghdu Florian and David Yarowsky. 2002. Modeling consensus:
in that we exploit not only unlabeled data and global Classifier combination for word sense disambiguation. In
context features but also the labeled examples of Foceedings of EMNLP-2002

other target words and other types of features. GJ2rdu Florian, Abe Ittycheriah, Hongyan Jing, and Tong Zhang

. . . . 2003. Named entity recognition through classifier combina-
achieved high performance on English using regu- ;- Proceedings of CoNLL-2003

larized least squares with compensation for skewed

T . . ristian Grozea. 2004. Finding optimal parameter settfogs
class distributions. SGGO04 is an early version of high performance word sense diambiguation. Phoceed-

GGSO05. Our methods rival or exceed these state- ings of Senseval-3 Workshop

of-the-art systems on all the data sets. Upali S. Kohomban and Wee Sun Lee. 2005. Learning seman-

. tic classes for word sense disambiguationPtaceedings of
5 Conclusion ACL-2005

With the goal of achieving higher WSD perfor- Yoong Keok Lee and Hwee Tou Ng. 2002. An empirical evalu-
ation of knowledge sources and learning algorithms for word

mance by exploiting all the currently available re-  gsense disambiguation. Proceedings of EMNLP-2002
sources, our focus was the new application of thI\(?Iichael C. McCord. 1990. Slot Grammar: A system for

ASO algorithm in the multi-task learning configu- " simpler construction of practical natural language gramsma

ration, which improves performance by learning a Natural Language and Logic: International Scientific Sym-

number of WSD problems simultaneously instead of Pesium. Lecture Notes in Computer Scignages 118-145.

training for each individual problem independentlyBernhard Scholkopf, Alexander Smola, and Klaus-Rober
sl ; ; ; ; Muller. 1998. Nonlinear component analysis as a kernel

A key finding is that usmg ASO with appropriate eigenvalue problemNeural Computation10(5).

feature / problem partitioning, labeled examples of

seemingly unrelated words can be effectively eX(_:arlo Strapparava,_ Alfio Gllozzo,_ ar_1d _Claudlo Giuliano. 42_00
Pattern abstraction and term similarity for word senserdisa

ploited. Combining ASO multi-task learning with  piguation: IRST at Senseval-3. Froceedings of Senseval-3
ASO semi-supervised learning results in further im- Workshop

provements. The fact that performance improvepekai wu, Weifeng Su, and Marine Carpuat. 2004. A kernel

ments were obtained consistently across several lan-PCA method for superior word sense disambiguation. In

guages / sense inventories demonstrates that our ap?0ceedings of ACL-2004

proach has broad applicability and hence practicdbng Zhang. 2004. Solving large scale linear predictiorbpro
sianificance lems using stochastic gradient descent algorithm3sCML
9 ) 04, pages 919-926.
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How can we learn syntactic structure from unlabel
data in anunsupervised way? The importance o
unsupervised parsing is nowadays widely ackno

Unsupervised Parsing with U-DOP

Rens Bod
School of Computer Science
University of St Andrews
North Haugh, St Andrews
KY16 9SX Scotland, UK
rb@dcs.st-and.ac.uk

Abstract

We proposea generalization of the super-
vised DOP model tauinsupervised learning.
This new model, whichwe call U-DOP,
initially assigns all possible unlabeled binary
trees to a set adentences and next uses all
subtrees from (a large subset of) thbsary
trees to compute the most probalparse
trees. We showhow U-DOP can be
implementedby a PCFG-reduction tech-
nigue andreport competitive results on
English (WSJ), GermarfNEGRA) and
Chinese (CTB) data. To the best ofir
knowledge, this is thdirst paper which
accurately bootstrapstructure for Wall
Street Journal sentences up to wWolrds
obtaining roughly the same accuracy as
binarizedsupervised?CFG. We showthat
previous approaches tmsupervised parsing
have shortcomings inthat they either
constrain thdexical or the structural context,
or both.

I ntroduction

ledged. While supervised parsessiffer from

f-score on the same datasing distributional
clustering, anKlein and Manning (2002) obtain
51.2% unlabeled f-score on ATIS part-of-speech
strings usinga constituent-context model called
CCM. Moreover, on Penn Wall Street Journal-p-o
s-strings< 10 (WSJ10), Klein and Manning (2002)
report 71.1% unlabeled f-score. And the hybrid
approach of Klein andvlanning (2004), which
combines a constituen@nd a dependency model,
leads to a further increase of 77.6% f-score.

Although there has thus been steady
progressin unsupervised parsing, all these
approaches have shortcomings in that they either
constrain the lexical or the structu@ntext that is
takeninto account, or both. For example, the CCM
model by Klein and Manning2005) is said to
describe "all contiguous subsequences of a
sentence"” (Klein and Mannirg005: 1410). While
this is a very rich lexical model, it is still limited in
that it neglects dependencigst arenon-contiguous
such as betweemore and than in "BA carried
more people than cargo Moreover, by using an
"all-substringS approach, CCM riskd¢o under
represenstructural context.Similar shortcomings
can be found in other unsupervised models.

In this papemwe will try to directly model
structural as well as lexical context without
pfonstraining any dependencies beforehand. An

pproach that may seem aptthis respect is aall-

V%ubtreeapproach (e.g Bod 200&o00dman 2003;

shortageof hand-annotated data, unsuperviseé:OIIInS and Duffy 2002). Subtrees carodel both

te with unlabeled datawbich ontiguous and non-contiguolexical dependencies
parsers operaté with uniabeled raw dataw see section 2) and theyso model constituents in a
unlimited quantities are available. During the las

f s there has been considerable prod ierarchical context. Moreover, we can view the all
ew years there has been considerable progressy i, aes approachs a generalization of Klein and
unsupervised parsing. To give a brief overview: v

Zaanen (2000) achieved 39.2%labeled f-score on Aglr_mr:qn(?dff Il-substrings approach Zaanen's

ATIS word strings by a sentence-aligning technique In the currentaper. we will use the all-
called ABL. Clark(2001) reports 42.0% unlabeled, i ees approach qgsppr(’)posedljata-Oriented
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Parsing or DOP (Bod 1998). We will generalize thpaper, we will present results both on entire corpora
supervised version of DOP to unsupervipagsing. and on 90-10 splits of such corporaa®to make
The key idea of our approacht@sinitially assign all our results comparable asupervisedPCFG using
possible unlabeled binary trees to a seigiwen the treebank grammars of the same datg ("
sentences, antb next use counts of all subtreesPCFG").
from (a large random subset of) these binary trees to In the following we will first describeach
compute the most probable parse trees. Td#st of the three stepgiven above where we initially
of our knowledgesuch a model has never beeriocus on inducing trees for p-o-s strings for the
tried out. We will refer to this unsupervised DORNSJ10 (we will dealwith other corpora and the
model adJ-DOP, while the supervised DOP modelmuch larger WSJ40 isection 3). As shown by
(which uses hand-annotated trees) wilkeferred to  Klein and Manning(2002, 2004), the extension to
as S-DOP Moreover,we will continue to refer to inducing trees fowords instead of p-o-s tags is
the general approach simply BOP. rather straightforward since there exist several
U-DOP isnot just an engineering approactunsupervisedpart-of-speech taggers with high
to unsupervised learning but catso be motivated accuracy, which can be combined withsupervised
from a cognitive perspective (Bod 2006)w& don't parsing (see e.g. Schitze 1996; Clark 2000).
have a clue which trees should be assigted
sentences ithe initial stages of language acquisitStep 1: Assign all binary trees to p-o-s strings
ion, we can just as well assurtiet initially all trees from the WSJ10
are possible. Only those (sub)trees tpattake in
computing the most probable pamsees for new The WSJ10 contains 7422 sentenee40 words
sentences aractually "learned”. We have argued inafter removing empty elements and punctuatite.
Bod (2006) that suchn integration of unsupervisedassigned all possible binary trees the
and supervised methods results in an integratedrresponding part-of-speech sequences of these
model for language learning and language use.  sentences, where each root nasléabeledS and
In the following we will first explain how each internal node is labeledd As an example,
U-DOP works, and how it can be approximated bgonsider the p-o-s string NNS VBD BINS, which
a PCFG-reduction technique. Next, in sectione3 may correspond for instance® the sentence
discussa number of experiments with U-DOP andnvestors suffered heavy losséhis string has a
compare it toprevious models on English (WSJ) total of five binarytrees shown in figure 1 -- where
German (NEGRA) and Chinese (CTB) data. To thier readability we add words as well.
best of our knowledge, this is the first paper which
bootstrapsstructure for WSJ sentences up to 40

words obtaining roughly the same accuracy as a

binarizedsupervisedPCFG. This is remarkable /\

since unsupervised models are clearly at a /><\
disavantage compared sopervised models which NNS NNS VBD

can literally reuse manually annotated data. Investor< sufferec heaV) Iosse: Investor< su erec heavy Iosses

2 Unsupervised data-oriented parsing

X
At a general level, U-DOP consists of the foIIowing //\\ />/><\\

three steps: NNS VBD JJ NNS

. . . Investor suf’erec heavy Iosse Invéstors sufJere( he!aV) Ioslse
1. Assign all possible binary trees to a set of

sentences S
2. Convert the binary trees into a PCFG-reduction X/\x
of DOP T~ N

NNS VBD JJ  NNS
3. Compute the most probable parse tree for each mvéstors suﬁ'ere( nela\,) ,Osl,se
sentence
Figure 1. All binary trees for NNS VBD JJ NNS
Note that in unsupervised parsing we do not need to (Investors suffered heavy losses
split the data into a training and a test set. In this
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The total numbebf binary trees for a sentence of
lengthn is given by theCatalan numbeCnp-1,

whereCp = (2n)!/((n+1)!n!). Thus while a sentence S S

of 4 words has 5 binary trees, a sentence of 8 words X X

has already 429 binatyees, and a sentence of 10

words has 486dinary trees. Of course, we can /\X X/\
represent the set of binary trees of a string \ns  veD NNS NNS

polynomial time andspace by means of a chart, | | I
Investors suffere( Investor: losse:

resulting in a chart-like parse forest if we also

include pointers. But if we wartb extract rules or X S

subtrees from these binary trees -- as in DOP -- we

needto unpack the parse forest. And since the total X /\

number of binary treethat can be assigned to the g, X A

WSJ10is almost 12 million, it is doubtful whether | 33 NNS

we can apply the unrestricted U-DOP model to suclgufferes [ |

a corpus. heavy losse:
However, forlonger sentences the binary X X X

trees are highly redundant. In these larger trees, there .~~~ N 7~

are many rules likeX - XX which bear little ~ NNS VE|3D JJ NNS V?D J

information. To make parsing with U-DQ#ossible  |nvestors suffere he!avy Ioslse: sufferec heIaV)

we therefore applied a simple heuristic whiakes
random samples from tH&nary trees for sentences
2 7 words beforehey are fed to the DOP parser. gy e 5 Some subtrees from the binary trees for
These samples were takéom the distribution of NNS VBD JJ NNS given in figure 1

all binary trees byrandomly choosing nodes and

their expansions from the chart-like parse forests @f . e supervised DOP approach (B@98), U-
the sentence@which effectively favors trees with j5p parses a sentence by combining éOFpus

more frequent subtrees). For sentenoed words subtrees from the binary tree-set by means of

; d 1 d | 9&ftmost node substitution operation, indicated as
sentences of 8, &nd 10 words we samplérpg b onapility ofa parse tree is computed by

respectively 30%, 15.%. and_7.5% of the trees. In t mming up the probabilitiesf all derivations
way, the set of remaining binary trees contains 8. oducing it,while the probability of a derivation is

5 . . .
* 10° trees, which we will refer tas thebinary computed by multiplying thésmoothed) relative

f[ree-seIAIthough itcan happeﬂ that th_e correct tre requencies of its subtrees. That is, giebability of
is deleted forsome sentence in the binary tree-se subire¢ is taken as the number of occurrencks
thereis enough redundancy in the tree-set such th%t the binary tree-set,t||, divided by the total

either the correct binaryree can be generated bynumber of occurrences of asubtrees’ with the

other subtrees or that a remaininee only oo me root label as Letr(t) return the root label df
minimally differs from the correct tree. Of course,

we may expect betteesults ifall binary trees are

kept, but thisinvolves enormous computational P(t) = [t
resources which will bepostponed to future Zt"r(t'):r(t) It
research. '

Step 2: Convert the trees into a PCFG- The subtree probabilities are smoothedapylying
reduction of DOP simple Good-Turing to the subtree distribution (see

Bod 1998: 85-87). The probability of @erivation

The underlying idea of U-DOP is to take silibtrees t1°--°tn is computed by the product of the
from the binary tree-set to compute tmeost Probabilities of its subtregs

probable tredor each sentence. Subtrees from the

trees in figure 1 include for example the subtrees in P(tze..otn) = [T P(t)

figure 2 (wherewe again added words for

readability).Note that U-DOP takes into accountSince there may be distinct derivations that generate
both contiguous and non-contiguous substrings. the same parse tree, thebability of a parse tre€
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is the sum of the probabilities of its distinctfollowing eight PCFG rules infigure 3 are
derivations. Lettig be thei-th subtreein the generated, whereghe number in parentheses
derivationd that produces tre€, then the probability following a rule is its probability.
of T is given by
A - BC ) A - BC (1/a)
P(T) = 24l P(tig) A - Bk (/a) A- BkC  (hda)
A - BG  (a/a) A-BC  (a/a)
As we will explain under step 3, the most probabl8i ~ BKCl  (bkei/g) A - BkC (bei/a)
parse tre@f a sentence is estimated by Viterbi _ _
best summing up the probabilities of derivatidimat Figure 3. PCFG-reduction of DOP

generate the same tree. _ _
It may be evident that had we only thdn this PCFG reductiori represents the number of

sentenceinvestors suffered heavpssesin our Subtrees headed by the ndd@k andcy refers to
corpus, there would be rdifference in probability the number of subtrees headed by the no@!
between the five parse trees in figure 1, and U-DdpPodman shows by simple induction thiais
would not be able to distinguishetween the Construction produces PCFGderivations
different trees However, if we have a different ISomorphic to (U-)DOP derivations witequal
sentence whera) NNS fieavy lossdsappears in a Probability (Goodman 2003: 130-133). Thigzans
different context, e.g. inHeavy losses were that summing up over 'derlvatlons (_)fatree in DOP
reported, its covering subtree gets a relatively highef€!ds the samerobability as summing over all the
frequency and the parse tree whéxgavylosses Isomorphic derivations in the PCFG.
occurs as a constituent gets a higher total probabilit The PCFG-reduction for U-DOP is slightly
than alternative parse trees. Of course, it is left to tﬁﬁnpler than in figure 3 since tranly labels ares
experimentalevaluation whethenon-constituents andX, and the part-of-speech tags. For the tree-set

("distituents") such as VBD JJ will be ruled out byof 8:23 * 1|d3 binary trees generated under step 1,
U-DOP (section 3). Goodman's reductiomethod results in a total

An important feature of (U-)DOP ithatit number of 14.8 * 1B distinct PCFG rules. While it
considers counts of subtrees of a wide range IS still feasible to parse with a rule-set of this size, it
sizes: everything from counts of single-leveles to 1S évident that our approadfan deal with longer
entire trees. A disadvantagetbe approach is that S€ntences only if we furtheeduce the size of our
an extremely largenumber of subtrees (andPinary tree-set o :
derivations) must be taken in&mcount. Fortunately, It should be kept in mind that while the
there exists a rather compact PCFG-reductibn Probabilities of allparse trees generated by DOP
DOP which can also be used fdy-DOP Sum up to 1, these probabilities do not conveage
(Goodman 2003). Here we will only giveshort the "true” probabilities if the corpus grows to
summary of this PCFG-reduction. (Collins andnfinity (Johnson 2002). In fact, in Bod et al. (2003)

Duffy 2002 show how a tree kernel can be used f§f€_Showed that the most probable parse aee
an all-subtrees representation, which wil not defined above hastandency to be constructed by

discuss here.) the shortest derivatiorfconsisting of the fe_west and
Goodman's reduction method firsssigns thus _Iargest subtrees). A'Iarge subtre_\e is overruled

every node in every tree a unique number whigch only if the (_:omblned relative frequencies of smaller

calledits address. The notatioh@k denotes the subtrees yields a larger score. We refer to Zollmann

node at addresk where A is the nonterminal @1d Sima'an(2005) for a recently proposed

labeling that node. Aew nonterminal is created for €Stimator thats statistically consistent (thoughis

each node ifthe training data. This nonterminal isNOt et known how this estimatperforms on the

called Ay. Letaj represent the number of subtree¥VSJ) and to Zuidema (2006) fa theoretical

headed by the nod&@j. Leta representhe number COMparison of existing estimators for DOP.

of subtrees headed by nodesdth nonterminalA

that isa = 2jaj. Goodman then gives a small PCFG

with the foIIJowing propertyfor every subtree in the

training corpus headed bw, the grammar will 1 _

generate an isomorphic subderivatiosith ~AS in Bod (2003) and Goodman (2003: 136), we

probability 1/a. For a nodeA@j(B@k, C@I) the additionally use a correction factor to redress DOP's
bias discussed in Johnson (2002).
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Step 3: Compute the most probable parse tree  most appropriate one. Far subtle discussion on
for each WSJ10 string this issue, see Clark (2001) or Klein (2005).

While Goodman'sreduction method allows for 3 Experiments
efficiently computing the most probable derivation
for each sentence (i.e. the Viterbi parse), it does n8tl Comparing U-DOP to previous work
allow for an efficient computation ofu-)DOP's
most probable parse tresince there may be Using the method described above, our parsing
exponentiallymany derivations for each tree whos@xperiment with all p-o-s strings from the WSJ10
probabilities haveo be summed up. In fact, theresults in an f-score of 78.5%. We next tested U
problem of computing the most probable tree iImDOP on two additional domains from Chinese and
DOP is known tdbe NP hard (Sima'an 1996). Yet,German whichwere also used in Klein and
the PCFG reduction in figure 4 cave used to Manning (2002, 2004)the Chinese treebank (Xue
estimate DOP's most probable pardeee by a et al. 2002) and th&|EGRA corpus (Skut et al.
Viterbi n-best search in combination with CKY  1997). The CTB10 igshe subset of p-o-s strings
parser which computes themost likely derivations from the Penn Chinese treebank containing 10
and next sums up the probabilities of the derivatioRgords or less after removalf punctuation (2437
producing the same tree. (Wean considerably strings). The NEGRA10 is the subset of p-o-s
improve efficiency by usingk-best hypergraph strings of the same length frothe NEGRA corpus
parsingas recently proposed by Huang and Chiangsing the supplied converson into Pemgebank
2005, but this will be left to future research). format (2175 strings). Table 1 shows the results of
In this paper, we estimate the most probabig-DOP in termsof UP, UR and F1 compared to
parse tredrom the 100 most probable derivationghe results of the CCM model by Kleiand
(at least for the relativelgmall WSJ10). Although Manning (2002), theDMV dependency learning
such a heuristic does nguarantee that the mostmodel by Klein and Manning (2004dgether with
probable parse is actuallgund, it is shown in Bod their combined model DMV+CCM.
(2000) to perform at least as well as tstimation
of the most probable parse with Monte Carlo

~ i . Model Englisr Germai Chines:
techniques. However, in computirige 100 most (WsJ10 (NEGRAI10; (CTB10
probable derivations byneans of Viterbi it is WP UR F1 UP UR FI UP UR FI
prohibitive to keep track of all subderivations at eacfy; o1z BL6 1< 481 855 6Lt  34c od: anc
edge in the chart. We thereforese a pruning
46.6 59.2 52.1 384 69.5 49.t 35.¢ 66.7 46.7

technique which deletes any item with a probability™"
IeSS than 1'& t|mes Of that Of the best |tem from DMV+CCM 69.: 88.0 77.t 49.¢ 89.7 63.¢ 33.0 62.( 43:
the Chart U-DOP 708 882 785 512 905 654 36.3 64.C 46.¢
To make ourparse results comparable to
those of Klein and Manning (2002, 20@005), we .
will use exactly the samevaluation metrics for 12able 1. Results of U-DOP compared to previous
unlabeled precision (UP) and unlabeled recall (UR), models on the same data
definedin Klein (2005: 21-22). Klein's definitions Table 1 indicateshat del liahtl
slightly differ from the standard PARSEVAL '&b€ 1 Indicateshal our model scores slightly
metrics: multiplicity of brackets is ignored, brackets&?\zt\e;ié%al\? rﬁﬁg} :Irt]r?oul\gﬁntﬂgﬁ‘ere%%rgsbgrid
gnsg)re;r&(.)n_ﬁhgi\?végnrg;etﬂCasno(IthhSgrzcnkélet Lljage[;:small (note thafor Chinese the single DMV model
combined by the unlabled f-score F1 which iiceores better than the combined maafed slightly
defined as the harmonic mean of UP and UR: F1Retter than U-DOP). But where Klein and
2*UP*UR/(UP+URY). It should be kept in mind thatManning's COfgb'”gd“Odg' Is baszdl on both a
these evaluation metrics were clearly inspired by tl’lflgnsgtcl:’&”cwr ba %pen ency mfo el, U-DOP is,
evaluation ofsupervisedparsing whichaims at (':e &OnCyCI\;TSEI) ont%otlol? 0 bg[onstltuency. H
mimicking given tree annotations as closely as omlpar(-‘abo Y Doi)onﬁ’ €a 'ISU rees approact
possible. Unsupervised parsing is differémtthis €Mmployedoy U- SNOWS a clear improvemen
respect and it is questionable whetheesaluation (€xCcept perhaps for Chinese)1fius seems to pay

on apre-annotated corpus such as the WSJ is tRf 10 use all subtrees rather than just all
(contiguous) substringsin bootstrapping
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constituency. It would be interesting itovestigate 3.2 Testing U-DOP on held-out sets and longer

an extensionof U-DOP towards dependencysentences (up to 40 words)

parsing, which we will leave for future research. It is

also noteworthy that U-DOP does not employ g/e were also interested in U-DORjsrformance

separate class for non-constituents, so-callesh a held-out test set such that we could comipare

distituents, while CCMloes. Thus good results cannodel with asupervisedCFG treebank grammar

be obtained without keeping track of distltugbm trained and tested on the same data (S-PCH@).

by simply assigning all binary trees to th&ings started bytesting U-DOP on 10 different 90%/10%

and lettingthe DOP model decide which substringsplits of the WSJ10where 90% was used for

are most likely to form constituents. inducing thetrees, and 10% to parse new sentences
To give anidea of the constituents learnechy subtrees from the binary trees frahe training

by U-DOP for the WSJ10, table 2 shows the set (or actually a PCFG-reduction thereof). The

most frequentlyconstituents in the trees induced bgupervised PCFG wasght-binarized as in Klein

U-DOP together with thelO actually most and Manning (2005). The followingble shows the

frequentlyoccurring constituents in the WSJ10 angesylts.

the 10 most frequenthpccurring part-of-speech

sequences (bigrams) in the WSJ10. Model UP  UR F1
U-DOP 70.€ 881 783
Rank Most frequen Most Frequer Most frequer S-PCEG 840 79& 818

U-DOP constituent  WSJ10 constituen WSJ10 substring

DT NN DT NN NNP NNP

% NNP NNP NNP NNP DT NN Table 3. Average f-scores of U-DOP compared to a
3 DT JJNN CcDCD JINN supervised PCFG (S-PCFG) on 10 different 90-10
4 INDT NN JJ NN¢ INDT splits of the WSJ10

5 CDCD DT JINN NN IN

6 DT NNS DT NNS DT JJ _ _

7 JINNS JINN JJINNS Comparing table 1 with table 8/e see that on 10

8 JJ NN CD NN NN NN held-out WSJ10 test sets U-DOP performs with an
fe \\fgg ',\'l\'NS m w NN ﬁﬁ ng average f-score of 78.3¥8D=2.1%) only slightly

worse than when usinthe entire WSJ10 corpus
(78.5%). Next, note that U-DOP's resuttsme near
Table 2. Most frequently learned constituents by to the average performance of a binarizagervised
U-DOP together with most frequently occurring PCFG which achieves 81.8% unlabeled f-score
constituents and p-o-s sequences (for WSJ10) (SD=1.8%). U-DOP's unlabeletkecall is even
higher than that of the supervised PCFG. Moreover,
Note that there are no distituents among U-DOP&:cording to paired-testing, the differences in f
10 mostfrequently learned constituents, whilst th&cores werenot statistically significant. (Ifthe
third column shows that distituents suchldsDT PCFG was nopost-binarized, its average f-score
or DT JJ occur very frequently as substrings in theas 89.0%.)
WSJ10. This maye explained by the fact that (the As a final test case for this paper, were
constituent) DT NNoccurs more frequently as ainterested in evaluating U-DOP on WSJ senteaces
substring in thaNVSJ10 than (the distituent) IN DT, 40 words, i.ethe WSJ40, which is with almost
and therefore U-DOPsrobability model will favor 50,000 sentences a mugiore challenging test case
a covering subtree for IMT NN which consists of than the relativelgmall WSJ10. The main problem
a division into INX and DT NN rather than into IN for U-DOP is the astronomically large number of
DT and X NN, other things being equalhe same possiblebinary trees for longer sentences, which
kind reasoning can be mafter a subtree for DT JJ therefore need to be even more heavily pruned than
NN where the constituent JJ NbNccurs more before.
frequently as a substring théme distituent DT JJ. We used a similar sampling heuriséis in
Of course the situation is somewhat more complesection 2. We started by taking 100% of the tfees
in DOP's sum-of-products model, butir argument sentences 7 words. Next, for longer sentences we
may illustrate why distituents like IN DT or DIJ reducecthis percentage with the relative increase of
are not proposed amonthe most frequent the Catalan number. This effectively means that we
constituents by U-DORwhile larger constituents randomly selected the same number of tréms
like IN DT NN and DT JJ NN are in fact proposed.eachsentence= 8 words, which is 132 (i.e. the
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number of possible binary trees for a 7-wordperformance remains still far behind that of S-DOP
sentence). Asnentioned in section 2, our samplingand indeed of othestate-of-the-art supervised
approach favorgnore frequent trees, and trees witlparsers such @od 2003 or Charniak and Johnson
more frequent subtreehe binary tree-set obtained2005). Moreover, if S-DOP is not post-binarized, its
in this way for thewSJ40 consists of 5.11 * $0 average f-score on the WSJ40 is 90.1% -- and there
different trees. This resulted in a total of 88+ milliorare some hybrid DOP models that obtain even
distinct PCFG rulesaccording to the reduction higher scores (see Bod 2003). Our long-term goal is
technique in section 2. As this is tleegest PCFG to try to outperform S-DOP byU-DOP. An

we have everattempted to parse with, it wasimportant advantage of U-DOP & course that it
prohibitive to estimate the most probable pdaree only needs unannotatediata of which unlimited
from 100 most probable derivations using Viterbi quanitities are available. Thusabuld be interesting
best. Instead, we used a beam of onlym8&st to test how U-DOP performs if trained on e.g. 100
probable derivations, and selectéeé most probable times more data. Yet, as long as we compute our f
parse from these. (The number 15 is admittedly scores orhandannotated data like Penn's WSJ, the
hoc, and was inspired by tiperformance of the so- S-DOP model is clearly at an advantage. We
called SL-DOP model in Bod 2002, 2003)he therefore plan to compare U-DOP and S-DOP (and
following tableshows the results of U-DOP on theother supervised parsers) incancrete application
WSJ40 using 10 different 90-10 splits, compared &uch as phrase-basegachine translation or as a
a supervised binarizeBCFG (S-PCFG) and alanguage model for speech recognition.
supervisedinarized DOP model (S-DOP) on the

same data. 4 Conclusions
Model F1 We have shown that the general DOP approach can
be generalized to unsupervised learning, effectively
U-DOP 64.2 leadingto a single model for both supervised and
S-PCFG 64.7 unsupervised parsind@ur new model, U-DOP,
S-DOP 81.¢ uses all subtrees from (in principle) all bindarges

of a set of sentences to compute the npogbable
parse trees for (new) sentencédthough heavy
Table 4. Performance of U-DOP on WSJ40  pruningof trees is necessary to make our approach
_using10 different 90-10 splits, compared to a  feasible in practice, we obtained competitiesults
binarized S-PCFG and a binarized S-DOP modebn, English, German and Chinese data. Our parsing
) results are similato the performance of a binarized
Table4 shows that U-DOP obtains about the samgpervised PCFG ote WSJ< 40 sentences. This
results asa binarized supervised PCFG on WS{iggers the provocative question as to whethé it
sentences 40 words. Moreover, the dlffer_er_lcespossib|e to beasupervised parsing by unsupervised
betweenU-DOP and S-PCFG were not statisticallyarsing. To cope with the problem of evaluation, we
significant. This result is important as it shows th%ropose to test U-DOP in specific applications

it is possible to parse the rather challinging WSJ inigther than on hand-annotated data.
completelyunsupervisedvay obtaining roughly the

same accuracy assapervisedPCFG. This seems References
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Abstract

Great strides have been made in build-
ing statistical parsers trained on anno-
tated corpora such as the Penn tree-
bank. However, recently performance
improvements have leveled off. New
information sources need to be con-
sidered to make further progress in
parsing. In this paper, we propose a
new method of using unlabeled cor-
pora for improving syntactic disam-
biguation. The method is tested on the
problem of relative clause attachment
with encouraging results.

1 Introduction

Great strides have been made in building statis-
tical parsers trained on annotated corpora such
as the Penn treebank (Marcus et al., 1993).
However, recently performance improvements
have leveled off (Bikel, 2004; Collins and Koo,
2005; Klein and Manning, 2003; Charniak and
Johnson, 2005). New information sources need
to be considered to make further progress in
parsing. One information source that is avail-
able in virtually unlimited quantity is unlabeled
text. As a large body of work on unsupervised
learning from corpora has shown, there is valu-
able syntactic and semantic information in nat-
ural language even if it is unlabeled. We propose
to combined supervised and unsupervised learn-
ing for syntactic disambiguation as sketched in
Figure 1. In the supervised phase, a probabilis-
tic parser is trained on a labeled corpus. In the
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unsupervised phase, the parser is enriched with
information from a large unlabeled corpus.

labeled supe_rvi sed parser
corpus training
unlabeled unsupervised enhanced
corpus training parser

Figure 1: The proposed framework for combin-
ing supervised and unsupervised learning.

Exploiting unlabeled resources is of particular
importance when training sets are small. Train-
ing sets are expensive and thus a major obstacle
for broad deployment of statistical NLP meth-
ods. Statistical methods have to be adapted to
new languages and new domains (e.g., a parser
trained on WSJ will not work well on manuals).
In many practical settings, training sets avail-
able during adapation will be small due to the
high cost of training set creation. This motivates
us to study the effect of training set size on the
performance of the method proposed here. Since
training sets cannot be assumed to be large in
general, it is important to investigate whether
methods are still applicable when training sets
are smaller than the standard sets used in the
research community.

There is a long tradition of using structural
analysis of unlabeled corpora for syntactic dis-
ambiguation (e.g., (Hindle and Rooth, 1991)).
One of the contributions of this paper is a gen-
eral framework for using unsupervised acquisi-
tion of lexical information for structural dis-
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ambiguation. This framework is based on lex-
ical dependencies because they are mostly lo-
cal and can therefore be extracted reliably from
unlabeled text. At the same time, these ex-
tracted dependencies can be easily incorporated
into the trained parser. Dependencies are thus
well-suited to serve as the common currency for
integrating information in combined supervised
and unsupervised learning.

2 Structural Disambiguation

Conceptually, we would like to factor the pars-
ing problem into decisions that can be made
on purely structural grounds (e.g., recognition
of base NPs) and more difficult attachment de-
cisions, in particular those that require world
knowledge, e.g. in Example 1

(1) Mr. Baker found [an opening| under [the
house| that led to a fume-filled coal mine.

Does the opening lead to the coal mine, or does
the house? We make the simplifying assumption
that “semantic” attachment decisions are inde-
pendent of each other. This is often the case on
a purely syntactic level although it is clearly not
true semantically since semantically inconsistent
attachments can give rise to incoherent readings.

We formalize an attachment ambiguity as a
phrase XP having two or more possible attach-
ment points i1,42,... in a sentence S. Let R be
the parse of a sentence S with XP removed. To
make an attachment decision, we form triples
of the form < R,i,XP > where ¢ is a possi-
ble attachment node for XP in R. We define
a set of generalization functions G = {g;} that
map triples into more general triples. Some func-
tions simply delete material, e.g., the subject of
the sentence. Others replace nouns with their
classes, e.g., “Canada” with “country”. Each g;
modifies either R or XP, but not both. The func-
tions can be applied in any order. Functions g;
that would delete the node i are not permitted.

We define a subsumption relationship C on
the set of triples produced from < R,i,XP >:
<T1,i,Y1 >C<To,0,Yo > iff T7 C Ty and Y7 C
Y5, where a phrase structure tree P is subsumed
by P, iff the nodes of P, can be mapped onto Py
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preserving dominance and if nodes are mapped
onto identical nodes or more specific nodes (e.g.,
“country” onto “Canada”). All g; obey the con-
straint g;(< R,4,XP >) C< R,i,XP >.

Triples are evaluated by an evaluation func-
tion ¢ that assesses the support of the lexical
relationships in the triple in the unlabeled cor-
pus C: ¢(< R,i,XP >) € R. Generalization
is necessary because the particular set of words
found in a sentence will rarely occur in C' — and
even if it does we don’t know what the correct
parse of the sentence is. The functions g; pro-
duce a series of more and more abstract triples
so as to guarantee that C' contains enough data
for evaluation.

The measure we use here to evaluate triples is
pointwise mutual information with respect to an
unlabeled corpus C'. We define:

(< T,i, Y >) MI(<T,i,Y >)
P(< T,i,Y >)

P(T)P(Y)

log,

for P(< T,i,Y >), P(T), P(Y) # 0

0 otherwise

H(<T,i,Y >)

where the probabilities are estimated on the
unlabeled corpus C. P(T) and P(Y) are the
probabilities of dependency structures 7" and Y
occurring in C' and P(< T,4,Y >) is the proba-
bility of the dependency structures of T and Y,
with Y attached at node 7 in T, occurring in C.

The set of triples Q(< R,i,XP >, ) derived
from < R,i,XP > by successive applications of
one, two or more generalization functions g; € G
forms a lattice with respect to C. < R, 4, XP > is
the supremum and < 0,4, ) > the infimum of this
lattice. An example of such a lattice is shown in
Figure 2 (see below for more detailed discussion).
d(< 0,i,0 >) is defined as a constant, which de-
pends on the disambiguation task at hand. We
take advantage of the lattice structure to com-
pute the affinity A between R and XP which
expresses to what extent attachment of XP in R
at node 7 is supported by lexical dependencies in
C. We propose three different definitions of A:

e The maximum with respect to < on R:

A< = max<({¢(q)lg € Q})



e The sum over the lattice: Ax = 3> o #(q)

e The MI of the maximum with respect to
C: Ac = ¢(maxc({qlg € Q,9(q) # 0}))
(if there are several maximal ¢, we take the
average of their MI values)

Intuitively, we are searching for evidence in C
that XP and R fit well together like a key and a
lock. Affinity measure A selects the best fitting
generalization of the triple whereas Ay, considers
the joint evidence of all triples. Maximum and
sum can only be computed if the lattice is small.
Measure Ac has the advantage of circumventing
the need of computing the entire lattice. We
move down from the original triple until we find
a “layer” of the lattice where probabilities are
not zero. In this paper, we only report results
for A..

The actual syntactic disambiguation is per-
formed by comparing the affinities A(Q(<
R, iy, XP >)) for the possible attachment nodes
11,12, ... and selecting the node with the highest
affinity.

3 Experimental Setup

When computing the mutual information of an
attachment constellation, the required probabil-
ities are estimated based on dependency parses
of the unlabeled corpus produced by Minipar
(Lin, 1998), a dependency parser that recog-
nizes a wide range of dependencies. We use
the Reuters RCV1 corpus (Lewis et al., 2004)
as our unlabeled corpus. The first 50 weeks
(about 80,000,000 words) were parsed with Mini-
par and dependencies stored in an inverted in-
dex for easy querying. The inverted index is im-
plemented using Lucene (Lucene, 2006). This
setup enables searching for the frequency of lex-
ical dependencies. For example, we can query
for the number of times that cat was the sub-
ject of chase, and we can estimate the prob-
abilities P(T"), P(Y), and P(< T,i,Y >) as
relative frequencies by counting the number of
times the corresponding dependency structures
occur in the corpus. A constellation (T, Y, or
< T,i,Y >) is first represented as a dependency
structure and, for reasons of efficiency, the num-
ber of occurrences of this dependency structure
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is then approximated as the number of sentences
that contain all binary dependencies in the struc-
ture. We take a trained parser (Minipar® or the
Collins parser, depending on the experiment),
run it on Penn Treebank sentences, search for the
type of attachment ambiguity we are interested
in and, if it occurs, present two triples of the
form < R,,XP > and < R, 7,XP > to the dis-
ambiguation component, where ¢ and j are two
possible attachment sites for XP in R. Sections
00-12 of the WSJ were used as the development
set, and sections 13-24 as the test set.

4 Application to Relative Clause
Attachment

Sentence 1 is a typical example of relative clause
(RC) attachment ambiguity.

Both attachments are grammatical, but intu-
itively opening is more likely to occur with the
verbs lead or lead to than house. Our hypothesis
is that this type of pragmatic knowledge (open-
ings lead to something, houses don’t) will be re-
flected in dependencies extracted from a large
corpus. Extracting dependencies is particularly
important as RC attachment is a more difficult
problem than PP attachment as the following
examples show.

(2) Texaco Inc. reported [an 11% increase| in
[third-quarter earnings|, which it attributed
partly to the company’s massive restructur-
ing [...]

Earlier this year DPC Acquisition made |a
$15-a-share offer| for [Dataproducts|, which
the Dataproducts board said it rejected |...|

(3)

(4) [...] said Edmar Mednis, [the expert com-
mentator| for [the match|, which was at-

tended by hundreds of chess fans.

RC attachment interacts with a wider range
of grammatical phenomena than PP attachment
(e.g., object vs. subject relatives, passive, and
agreement). Also, many cases of PP attachment
can be resolved structurally. For example, an

!"Minipar attaches relative clauses low by default, re-
sulting in many incorrect attachment decisions. Since
relative clauses are rare, we do not systematically elimi-
nate them when computing “unlabeled” statistics.



on-PP after rely almost always attaches to the
verb. In contrast, RC attachment is mostly se-
mantic (e.g., opening is a more typical subject
of lead to than house). For our experiments,
we extracted all sentences from the WSJ corpus
that contained a pattern of the form NP1 Prep
NP2 which/that. (See (Web Appendix, 2006)
for documentation on the patterns used.) Our
development set contained 282 which-clauses (71
with high attachment; 211 with low attachment)
and 385 that-clauses (156 with high attachment
and 229 with low attachment). The test cor-
pus contained 264 which-clauses (71 with high
attachment and 193 with low attachment) and
391 that-clauses (175 with high attachment and
216 with low attachment). For the case of rela-
tive clause attachment, we simplify the represen-
tation of triples < R,i1,XP >,< R,i9,XP > to
pairs < NP;,XP >, < NP, XP >,where NP,
and N P, are two potential attachment sites the
relative clause can attach to, and XP consists
of verb and object (if there is an object) of the
relative clause.
tive clause attachment is depicted in Figure 2.
The lattice will be smaller if there is no ob-
ject, premodifying adjective etc. The supremum
of the lattice corresponds to a query that in-
cludes the entire NP (including modifying adjec-
tives/nouns)?, the verb and its object: "weekly
mod report"” && "report subj show" && "decline
obj show". The generalizing options are:

The maximum lattice for rela-

e strip the NP of the modifying adjective/noun
(weekly report — report)

use only the head noun of the NP (Catas-
trophic Care Act — Act)

e use the head noun in lower case (Act — act)
e for named entities use a hypernym of the NP
(American Bell Telephone Co. — company)
strip the object from XP (company have sub-
sidiary — company have)

don’t use any context at all. In this case the
default attachment (to the last NP) is selected.

To compute the values of ¢, we first parse

2From the Minipar output, we use all adjectives which
modify the NP via the relation mod, and all nouns, which
modify the NP via the relation nn.
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mod-Nf-v-obj

c-v

[eanty]

Figure 2: Partially ordered set of pairs of poten-
tial attachment site NP and relative clause XP,
where mod: premodifying adjective or noun, Nf:
head noun with lexical modifiers, N: head noun
only, n: head noun in lower case, c¢: class of NP,
v: verb in relative clause, obj: object of verb in
the relative clause.

the sentence with Minipar and extract the rel-
evant verb and grammatical relation. Then
we query the database for subject, object, and
modifier relations to calculate P(NP), P(XP),
and P(< NP,XP >). For example, P(<
opening, lead_to >) is estimated based on the
query “opening subj lead to”. Including further
information about the context (e.g. about the
object of the verb in the relative clause) — as
opposed to only using noun-verb co-occurrence
— proved particularly useful for light verbs like
make and have.

4.1 Named Entities

Named entities often cause sparse data prob-
lems. For this reason, we also use queries in
lower case and queries where the named entity
is replaced by its class. For Example 5 we would
have queries Act subj boost and act subj boost.

(5) Congress still is struggling to dismantle [the
unpopular Catastrophic Care Act| of [1988],
which boosted benefits for the elderly and
taxed them to pay for the new coverage.



To identify the class of a named entity we
use LingPipe (LingPipe, 2006). When LingPipe
identifies a named entity as a company or or-
ganization, we replace it with company in the
query. Locations are replaced by country. Per-
sons block RC attachment because neither which
nor that clauses attach to person names, result-
ing in an attachment of the RC to the other NP.

4.2 A Worked Example

Table 1 shows mutual information values for the
queries constructed for sentence 6.

(6) The firmness in heating oil was attributed
to colder weather in parts of the U.S. and
to the latest [weekly report] by [the Amer-
ican Petroleum Institute|, which showed a
decline in inventories of the fuel.

| queries for <weekly report, show decline> etc. | MI |

"weekly mod report" && "report subj show"
&& "decline obj show" 0

"weekly mod report" && "report subj show" 8.63
"report subj show" && "decline obj show" 5.38
"report subj show" 7.21
[ queries for <API, show decline> etc. [ MI ]

"American _Petroleum Institute subj show"

&& "decline obj show" 8.44
"Institute subj show" && "decline obj show" 0
"institute subj show" && "decline obj show" 0
"company subj show" && "decline obj show" | 1.39
"American _Petroleum Institute subj show" | 8.47

"Institute subj show" 0

"institute subj show" 4.50
"company subj show" 3.17
[empty] 6

Table 1: Queries for computing P(< NP, XP >
) (high attachment, above) and P(< N Py, XP >
) (low attachment, below) for Example 6, (in-
cluding further tuples after applying g;) and cor-
responding mutual information values (MI).

In Table 1, the highest value for the high at-
tachment site weekly report is 8.63 and the high-
est value for the low attachment site is 8.47. We
hence choose high attachment for this case. Note
that the low attachment site has a value 6 for the
empty context. This value reflects the bias for
low attachment: the majority of relative clauses
are attached low. If all MI-values are zero or
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had

4. If possible,

otherwise low, this procedure will automatically
result in low attachment.

4.3 Decision list

For increased accuracy, the structural disam-
biguation method is embedded in the following
decision list. Step 4 is the lattice-based algo-
rithm described above.

1. If Minipar has already chosen high attach-

ment, choose high attachment (only relevant
for named entities in some of the which clauses
in our data).

2. If there is agreement between the verb and

only one of the NPs, attach to this NP.

If one of the NPs is in a list of person entities,
attach to the other NP.3

use structural disambiguation
based on the affinities computed on the
Reuters corpus.

5. If none of the above strategies was successful

(e.g. in the case of parsing errors, where the
verb or the relation cannot be retrieved), at-
tach low.

5 Evaluation

that clauses accuracy
development set, baseline 59.48%
development set, algorithm | 64.42%
test set, baseline 55.24%
test set, algorithm 60.87%
which clauses accuracy
development set, baseline 74.82%
development set, Minipar 78.37%
development set, algorithm | 82.27%
test set, baseline 73.12%
test set, Minipar 75.75%
test set, algorithm 78.41%

Table 2: Evaluation results (percentage of cor-
rect attachments) for that and which clauses.

We first evaluated the accuracy of relative
clause attachment with Minipar as the base
parser. Table 2 shows the evaluation results

3This list contains 136 entries and was semiautomati-
cally computed from the Reuters corpus: Antecedents of
who relative clauses were extracted, and the top 200 were
filtered manually.



when the algorithm is run against our develop-
ment and test sets. We set ¢(< 0,i,0 >) = 6.4
The baseline is always attaching low. Minipar
always attaches low except for named entities of
the form NP Prep NP (e.g. The State Commis-
sion on Judicial Conduct), which are recognized
as a unit, resulting in high attachment for some
which relative clauses. For that clauses, Minipar
always attaches low.’

For that clauses we achieved results about 5
percentage points above the baseline; for which
clauses about 5 to 7 points above the baseline,
and about 3 points above Minipar.

set not used accuracy
development 64.42%
development | mod 64.16%
development | mod,f 63.90%
development | mod,f,obj 63.64%
development | mod,fobj,c | 63.38%
test 60.87%
test mod 60.35%
test mod,f 60.10%
test mod,f,obj 60.10%
test mod,fobj,c | 60.10%

Table 3: Accuracy on that clauses when the num-
ber of contextual features is decreased. The mid-
dle column shows what is left out (mod: the
modifier is not used, f: only the head noun is
used, obj: only the verb and not its object is
used, c: the class/hypernym is not used.)

Tables 3 and 5 show how much of a decrease
in accuracy is caused by using less context. For
the development set the accuracy drops contin-
uously as we omit an increasing number of ele-
ments of the context: pre-modifiers, lexical mod-
ifiers, objects, hypernyms. On the test set we
can also observe a drop in accuracy. However, it
is less consistent: Omitting the object does not
decrease performance, and not using classes for
named entities does have an effect on the which
test set, but not on the that test set. These re-
sults show that using a larger context than just
simple noun-verb co-occurrence improves perfor-
mance and that a number of sources of informa-

4We experimented with a number of values on our de-
velopment set. Accuracy of the algorithm is only slightly
affected for values between 4 and 7.

>Note that this property leads to a higher “Minipar”
baseline for which clauses.
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tion need to be combined for consistent improve-
ment.

5.1 Integration into a statistical parser

After having shown the success of our method in
a stand-alone evaluation, we now turn to evalu-
ating it when integrated into a statistical parser,
the Collins parser as reimplemented by (Bikel,
2004). We apply structural disambiguation (SD)
to all that- and which-sentences of Sec. 13-24
with a relative clause attached to either the first
or second NP in a pattern of the form “NP PREP
NP RC”. Sentences without an “NP PREP NP
RC” structure in the gold standard are omitted
(i.e., we don’t attempt to correct spurious RC
attachment ambiguity). Since we want to de-
velop methods that can leverage small training
sets, we perform the evaluation for 5 different
training set sizes: 50%, 25%, 5%, 1%, and 0.1%
of the Penn treebank, each a subset of Sec. 00-12
(Table 4). Note that the number of eligible rel-
ative clause constellations in the test set varies
depending on the training set.

For which sentences, SD consistently improves
parsing accuracy. For that sentences accuracy is
improved for small training sets (0.1% and 1%).
Differences that are significant according to the
x2-test are indicated in the table. This demon-
strates that our approach is successful especially
in cases where the amount of training data avail-
able is limited.

Train data || # which sent. | Coll. only | Coll.+-SD
50% 251 71.7% 78.5%
25% 250 70.0% 78.8%*
5% 238 68.9% 79.8%*
1% 245 67.8% 78.9%*
0.1% 194 60.8% 75.8%*
Train data || # that sent. Coll. only | Coll.+-SD
50% 366 72.7% 62.3%
25% 367 70.3% 61.9%
5% 356 67.4% 61.2%
1% 354 58.8% 60.2%
0.1% 314 47.5% 61.2%*
Table 4: Performance of the Collins parser

(percent correct attachments) with and without
structural disambiguation (SD). The combined
method is superior for which and for small train-
ing sets. Significant improvements are marked
with .



6 Related Work

There have been few attempts to incorporate in-
formation from unlabeled corpora directly into
the parser (Charniak, 1997; Johnson and Rie-
zler, 2000), but they were either unsuccessful
or tested on small data sets only. We know of
no other work that combines attachment disam-
biguation based on unlabeled corpora with state-
of-the-art statistical parsers.

Our lattice formalization can be viewed as
a back-off model that combines estimates from
several “backoffs” (in a typical back-off model,
there is a single more general model to back off
to). (Collins and Brooks, 1995) present a similar
approach for prepositional phrases. One variant
of their model computes the estimate in question
as the average of three “backoffs.” In contrast
to prepositional phrases, many other attachment
decisions, including relative clause attachments,
are largely semantic. Given the verb rely, verb
attachment of a PP headed by on is very likely.
There are no similar strong regularities for se-
mantic attachments: they require measuring the
semantic “fit” of the two elements being syntacti-
cally attached to each other. This is why we use
MI in this paper to disambiguate attachment.
To our knowledge, MI has not been used in a
back-off model before.

The lattice can also be viewed as a set of over-
lapping features, similar to the feature space of
many discriminative algorithms.
contrast to discriminative learning, our approach
is unsupervised.

However, in

There is a large body of literature on PP at-
tachment, e.g. (Hindle and Rooth, 1991; Volk,
2001; Calvo et al., 2005) that shares the over-
all goals of this paper: using information from
unlabeled corpora for syntactic disambiguation.
(Volk, 2001) counts the number of occurrences
of word n-grams on the web to select the correct
attachment of PPs. We believe that grammati-
cal dependencies are a more promising research
direction since they are more robust compared
to raw text if data are sparse. (Toutanova et al.,
2004)’s approach is similar to ours in that mor-
phological variants and word classes are consid-
ered, but their method differs in that they use
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both labelled corpora and unlabelled corpora for
calculating attachment decisions. Work in the

set not used accuracy
development 82.27%
development | mod 81.21%
development | mod,f 81.21%
development | mod,f,obj 80.49%
development | mod,f,obj,c | 78.72%
test 78.41%
test mod 78.41%
test mod,f 78.03%
test mod,f,0bj 78.41%
test mod,fobj,c | 78.03%

Table 5: Accuracy on which clauses, when the
number of contextual features is decreased. (cf.
Table 3 for further explanation.)

tradition of (Hindle and Rooth, 1991) is most
similar to the approach proposed here. The au-
thors parse an unannotated corpus and use de-
pendency statistics for disambiguation of PP at-
tachment. Our interest is in developing a frame-
work that can disambiguate syntactic ambigui-
ties in general, at least as far as they correspond
to attachment ambiguities, as opposed to solving
a particular syntactic ambiguity problem.

Previous work on relative clause attachment
has taken a machine learning approach where
an attachment decision is represented as a fea-
ture vector which is then fed into a classifier
trained on a labeled training set. In contrast,
our main emphasis is on exploiting information
from unlabeled corpora. (Siddharthan, 2002a;
Siddharthan, 2002b) uses WordNet classes for
constructing some of the features characterizing
attachments. For which clauses (Siddharthan,
2002b) achieves an accuracy of 76.5% on his
test set.® RC attachment is also addressed
by (Yeh and Vilain, 1998), who experiment
with a transformation-based error-driven learn-
ing approach, which aims to disambiguate vari-
ous cases of PP attachment ambiguities and sub-
ordinate clauses at the same time. They report
an overall accuracy of 75.4%, but do not give
numbers for relative clause attachment.

5We attempted to recreate Siddharthan’s training and
test sets, but were not able to based on the description
in the paper and email communication with the author.



7 Conclusion

We make three contributions in this paper.
First, we propose a lattice-based framework for
combining supervised and unsupervised meth-
ods for syntactic disambiguation. Parses from a
treebank-trained parser are refined by using ad-
ditional information from a large unannotated
corpus, represented as dependencies extracted
by a dependency parser. The lattice integrates
information obtained from variable context sizes.
This approach makes it possible to base attach-
ment decisions on the most specific context avail-
able in the unlabeled corpus.

Secondly, we evaluate attachment disambigua-
tion by comparing to the performance of a state-
of-the-art parser. Most previous work on attach-
ment ambiguity has not been evaluated against
this stringent baseline. We also argue that it
is important to compare results across different
training set sizes since in practical applications
we can expect training sets to be smaller than is
typical in academia.

Finally, we address the problem of relative
clause attachment, a problem that has received
much less attention than PP attachment. We
argue that RC attachment is a good test case
for enhancing statistical parsers with informa-
tion from unlabeled corpora because it is more
complex than PP attachment due to a wider
range of grammatical phenomena involved and
because few instances of RC attachment ambi-
guity can be resolved structurally. We also pro-
vide a baseline for future evaluations of work on
RC attachment disambiguation.
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Abstract invoking an “intuitive notion of topic” (Brown and

Yule, 1998). Thematic segmentation also relates

We investigate the appropriateness of us-
ing a technique based on support vector
machines for identifying thematic struc-

ture of text streams. The thematic seg-

to several notions such as speaker’s intention, topic
flow and cohesion.
In order to find out if thematic segment identi-

fication is a feasible task, previous state-of-the-art

works appeal to experiments, in which several hu-

man subjects are asked to mark thematic segment
boundaries based on their intuition and a minimal

set of instructions. In this manner, previous studies,

e.g. (Passonneau and Litman, 1993; Galley et al.,
2003), obtained a level of inter-annotator agreement
that is statistically significant.

Automatic thematic segmentation (TS), i.e. the
segmentation of a text stream into topically coher-
ent segments, is an important component in ap-
plications dealing with large document collections
such as information retrieval and document brows-
ing. Other tasks that could benefit from the thematic
textual structure include anaphora resolution, auto-
matic summarisation and discourse understanding.

. The work presented here tackles the problem
1 Introduction of TS by adopting a supervised learning approach
(Todd, 2005) distinguishes between “local-level topfor capturing linear document structure of non-
ics (of sentences, utterances and short discourse segerlapping thematic episodes. A prerequisite for
ments)” and “discourse topics (of more extendethe input data to our system is that texts are divided
stretches of discoursey’. (Todd, 2005) points out into sentences or utterancesEach boundary be-
that “discourse-level topics are one of the most eldween two consecutive utterances is a potential the-
sive and intractable notions in semantics”. Despitgatic segmentation point and therefore, we model
this difficulty in giving a rigorous definition oflis- the TS task as a binary-classification problem, where
course topicthe task of discourse/dialogue segmeneach utterance should be classified as marking the
tation into thematic episodes can be described

mentation task is modeled as a binary-
classification problem, where the different
classes correspond to the presence or the
absence of a thematic boundary. Exper-
iments are conducted with this approach
by using features based on word distri-
butions through text. We provide em-
pirical evidence that our approach is ro-
bust, by showing good performance on
three different data sets. In particu-
lar, substantial improvement is obtained
over previously published results of word-
distribution based systems when evalua-
tion is done on a corpus of recorded and
transcribed multi-party dialogs.

20ccasionally within this document we employ the term ut-
terance to denote either a sentence or an utterance in its proper
sense.

YIn this paper, we make use of the tetapic or themeas
referring to the discourse/dialogue topic.
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presence or the absence of a topic shift in the disvhere handling high dimensionality data represen-
course/dialogue based only on observations of pafation is necessary (see section 4).
terns in vocabulary use. An alternative to dealing with high dimension
The remainder of the paper is organised as fodata may be to reduce the dimensionality of the
lows. The next section summarizes previous tecltlata representation. Therefore, linear algebra di-
nigques, describes how our method relates to themensionality reduction methods like singular value
and presents the motivations for a support vector apecomposition have been adopted by (Choi et al.,
proach. Sections 3 and 4 present our approach #901; Popescu-Belis et al., 2004) in Latent Seman-
adopting support vector learning for thematic segtic Analysis (LSA) for the task of thematic segmen-
mentation. Section 5 outlines the empirical methodation. A Probabilistic Latent Semantic Analysis
ology and describes the data used in this study. Se®LSA) approach has been adopted by (Brants et
tion 6 presents and discusses the evaluation resulé., 2002; Farahat and Chen, 2006) for the TS task.
The paper closes with Section 7, which briefly sum{Blei and Moreno, 2001) proposed a TS approach,
marizes this work and offers some conclusions angy embedding a PLSA model in an extended Hid-

future directions. den Markov Model (HMM) approach, while (Yam-
ron et al., 1998) have previously proposed a HMM
2 Related Work approach for TS.

_ o ) A shortcoming of the methods described above
As in many existing approaches to the thematic segs qe to their typically generative manner of train-

mentation task, we make the assumption that thgq e using the maximum likelihood estimation
thematic coherence of a text segment is reflected & a joint sampling model of observation and la-

lexical level and therefore we attempt to detect thgg sequences. This poses the challenge of finding
correlation between word distribution and thematic,, ;e appropriat@bjective functionsi.e. alterna-
changes throughout the text. In this manner, (Heargjyes to the log-likelihood that are more closely re-
1997; Reynar, 1998; Choi, 2000) start by using fyteq to application-relevant performance measures.
similarity measure between sentences or fixed-sizg,.qnly, efficient inference and learning for the TS
blocks of text, based on their word frequencies iRagy often requires making questionable conditional
order to find changes in vocabulary use and therg;genendence assumptions. In such cases, improved
fore the points at which the topic changes. Serberformance may be obtained by using methods
tences are then grouped together by using a clustiiin o more discriminative character, by allowing

ing algorithm. (Utiyama and Isahara, 2001) modelgjrect dependencies between a label and past/future

the problem of TS as a problem of finding the minipsenations and by efficient handling higher-order

mum cost path in a graph and therefore adopts a dypmpinations of input features. Given the discrim-

namic programming algorithm. The main advantagg,ative character of SVMs, we expect our model to
of such methods is that no training time and corporgi4in similar benefits.

are required.
By modeling TS as binary-classification problemg  gpport Vector Learning Task and
we introduce a new technique based on support vec- Thematic Segmentation
tor machines (SVMs). The main advantage offered
by SVMs with respect to methods such as those d&he theory of Vapnik and Chervonenkis (Vapnik,
scribed above is related to the distance (or similarity)995) motivated the introduction of support vector
function used. Thus, although (Choi, 2000; Hearstearning. SVMs have originally been used for clas-
1997) employ a distance function (i.€osine dis- sification purposes and their principles have been ex-
tancg to detect thematic shifts, SVMs are capableended to the task of regression, clustering and fea-
of using a larger variety of similarity functions. ture selection. (Kauchak and Chen, 2005) employed
Moreover, SVMs can employ distance functionsSVMs using features (derived for instance from in-
that operate in extremely high dimensional featuréormation given by the presence of paragraphs, pro-
spaces. This is an important property for our taskhjouns, numbers) that can be reliably used for topic
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segmentation of narrative documents. Aside frorthe parameterss and b follow from the optimi-
the fact that we consider the TS task on differensation problem, which is solved by applying La-
datasets (not only on narrative documents), our agrangian theory. The so-calleslack variabless;,
proach is different from the approach proposed bgre introduced in order to be able to handle non-
(Kauchak and Chen, 2005) mainly by the data represeparable data. The positive parameteétsandC—
sentation we propose and by the fact that we put theee calledregularization parameterand determine
emphasis on deriving the thematic structure merelyne amount up to which errors are tolerated. More
from word distribution, while (Kauchak and Chen,exactly, training data may contain noisy or outlier
2005) observed that the ‘block similarities providedata that are not representative of the underlying dis-
little information about the actual segment boundtribution. On the one hand, fitting exactly to the
aries’ on their data and therefore they concentratedhining data may lead to overfitting. On the other
on exploiting other features. hand, dismissing true properties of the data as sam-
An excellent general introduction to SVMs andpling bias in the training data will result in low accu-
other kernel methods is given for instance in (Crisracy. Therefore, the regularization parameter is used
tianini and Shawe-Taylor, 2000). In the section beto balance the trade-off between these two compet-
low, we give some highlights representing the maiimg considerations. Setting the regularization para-
elements in using SVMs for thematic segmentationmeter too low can result in poor accuracy, while set-
The support vector learnégl is given atraining ting it too high can lead to overfitting. In the TS task,
setof n examplesusually denoted by;...n= ((¢1, Wwe used an automated procedure to select the regu-
Y1), @n, yn))C (U x Y)™ drawn independently larization parameters, as further described in section
and identically distributed according to a fixed dis5.3.
tribution Pr(u,y) = Pr(ylu)Pr(u). Each train- In cases where non-linear hypothesis functions
ing example consists of a high-dimensional veeior should be optimised, eacly can be mapped into
describing an utterance and the class lapelThe ¢(u;) € F, whereF' is a higher dimensional space
utterance representations we chose are further desually calledeature spacgn order to make linear
scribed in Section 4. The class lahglhas only the relation betweeifi; andy;. Thus the original lin-
two possible values: ‘thematic boundary’ or ‘non-ear learning machine can be adopted in finding the
thematic boundary’. For notational convenience, welassification solution in the feature space.
replace these values by +1 and -1 respectively, andWhen using a mapping functiop : U — F,
thus we havey € {-1, 1}. Given a hypothesis spaceif we have a way of computing the inner product
H, of functionsh : U — {—1, +1} having the form (p(;), p(i;)) directly as a function of the origi-
h(u) = sign(< W,d > +b), the inductive sup- nal input point, then the so-called kernel function
port vector learnei’;,q seeks a decision function K (u;,1;) = (p(u;),p(u;)) is proved to simplify
hing from H, usingS:.qin SO that the expected num-the computational complexity implied by the direct
ber of erroneous predictions is minimized. Usingise of the mapping functiop. The choice of appro-
the structural risk minimization principle (Vapnik, priate kernels and its specific parameters is an empir-
1995), the support vector learner gets the optimal dézal issue. In our experiments, we used the Gaussian
cision functionh by minimizing the following cost radial basis function (RBF) kernel:

function: Lo R,
Krpr(t;, t;) = exp(—?||i; — Uj||2)'

WA (i, b, €1, 9, ey En) = & < 10 > + For the SVM calculations, we used théBSVMi-
brary (Chang and Lin, 2001).
+ oy . - 3 , ; i i
+C i:OXy:izl G+ i—0 %::_1 Sis 4 Representation of the information used

. to determine thematic boundaries
subject to:

As presented in section 3, in the thematic segmen-
tation task, an inpui; to the support vector classi-
& >0 fori=1,2,...,n. fier is a vectorial representation of the utterance to

yil< W-; > 4b] <1—=& fori=1,2,....,n;
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be classified and its context. Each dimension of thiote that the vector space representation adopted in
input vector indicates the value of a certain featuréhe previous steps will result in a sparse high dimen-
characterizing the utterance. All input features hersional input data for our system. More exactly, table
are indicator functions for a word occurring within1 shows the average number of non-zero features per
a fixed-size window centered on the utterance beingkample corresponding to each data set (further de-
labeled. More exactly, the input features are comnscribed in section 5.1).

puted in the following steps:

Data set | Non zero features
1. The text has been pre-processed by tokeniza- ICSI 3.67%
tion, elimination of stop-words and lemmatiza- DT 0.40%
tion, usingTreeTagge Schmid, 1996). Brown 0.12%

2. We make use of the so-calledg of wordsap-  Taple 1: The percentage of non-zero features per ex-
proach, by mapping each utterance tiag, i.e. ample.

a set that contains word frequencies. Therefore,

word frequencies have been computed to count

the number of times that each term (i.e. words  Experimental Setup
lemma) is used in each utterance. Then a trans-

formation of the raw word frequency counts5.1 Data sets used

is applied in order to take into account both

) In order to evaluate how robust our SVM approach
the local (i.e. for each utterance) word fre- PP

) Il as th I f . Is, we performed experiments on three English data
tqhue_nmes as wetl as the ov::‘_ra ¢ rei[que”nmf[a_s ets of approximately the same dimension (i.e. con-
eir occurrences in the entire text collec 'Ontaining about 260,000 words).

More_ exactly, we made experl_ments n paral The first dataset is a subset of the ICSI-MR cor-
lel with three such transformations, which are .

. . : pus (Janin et al., 2004), where the gold standard for
very commonly used in information retrieval

domain (Dumais, 1991)if.idf, tf.normal and _thema'uc segmentations has been provided by tak-
log.entropy ing into account the agreement of at least three hu-

man annotators (Galley et al., 2003). The corpus

3. Eachi-th utterance is represented by a vectofonsists of high-quality close talking microphone
ii;, where aj-th element ofi; is computed as: "ecordings of multi-party dialogues. Transcriptions
at word level with utterance-level segmentations are

i i+winSize also available. A test sample from this dataset con-
Ujj = Z ftj Z fei ]  sists of the transcription of an approximately one-
t=i—winSize k=i+1 hour long meeting and contains an average of about

wherewinSize > 1 and f; ; is the weighted seven thematic episodes. .
frequency (determined in the previous step) of The second data set contains documents randomly

the j-th word from the vocabulary in thieth ut- selected from the Topic Detection and Tracking
terance. In this manner, we will haug;; > 0 f (TDT) 2 collection, made available by (LDC, 2006).

and only if at least two occurrences of tjih The TDT collection includes broadcast news and
term occur within(2 - winSize) utterances on newswire text, which are segmented into topically

opposite sides of a boundary candidate. Thé:(ohesive stories. We use the story segmentation pro-
is, eachu; . is capturing how many word co- vided with the corpus as our gold standard labeling.
) 1,]

occurrences appear across the candidate utté—teSt sample from our subset contains an average

ance in an interval (of2- winSize) utterances) ©f about24 segments. o .
centered in the boundary candidate utterance. | he third dataset we use in this study was origi-
nally proposed in (Choi, 2000) and contains artifi-

4. Each attribute value from the input data isial thematic episodes. More precisely, the dataset
scaled to the intervdl, 1]. is built by concatenating short pieces of texts that
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Data set| Weighting schema| winSize v C
ICSI log.entropy 57 0.0625| 0.01
DT tf.idf 17 0.0625| 0.1
Brown tf.idf 5 0.0625| 0.001

Table 2: The optimal settings found for the SVM model, using the RBF kernel.

have been randomly extracted from the Brown corsee section 4) are addressed. We start with choosing
pus. Any test sample from this dataset consists @n appropriate term weighting scheme and a good
ten segments. Each segment contains at least thredue for thewinSize parameter. This choice is
sentences and no more than eleven sentences. based on a systematic grid search over 20 differ-
While the focus of our paper is not on the methoent values forwinSize and the three variantsidf,
of evaluation, it is worth pointing out that the per-tf.normal and log.entropyfor term weighting. We
formance on the synthetic data set is a very poaan five-fold cross validation, by using the RBF ker-
guide to the performance on naturally occurring datael with its parametey fixed toy = 1. We also set
(Georgescul et al., 2006). We include the synthetithe regularization parametérequal toC = 1.
data for comparison purposes. In the second phase of model selection, we
take the optimal parameter values selected in the
previous phase as a constant factor and search
We have a small percentage of positive examplahe most appropriate values f@f and v para-
relative to the total number of training examplesmeters. The range of values we select from is:
Therefore, in order to ensure that positive points arg' ¢ {10*3, 1072,107%, 1,10, 10%, 103} andy €
not considered as being noisy labels, we change tqg—6,2—5,2—4,,,,,24,26} and for each possible
penalty of the minority (positive) class by setting thesalue we perform five-fold cross validation. There-

5.2 Handling unbalanced data

parameteC't of this class to: fore, we ran the algorithm five times for ti9g¢ =
n 7 x 13 parameter settings. The most suitable model
Ct=2x- (n+ —1 1) O, settings found are shown in Table 2. For these set-

tings, we show the algorithm'’s results in section 6.
wheren™ is the number of positive training exam-
ples,n is the total number of training examples and® Evaluation
A is the scaling factor. In the experiments reporte .
here, we set the value for the scale factdo A = 1 2_1 Evaluation Measures
and we haveCT = 7. C~ for the synthetic data Beeferman et al. (1999) underlined that the stan-
derived from Brown corpus®'t = 18 - C~for the dard evaluation metrics qdrecisionandrecall are
TDT data andCt = 62 - C~ for the ICSI meeting inadequate for thematic segmentation, namely by

data. the fact that these metrics did not account for how
_ far away a hypothesized boundary (i.e. a boundary
5.3 Model selection found by the automatic procedure) is from the ref-

We used 80% of each dataset to determine the besence boundary. On the other hand, for instance,
model settings, while the remaining 20% is usean algorithm that places a boundary just one utter-
for testing purposes. Each training set (for eachnce away from the reference boundary should be
dataset employed) was divided into disjoint subsetsenalized less than an algorithm that places a bound-
and five-fold cross-validation was applied for modehry ten (or more) utterances away from the reference
selection. boundary.

In order to avoid too many combinations of pa- Hence the use of two other evaluation metrics
rameter settings, model selection is done in twes favored in thematic segmentation: ti& met-
phases, by distinguishing two kinds of parametersic (Beeferman et al., 1999) and tiWgindowDiff
First, the parameters involved in data representatia@rror metric (Pevzner and Hearst, 2002). In con-
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Algorithn?s SVM | C99 | Rand SVM Rand SVM GO3* | C99 | Rand
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Brown data TDT data ICSI data

Figure 1: Error rates of the segmentation systems.

trast to precision and recall, these metrics allow for believe that measuring differences in error rates ob-
slight vagueness in where the hypothesized thematigined on the test set is indicative of the relative per-
boundaries are placed and capture “the notion dérmance. Thus, the experimental results shown in
nearness in a principled way, gently penalizing algahis paper should be considered as illustrative rather
rithms that hypothesize boundaries that aren’t quitdhan exhaustive.

right, and scaling down with the algorithm’s degra-

dation” (Beeferman et al., 1999). That is, computb-2 Results

ing both P, and WindowDiff metrics involves the In order to determine the adequacy of our SVM ap-
use of a fixed-size (i.e. having a fixed number oproach over different genres, we ran our system over
either words or utterances) window that is movethree datasets, namely the ICSI meeting data, the
step by step over the data. At each stép,and TDT broadcast data and the Brown written genre
WindowDiff are basically increased (each metric irdata.

a slightly different way) if the hypothesized bound- By measuring the system error rates using the
aries and the reference boundaries are not within thg, and thewindowDiff metrics, Figure 1 summa-
same window. rizes the quantitative results obtained in our empir-

During the model selection phase, we used préeal evaluation. In Figure 1, our SVM approach is
cision and recall in order to measure the systemiabeled asSVM and we abbreviat®VindowDiff as
error rate. This was motivated by the fact that pos#/D. The results of ouSVM system correspond to
ing the TS task as a classification problem leads tothe parameter values detected during model selec-
loss of the sequential nature of the data, which is aion (see Table 2). We compare our system against
inconvenient in computing th&), and WindowDiff an existing thematic segmenter in the literatu @89
measures. However, during the final testing phag€hoi, 2000). We also give for comparison the
of our system, as well as for the evaluation of therror rates of a naive algorithm, labeled Rand
previous systems, we use both tRg and theWin-  algorithm, which randomly distributes boundaries
dowDiff error metric. throughout the text.

The relatively small size of our datasets does not The LCsegsystem (Galley et al., 2003), labeled
allow for dividing our test set into multiple sub-testhere as503 is to our knowledge the only word dis-
sets for applying statistical significance tests. Thifibution based system evaluated on ICSI meeting
would be desirable in order to indicate whether theélata. Therefore, we replicate the results reported by
differences in system error rates are statistically sigGalley et al., 2003) when evaluation b€segwas
nificant over different data sets. Nevertheless, wdone on ICSI data. The so-label€®d3* algorithm

106



indicates the error rates obtained by (Galley et alther outperformed the other existing methods or per-
2003) when extra (meeting specific) features havierms comparably to the best. We view this as a
been adopted in a decision tree classifier. Howevestrong evidence that our approach provides a unified
note that the results reported by (Galley et al.) arand robust framework for the thematic segmentation
not directly comparable with our results because dask. The results also suggest that word distributions
a slight difference in the evaluation procedure: (Galthemselves might be a good candidate for capturing
ley et al.) performed 25-fold cross validation and théhe thematic shifts of text and that SVM learning can

averageP, andW D error rates have been computecplay an important role in building an adaptable cor-

on the held-out sets. relation.

Figure 1 illustrates the following interesting re- Our experiments also show the sensitivity of a
sults. For the ICSI meeting data, our SVM approackegmentation method to the type of a corpus on
provides the best performance relative to the conwhich it is tested. For instance, the C99 algorithm
peting word distribution based state-of-the-art methwhich achieves superior performance on a synthetic
ods. This proves that our SVM-based system is abkollection performs quite poorly on the real-life data
to build a parametric model that leads to a segment&ets.
tion that highly correlates to a human thematic seg- While we have shown empirically that our tech-
mentation. Furthermore, by taking into account th@ique can provide considerable gains by using sin-
relatively small size of the data set we used for traingle word distribution features, future work will in-
ing, it can be concluded that the SVM can buildvestigate whether the system can be improved by ex-
qualitatively good models even with a small train{loiting other features derived for instance from syn-
ing data. The work of (Galley et al., 2003) showdactic, lexical and, when available, prosodic infor-
that theGO03* algorithm is better thaiG03 by ap- mation. If further annotated meeting data becomes
proximately 10%, which indicates that on meetingavailable, it would be also interesting to replicate our
data the performance of our word-distribution baseélxperiments on a bigger data set in order to verify
approach could possibly be increased by using othetether our system performance improves.
meeting-specific features. Acknowledgments This work is partially sup-
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Abstract

In this paper we investigate a new problem
of identifying theperspective from which

a document is written. By perspective we
mean a point of view, for example, from
the perspective of Democrats or Repub-
licans. Can computers learn to identify
the perspective of a document? Not every
sentence is written strongly from a per-
spective. Can computers learn to identify
which sentences strongly convey a partic-
ular perspective? We develop statistical
models to capture how perspectives are
expressed at the document and sentence
levels, and evaluate the proposed mod-
els on articles about the Israeli-Palestinian
conflict. The results show that the pro-
posed models successfully learn how per-
spectives are reflected in word usage and
can identify the perspective of a document
with high accuracy.

Introduction

University of Pittsburgh
Pittsburgh, PA 15260
{twi | son, wi ebe}@s. pitt.edu

Carnegie Mellon University
Pittsburgh, PA 15213
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(1) The inadvertent killing by Israeli forces of
Palestinian civilians — usually in the course of
shooting at Palestinian terrorists — is
considered no different at the moral and ethical
level than the deliberate targeting of Israeli
civilians by Palestinian suicide bombers.

(2) Inthe first weeks of the Intifada, for example,
Palestinian public protests and civilian
demonstrations were answered brutally by
Israel, which killed tens of unarmed protesters.

Example 1 is written from an Israeli perspective;

Example 2 is written from a Palestinian perspec-
tive. Anyone knowledgeable about the issues of
the Israeli-Palestinian conflict can easily identify the

perspectives from which the above examples were
written. However, can computers learn to identify

the perspective of a document given a training cor-
pus?

When an issue is discussed from different per-
spectives, not every sentence strongly reflects the
perspective of the author. For example, the follow-
ing sentences were written by a Palestinian and an
Israeli.

(3) The Rhodes agreements of 1949 set them as

tomatically identifying theperspective from which
a document is written. By perspective we mean
a “subjective evaluation of relative significance, a
point-of-view.” For example, documents about the(4)
Palestinian-Israeli conflict may appear to be about
the same topic but reveal different perspectives:

the ceasefire lines between Israel and the Arab
states.

The green line was drawn up at the Rhodes
Armistice talks in 1948-49.

Examples 3 and 4 both factually introduce the back-
'The American Heritage Dictionary of the English Lan-ground of the issue of the “green line” without ex-
guage, 4th ed. pressing explicit perspectives. Can we develop a
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system to automatically discriminate between serHatzivassiloglou, 2003; Turney and Littman, 2003;
tences that strongly indicate a perspective and sebBave et al., 2003; Nasukawa and Yi, 2003; Popescu
tences that only reflect shared background informand Etzioni, 2005; Wilson et al., 2005). While by its
tion? very nature we expect much of the language that is
A system that can automatically identify the perused when presenting a perspective or point-of-view
spective from which a document is written will beto be subjective, labeling a document or a sentence
a valuable tool for people analyzing huge collecas subjective is not enough to identify the perspec-
tions of documents from different perspectives. Pdive from which it is written. Moreover, the ideol-
litical analysts regularly monitor the positions thatogy and beliefs authors possess are often expressed
countries take on international and domestic issuem ways other than positive or negative language to-
Media analysts frequently survey broadcast newsyard specific targets.
newspapers, and weblogs for differing viewpoints. Research on the automatic classification of movie
Without the assistance of computers, analysts haee product reviews as positive or negative (e.g.,
no choice but to read each document in order to idetfPang et al., 2002; Morinaga et al., 2002; Turney
tify those from a perspective of interest, which is exand Littman, 2003; Nasukawa and Yi, 2003; Mullen
tremely time-consuming. What these analysts neexhd Collier, 2004; Beineke et al., 2004; Hu and Liu,
is to find strong statements from different perspec2004)) is perhaps the most similar to our work. As
tives and to ignore statements that reflect little or nwith review classification, we treat perspective iden-
perspective. tification as a document-level classification task, dis-
In this paper we approach the problem of learningriminating, in a sense, between different types of
individual perspectives in a statistical frameworkopinions. However, there is a key difference. A pos-
We develop statistical models to learn how perspedtive or negative opinion toward a particular movie
tives are reflected in word usage, and we treat thar product is fundamentally different from an overall
problem of identifying perspectives as a classificaperspective. One’s opinion will change from movie
tion task. Although our corpus contains documentto movie, whereas one’s perspective can be seen as
level perspective annotations, it lacks sentence-levaiore static, often underpinned by one’s ideology or
annotations, creating a challenge for learning thkeliefs about the world.
perspective of sentences. We propose a novel sta-There has been research in discourse analysis that
tistical model to overcome this problem. The exexamines how different perspectives are expressed
perimental results show that the proposed statistin political discourse (van Dijk, 1988; Pan et al.,
cal models can successfully identify the perspective999; Geis, 1987). Although their research may
from which a document is written with high accu-have some similar goals, they do not take a compu-

racy. tational approach to analyzing large collections of
documents. To the best of our knowledge, our ap-
2 Related Work proach to automatically identifying perspectives in

Identifying the perspective from which a documenfliScourse is unique.
is wrl'Ften is a subtask in the growing area of au= Corpus
tomatic opinion recognition and extraction. Sub-
jective language is used to express opinions, em@ur corpus consists of articles published on the
tions, and sentiments. So far, research in automatis t t er | enons websité. The website is set up to
opinion recognition has primarily addressed learn‘contribute to mutual understanding [between Pales-
ing subjective language (Wiebe et al., 2004; Riloftinians and Israelis] through the open exchange of
et al., 2003), identifying opinionated documents (Yudeas.® Every week an issue about the Israeli-
and Hatzivassiloglou, 2003) and sentences (Yu arféhlestinian conflict is selected for discussion (e.g.,
Hatzivassiloglou, 2003; Riloff et al., 2003), and dis—zhi_ .
L .. . ttp://ww. bitterl enons. org

criminating between positive and negative language st ¢ p: / / www. bi t t er | enons. or g/ about /

(Pang et al., 2002; Morinaga et al., 2002; Yu andbout . ht ni
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“Disengagement: unilateral or coordinated?”), anits perspective.
a Palestinian editor and an Israeli editor each con-

tribute one article addressing the issue. In additiot Statistical Modeling of Perspectives

the Israeli and Palestinian editors invite one Israefe develop algorithms for learning perspectives us-
and one Palestinian to express their views on thgg g statistical framework. Denote a training corpus
issue (sometimes in the form of an interview), rexq 4 et of documentd,, and their perspectives la-
sulting in a total of four articles in a weekly edi-hoisp 1, — 1..... N, whereN is the total number
tion. We choose thei tt er | emons website for ot gocuments in the corpus. Given a new document
two reasons. First, each article is already labelegl; \yith a unknown document perspective, the per-

as either Palestinian or Israeli by the editors, a”C’WépectiveD is calculated based on the following con-
ing us to exploit existing annotations. Second, thgitional probability.

bi tt er | enons corpus enables us to test the gen-

eralizability of the proposed models in a very real- P(D|W,{D,,, W,,}_) (5)

istic setting: training on articles written by a small

number of writers (two editors) and testing on arti\We are also interested in how strongly each sen-

cles from a much larger group of writers (more tharience in a document conveys perspective informa-

200 different guests). tion. Denote the intensity of the:-th sentence of
We collected a total of 594 articles published orthen-th document as a binary random variablg,.

the website from late 2001 to early 2005. The disTo evaluates,, ,,, how strongly a sentence reflects

tribution of documents and sentences are listed i particular perspective, we calculate the following

Table 1. We removed metadata from all articles, inconditional probability.

Palestinian| Israeli P(Smnl{Dn, Wn}2_) (6)
Written by editors 148 149
Written by guests 149 148 4.1 Ndve Bayes Model
Total number of documents 297 297 We model the process of generating documents from
Average document length | 740.4 816.1  a particular perspective as follows:
Number of sentences 8963 9640

~ Beta(ar, Or)

~ Dirichlet(ap)

D,, ~ Binomial(1,7)

~ Multinomial(L,,, 04)

Table 1: The basic statistics of the corpus 9

cluding edition numbers, publication dates, topics,
titles, author names and biographic information. We Wn
used OpenNLP Tootsto automatically extract sen-
tence boundaries, and reduced word variants usirllzg
the Porter stemming algorithm. irst, the parameters andf are sampled once from
We evaluated the subjectivity of each sentence uBOr distributions for the whole corpus. Beta and
ing the automatic subjective sentence classifier fromirichlet are chosen because they are conjugate pri-
(Riloff and Wiebe, 2003), and find that 65.6% oforS for binomial and multinomial distributions, re-
Palestinian sentences and 66.2% of Israeli sentenctRECtively. We set the hyperparameters -, and
are classified as subjective. The high but almogte 0 One, resulting in non-informative priors. A
equivalent percentages of subjective sentences in tHacument perspective,, is then sampled from a bi-
two perspectives support our observation in Sedlomial distribution with the parameter The value
tion 2 that a perspective is largely expressed usirfgf Pn iS eitherd® (Israeli) ord! (Palestinian). Words
subjective language, but that the amount of subjed? the document are then sampled from a multino-

tivity in a document is not necessarily indicative offhial distribution, where.,, is the length of the doc-
ument. A graphical representation of the model is

“htt p: // sourcef or ge. net/ proj ect s/ shown in Figure 1.
opennl p/

111



The parameters andf have the same semantics as
in the naive Bayes modef is naturally modeled as
%n ./Vn a binomial variable, where is the parameter of.
S represents how likely it is that a sentence strongly
conveys a perspective. We call this model the La-
tent Sentence Perspective Model (LSPM) becduse

is not directly observed. The graphical model repre-
sentation of LSPM is shown in Figure 2.

T 0

Figure 1: Naive Bayes Model

The model described above is commonly known
as a naive Bayes (NB) model. NB models have

been widely used for various classification tasks, . )
including text categorization (Lewis, 1998). The

NB model is also a building block for the model O O

described later that incorporates sentence-level per- i 4 0

spective information. Figure 2: Latent Sentence Perspective Model

To predict the perspective of an unseen document
using naive Bayes , we calculate the posterior distri- To use LSPM to identify the perspective of a new
bution of D in (5) by integrating out the parameters,documentD with unknown sentence perspectives
we calculate posterior probabilities by summing out

//P 7, 01{(Dp, W) })_,,W)drd# (7) possible combinations of sentence perspective in the
document and parameters.

However, the above integral is difficult to compute.
As an alternative, we use Markov Chain Monte /// > ZP Sy S m, 7,0 (8)
Carlo (MCMC) methods to obtain samples from the Smmn S
posterior distribution. Details about MCMC meth- {(DmW )}n L )dﬂde@
ods can be found in Appendix A.

_ As before, we resort to MCMC methods to sample
4.2 Latent Sentence Perspective Model from the posterior distributions, given in Equations
We introduce a new binary random variablg, to  (5) and (6).
model how strongly a perspective is reflected at the As is often encountered in mixture models, there
sentence level. The value ¢f is eithers' or s, is an identifiability issue in LSPM. Because the val-
where s! indicates a sentence is written stronglyues ofS can be permuted without changing the like-
from a perspective whilg” indicates it is not. The lihood function, the meanings &f ands! are am-
whole generative process is modeled as follows: biguous. In Figure 3a, fout values are used to rep-

resent the four possible combinations of document

T ~ Beta(ar, 8r) perspectivel and sentence perspective intensityf
T ~ Beta(asr, ;) we do not impose any constraints, ands® are ex-
0 ~ Dirichlet(ap) changeable, and we can no longer strictly interpret

s! as indicating a strong sentence-level perspective
] ] ands® as indicating that a sentence carries little or
Smn ~  Binomial(1,7) no perspective information. The other problem of
Wmnn ~ Multinomial(Liy, ,, 0) this parameterization is that any improvement from
LSPM over the naive Bayes model is not necessarily

D,, ~ Binomial(1,)
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(Cristianini and Shawe-Taylor, 2000). NB-B uses
1 0 full Bayesian inference and NB-M uses Maximum
a posteriori (MAP). We compare NB with SVM not
only because SVM has been very effective for clas-
sifying topical documents (Joachims, 1998), but also
to contrast generative models like NB with discrimi-
native models like SVM. For training SVM, we rep-
resent each document asVadimensional feature
vector, wheré/ is the vocabulary size and each co-
Figure 3: Two different parameterization éf ordinate is the normalized term frequency within the
document. We use a linear kernel for SVM and
search for the best parameters using grid methods.
To evaluate the statistical models, we train them
on the documents in thki tt er| emons corpus
due to the explicit modeling of sentence-level perand calculate how accurately each model predicts
spective. S may capture aspects of the documengocument perspective in ten-fold cross-validation
collection that we never intended to model. For exexperiments. Table 2 reports the average classi-
ample,s” may capture the editors’ writing styles andfication accuracy across the the 10 folds for each
s! the guests’ writing styles inthei t t er | endns  model. The accuracy of a baseline classifier, which
corpus. randomly assigns the perspective of a document as
We solve the identifiability problem by forcing palestinian or Israeli, is 0.5, because there are equiv-

g1 50 @anddy0 o to be identical and reducing the alent numbers of documents from the two perspec-
number off parameters to three. As shown in Fig-jves.

ure 3b, there are separatgparameters conditioned _
on the document perspective (left branch of the tree,_Model | Data Set] Accuracy| Reduction
d is Israeli andi! is Palestinian), but there is single  Baseline 0.5

6 parameter whel§ = s° shared by both document-  SVM Editors | 0.9724
level perspectives (right branch of the tree). We as- NB-M Editors | 0.9895 61%
sume that the sentences with little or no perspective NB-B Editors | 0.9909 | 67%
information, i.e.,S = s%, are generated indepen- SVM Guests | 0.8621
dently of the perspective of a document. In other NB-M Guests | 0.8789 12%

words, sentences that are presenting common back- NB-B Guests | 0.8859 17%

ground information or introducing an issue and that

do not strongly convey any perspective should lookable 2: Results for Identifying Perspectives at the
similar whether they are in Palestinian or Israeli docPocument Level

uments. By forcing this constraint, we become more

confident thats” represents sentences of little per- The last column of Table 2 is error reduction
spectives and! represents sentences of strong petelative to SVM. The results show that the naive

dt 0

9d0750 9d0751 9d1750 Hdo750 9d0781 9d1751

(@) s° ands' are not identifiabléb) sharingd,: .o and
9d0$50

spectives fromi' andd” documents. Bayes models and SVM perform surprisingly well
_ on both the Editors and Guests subsets of the
S Experiments bitterl enons corpus. The naive Bayes mod-

els perform slightly better than SVM, possibly be-
cause generative models (i.e., naive Bayes models)
_ achieve optimal performance with a smaller num-
We evaluate three different models for the taskq, of training examples than discriminative models
of identifying perspective at the document Ievel'(i_e_, SVM) (Ng and Jordan, 2002), and the size of
two naive Bayes models (NB) with different infer—thebi tterl emons corpus is indeed small. NB-B,

ence methods and Support Vector Machines (SVMR/hich performs full Bayesian inference, improves

5.1 Identifying Perspective at the Document
Level
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on NB-M, which only performs point estimation. cluding “state,” “peace,” “process,” “secure” (“se-
The results suggest that the choice of words madmirity”), and “govern” (“government”). This is in
by the authors, either consciously or subconsciouslgontrast to what we expect from topical text classi-
reflects much of their political perspectives. Statisfication (e.g., “Sports” vs. “Politics”), in which fre-
tical models can capture word usage well and caguent words seldom overlap. Authors from differ-
identify the perspective of documents with high acent perspectives often choose words from a simi-
curacy. lar vocabulary but emphasize them differently. For
Given the performance gap between Editors anekample, in documents that are written from the
Guests, one may argue that there exist distinct ediRalestinian perspective, the word “palestinian” is
ing artifacts or writing styles of the editors andmentioned more frequently than the word “israel.”
guests, and that the statistical models are capturitigis, however, the reverse for documents that are
these things rather than “perspectives.” To test if theritten from the Israeli perspective. Perspectives
statistical models truly are learning perspectives, ware also expressed in how frequently certain people
conduct experiments in which the training and test¢‘sharon” v.s. “arafat”), countries (“international”
ing data are mismatched, i.e., from different subsetss. “america”), and actions (“occupation” v.s. “set-
of the corpus. If what the SVM and naive Bayedle”) are mentioned. While one might solicit these
models learn are writing styles or editing artifactscontrasting word pairs from domain experts, our re-
the classification performance under the mismatchesilts show that statistical models such as SVM and

conditions will be considerably degraded. naive Bayes can automatically acquire them.
Model \ Training \ Testing‘ Accuracy‘ 5.2 Identifying Perspectives at the Sentence
Baseline 0.5 Level
SVM Guests | Editors | 0.8822 In addition to identifying the perspective of a docu-

NB-M Guests | Editors | 0.9327 43%  ment, we are interested in knowing which sentences
NB-B Guests | Editors | 0.9346 44%  of the document strongly conveys perspective in-
SVM Editors | Guests| 0.8148 formation. Sentence-level perspective annotations
NB-M Editors | Guests | 0.8485 18%  do not exist in thebi t t er | emons corpus, which
NB-B Editors | Guests| 0.8585 24%  makes estimating parameters for the proposed La-
tent Sentence Perspective Model (LSPM) difficult.
Table 3: Identifying Document-Level Perspectivesthe posterior probability that a sentence strongly
with Different Training and Testing Sets covey a perspective (Example (6)) is of the most in-
terest, but we can not directly evaluate this model
The results on the mismatched training and tesfyithout gold standard annotations. As an alterna-
ing experiments are shown in Table 3. Both SVMive, we evaluate how accurately LSPM predicts the
and the two variants of naive Bayes perform welperspective of a document, again using 10-fold cross
on the different combinations of training and testingsalidation. Although LSPM predicts the perspec-
data. As in Table 2, the naive Bayes models pefive of both documents and sentences, we will doubt
form better than SVM with larger error reductions,the quality of the sentence-level predictions if the
and NB-B slightly outperforms NB-M. The high ac- document-level predictions are incorrect.
curacy on the mismatched experiments suggests thatThe experimental results are shown in Table 5.
statistical models are not learning writing styles oie include the results for the naive Bayes models
editing artifacts. This reaffirms that document perfrom Table 3 for easy comparison. The accuracy of
spective is reflected in the words that are chosen ly\spMmis comparable or even slightly better than that
the writers. of the naive Bayes models. This is very encouraging
We list the most frequent words (excluding stopand suggests that the proposed LSPM closely cap-
words) learned by the the NB-M model in Ta-tures how perspectives are reflected at both the doc-
ble 4. The frequent words overlap greatly beument and sentence levels. Examples 1 and 2 from
tween the Palestinian and Israeli perspectives, ifhe introduction were predicted by LSPM as likely to
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Palestinian| palestinian, israel, state, politics, peace, internafiopeople, settle, occupation, sharon,
right, govern, two, secure, end, conflict, process, sidgotigte
israel, palestinian, state, settle, sharon, peace, agtah, politics, two, process, secure,

conflict, lead, america, agree, right, gaza, govern

Israeli

Table 4: The top twenty most frequent stems learned by theNBedel, sorted byP(w|d)

Model | Training | Testing| Accuracy at the document and sentence levels. We show that
Baseline 0.5 much of a document’s perspective is expressed in
NB-M Guests | Editors | 0.9327 word usage, and statistical learning algorithms such
NB-B Guests | Editors | 0.9346 as SVM and naive Bayes models can successfully
LSPM Guests | Editors | 0.9493 uncover the word patterns that reflect author per-
NB-M Editors | Guests| 0.8485 spective with high accuracy. In addition, we develop
NB-B Editors | Guests| 0.8585 a novel statistical model to estimate how strongly
LSPM Editors | Guests| 0.8699 a sentence conveys perspective, in the absence of

sentence-level annotations. By introducing latent
Table 5: Results for Perspective Identification at thgariables and sharing parameters, the Latent Sen-
Document and Sentence Levels tence Perspective Model is shown to capture well
how perspectives are reflected at the document and
sentence levels. The small but positive improvement
due to sentence-level modeling in LSPM is encour-
aging. In the future, we plan to investigate how con-

. . . = _ 1
contain strong perspectives, _|.e., Iaﬂgg(S =5). sistently LSPM sentence-level predictions are with
Examples 3 and 4 from the introduction were Prepuman annotations

dicted by LSPM as likely to contain little or no per-
spective information, i.e., highr(S = s°). Acknowledgment
The comparable performance between the naiy

Bayes models and LSPM is in fact surprising. W(fh'S material is based on work supported by

can train a naive Bayes model directly on the ser?;e Advanced Research and Development Activity
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ing this model, we obtain a classification accuracy 0#000) for the Latent Sentence Perspective Model as
only 0.7529, which is much lower than the accuracj!lows,

previously achieved at the document level. Identify- N
ing perspectives at the sentence level is thus more ) Beta(or + Zdn +d*D),
difficult than identifying perspectives at the docu- n=1
ment level. The high accuracy at the document level N .
shows that LSPM is very effective in pooling evi- Br+ N = dy+1—d")
dence from sentences that individually contain little n=1
perspective information. N
N M, M
6 Conclusions T~ Beta(ar +3 D smat D s,
n=1m=1 m=1
In this paper we study a new problem of learning to N N M, r
identify the perspective from which a text is writteng_ - Z M,, — Z Z S + M — Sm)
n=1 n=1m=1 m=1
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Abstract

Distributional approaches to grammar in-
duction are typically inefficient, enumer-
ating large numbers of candidate con-
stituents. In this paper, we describe a
simplified model of distributional analy-
sis which uses heuristics to reduce the
number of candidate constituents under
consideration. We apply this model to
a large corpus of over 400000 words of
written English, and evaluate the results
using EVALB. We show that the perfor-
mance of this approach is limited, provid-
ing a detailed analysis of learned structure
and a comparison with actual constituent-
context distributions. This motivates a
more structured approach, using a process
of attachment to form constituents from
their distributional components. Our find-
ings suggest that distributional methods
do not generalize enough to learn syntax
effectively from raw text, but that attach-
ment methods are more successful.

I ntroduction

Distributional approaches to grammar induction ex—2
ploit the principle of substitutability: constituents of Distributional methods analyze text tafignment,

the same type may be exchanged with one anothaiming to find equivalence classes covering substi-
without affecting the syntax of the surrounding contutable units. We align common portions of texts
text. Reversing this notion, if we can identify “sur-termedcontexts, leaving distinct contiguous word-
rounding context” by observation, we can hypothesequences, termespressions. An expression and
size that word sequences occurring in that conteits context form aralignment pattern, which is de-

will be constituents of the same type. Thus, distri-

butional methods can be used to segment text into
constituents and classify the results. This work fo-

cuses on distributional learning from raw text.

Various models of distributional analysis have
been used to induce syntactic structure, but most
use probabilistic metrics to decide between candi-
date constituents. We show that the efficiency of
these systems can be improved by exploiting some
properties of probable constituents, but also that this
reliance on probability is problematic for learning
from text. As a consequence, we propose an exten-
sion to strict distributional learning that incorporates
more information about constituent boundaries.

The remainder of this paper describes our expe-
riences with a heuristic system for grammar induc-
tion. We begin with a discussion of previous dis-
tributional approaches to grammar induction in Sec-
tion 2 and describe their implications in Section 3.
We then introduce a heuristic distributional system
in Section 4, which we analyze empirically against
a treebank. Poor system performance leads us to ex-
amine actual constituent-context distributions (Sec-
tion 5), the implications of which motivate a more
structured extension to our learning system, which
we describe and analyze in Section 6.

Previous approaches
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fined as: to provide data for later learning. This has the ad-
vantage of easing the data-sparsity issues described
Clest | Expression | Crigne (AP1) above because infrequent sequences are clustered
into more frequent non-terminal symbols. However,
From this alignment pattern, we can extract contexi incremental systems, constituents are compared
free grammar rules: directly, which can lead to a bias towards shorter
constituents.
NT — Ezxpressioni V ...V Expression, (1) The EMILE system (Adriaans, 1999) learsiwl -
low languages in an incremental manner, and has
While the definition of expression is straightfor-been applied to natural language under the assump-
ward, the definition of context is problematic. Wetion that such languages are shallow. Shallowness
would like as much context as possible, but wordis the property whereby, for any constituent type in
sequence contexts become less probable as thgifanguage, there exist well-supported minimal units
length increases, making learning harder. Thereforef that type. EMILE aligns complete sentences only,
simple models of context are preferred, although thgttempting to isolate minimal units, which are then
precise definition varies between systems. used to process longer sequences. This method is
Distributional approaches to grammar inductiorefficient because alignment is non-recursive. How-
fall into two categories, depending on their treatever, as a consequence, EMILE offers only a limited
ment of nested structure. The first category cowreatment of nested and recursive structures.
ers Expectation-Maximization (EM) systems. These A more comprehensive approach to learning
systems propose constituents based on analysis fésted structure is found in the ADIOS sys-
text, then select aon-contradictory combination tem (Solan et al., 2003). ADIOS enumerates all pat-
of constituents for each sentence that maximizestarns of a given length, under the condition that each
given metric, usually parsing probability. EM hassequence must have non-empty contexts and expres-
the advantage that constituent probabilities are onkions. These patterns are ranked using an informa-
compared when constituents compete, which rejon gain metric, and the best pattern at each iteration
moves the inherent bias towards shorter constituents, rewritten into the graph, before pattern scanning
which tend to have higher probability. However, EMpegins again. ADIOS learns context-sensitive equiv-
methods are more susceptible to data sparsity issugience classes, but does not induce grammars, and
associated with raw text, because there is no gengfas not been formally evaluated against treebanks.
alization during constituent proposal. Grammar induction systems are evaluated using
Examples of EM learning systems are Contexétandard metrics for parser evaluation, and in par-
Distribution Clustering (CDC) (Clark, 2001) andticular, the EVALB algorithmt. The above sys-
Constituent-Context Model (CCM) (Klein, 2005,tems have been evaluated with respect to the ATIS
Chapter 5), which avoid the aforementioned datareebank. Compared with supervised parsers, these
sparsity issues by using a part-of-speech (POSystems perform relatively poorly, with the strictly
tagged corpus, rather than raw text. Alignmenfinsupervised EMILE and ABL systems recovering
Based Learning (ABL) (van Zaanen, 2000) is thei6.8% and 35.6% of constituent structure respec-
only EM system applied directly to raw text. ABL tively. The partially-supervised systems of CDC and
uses minimal String-Edit Distance between sencCM perform better, with the latter retrieving 47.6%
tences to propose constituents, from which the mogf the constituent structure in ATIS. However, the
probable combination is chosen. However, ABL isstrictly unsupervised systems of ABL, EMILE and
relatively inefficient and has only been applied tgzADIOS have not been evaluated on larger corpora,
small corpora. in part due to efficiency constraints.
The second category is that of incremental learn-__
ing systems. An incremental system analyzes a cor- There are known issues with parser evaluation, although a

; bott fashion: h ti discussion of these issues is outside the scope of this,paper
pus In a bottom-up tashion: each ime a New CONpe reader is referred to (Klein, 2005, Chapter 2). We assume

stituent type is found, it is inserted into the corpushe standard evaluation for comparison with previous work.
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3 Issuesfor distributional learning tional systems towards more favourable alignment

patterns, in a system callddirected Alignment. In

There are many issues with distributional Iearningthis system, we define context as the ordered pair
especially when learning from raw text. First, previ—Of left- and’ right-context for a given constituent,

ous systems hypothesize and select constituents e%g-left — Crigni)s WhereClo , andC,igp, are single-

CE?\;I?II_né] todthé: Cp“;lobabll'::]y of tf;)e|L_??nt(a]cxts: ABI‘;jlunits. The atomic units of this system are words, but
val an | use tf] proba III yto prtop?se Learned constituents may also act as context-units.
equivalence classes, or Ine equivalent context prob- o probability of a pattern depends primarily on

ability; ADIOS uses an information gain metric, its contexts, since they are common to all matching

agamn favouring probable- contexts. However, Whegequences. We can reduce the task of finding proba-
learning from raw text, this preference for hypothe-

) ble alignments to simply finding probable context-
ses with more probable contexts means that ope g 4 gp

I ds will seld b dered toxt airs. However, we can reduce this further: for
class words will seldom be considered as contex ' context-pair to be probable, its components must

In POS-based learners, it is possible to align OPEMso be probable. Therefore, rather than enumerat-

clas_s POS context; - These contexts are demo_nstm\g all patterns in the corpus, we direct the alignment
bly important despite low word probabilities, which rocedure towards patterns whegg, 7, and Cyiy:

suggests that selecting contexts on the basis of prog)—

bilitv will be limited i re probable.
abriity will be imited In SUCCESS. The first stage of direction creates an index for the
The second problem relates to word-sense

i ds b hi h hi %orpus, compiling a list of unit types, where units
Alignment proceeds by matching orthographic,, initially words. From this list of types, the most

types, t.’Ut these types can have numerous as;ogia bable 1% are selected asntext-units. These
Sy”‘aCF'C_S‘?f‘SGS- Forexample, tq _plays two dls_tmcéontext—units are the only types allowed to fill the
rol_es: infinitive markc_er or preposn!on. If we allgn rolesCye j; andCyigp in alignment patterns.

using the orthographic type, we will often misalign Alignments are created directly from the context-

words, as Se?” in the foIIowmg allgnmeht: unit index. For each context-unit tokem in the
| gave it E’J the man| in  the grey jacket index, we locatecu in the corpus and create an

Joh d _t in 20 minut . .
onn agree N _See_me i n?"_nu es ., .. alignment pattern, such that: is the left context
Here, we are (mis)aligning a prepositional ‘to’, Wlth(Cleft)- Next, we scan the sequence of words fol-

an infinitive marker. The result would be a correctlyIOWing cu, extending the alignment pattern until an-

identified noun-phrase, ‘the man’, and an incorreci. o ontext-unitcy’ is found, or a fixed length

structure, contradicting both the verb-group ‘10 Se& o shoid is exceeded. dfi is found, it fills the role

and the noun-phrase ‘me’. This problem does nQls right context Cy:41.), and the completed align-

affect EOS-based Igarning systems, as POS tags AEnt pattern is cached; otherwise, the pattern is dis-
unambiguously assigned. regarded

_ Finally, grammar induction systems are typically p;raction permits two forms of valid expressions
|neff|C|er_1t, _vvhl_ch prohibits _trglnmg over Igrge CO i the contexticu — cu'):

pora. Distributional analysis is an expensive proce-

dure, and must be performed for large numbers of 1. nc; ... nc,, where eachc; is a non-context
word sequences. Previous approaches have tended _ )

to enumerate all alignment patterns, of which the 2: €1 -- - ¢n, Where eachr; is a context-unit

best are selected using probabilistic metrics. HOW-I-he first of these forms allows us to examine non-
ever, 9“’9” the preference for probablg alignment% sted alignments. The second allows us to analyze
_th_ere IS c;or_mderable wasted computation here, asted alignments only after inner constituents have
itis on this issue that we shall focus. been learned. These constraints reduce the number
of constituents under consideration at any time to
a manageable level. As a result, we can scan very
Rather than enumerating all word sequences in large numbers of alignment patterns with relatively
corpus, we propose a heuristic for guiding distribulittle overhead.

4 A heuristic approach to alignment
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As an example, consider the following sequence;onstraints on expressions described above. There is

with context units underlined: an important practical issue here: probability sums
put thewhole egg_all the seasonings andegeta- such as that in Equation 2 do no_t decrease when ex-
bles intothe bowl andprocess forl0 seconds until pressions are replaced with equivalence classes. To
smoothly pured . alleviate this problem, we rewrite the units when up-

dating the distribution, but discard paths that match
the current alignment. This prevents looping while
allowing the rewritten paths to contribute to nested
structures.

This would be broken into non-recursive expres
siong:
(put) the (whole egg) , all the (seasonings) and (veg-

etables) into the (bowl) and (process) for (10 sec-

onds) until (smoothly pureed) . 42 Generalizing expression d

These expressions will be replaced by non-termingthe model outlined above is capable of learning
unit representing the class of expressions, such thgicily context-sensitive constituents. While this

each class contains all units across the corpus thgdes allow for nested constituents, it is problematic
occur in the same context: for generalization. Consider the following equiva-

NTO the NT1, all the NT2 and NT3 into the NT2 lence classes, which are proposed relatively early in
Following this generalization nested structures can the NT1 of

be discovered using the same process. the NT2 in

This approach has some interesting parallels with Here, the non-terminals have been assigned on the
chunking techniques, most notably that of functionbasis of context-pairs: NT1 is defined tye — of)
word phrase identification (Smith and Witten, 1993)and NT2 is defined bythe — in). These types are
This similarity is enforced by disallowing nesteddistinct, although intuitively they account for simple
structures. Unlike chunking systems, however, thigoun-phrases. If we then propose an alignment pat-
work will also attempt to recover nested structuree with NT1 asCi., it must be followed by ‘of’,

by means of incremental learning. which removes any possibility of generalizing ‘of’
and ‘in’.
4.1 Selecting alignment patterns We alleviate this problem by generalizing equiv-

The direction process extracts a set of candida®lence classes, using a simple clustering algorithm.
alignments, and from this set we select the bestor each new alignment, we compare the set of ex-
alignment to rewrite as an equivalence class. Prevpressions with all existing expression classes, rank-
ous approaches offer a number of metrics for rankng the comparisons by the degree of overlap with
ing constituents, based around constituent or conte$te current alignment. If this degree of overlap ex-
probability (ABL and CCM), Mutual Information ceeds a fixed threshold, the type of the existing class
(CDC), and information gain (ADIOS). We have im-is assumed; otherwise, a new class is created.
plemented several of these metrics, but our expe-

riences suggest that context probability is the mos4f3 Experiments, results and analysis

successful. To evaluate our algorithm, we follow the standard
The probability of an alignment is effectively the@pproach of comparing the output of our system

sum of all path probabilities through the alignment;With that of a treebank. We use the EVALB algo-
rithm, originally designed for evaluating supervised

P(Cieyt, Crignt) = SP(pathicsirignt)  (2)  parsing systems, with identical configuration to that

of (van Zaanen, 2000). However, we apply our algo-
rithms to a different corpus: the written sub-corpus
of the International Corpus of English, Great Britain
2For_clarity, we have shown all alignments for the given senComponent (henceforth ICE-GB), with punctuation
tence simultaneously. However, the learning process iginc Eemoved. This consists of 438342 words, in 22815

mental, so each alignment would be proposed during a distin X S ~©
learning iteration. sentences. We also include a baseline instantiation

where eactpathic f¢ rigns iS @ unique word sequence
starting withle ft and ending with-ight, under the
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System UP UR Fi CB Recall (%)
FWB 30.0 11.0 16.0] 0.36 Category| Frequency| FWB DA | DAciuster
DA 233 8.0 11.9] 0.30 NP 117776 11.81| 10.83 10.79
DAcusier | 23.6 81 12.0] 0.30 CL 28641| 0.50| 1.21 1.14
VP 50280 | 20.88 | 9.58 9.89
. . . PP 42134| 0.10| 0.67 0.73
Table 1: EVALB results after 500 iterations of Di- SUBP 7474 | 110! 11.05 11.15
rected Alignment applied to ICE-GB, showing both | NONCL 1919 | 4.27 | 22.98 22.98

context-sensitive IDA) and clustered 0 A iy ster)

alignment. The columns represent Unlabeled Preclable 2: Constituent retrieval results for Function-
sion, Unlabeled Recall, Unlabeled F-Score and thé/ord Bracketing (FWB) and Directed Alignment
proportion of sentence with crossing brackets retDA andD A ,s.,), Categorized by gold-type

spectively. (@) DA, top 5 noun-matches of

271
. . . Learned| Recall | Precision
of our algorithm, which chunks text into expres- NTO 461 84.53
sions between function words, which we refer to as mg i-gg g%i
Function-Word Bracketing (FWB). NT4 109 7510
Table 1 summarizes the EVALB scores for two NT10 0.82 84.54
500-iteration runs of Directed Alignment over ICE-
. . .y . (b) DAcluste'ry top 5 noun-
GB: DA is the standard context-sensitive version of matches of 135
the algorithm;D A .5t IS the version with context Learned| Recall| Precision
clustering. FWW B precision is relatively low, with NTO 6.93 87.09
v 30% of d struct g in th NT4 6.48 89.91
only 6 of proposed structures appearing in the NT8 262 4048
treebank. Recall is even lower, with only 11% of NT11 0.86 68.60
structure retrieved. This is unsurprising, as no nested NT10 058| 16.95

constructions are considered.

In comparison, both versions of Directed Align-Table 3: The top five expression classes to match N
ment perform significantly worse, Wit A,  (NOUN) in ICE-GB, ranked by recall.
being only fractionally better than standdbd. Ex-

periments over more learning iterations sugg(_ast thg{ituent types that comprise multiple units, such as
the performance 9D A CONVerges oW B, W'th, repositional-phrases (PP), are seldom recovered.
few nested constituents discovered. Both variants

of the system produce very poor performance, with.3.1 Class generalization
very little nested structure recovered. While these During learning inD A j,s.r, We induce gener-
results seem discouraging, it is worth investigatingilized classes using the expression clustering algo-
system performance further. rithm. This generalization can be evaluated, com-
Table 2, summarizes the success of the algorithmaring induced classes with those in the treebank us-
at discovering different types of constituent. Noténg precision and recall. Table 2(a) shows the top
that these results are unlabeled, so we are examinifige proposed classes matching the type noun (N)
the proportion of each type of constituent in ICE-in ICE-GB during 500 iterations of context-sensitive
GB that has been identified. Here, Directed AlignDirected Alignment. There are 271 types matching
ment exhibits the most success at identifying nomoun, and as can be seen, the top five account for
clauses, of which the primary source of success & very small proportion of all nouns, some 9.46%
short sentence fragments. Around 10% of nouniecall).
phrases (NP), verb-phrases (VP) and subordinate- Table 2(b) shows the same analysis for Directed
phrases (SUBP) were recovered, this limited sudAlignment with class generalization. For noun
cess reflects the nature of the constituents: all threeatches, we can see that there are far fewer pro-
have relatively simple constructions, whereby a sinposed classes (135), and that those classes are much
gle word represents the constituent. In contrast, comore probable, the top five accounting for 17.47%
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(@) Noun Phrases (frequency=123870) iliaries (AUX), sentence-starts (#STA#), pronouns
LEFT START END RIGHT

SYMB | REC | SYMB | REC | SYMB | REC | SYMB | REC (PRON), conjunctions (CONJ), particles (PTCL)
PREP 0.36 ART 0.29 N 0.53 PUNC 0.36 .
v 019 | PRON | 029 | PRON | 019 | V 0.18 and punctuation (PUNC).
#STA# 0.12 N 0.2 N-2 0.11 AUX 0.13
CONJ | 011 | N1 0.06 | PUNC | 0.06 | CONJ | 0.09 From Table 4, we can see that noun-phrases and
PUNC 0.09 ADJ 0.06 NUM 0.04 PREP 0.07 . .
verb-phrases are relatively well-suited to our ap-
(b) Verb Phrases (frequency=50693) proach. First, both types have strong functional
Left Start End Right left- and right-contexts: 58% of NP left-contexts and
SYMB REC SYMB REC SYMB REC SYMB REC .
PRON | 032 | V 068 | V 098 | PREP | 020 50% of NP right-contexts are members of our func-
N 0.26 AUX 0.29 PUNC 0.01 ART 0.16 . ..
PTCL | 011 | AUX1 | 002 | AUX | 000 | PRON | 0.14 tional POS; similarly, 43% of VP left-contexts and
PUNC 0.06 A 0.00 V.2 0.00 ADV 0.13 . . .
coNJ | 005 | ADv | 000 | ADv | 000 | ADJ | 009 49% of VP right-contexts are functional. This means
(c) Prepositional Phrases (frequency=45777) that a p_rob_ablllty—bgsed model of context, such as
— o — RigT ours, will find relatively strong support for these
SYMB REC SYMB REC SYMB REC SYMB REC ini I
> REC [ oqwB [ ReC 1S REC | ovMB | REC types. Second, both NP and VP have minimal unit
v 0.23 | PRERL | 002 | N.2 | 012 | CONJ | 0.0 types: nouns and pronouns for NP; verbs for VP. As
ADV 0.05 ADV 0.01 PUNC 0.08 PREP 0.09
PUNC | 005 | NUM | 000 | PRON | 005 | V 0.07 a consequence, these types tend to carry more proba-
ADJ 0.04 ADV_1 0.00 NUM 0.03 AUX 0.05

bility mass, since shorter sequences tend to be more

i . frequent. We should expect our system to perform
Table 4: The five most frequent Ieft/start/end/rlghtreasomjlbly on NP and VP as a result

POS contexts for NP, VP and PP constituents. In contrast, prepositional-phrases are much less

amenable to distributional analysis. First, PP tend
of nouns in ICE-GB. The algorithm seems to bdo be longer, since they contain NP, and this has
achieving some worthwhile generalization, whichobvious repercussions for alignment probabilities.
is reflected in a slight increase in EVALB scoresMore damagingly, PP contexts are dominated by
for DA..ster- HOwever, this increase is not a sig-open-class words - the top 74% of PP left-contexts
nificant one, suggesting that this generalization iare nouns, verbs and adverbs. Therefore, a purely
not sufficient to support distributional learning. Weprobabilistic distributional approach cannot account
might expect this: attempting to cluster based ofor prepositional-phrases, since learning data is too
the low-frequency and polysemous words in expressparse. Previous approaches have relied upon open-
sions seems likely to produce unreliable clusters. class generalization to reduce this problem, but these

methods suffer from the same problems of data spar-
5 Acloser look at distributional contexts sity, and as such are not reliable enough to resolve

. . . the issue.
The results discussed so far seem discouraging for

the approach. However, there are good reasons why
these results are so poor, and why we can expect

little improvement in the current formulatioq._ We\we have seen that strictly probabilistic distribu-
can show some of these reasons by examining agsna| analysis is not sufficient to learn constituents
tual constituent-context distributions. ~ from raw text. If we are to improve upon this, we
Table 4 shows an analysis of the constituent,st find a way to identify constituents from their
types NP, VP and PP in ICE-GB, against the fivgomponent parts, as well as by contextual analy-
most frequent POS tag@ccurring as left-context, sis The constituent-context distributions in Table 4
constituent-start, constituent-end, and right-contexbive us some clues as to where to start: both noun-
We distinguish the following POS categories as bephrases and prepositional-phrases show very signif-
ing primarily functional, as they account for the majcant constituent-starts, with articles and pronouns
jority of context-units considered by Directed Align'starting 58% of NP, and prepositions starting 94%
ment: prepositions (PREP), articles (ART), auxyf 41| Pp. These functional types would be identified

3The same trends can be shown for words, but a POS anal@S Contexts in Directed Alignment, but the strong re-
sis is preferred for clarity and brevity. lation to their containing constituents would be ig-

Attachment
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nored. System UP UR I CB
DAsTtop | 33.6 141 19.8| 0.42

One method for achieving such an internal rela-

tionship might be to attach contexs to the CXPreStable 5: EVALB results after 500 iterations of Di-

slons with which they co-occur, and WE Propose Uy ey Alignment with STOP attachment applied to
ing such a method here. However, this requires th

- A .
we have some criterion for deciding when and hovT/léE GB (DAsror)

expressions should be attached to their contexts. We Category | Frequency| Recall (%)
use a measure based on STOP arguments (Collins, \N/E 1;(7)258 13-%;
1999), which allows us to condition the decision to PP 12134 1819
insert a constituent boundary on the evidence we see CL 28641 2.97
for doing so. For raw text, the only boundaries that SUBP 7474 12.82

NONCL 1919 22.62

are explicitly marked are at the start and end of sen-

tences, and it is this information we use to declderable 6: Constituent retrieval results f6rAsrop,

when to attach contexts to expressindn other categorized by gold-type

words, if a context is likely to start a sentence, we

assume it is also likely to start a constituent at other

positions within a sentence. strong tendency to end sentences (i.e. there is an
In order to calculate the likelihood of a particu-overall DP is negative), we attach the expression to

lar context wordw occurring at the start or end of aits left-context; if the reverse situation is true, we at-

sentence, we simply use the bigram probabilities béach the expression to its right context. Should the

tweenw and the special symbols START and ENDdifference between these DP fall below a threshold,

which denote the start and end of a sentence respewither context is preferred, and the expression re-

tively. From these probabilities, we calculate Mutuamains unattached.

Information M 1(START,w) and MI(w, END). Let us consider a specific example of attachment.

We prefer MI because it describes the strength ofhe first alignment considered by the system (when

the relation betweem and these special symbolsapplied to ICE-GB) is:

without bias towards more probable words. From

these MI values, we calculateCrectional Prefer-
ence (DP) for the context word: Here, we need to compare the likelihood of seeing a

constituent start with ‘the’ with with the likelihood
dp(w) = MI(w,END) — MI(START,w) (3) of seeing a constituent end with ‘of’. Intuitively,

‘the’ occurs frequently at the start of a sentence, and
This yields a number representing whetheris never at the end. Consequently, it has a high neg-
more likely to start or end a sentence. This numative DP. Meanwhile ‘of’ has a small negative DP.
ber will be zero if we are equally likely to see at In combination, there is a high negative DP, so we
the start or end of a sentence, negativeviis more attach the expression to the left-context, ‘the’.
likely to start a sentence, and positiveuifis is more
likely to end a sentence.

Using DP, we can decide how to attach an expres¥e applied Directed Alignment with attachment
sion to its contexts. For a given alignment, we conbased on STOP argument® 4 srop) to ICE-GB
sider the possibility of attaching the expression tas before, running for 500 iterations. These results
neither context, the left-context, or the right-contextare shown in Table 5. The results are encouraging.
by comparing the DP for the left- and right-contextsUnlabeled precision increased by almost 50%, from
If the left-context shows a strong tendency to star23.6% forD A j,ster t0 33.6%. Likewise, system re-
sentences, and the right-context does not showcall increased dramatically, from 8.1% to 14.1%, up
— ~ some 75%. Crossing-brackets increased slightly, but

For this method to work, we assume that our corpus is se

mented into sentences. This is not the case for speech, but ?@mamed relatively low at 0.42.
learning from text it seems a reasonable assumption. Table 6 shows the breakdown of EVALB scores

the NT1 of

6.1 Experimental Analysis
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for the major non-terminal types, as before. Th& Conclusions

s oot o Honaelle e prsente an ncementalgarar -
prepositional-phrases, with a lesser increase %on system th_at uses heurls_tlcs o |mprove_the effi-
noun-phrase identification. clency of distributional learning. Howeve_:r,_ in tests
over a large corpus, we have shown that it is capable
of learning only a small subset of constituent struc-

_ _ ture. We have analyzed actual constituent-context
The attachment procedure described above is Mogstributions to explain these limitations. This anal-

successful at discovering nested constituents thaajs provides the motivation for a more structured
distributional methods. There are good reasons Wh¥aming method, which incorporates knowledge of
this should be the case. First, attachment compressgsifiable constituent boundaries - the starts and
the corpus, removing the bias towards shorter s@nqs of sentences. This improved system performs
quences. Indeed, the algorithm seems capable gfnificantly better, with a 75% increase in recall
retrieving complex constituents of up to ten wordg,yer distributional methods, and a significant im-

in length during the first 500 iterations. provement at retrieving structures that are problem-
Second, the STOP-conditioning criterion, whileatic for distributional methods alone.

somewhatd hoc in relation to distributional meth-

ods, allows us to assess where constituent bound-

aries are likely to occur. As such, this can be seeReferences

as a rudimentary method for establishing argumemieter Adriaans. 1999. Learning shallow context-free
relations, such as those observed in (Klein, 2005, languages under simple distributions. Technical Re-

Chapter 6). port PP-1999-13, Institute for Logic, Language, and
Computation, Amsterdam.

6.2 Discussion

Despite these improvements, the attachment pro-
cess also makes some systematic mistakes. SomeAtsixander Clark. 2001.  Unsupervised induction of
these may be attributed to discrepancies between theStochastic context free grammars with distributional
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Abstract

We present a simple context-free gram-
matical inference algorithm, and prove
that it is capable of learning an inter-
esting subclass of context-free languages.
We also demonstrate that an implementa-
tion of this algorithm is capable of learn-
ing auxiliary fronting in polar interroga-
tives (AFIPI) in English. This has been
one of the most important test cases in
language acquisition over the last few
decades. We demonstrate that learning
can proceed even in the complete absence
of examples of particular constructions,
and thus that debates about the frequency
of occurrence of such constructions are ir-
relevant. We discuss the implications of
this on the type of innate learning biases
that must be hypothesized to explain first
language acquisition.

1 Introduction

For some years, a particular set of examples has
been used to provide support for nativist theories
of first language acquisition (FLA). These exam-
ples, which hinge around auxiliary inversion in the
formation of questions in English, have been con-
sidered to provide a strong argument in favour of
the nativist claim: that FLA proceeds primarily
through innately specified domain specific mecha-
nisms or knowledge, rather than through the oper-
ation of general-purpose cognitive mechanisms. A

Rémi Eyraud
EURISE
23, rue du Docteur Paul Michelon
42023 Saint-Etienne Cedex 2
France
rem . eyraud@ini v-st-etienne.fr

key point of empirical debate is the frequency of oc-
currence of the forms in question. If these are van-
ishingly rare, or non-existent in the primary linguis-
tic data, and yet children acquire the construction in
question, then the hypothesis that they have innate
knowledge would be supported. But this rests on the
assumption that examples of that specific construc-
tion are necessary for learning to proceed. In this
paper we show that this assumption is false: that this
particular construction can be learned without the
learner being exposed to any examples of that par-
ticular type. Our demonstration is primarily mathe-
matical/computational: we present a simple experi-
ment that demonstrates the applicability of this ap-
proach to this particular problem neatly, but the data
we use is not intended to be a realistic representation
of the primary linguistic data, nor is the particular
algorithm we use suitable for large scale grammar
induction.

We present a general purpose context-free gram-
matical algorithm that is provably correct under a
certain learning criterion. This algorithm incorpo-
rates no domain specific knowledge: it has no spe-
cific information about language; no knowledge of
X-bar schemas, no hidden sources of information to
reveal the structure. It operates purely on unanno-
tated strings of raw text. Obviously, as all learn-
ing algorithms do, it has an implicit learning bias.
This very simple algorithm has a particularly clear
bias, with a simple mathematical description, that al-
lows a remarkably simple characterisation of the set
of languages that it can learn. This algorithm does
not use a statistical learning paradigm that has to be
tested on large quantities of data. Rather it uses a
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symbolic learning paradigm, that works efficiently
with very small quantities of data, while being very
sensitive to noise. We discuss this choice in some
depth below.

For reasons that were first pointed out by Chom-
sky (Chomsky, 1975, pages 129-137), algorithms
of this type are not capable of learning all of nat-
ural language. It turns out, however, that algorithms
based on this approach are sufficiently strong to
learn some key properties of language, such as the
correct rule for forming polar questions.

In the next section we shall describe the dispute
briefly; in the subsequent sections we will describe
the algorithm we use, and the experiments we have
performed.

2 The Dispute

We will present the dispute in traditional terms,
though later we shall analyse some of the assump-
tions implicit in this description. In English, po-
lar interrogatives (yes/no questions) are formed by
fronting an auxiliary, and adding a dummy auxiliary
“do” if the main verb is not an auxiliary. For exam-
ple,

Example 1a The man is hungry.

Example 1b Is the man hungry?

When the subject NP has a relative clause that also
contains an auxiliary, the auxiliary that is moved is
not the auxiliary in the relative clause, but the one in
the main (matrix) clause.

Example 2a The man who is eating is hungry.

Example 2b Is the man who is eating hungry?

An alternative rule would be to move the first oc-
curring auxiliary, i.e. the one in the relative clause,
which would produce the form

Example 2¢ Is the man who eating is hungry?

In some sense, there is no reason that children
should favour the correct rule, rather than the in-
correct one, since they are both of similar com-
plexity and so on. Yet children do in fact, when
provided with the appropriate context, produce sen-
tences of the form of Example 2b, and rarely if ever
produce errors of the form Example 2c (Crain and
Nakayama, 1987). The problem is how to account
for this phenomenon.

Chomsky claimed first, that sentences of the type
in Example 2b are vanishingly rare in the linguis-
tic environment that children are exposed to, yet
when tested they unfailingly produce the correct
form rather than the incorrect Example 2c. This is
put forward as strong evidence in favour of innately
specified language specific knowledge: we shall re-
fer to this view as linguistic nativism.

In a special volume of the Linguistic Review, Pul-
lum and Scholz (Pullum and Scholz, 2002), showed
that in fact sentences of this type are not rare at all.
Much discussion ensued on this empirical question
and the consequences of this in the context of ar-
guments for linguistic nativism. These debates re-
volved around both the methodology employed in
the study, and also the consequences of such claims
for nativist theories. It is fair to say that in spite
of the strength of Pullum and Scholz’s arguments,
nativists remained completely unconvinced by the
overall argument.

(Reali and Christiansen, 2004) present a possible
solution to this problem. They claim that local statis-
tics, effectively n-grams, can be sufficient to indi-
cate to the learner which alternative should be pre-
ferred. However this argument has been carefully re-
butted by (Kam et al., 2005), who show that this ar-
gument relies purely on a phonological coincidence
in English. This is unsurprising since it is implausi-
ble that a flat, finite-state model should be powerful
enough to model a phenomenon that is clearly struc-
ture dependent in this way.

In this paper we argue that the discussion about
the rarity of sentences that exhibit this particular
structure is irrelevant: we show that simple gram-
matical inference algorithms can learn this property
even in the complete absence of sentences of this
particular type. Thus the issue as to how frequently
an infant child will see them is a moot point.

3 Algorithm

Context-free grammatical inference algorithms are
explored in two different communities: in gram-
matical inference and in NLP. The task in NLP is
normally taken to be one of recovering appropri-
ate annotations (Smith and Eisner, 2005) that nor-
mally represent constituent structure (strong learn-
ing), while in grammatical inference, researchers
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are more interested in merely identifying the lan-
guage (weak learning). In both communities, the
best performing algorithms that learn from raw posi-
tive data only , generally rely on some combination
of three heuristics: frequency, information theoretic
measures of constituency, and finally substitutabil-
ity. 2 The first rests on the observation that strings
of words generated by constituents are likely to oc-
cur more frequently than by chance. The second
heuristic looks for information theoretic measures
that may predict boundaries, such as drops in condi-
tional entropy. The third method which is the foun-
dation of the algorithm we use, is based on the distri-
butional analysis of Harris (Harris, 1954). This prin-
ciple has been appealed to by many researchers in
the field of grammatical inference, but these appeals
have normally been informal and heuristic (van Za-
anen, 2000).

In its crudest form we can define it as follows:
given two sentences “I saw a cat over there”, and “I
saw a dog over there” the learner will hypothesize
that “cat” and “dog” are similar, since they appear
in the same context “l saw a ___ there”. Pairs of
sentences of this form can be taken as evidence that
two words, or strings of words are substitutable.

3.1 Preliminaries

We briefly define some notation.

An alphabet X is a finite nonempty set of sym-
bols called letters. A string w over X is a finite se-
quence w = ajas . ..a, Of letters. Let |w| denote
the length of w. In the following, letters will be in-
dicated by a, b, c, ..., strings by u, v, ..., z, and the
empty string by A. Let ¥* be the set of all strings,
the free monoid generated by Y. By a language we
mean any subset . C ¥*. The set of all substrings
of a language L is denoted Sub(L) = {u € T7 :
3l,r, lur € L} (notice that the empty word does not
belong to Sub(L)). We shall assume an order < or
=< on X which we shall extend to >* in the normal
way by saying that u < v if |u| < |v| or |u| = |v]
and w is lexicographically before v.

A grammar is a quadruple G = (V,X, P, S)
where ¥ is a finite alphabet of terminal symbols, V'

We do not consider in this paper the complex and con-
tentious issues around negative data.

2For completeness we should include lexical dependencies
or attraction.

is a finite alphabet of variables or non-terminals, P
is a finite set of production rules, and S € V isa
start symbol.

If P CV x (XUV)T then the grammar is said to
be context-free (CF), and we will write the produc-
tionsas T — w.

We will write uTv = uwwv when T — w € P.
= is the reflexive and transitive closure of =

In general, the definition of a class £ relies on
a class R of abstract machines, here called rep-
resentations, together with a function £ from rep-
resentations to languages, that characterize all and
only the languages of £: (1) VR € R,L(R) € L
and (2) VL € L£,3R € Rsuchthat L(R) = L.
Two representations R; and Ro are equivalent iff
L(R1) = L(R2).

3.2 Learning

We now define our learning criterion. This is identi-
fication in the limit from positive text (Gold, 1967),
with polynomial bounds on data and computation,
but not on errors of prediction (de la Higuera, 1997).

A learning algorithm A for a class of represen-
tations R, is an algorithm that computes a function
from a finite sequence of strings s1, ..., s, t0 R. We
define a presentation of a language L to be an infinite
sequence of elements of L such that every element
of L occurs at least once. Given a presentation, we
can consider the sequence of hypotheses that the al-
gorithm produces, writing R,, = A(sy,...sy) for
the nth such hypothesis.

The algorithm A is said to identify the class R in
the limit if for every R € R, for every presentation
of L(R), there is an N such that for all n > N,
R, = Ry and ﬁ(R) = E(RN).

We further require that the algorithm needs only
polynomially bounded amounts of data and compu-
tation. We use the slightly weaker notion defined by
de la Higuera (de la Higuera, 1997).

Definition A representation class R is identifiable
in the limit from positive data with polynomial time
and data iff there exist two polynomials p(), ¢() and
an algorithm A such that S C L(R)

1. Given a positive sample S of size m A returns
arepresentation R € R in time p(m), such that

2. For each representation R of size n there exists
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a characteristic set C'S of size less than ¢(n)
such that if CS C S, A returns a representation
R’ such that L(R) = L(R).

3.3 Distributional learning

The key to the Harris approach for learning a lan-
guage L, is to look at pairs of strings « and v and to
see whether they occur in the same contexts; that is
to say, to look for pairs of strings of the form [ur and
lvr that are both in L. This can be taken as evidence
that there is a non-terminal symbol that generates
both strings. In the informal descriptions of this that
appear in Harris’s work, there is an ambiguity be-
tween two ideas. The first is that they should appear
in all the same contexts; and the second is that they
should appear in some of the same contexts. We can
write the first criterion as follows:

Vi,r lur € Lifand only if lvr € L (D)

This has also been known in language theory by the
name syntactic congruence, and can be written v, =,
V.

The second, weaker, criterion is

Jl,r lur € Landlvr € L 2

We call this weak substitutability and write it as
u =, v. Clearly u =y, v implies u =y, v when u is
a substring of the language. Any two strings that do
not occur as substrings of the language are obviously
syntactically congruent but not weakly substitutable.

First of all, observe that syntactic congruence is a
purely language theoretic notion that makes no ref-
erence to the grammatical representation of the lan-
guage, but only to the set of strings that occur in
it. However there is an obvious problem: syntac-
tic congruence tells us something very useful about
the language, but all we can observe is weak substi-
tutability.

When working within a Gold-style identification
in the limit (1IL) paradigm, we cannot rely on statis-
tical properties of the input sample, since they will
in general not be generated by random draws from a
fixed distribution. This, as is well known, severely
limits the class of languages that can be learned un-
der this paradigm. However, the comparative sim-
plicity of the IIL paradigm in the form when there
are polynomial constraints on size of characteristic

sets and computation(de la Higuera, 1997) makes it
a suitable starting point for analysis.

Given these restrictions, one solution to this prob-
lem is simply to define a class of languages where
substitutability implies congruence. We call these
the substitutable languages: A language L is substi-
tutable if and only if for every pair of strings u, v,
u =y, v implies v = v. This rather radical so-
lution clearly rules out the syntax of natural lan-
guages, at least if we consider them as strings of
raw words, rather than as strings of lexical or syn-
tactic categories. Lexical ambiguity alone violates
this requirement: consider the sentences “The rose
died”, “The cat died” and “The cat rose from its bas-
ket”. A more serious problem is pairs of sentences
like “John is hungry” and *“John is running”, where
it is not ambiguity in the syntactic category of the
word that causes the problem, but rather ambigu-
ity in the context. Using this assumption, whether
it is true or false, we can then construct a simple
algorithm for grammatical inference, based purely
on the idea that whenever we find a pair of strings
that are weakly substitutable, we can generalise the
hypothesized language so that they are syntactically
congruent.

The algorithm proceeds by constructing a graph
where every substring in the sample defines a node.
An arc is drawn between two nodes if and only if
the two nodes are weakly substitutable with respect
to the sample, i.e. there is an arc between « and v if
and only if we have observed in the sample strings
of the form [ur and lvr. Clearly all of the strings in
the sample will form a clique in this graph (consider
when [ and r are both empty strings). The connected
components of this graph can be computed in time
polynomial in the total size of the sample. If the
language is substitutable then each of these compo-
nents will correspond to a congruence class of the
language.

There are two ways of doing this: one way, which
is perhaps the purest involves defining a reduction
system or semi-Thue system which directly captures
this generalisation process. The second way, which
we present here, will be more familiar to computa-
tional linguists, and involves constructing a gram-
mar.
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3.4 Grammar construction

Simply knowing the syntactic congruence might not
appear to be enough to learn a context-free gram-
mar, but in fact it is. In fact given the syntactic con-
gruence, and a sample of the language, we can sim-
ply write down a grammar in Chomsky normal form,
and under quite weak assumptions this grammar will
converge to a correct grammar for the language.

This construction relies on a simple property of
the syntactic congruence, namely that is in fact a
congruence: i.e.,

u =g vimpliesVl,r lur =g lor

We define the syntactic monoid to be the quo-
tient of the monoid X*/ =;. The monoid operation
[u][v] = [uv] is well defined since if v =1, «’ and
v =g v thenuv =, v'v'.

We can construct a grammar in the following triv-
ial way, from a sample of strings where we are given
the syntactic congruence.

e The non-terminals of the grammar are iden-
tified with the congruence classes of the lan-
guage.

e For any string w = wwv , we add a production
[w] — [u][v].

e For all strings a of length one (i.e. letters of ),
we add productions of the form [a] — a.

e The start symbol is the congruence class which
contains all the strings of the language.

This defines a grammar in CNF. At first sight, this
construction might appear to be completely vacu-
ous, and not to define any strings beyond those in
the sample. The situation where it generalises is
when two different strings are congruent: if uv =
w = w’ = u/v" then we will have two different rules
[w] — [u][v] and [w] — [u'][v'], since [w] is the
same non-terminal as [w'].

A striking feature of this algorithm is that it makes
no attempt to identify which of these congruence
classes correspond to non-terminals in the target
grammar. Indeed that is to some extent an ill-posed
guestion. There are many different ways of assign-
ing constituent structure to sentences, and indeed

some reputable theories of syntax, such as depen-
dency grammars, dispense with the notion of con-
stituent structure all together. De facto standards,
such as the Penn treebank annotations are a some-
what arbitrary compromise among many different
possible analyses. This algorithm instead relies on
the syntactic monoid, which expresses the combina-
torial structure of the language in its purest form.

3.5 Proof

We will now present our main result, with an outline
proof. For a full proof the reader is referred to (Clark
and Eyraud, 2005).

Theorem 1 This algorithm polynomially identi-
fies in the limit the class of substitutable context-free
languages.

Proof (Sketch) We can assume without loss of
generality that the target grammar is in Chomsky
normal form. We first define a characteristic set, that
is to say a set of strings such that whenever the sam-
ple includes the characteristic set, the algorithm will
output a correct grammar.

We define w(a) € X* to be the smallest word,
according to <, generated by « € (X U V)T, For
each non-terminal N € V define ¢(N) to be the
smallest pair of terminal strings ({,r) (extending <
from X* to ¥* x X*, in some way), such that S =
INT.

We can now define the characteristic set C'S =
{lwr|(N — a) € P,(I,7) = ¢(N),w = w(a)}.
The cardinality of this set is at most |P| which
is clearly polynomially bounded. We observe that
the computations involved can all be polynomially
bounded in the total size of the sample.

We next show that whenever the algorithm en-
counters a sample that includes this characteristic
set, it outputs the right grammar. We write G for
the learned grammar. Suppose [u] :*>G v. Then
we can see that « =, v by induction on the max-
imum length of the derivation of v. At each step
we must use some rule [u] = [v'][w']. It is easy
to see that every rule of this type preserves the syn-
tactic congruence of the left and right sides of the
rules. Intuitively, the algorithm will never generate
too large a language, since the languages are sub-
stitutable. Conversely, if we have a derivation of a
string u with respect to the target grammar G, by
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construction of the characteristic set, we will have,
for every production . — M N in the target gram-
mar, a production in the hypothesized grammar of
the form [w(L)] — [w(M)][w(N)], and for every
production of the form L — «a we have a produc-
tion [w(L)] — a. A simple recursive argument
shows that the hypothesized grammar will generate
all the strings in the target language. Thus the gram-
mar will generate all and only the strings required

(QED).
3.6 Related work

This is the first provably correct and efficient gram-
matical inference algorithm for a linguistically in-
teresting class of context-free grammars (but see for
example (Yokomori, 2003) on the class of very sim-
ple grammars). It can also be compared to An-
gluin’s famous work on reversible grammars (An-
gluin, 1982) which inspired a similar paper(Pilato
and Berwick, 1985).

4 Experiments

We decided to see whether this algorithm without
modification could shed some light on the debate
discussed above. The experiments we present here
are not intended to be an exhaustive test of the learn-
ability of natural language. The focus is on deter-
mining whether learning can proceed in the absence
of positive samples, and given only a very weak gen-
eral purpose bias.

4.1 Implementation

We have implemented the algorithm described
above. There are a number of algorithmic issues
that were addressed. First, in order to find which
pairs of strings are substitutable, the naive approach
would be to compare strings pairwise which would
be quadratic in the number of sentences. A more
efficient approach maintains a hashtable mapping
from contexts to congruence classes. Caching hash-
codes, and using a union-find algorithm for merging
classes allows an algorithm that is effectively linear
in the number of sentences.

In order to handle large data sets with thousands
of sentences, it was necessary to modify the al-
gorithm in various ways which slightly altered its
formal properties. However for the experiments
reported here we used a version which performs

the man who is hungry died .

the man ordered dinner .

the man died .

the man is hungry .

is the man hungry ?

the man is ordering dinner .

is the man who is hungry ordering dinner ?
1S the man who hungry is ordering dinner ?

Table 1: Auxiliary fronting data set. Examples
above the line were presented to the algorithm dur-
ing the training phase, and it was tested on examples
below the line.

exactly in line with the mathematical description
above.

4.2 Data

For clarity of exposition, we have used extremely
small artificial data-sets, consisting only of sen-
tences of types that would indubitably occur in the
linguistic experience of a child.

Our first experiments were intended to determine
whether the algorithm could determine the correct
form of a polar question when the noun phrase had a
relative clause, even when the algorithm was not ex-
posed to any examples of that sort of sentence. We
accordingly prepared a small data set shown in Ta-
ble 1. Above the line is the training data that the
algorithm was trained on. It was then tested on all of
the sentences, including the ones below the line. By
construction the algorithm would generate all sen-
tences it has already seen, so it scores correctly on
those. The learned grammar also correctly generated
the correct form and did not generate the final form.

We can see how this happens quite easily since the
simple nature of the algorithm allows a straightfor-
ward analysis. We can see that in the learned gram-
mar “the man” will be congruent to “the man who
is hungry”, since there is a pair of sentences which
differ only by this. Similarly, “hungry” will be con-
gruent to “ordering dinner”. Thus the sentence “is
the man hungry ?” which is in the language, will be
congruent to the correct sentence.

One of the derivations for this sentence would be:
[is the man hungry ?] — [is the man hungry] [?] —
[is the man] [hungry] [?] — [is] [the man] [hungry]
[?] — [is] [the man][who is hungry] [hungry] [?] —
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it rains

it may rain

it may have rained

it may be raining

it has rained

it has been raining

it is raining

it may have been raining
«it may have been rained
it may been have rain
xit may have been rain

Table 2: English auxiliary data. Training data above
the line, and testing data below.

[is] [the man][who is hungry] [ordering dinner] [?].

Our second data set is shown in Table 2, and is a
fragment of the English auxiliary system. This has
also been claimed to be evidence in favour of na-
tivism. This was discussed in some detail by (Pilato
and Berwick, 1985). Again the algorithm correctly
learns.

5 Discussion

Chomsky was among the first to point out the limi-
tations of Harris’s approach, and it is certainly true
that the grammars produced from these toy exam-
ples overgenerate radically. On more realistic lan-
guage samples this algorithm would eventually start
to generate even the incorrect forms of polar ques-
tions.

Given the solution we propose it is worth look-
ing again and examining why nativists have felt that
AFIPI was such an important issue. It appears that
there are several different areas. First, the debate
has always focussed on how to construct the inter-
rogative from the declarative form. The problem
has been cast as finding which auxilary should be
“moved”. Implicit in this is the assumption that the
interrogative structure must be defined with refer-
ence to the declarative, one of the central assump-
tions of traditional transformational grammar. Now,
of course, given our knowledge of many differ-
ent formalisms which can correctly generate these
forms without movement we can see that this as-
sumption is false. There is of course a relation be-
tween these two sentences, a semantic one, but this

does not imply that there need be any particular syn-
tactic relation, and certainly not a “generative” rela-
tion.

Secondly, the view of learning algorithms is very
narrow. It is considered that only sentences of that
exact type could be relevant. We have demonstrated,
if nothing else, that that view is false. The distinction
can be learnt from a set of data that does not include
any example of the exact piece of data required: as
long as the various parts can be learned separately,
the combination will function in the natural way.

A more interesting question is the extent to which
the biases implicit in the learning algorithm are do-
main specific. Clearly the algorithm has a strong
bias. It overgeneralises massively. One of the advan-
tages of the algorithm for the purposes of this paper
is that its triviality allows a remarkably clear and ex-
plicit statement of its bias. But is this bias specific to
the domain of language? It in no way refers to any-
thing specific to the field of language, still less spe-
cific to human language — no references to parts of
speech, or phrases, or even hierarchical phrase struc-
ture. It is now widely recognised that this sort of re-
cursive structure is domain-general (Jackendoff and
Pinker, 2005).

We have selected for this demonstration an algo-
rithm from grammatical inference. A number of sta-
tistical models have been proposed over the last few
years by researchers such as (Klein and Manning,
2002; Klein and Manning, 2004) and (Solan et al.,
2005). These models impressively manage to ex-
tract significant structure from raw data. However,
for our purposes, neither of these models is suitable.
Klein and Manning’s model uses a variety of differ-
ent cues, which combine with some specific initial-
isation and smoothing, and an explicit constraint to
produce binary branching trees. Though very im-
pressive, the model is replete with domain-specific
biases and assumptions. Moreover, it does not learn
a language in the strict sense (a subset of the set of
all strings), though it would be a simple modification
to make it perform such a task. The model by Solan
et al. would be more suitable for this task, but again
the complexity of the algorithm, which has numer-
ous components and heuristics, and the lack of a the-
oretical justification for these heuristics again makes
the task of identifying exactly what these biases are,
and more importantly how domain specific they are,
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a very significant problem.

In this model, the bias of the algorithm is com-
pletely encapsulated in the assumption v = v im-
plies u = v. It is worth pointing out that this does
not even need hierarchical structure — the model
could be implemented purely as a reduction system
or semi-Thue system. The disadvantage of using
that approach is that it is possible to construct some
bizarre examples where the number of reductions
can be exponential.

Using statistical properties of the set of strings,
it is possible to extend these learnability results to
a more substantial class of context free languages,
though it is unlikely that these methods could be ex-
tended to a class that properly contains all natural
languages.

6 Conclusion

We have presented an analysis of the argument that
the acquisition of auxiliary fronting in polar inter-
rogatives supports linguistic nativism. Using a very
simple algorithm based on the ideas of Zellig Har-
ris, with a simple domain-general heuristic, we show
that the empirical question as to the frequency of oc-
currence of polar questions of a certain type in child-
directed speech is a moot point, since the distinction
in question can be learned even when no such sen-
tences occur.
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Abstract

Much work on information extraction has
successfully used gazetteers to recognise
uncommon entities that cannot be reliably
identified from local context alone. Ap-
proaches to such tasks often involve the
use of maximum entropy-style models,
where gazetteers usually appear as highly
informative features in the model. Al-
though such features can improve model
accuracy, they can also introduce hidden
negative effects. In this paper we de-
scribe and analyse these effects and sug-
gest ways in which they may be overcome.
In particular, we show that by quarantin-
ing gazetteer features and training them
in a separate model, then decoding using
a logarithmic opinion pool (Smith et al.,
2005), we may achieve much higher accu-
racy. Finally, we suggest ways in which
other features with gazetteer feature-like
behaviour may be identified.

1 Introduction

In recent years discriminative probabilistic models
have been successfully applied to a number of infor-
mation extraction tasks in natural language process-
ing (NLP), such as named entity recognition (NER)
(McCallum and Li, 2003), noun phrase chunking
(Sha and Pereira, 2003) and information extraction
from research papers (Peng and McCallum, 2004).
Discriminative models offer a significant advantage

Miles Osborne
Division of Informatics
University of Edinburgh

United Kingdom

m | es@ nf. ed. ac. uk

over their generative counterparts by allowing the
specification of powerful, possibly non-independent
features which would be difficult to tractably encode
in a generative model.

In a task such as NER, one sometimes encoun-
ters an entity which is difficult to identify using lo-
cal contextual cues alone because the entity has not
be seen before. In these cases, a gazetteer or dic-
tionary of possible entity identifiers is often useful.
Such identifiers could be names of people, places,
companies or other organisations. Using gazetteers
one may define additional features in the model that
represent the dependencies between a word’s NER
label and its presence in a particular gazetteer. Such
gazetteer features are often highly informative, and
their inclusion in the model should in principle re-
sult in higher model accuracy. However, these fea-
tures can also introduce hidden negative effects tak-
ing the form of labelling errors that the model makes
at places where a model without the gazetteer fea-
tures would have labelled correctly. Consequently,
ensuring optimal usage of gazetteers can be difficult.

In this paper we describe and analyse the labelling
errors made by a model, and show that they gen-
erally result from the model’s over-dependence on
the gazetteer features for making labelling decisions.
By including gazetteer features in the model we
may, in some cases, transfer too much explanatory
dependency to the gazetteer features from the non-
gazetteer features. In order to avoid this problem, a
more careful treatment of these features is required
during training. We demonstrate that a traditional
regularisation approach, where different features are
regularised to different degrees, does not offer a sat-
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isfactory solution. Instead, we show that by training
gazetteer features in a separate model to the other
features, and decoding using a logarithmic opinion
pool (LOP) (Smith et al., 2005), much greater ac-
curacy can be obtained. Finally, we identify other
features with gazetteer feature-like properties and
show that similar results may be obtained using our
method with these features.

We take as our model a linear chain conditional
random field (CRF), and apply it to NER in English.

2 Conditional Random Fields

A linear chain conditional random field (CRF) (Laf-
ferty et al., 2001) defines the conditional probability
of a label sequence S given an observed sequence O
via:

Z(0)

where T is the length of both sequences, Ak are pa-
rameters of the model and Z(0) is a partition func-
tion that ensures that (1) represents a probability dis-
tribution. The functions fi are feature functions rep-
resenting the occurrence of different events in the
sequences Sand 0.

The parameters Ag can be estimated by maximis-
ing the conditional log-likelihood of a set of labelled
training sequences. At the maximum likelihood so-
lution the model satisfies a set of feature constraints,
whereby the expected count of each feature under
the model is equal to its empirical count on the train-
ing data:

1 T+1
p(S| O) =55 SXp ( z Z)\kfk(s—laaaoat)) (1)
t=1

Ep(o,s)[fk] - Ep(s‘o)[fk] = 0, Vk

In general this cannot be solved for the Ay in closed
form, so numerical optimisation must be used. For
our experiments we use the limited memory variable
metric (LMVM) (Sha and Pereira, 2003) routine,
which has become the standard algorithm for CRF
training with a likelihood-based objective function.

To avoid overfitting, a prior distribution over the
model parameters is typically used. A common ex-
ample of this is the Gaussian prior. Use of a prior
involves adding extra terms to the objective and its
derivative. In the case of a Gaussian prior, these ad-
ditional terms involve the mean and variance of the
distribution.

3 Previous Use of Gazetteers

Gazetteers have been widely used in a variety of in-
formation extraction systems, including both rule-
based systems and statistical models. In addition to
lists of people names, locations, etc., recent work
in the biomedical domain has utilised gazetteers of
biological and genetic entities such as gene names
(Finkel et al., 2005; McDonald and Pereira, 2005).
In general gazetteers are thought to provide a useful
source of external knowledge that is helpful when
an entity cannot be identified from knowledge con-
tained solely within the data set used for training.
However, some research has questioned the useful-
ness of gazetteers (Krupka and Hausman, 1998).
Other work has supported the use of gazetteers in
general but has found that lists of only moderate
size are sufficient to provide most of the benefit
(Mikheev et al., 1999). Therefore, to date the ef-
fective use of gazetteers for information extraction
has in general been regarded as a “black art”. In this
paper we explain some of the likely reasons for these
findings, and propose ways to more effectively han-
dle gazetteers when they are used by maxent-style
models.

In work developed independently and in parallel
to the work presented here, Sutton et al. (2006) iden-
tify general problems with gazetteer features and
propose a solution similar to ours. They present re-
sults on NP-chunking in addition to NER, and pro-
vide a slightly more general approach. By contrast,
we motivate the problem more thoroughly through
analysis of the actual errors observed and through
consideration of the success of other candidate solu-
tions, such as traditional regularisation over feature
subsets.

4 Our Experiments

In this section we describe our experimental setup,
and provide results for the baseline models.

41 Task and Dataset

Named entity recognition (NER) involves the iden-
tification of the location and type of pre-defined en-
tities within a sentence. The CRF is presented with
a set of sentences and must label each word so as
to indicate whether the word appears outside an en-
tity, at the beginning of an entity of a certain type or
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within the continuation of an entity of a certain type.

Our results are reported on the CoNLL-2003
shared task English dataset (Sang and Meulder,
2003). For this dataset the entity types are: per-
sons (PER), locations (LOC), organisations (ORG)
and miscellaneous (MISC). The training set consists
of 14,987 sentences and 204,567 tokens, the devel-
opment set consists of 3,466 sentences and 51,578
tokens and the test set consists of 3,684 sentences
and 46,666 tokens.

4.2 Gazetteers

We employ a total of seven gazetteers for our ex-
periments. These cover names of people, places
and organisations. Specifically, we have gazetteers
containing surnames (88,799 entries), female first
names (4,275 entries), male first names (1,219 en-
tries), names of places (27,635 entries), names of
companies (20,638 and 279, 195 entries) and names
of other organisations (425 entries).

4.3 Featureset

Our experiments are centred around two CRF mod-
els, one with and one without gazetteer features.
The model without gazetteer features, which we call
standard, comprises features defined in a window
of five words around the current word. These in-
clude features encoding n-grams of words and POS
tags, and features encoding orthographic properties
of the current word. The orthographic features are
based on those found in (Curran and Clark, 2003).
Examples include whether the current word is capi-
talised, is an initial, contains a digit, contains punc-
tuation, etc. In total there are 450,345 features in the
standar d model.

We call the second model, with gazetteer features,
standar d+g. This includes all the features contained
in the standard model as well as 8,329 gazetteer
features. Our gazetteer features are a typical way
to represent gazetteer information in maxent-style
models. They are divided into two categories: UN-
lexicalised and lexicalised. The unlexicalised fea-
tures model the dependency between a word’s pres-
ence in a gazetteer and its NER label, irrespective
of the word’s identity. The lexicalised features, on
the other hand, include the word’s identity and so
provide more refined word-specific modelling of the

Development Test
Model Unreg. | Reg. | Unreg. | Reg.
standard 88.21 | 89.86 | 81.60 | 83.97
standard+g | 89.19 | 90.40 | 83.10 | 84.70

Table 1: Model F scores

standard+g
v O
T OV 44945 160
T 0O 228 1333

Table 2: Test set errors

gazetteer-NER label dependency.! There are 35 un-
lexicalised gazetteer features and 8,294 lexicalised
gazetteer features, giving a total of 458,675 features
in the standar d+g model.

44 Basdine Results

Table 1 gives F scores for the standard and stan-
dard+g models. Development set scores are in-
cluded for completeness, and are referred to later in
the paper. We show results for both unregularised
and regularised models. The regularised models are
trained with a zero-mean Gaussian prior, with the
variance set using the development data.

We see that, as expected, the presence of the
gazetteer features allows standard+g to outperform
standard, for both the unregularised and regularised
models. To test significance, we use McNemar’s
matched-pairs test (Gillick and Cox, 1989) on point-
wise labelling errors. In each case, the standard+g
model outperforms the standard model at a signif-
icance level of p < 0.02. However, these results
camouflage the fact that the gazetteer features intro-
duce some negative effects, which we explore in the
next section. As such, the real benefit of including
the gazetteer features in standard+g is not fully re-
alised.

5 Problemswith Gazetteer Features

We identify problems with the use of gazetteer fea-
tures by considering test set labelling errors for
both standard and standar d+g. We use regularised
models here as an illustration. Table 2 shows the

IMany gazetteer entries involve strings of words where the
individual words in the string do not appear in the gazetteer in

isolation. For this reason the lexicalised gazetteer features are
not simply determined by the word identity features.
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number of sites (a site being a particular word at a
particular position in a sentence) where labellings
have improved, worsened or remained unchanged
with respect to the gold-standard labelling with the
addition of the gazetteer features. For example, the
value in the top-left cell is the number of sites where
both the standard and standar d+g label words cor-
rectly.

The most interesting cell in the table is the top-
right one, which represents sites where standard is
correctly labelling words but, with the addition of
the gazetteer features, standard+g mislabels them.
At these sites, the addition of the gazetteer features
actually worsens things. How well, then, could
the standard+g model do if it could somehow re-
duce the number of errors in the top-right cell? In
fact, if it had correctly labelled those sites, a signifi-
cantly higher test set F score of 90.36% would have
been obtained. This potential upside suggests much
could be gained from investigating ways of correct-
ing the errors in the top-right cell. It is not clear
whether there exists any approach that could correct
all the errors in the top-right cell while simultane-
ously maintaining the state in the other cells, but ap-
proaches that are able to correct at least some of the
errors should prove worthwhile.

On inspection of the sites where errors in the top-
right cell occur, we observe that some of the er-
rors occur in sequences where no words are in any
gazetteer, so no gazetteer features are active for any
possible labelling of these sequences. In other cases,
the errors occur at sites where some of the gazetteer
features appear to have dictated the label, but have
made an incorrect decision. As a result of these ob-
servations, we classify the errors from the top-right
cell of Table 2 into two types: type A and type B.

51 TypeA Errors

We call type A errors those errors that occur at sites
where gazetteer features seem to have been directly
responsible for the mislabelling. In these cases the
gazetteer features effectively “over-rule” the other
features in the model causing a mislabelling where
the standard model, without the gazetteer features,
correctly labels the word.

An example of a type A error is given in the sen-
tence extract below:

about/ O Heal y/ 1 -LCC

This is the labelling given by standard+g. The cor-
rect label for Heal y here is | - PER. The standard
model is able to decode this correctly as Heal y
appears in the training data with the | - PER label.
The reason for the mislabelling by the standard+g
model is that Heal y appears in both the gazetteer of
place names and the gazetteer of person surnames.
The feature encoding the gazetteer of place names
with the | - LOClabel has a A value of 4.20, while
the feature encoding the gazetteer of surnames with
the | - PERIabel has a A value of 1.96, and the fea-
ture encoding the word Heal y with the | - PER la-
bel has a A value of 0.25. Although other features
both at the word Heal y and at other sites in the sen-
tence contribute to the labelling of Heal vy, the influ-
ence of the first feature above dominates. So in this
case the addition of the gazetteer features has con-
fused things.

52 TypeBErrors

We call type B errors those errors that occur at
sites where the gazetteer features seem to have been
only indirectly responsible for the mislabelling. In
these cases the mislabelling appears to be more at-
tributable to the non-gazetteer features, which are in
some sense less expressive after being trained with
the gazetteer features. Consequently, they are less
able to decode words that they could previously la-
bel correctly.

An example of a type B error is given in the sen-
tence extract below:

Chander paul / O was/ O

This is the labelling given by standard+g. The
correct labelling, given by standard, is | - PER for
Chander paul . In this case no words in the sen-
tence (including the part not shown) are present in
any of the gazetteers so no gazetteer features are ac-
tive for any labelling of the sentence. Consequently,
the gazetteer features do not contribute at all to the
labelling decision. Non-gazetteer features in stan-
dard+g are, however, unable to find the correct la-
belling for Chander paul when they previously
could in the standard model.

For both type A and type B errors it is clear that
the gazetteer features in standard+g are in some
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sense too “powerful” while the non-gazetteers fea-
tures have become too “weak”. The question, then,
is: can we train all the features in the model in a
more sophisticated way so as to correct for these ef-
fects?

6 Feature Dependent Regularisation

One interpretation of the findings of our error analy-
sis above is that the addition of the gazetteer features
to the model is having an implicit over-regularising
effect on the other features. Therefore, is it possible
to adjust for this effect through more careful explicit
regularisation using a prior? Can we directly reg-
ularise the gazetteer features more heavily and the
non-gazetteer features less? We investigate this pos-
sibility in this section.

The standard+g model is regularised by fitting
a single Gaussian variance hyperparameter across
all features. The optimal value for this single hy-
perparameter is 45. We now relax this single con-
straint by allocating a separate variance hyperparam-
eter to different feature subsets, one for the gazetteer
features (Ogaz) and one for the non-gazetteer fea-
tures (Onon-gaz)- The hope is that the differing sub-
sets of features are best regularised using different
prior hyperparameters. This is a natural approach
within most standardly formulated priors for log-
linear models. Clearly, by doing this we increase
the search space significantly. In order to make the
search manageable, we constrain ourselves to three
scenarios: (1) Hold Onon-gaz at 45, and regularise the
gazetteer features a little more by reducing Oggaz. (2)
Hold 0gq; at 45, and regularise the non-gazetteer fea-
tures a little less by increasing Onon-gaz. (3) Simulta-
neously regularise the gazetteer features a little more
than at the single variance optimum, and regularise
the non-gazetteer features a little less.

Table 3 gives representative development set F
scores for each of these three scenarios, with each
scenario separated by a horizontal dividing line. We
see that in general the results do not differ signifi-
cantly from that of the single variance optimum. We
conjecture that the reason for this is that the regu-
larising effect of the gazetteer features on the non-
gazetteer features is due to relatively subtle inter-
actions during training that relate to the dependen-
cies the features encode and how these dependen-

agaz Onon— gaz F score
42 45 90.40
40 45 90.30
45 46 90.39
45 50 90.38

44.8 45.2 90.41
43 47 90.35

Table 3: FDR development set F scores

cies overlap. Regularising different feature subsets
by different amounts with a Gaussian prior does not
directly address these interactions but instead just
rather crudely penalises the magnitude of the pa-
rameter values of different feature sets to different
degrees. Indeed this is true for any standardly for-
mulated prior. It seems therefore that any solution to
the regularising problem should come through more
explicit restricting or removing of the interactions
between gazetteer and non-gazetteer features during
training.

7 Combining Separately Trained Models

We may remove interactions between gazetteer and
non-gazetteer features entirely by quarantining the
gazetteer features and training them in a separate
model. This allows the non-gazetteer features to
be protected from the over-regularising effect of the
gazetteer features. In order to decode taking advan-
tage of the information contained in both models, we
must combine the models in some way. To do this
we use a logarithmic opinion pool (LOP) (Smith
et al., 2005). This is similar to a mixture model,
but uses a weighted multiplicative combination of
models rather than a weighted additive combination.
Given models py and per-model weights Wy, the
LOP distribution is defined by:

1
Zop (0)

Por(S[0) = I_l [Pa(s|0)]"™ 2
a
with Wy > 0 and 5 oWy = 1, and where Z,,(0) is
a normalising function. The weight wy encodes the
dependence of the LOP on model a. In the case of a
CREF, the LOP itself is a CRF and so decoding is no
more complex than for standard CRF decoding.

In order to use a LOP for decoding we must set
the weights Wy in the weighted product. In (Smith et
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Feature Subset Feature Type
sl simple structural features
s2 advanced structural features
n n-grams of words and POS tags
o simple orthographic features
a advanced orthographic features
g gazetteer features

Table 4: standar d+g feature subsets

al., 2005) a procedure is described whereby the (nor-
malised) weights are explicitly trained. In this paper,
however, we only construct LOPs consisting of two
models in each case, one model with gazetteer fea-
tures and one without. We therefore do not require
the weight training procedure as we can easily fit the
two weights (only one of which is free) using the de-
velopment set.

To construct models for the gazetteer and non-
gazetteer features we first partition the feature set of
the standard+g model into the subsets outlined in
Table 4. The simple structural features model label-
label and label-word dependencies, while the ad-
vanced structural features include these features as
well as those modelling label-label-word conjunc-
tions. The simple orthographic features measure
properties of a word such as capitalisation, presence
of a digit, etc., while the advanced orthographic
properties model the occurrence of prefixes and suf-
fixes of varying length.

We create and train different models for the
gazetteer features by adding different feature sub-
sets to the gazetteer features. We regularise these
models in the usual way using a Gaussian prior. In
each case we then combine these models with the
standard model and decode under a LOP.

Table 5 gives results for LOP decoding for the
different model pairs. Results for the standard+g
model are included in the first row for comparison.
For each LOP the hyphen separates the two models
comprising the LOP. So, for example, in the second
row of the table we combine the gazetteer features
with simple structural features in a model, train and
decode with the standard model using a LOP. The
simple structural features are included so as to pro-
vide some basic support to the gazetteer features.

We see from Table 5 that the first two LOPs sig-
nificantly outperform the regularised standard+g

LOP Dev Set | Test Set
standard+g 90.40 84.70
slg-standard 91.34 85.98
s2g-standard 91.32 85.59
s2ng-standard 90.66 84.59
s2nog-standard 90.47 84.92
s2noag-standard 90.56 84.78
Table 5: Reg. LOP F scores
LOP LOP Weights
slg-standard [0.39, 0.61]
s2g-standard [0.29, 0.71]
s2ng-standard [0.43, 0.57]
s2nog-standard [0.33, 0.67]
s2noag-standard [0.39, 0.61]

Table 6: Reg. LOP weights

model (at a significance level of p < 0.01, on both
the test and development sets). By training the
gazetteer features separately we have avoided their
over-regularising effect on the non-gazetteer fea-
tures. This relies on training the gazetteer features
with a relatively small set of other features. This is
illustrated as we read down the table, below the top
two rows. As more features are added to the model
containing the gazetteer features we obtain decreas-
ing test set F scores because the advantage created
from separate training of the features is increasingly
lost.

Table 6 gives the corresponding weights for the
LOPs in Table 5, which are set using the develop-
ment data. We see that in every case the LOP al-
locates a smaller weight to the gazetteer features
model than the non-gazetteer features model and in
doing so restricts the influence that the gazetteer fea-
tures have in the LOP’s labelling decisions.

Table 7, similar to Table 2 earlier, shows test set
labelling errors for the standard model and one of
the LOPs. We take the s2g-standard LOP here for
illustration. We see from the table that the number
of errors in the top-right cell shows a reduction of
29% over the corresponding value in Table 2. We
have therefore reduced the number errors of the type
we were targeting with our approach. The approach
has also had the effect of reducing the number of er-
rors in the bottom-right cell, which further improves
model accuracy.

All the LOPs in Table 5 contain regularised mod-
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s2g-standard LOP

v O
T vV 4491 114
T O 305 1,256

Table 7: Test set errors

LOP Dev Set | Test Set
slg-standard 90.58 84.87
s2g-standard 90.70 84.28

s2ng-standard 89.70 84.01
s2nog-standard 89.48 83.99
s2noag-standard 89.40 83.70

Table 8: Unreg. LOP F scores

els. Table 8 gives test set F scores for the cor-
responding LOPs constructed from unregularised
models. As we would expect, the scores are lower
than those in Table 5. However, it is interesting to
note that the slg-standard LOP still outperforms
the regularised standar d+g model.

In summary, by training the gazetteer features
and non-gazetteer features in separate models and
decoding using a LOP, we are able to overcome
the problems described in earlier sections and can
achieve much higher accuracy. This shows that
successfully deploying gazetteer features within
maxent-style models should involve careful consid-
eration of restrictions on how features interact with
each other, rather than simply considering the abso-
lute values of feature parameters.

8 Gazetteer-Like Features

So far our discussion has focused on gazetteer fea-
tures. However, we would expect that the problems
we have described and dealt with in the last sec-
tion also occur with other types of features that have
similar properties to gazetteer features. By applying
similar treatment to these features during training we
may be able harness their usefulness to a greater de-
gree than is currently the case when training in a sin-
gle model. So how can we identify these features?
The task of identifying the optimal partitioning
for creation of models in the previous section is in
general a hard problem as it relies on clustering the
features based on their explanatory power relative to
all other clusters. It may be possible, however, to de-
vise some heuristics that approximately correspond

to the salient properties of gazetteer features (with
respect to the clustering) and which can then be used
to identify other features that have these properties.
In this section we consider three such heuristics. All
of these heuristics are motivated by the observation
that gazetteer features are both highly discriminative
and generally very sparse.

Family Singleton Features We define a feature
family as a set of features that have the same con-
junction of predicates defined on the observations.
Hence they differ from each other only in the NER
label that they encode. Family singleton features
are features that have a count of 1 in the training
data when all other members of that feature family
have zero counts. These features have a flavour of
gazetteer features in that they represent the fact that
the conjunction of observation predicates they en-
code is highly predictive of the corresponding NER
label, and that they are also very sparse.

Family n-ton Features These are features that
have a count of n (greater than 1) in the training
data when all other members of that feature family
have zero counts. They are similar to family sin-
gleton features, but exhibit gazetteer-like properties
less and less as the value of nis increased because a
larger value of N represents less sparsity.

Loner Features These are features which occur
with a low mean number of other features in the
training data. They are similar to gazetteer features
in that, at the points where they occur, they are in
some sense being relied upon more than most fea-
tures to explain the data. To create loner feature sets
we rank all features in the standar d+g model based
on the mean number of other features they are ob-
served with in the training data, then we take subsets
of increasing size. We present results for subsets of
size 500, 1000, 5000 and 10000.

For each of these categories of features we add
simple structural features (the Sl set from earlier),
to provide basic structural support, and then train a
regularised model. We also train a regularised model
consisting of all features in standard+g except the
features from the category in question. We decode
these model pairs under a LOP as described earlier.

Table 9 gives test set F scores for LOPs cre-
ated from each of the categories of features above
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LOP Test Set
FSF 85.79
FnF 84.78
LF 500 85.80
LF 1000 85.70
LF 5000 85.77
LF 10000 85.62

Table 9: Reg. LOP F scores

(with abbreviated names derived from the category
names). The results show that for the family single-
ton features and each of the loner feature sets we
obtain LOPs that significantly outperform the reg-
ularised standard+g model (p < 0.0002 in every
case). The family n-ton features LOP does not do
as well, but that is probably due to the fact that some
of the features in this set have a large value of n and
so behave much less like gazetteer features.

In summary, we obtain the same pattern of results
using our quarantined training and LOP decoding
method with these categories of features that we do
with the gazetteer features. We conclude that the
problems with gazetteer features that we have iden-
tified in this paper are exhibited by general discrim-
inative features with gazetteer feature-like proper-
ties, and our method is also successful with these
more general features. Clearly, the heuristics that
we have devised in this section are very simple, and
it is likely that with more careful engineering better
feature partitions can be found.

9 Conclusion and futurework

In this paper we have identified and analysed nega-
tive effects that can be introduced to maxent-style
models by the inclusion of highly discriminative
gazetteer features. We have shown that such ef-
fects manifest themselves through errors that gen-
erally result from the model’s over-dependence on
the gazetteer features for decision making. To over-
come this problem a more careful treatment of these
features is required during training. We have pro-
posed a solution that involves quarantining the fea-
tures and training them separately to the other fea-
tures in the model, then decoding the separate mod-
els with a logarithmic opinion pool. In fact, the LOP
provides a natural way to handle the problem, with
different constituent models for the different fea-

ture types. The method leads to much greater ac-
curacy, and allows the power of gazetteer features
to be more effectively harnessed. Finally, we have
identified other feature sets with gazetteer feature-
like properties and shown that similar results may be
obtained using our method with these feature sets.

In this paper we defined intuitively-motivated fea-
ture partitions (gazetteer feature-based or otherwise)
using heuristics. In future work we will focus on au-
tomatically determining such partitions.
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Abstract Currently available entity lists contain a small
fraction of named entities, but there are orders of
We present a novel context pattern in- magnitude more present in the unlabeled Hata
duction method for information extrac- this paper, we test the following hypotheses:

tion, specifically named entity extraction.

Using this method, we extended several
classes of seed entity lists into much larger
high-precision lists. Using token member-

ship in these extended lists as additional i. New entity instances of the same category can
features, we improved the accuracy of a be extracted from unlabeled data with the in-

conditional random field-based named en- duced patterns to create high-precision exten-
tity tagger. In contrast, features derived sions of the seed lists.

from the seed lists decreased extractor ac-

curacy. iii. Features derived from token membership in the
extended lists improve the accuracy of learned
named-entity taggers.

i. Starting with a few seed entities, it is possible
to induce high-precision context patterns by ex-
ploiting entity context redundancy.

1 Introduction

) o . Previous approaches to context pattern induc-
Partial entity lists and massive amounts of unlaﬁon were described by Riloff and Jones (1999)

beled data are becoming available with the grOWthichtein and Gravano (2000), Thelen and Riloff
of the Web as well as the increased availability OEZOOZ) Lin et al. (2003), and Etzioni et al. (2005)
specialized corpora and entity lists. For example,nony others. The main advance in the present
the primary public resource for biomedical researchy a4 is the combination of grammatical induction

MEDLINE, contains over 13 million entries and is 5 gtatistical techniques to create high-precision
growing at an accelerating rate. Combined Wltfbattemsl

t_hesc_e large corpora, the recent availapility of.entity The paper is organized as follows. Section 2 de-
lists in those domains has opened up interesting OBz ipes our pattern induction algorithm. Section 3

portunities and challenges. Such lists are never corgg,,ys how to extend seed sets with entities extracted
plete and suffer from sampling biases, but we woulg}y, e natterns from unlabeled data. Section 4 gives

like to exploit them, in combination with large un- oy e rimental results, and Section 5 compares our
labeled corpora, to speed up the creation of 'nforr'nethod with previous work.

mation extraction systems for different domains an
languages. In this paper, we concentrate on explor- 'For example, based on approximate matching, there is an
. . . overlap of only 22 organizations between the 2403 organiza-
ing utility of such resources for named entity extrac

] fions present in CoNLL-2003 shared task training data aed th
tion. Fortune-500 list.
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2 Context Pattern Induction 2.2 Trigger Word Selection

The overall method for inducing entity context pat—Tc_’ induce patterns, we need to determine their starts.
terns and extending entity lists is as follows: Itis reasonable to assume that some tokens are more
specific to particular entity classes than others. For
1. LetE = seed set] = text corpus. example, in the examples shown aboggpression
can be one such word for gene names. Whenever
one comes across such a token in text, the proba-
bility of finding an entity (of the corresponding en-
3. Selectrigger wordsfrom C' (Section 2.2). tity class) in its vicinity is high. We call such start-
ing tokenstrigger words Trigger words mark the
%eginning of a pattern. It is important to note that
simply selecting the first token of extracted contexts
5. Use induced patterr3 to extract more entities may not be a good way to select trigger words. In
E' (Section 3). such a scheme, we would have to véFyto search
6. RankP and E’ (Section 3.1). for useful pattern starts. Instead of that brute-force
technique, we propose an automatic way of select-

7. If needed, add high scoring entitiesifto £ jng trigger words. A good set of trigger words is

and return to step 2. Otherwise, terminate With.ery important for the quality of induced patterns.
patternsP and extended entity lisE U £’ as

Ideally, we want a trigger word to satisfy the follow-
results. ing:

2. Find the contextg’ of entities inE in the cor-
pusT (Section 2.1).

4. For each trigger word, induce a pattern autom
ton (Section 2.3).

2.1 Extracting Context e Itis frequent in the sef’ of extracted contexts.

Starting with the seed list, we first find occurrences
of seed entities in the unlabeled data. For each such
occurrence, we extract a fixed numbér (context

window size) of tokens immediately preceding and We use a term-weighting method to rank candi-

immediately following the matched entity. As we ... trigger words from entity contexts. IDF (In-

are only interested in modeling the context here, WEarse Document Frequency) was used in our experi-
replace all entity tokens by the single tokeBNT- .

: _ : °ments but any other suitable term-weighting scheme
This token now representssiot in which an entity

. may work comparably. The IDF weight, for a
can occur. Examples of extracted entity contexts aeord w occurring in a corpus is given by:

shown in Table 1. In the work presented in this pa-

e |t is specific to entities of interest and thereby
to extracted contexts.

pers, seeds are entity instances (&gogleis a seed ; | ( >
for organization category). w N
where N is the total number of documents in the
increased expression oENT- in vad mice corpus and,, is the total number of documents con-
the expression 6fENT- mrna was greater tainingw. Now, for each context segment C, we
expression of theENT- gene in mouse select adominating wordd.. given by

d. = arg max f,
Table 1: Extracted contexts of known genes with wee
W =3. There is exactly one dominating word for each
¢ € C. All dominating words for contexts i@’ form

The set of extracted contexts is denoted’hyThe multiset M. Let m,, be the multiplicity of the dom-
next step is to automatically induce high-precisionnating wordw in M. We sortM by decreasingn.,
patterns containing the tokerENT- from such ex- and select the top tokens from this list as potential
tracted contexts. trigger words.
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Selection criteria based on dominating word fre-
guency work better than criteria based on simple
term weight because high term weight words may
be rare in the extracted contexts, but would still be
misleadingly selected for pattern induction. This can
be avoided by using instead the frequency of domi-
nating words within contexts, as we did here.

) Figure 1: Fragment of a 1-reversible automaton
2.3 Automata Induction 9 9

Rather than using individual contexts directly, we

summarize them into automata that contain the most We use a simple form of grammar induction to

significant regularities of the contexts sharing fearn the pattern automata. Grammar induction tech-

given trigger word. This construction allows us toniques have been previously explored for informa-

determine the relative importance of different con:;

; . . fthe f d-back aon extraction (IE) and related tasks. For instance,
text _eatures using a variant of the forward-backwar reitag (1997) used grammatical inference to im-
algorithm from HMMs.

prove precision in IE tasks.

2.3.1 Initia Induction Context segments are short and typically do not
For each trigger Word’ we list the contexts Starti.nVOIVe recursive structures. TherEfore, we chose to
ing with the word. For example, wittexpression” USe 1-reversible automata to represent sets of con-
as the trigger word, the contexts in Table 1 are rdexts. An automatom is k-reversibleiff (1) A is
duced to those in Table 2. Sintexpression” is a deterministic and (24" is deterministic withk to-
left-context trigger word, only one token to the rightkens of lookahead, wherd" is the automaton ob-
of - ENT- is retained. Here, the predictive context@ined by reversing the transitions 4f Wrapper in-
lies to the left of the slot ENT- and a single to- duction usingk-reversiblegrammar is discussed by
ken is retained on the right to mark the slot's righ{Chidlovskii (2000).
boundary. To model predictive right contexts, the to- In the 1-reversible automaton induced for each
ken string can be reversed and the same techniquiigger word, all transitions labeled by a given token
as here applied on the reversed sting. go to the same state, which is identified with that
token. Figure 1 shows a fragment of a 1-reversible
automaton. Solan et al. (2005) describe a similar au-
expression of ENT- in tomaton construction, but they allow multiple transi-
expression of ENT- mrna tions between states to distinguish among sentences.

expression of the ENT- gene Each transitiore = (v, w) in a 1-reversible au-
tomaton A corresponds to a bigramw in the con-

Table 2: Context segments corresponding to triggdfXts used to creaté. We thus assign each transition
word “expression’. the probability

Similar contexts are prepared for each trigger P(wlv) = C(v,w)
word. The context set for each trigger word is then Y C(v,w')
summarized by a pattern automaton with transitions
that match the trigger word and also the wildcargyhere (v, w) is the number of occurrences of the
- ENT- . We expect such automata to model the pohigram vw in contexts forlv’. With this construc-
sition in context of the entity slot and help us extractiony we ensure words will be credited in proportion
more entities of the same class with high precisionyg their frequency in contexts. The automaton may
overgenerate, but that potentially helps generaliza-

2Experiments reported in this paper use predictive left con*
text only. tion.
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2.3.2 Pruning ning unlabeled data using these patterns, we can ex-

The |n|t|a||y induced automata need to be pruneHaCt text Segments which can be substituted for the
to remove transitions with weak evidence so as t8lot token- ENT- . For example, assume that the in-
increase match precision_ duced pattern iéanalyst at - ENT- and” and that

The simplest pruning method is to set a counthe scanned text e is an analyst at the Univer-
thresholdc below which transitions are removed.sity of California and .. By scanning this text us-
However, this is a poor method. Consider state 10 ifng the pattern mentioned above, we can figure out
the automaton of Figure 2, with= 20. Transitions that the textthe University of California” can sub-
(10,11) and(10, 12) will be pruned.C(10,12) < ¢  stitute for = ENT-". This extracted segment is a
but C'(10,11) just falls short ofc. However, from candidate extracted entity. We now need to decide
the transition counts, it looks like the Sequehﬂ:@ whether we should retain all tokens inside a candi-
- ENT-" is very common. In such a case, it is notdate extraction or purge some tokens, sucttfes’

desirable to prunél0,11). Using a local threshold in the example.

may lead to overpruning. One way to handle this problem is to build a
We would like instead to keep transitions that arénguage model of content tokens and retain only

used in relatively many probable paths through théhe maximum likelihood token sequence. However,

automaton. The probability of pathis P(p) = in the current work, the following heuristic which
o.w)ep P(w|v). Then the posterior probability of worked well in practice _is used. chh token in the
edge(v, w) is extracted text segment is labeled eitkeep(K) or
droppable(D). By default, a token is labeled. A
P(v,w) = 2 (vw)ep P (D) token is labeled if it satisfies one of the droppable
’ > P(p) ' criteria. In the experiments reported in this paper,

droppable criteria were whether the token is present
which can be efficiently computed by the forward- bp Iteria were w IS pres

. ) in a stopword list, whether it is non-capitalized, or
backward algorithm (Rabiner, 1989). We can no P P

o . Myhether it is a number.
remove transitions leaving statewhose posterior Once tokens in a candidate extraction are labeled
probability is lower tharp, = k(max,, P(v,w)),

"’ using the above heuristic, the longest token sequence
where0 < k& < 1 controls the degree of pruning,

L . . . ding to th I D K] xKi
with higherk forcing more pruning. All induced and corresponding to the regular expressigb K| «K s

retained and is considered a final extraction. If there

pruned automata are trimmed to remove unreachat}ISeonIy oneK token, that token is retained as the fi-

states. nal extraction. In the example above, the tokens are
f\t:1e<80) labeled“the/D UniversityK of/D California/K” , and
the (18) CENL 9 the extracted entity will b&University of Califor-

of (20) a (40) To handle run-away extractions, we can set a

/' an(2) domain-c_iependent hard limit or_1 the number pf to-
of (20) g kens which can be matched with ENT-". This

stems from the intuition that useful extractions are

an(s) not very long. For example, it is rare that a person

name longer than five tokens.
Figure 2: Automaton to be pruned at stae Tran-
sition counts are shown in parenthesis. 31 Ranking Patternsand Entities
Using the method described above, patterns and
the entities extracted by them from unlabeled data
are paired. But both patterns and extractions vary
Each automaton induced using the method describéd quality, so we need a method for ranking both.
in Sections 2.3-2.3.2 represents high-precision patience, we need to rank both patterns and entities.
terns that start with a given trigger word. By scanThis is difficult given that there we have no nega-

3 Automata as Extractor
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tive labeled data. Seed entities are the only positid Experimental Results

instances that are avallable_. . For the experiments described below, we used 18
Related previous work tried to address this pro illion tokens (31 million documents) of news data

lem. Agichtein and Gravano (2000) seek to extracl%

. . . i§S the source of unlabeled data. We experimented
relations, so their pattern evaluation strategy consid-

: with 500 and 1000 trigger words. The results pre-
ers one of the attributes of an extracted tuple as a . . . .
sented were obtained after a single iteration of the

key. They judge the tuple as a positive or a hegativ . : )
match for the pattern depending on whether there ar8e0mext Pattern Induction algorithm (Section 2).

other extracted values associated with the same key1 English LOC, ORG and PER
Unfortunately, this method is not applicable to entityFOr this experiment, we used as seed sets subsets of

ex:rlfﬁctlonﬁ luati hani dh the entity lists provided with CoNLL-2003 shared
. _Ie ba e.”.‘t tev;ua |onf Ir_:rlep a_tmtsml UZSSOS eredfgsk data& Only multi-token entries were included
similar in spirit to those of Etzioni et al. ( ) an in the seed lists of respective categories (location

Lin et al. (2003). With seeds for multiple classe LOC), person (PER) & organization (ORG) in this

available, we consider seed instances of one cla gse) This was done to partially avoid incorrect
as negative instances for the other classes. A p%t— :

. ) o n . ontext extraction. For example, if the seed entity is
tern is penalized if it extracts entities which belong

o th 4 lists of the other cl i q ‘California” , then the same string present‘lvni-
0 Ihe Seed Ists of Ih€ 0Iner Classes. b _(1?) an versity of California” can be incorrectly considered
neg(p) be respectively the number of distinct pos-

ii q i q racted b term as an instance of LOC. A stoplist was used for drop-
Ve and negative seeds extracted by pa germin 8ing tokens from candidate extractions, as described
contrast to previous work mentioned above, we d

not combin and to caleulate a single In Section 3. Examples of top ranking induced pat-
inepos(p) neg(p) caicu SING'€ terns and extracted entities are shown in Table 9.
accuracy value. Instead, we discard all pattesns

. " Seed list sizes and experimental results are shown
with positiveneg(p) value, as well as patterns whose g .
total i d (distinct) extracti tis | in Table 3. The precision numbers shown in Table 3
o'al posifive see (distinct) ex raction Count 1S 1€sg,q e obtained by manually evaluating 100 randomly
than certain thresholg,itern. This scoring is very

) o %elected instances from each of the extended lists.
conservative. There are several motivations for suc

a conservative scoring. First, we are more interestgdCategory Seed | Patterns Extended Precision
in precision than recall. We believe that with mas- Size | Used | Size
sive corpora, large number of entity instances canLOC 379 | 29 3001 70%
be extracted anyway. High accuracy extractions al- ORG 1597 | 276 33369 85%
low us to reliably (without any human evaluation)| PER 3616 | 265 86265 88%
use extracted entities in subsequent tasks success-

fully (see Section 4.3). Second, in the absence d@ble 3: Results of LOC, ORG & PER entity list ex-
sophisticated pattern evaluation schemes (which Wnsion experiment withpaiern = 10 set manually.
are investigating — Section 6), we feel it is best to

heavily penalize any pattern that extracts even a sin- The overlaf between the induced ORG list and

gle negative instance. the Fortune-500 list has 357 organization names,
Let G be the set of patterns which are retainegyhich is significantly higher than the seed list over-

by the filtering scheme described above. Also, lgkp of 22 (see Section 1). This shows that we have

I(e, p) be an indicator function which takes value Ipeen able to improve coverage considerably.
when entitye is extracted by patterp and 0 other-

wise. The score of, S(e), is given by 4.2 Watch Brand Name

A total of 17 watch brand names were used as
S(e) = Xpecl(e,p)

seeds. In addition to the pattern scoring scheme

This whole process can be iterated by includ=— _ L
A few locally available entities in each category were also

ing extracted er_‘tities whose score is greater than Qided. These seeds are available upon request from thesautho
equal to a certain thresholg,;, to the seed list. 4Using same matching criteria as in Section 1.
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of Section 3.1, only patterns containing sequencieatures in a supervised tagger.
“watch” were finally retained. Entities extracted

With nentity = 2 are shown in Table 5. Extraction

precision is 85.7%.

stantin

Corum, Longines, Lorus, Movado, Accutron, Al-
demars Piguet, Cartier, Chopard, Franck Muller,
IWC, Jaeger-LeCoultre, A. Lange & Sohne, Patek
Philippe, Rolex, Ulysse, Nardin, Vacheron Con-

Table 4: Watch brand name seeds.

Table 5: Extended list of watch brand names aft

single iteration of pattern induction algorithm.

System

Florian et al. (2003),
best single, no list
Zhang and Johnson90.26 (91.00, 89.53)
(2003), no list

CRF baseline, no list

F1 (Precision, Recall
89.94 (91.37, 88.56)

89.52 (90.39, 88.66)

Table 6: Baseline comparison on 4 categories (LOC,
ORG, PER, MISC) on Test-a dataset.

Rolex Fossil Swatch

Cartier Tag Heuer Super Bowl

Swiss Chanel SPOT For this experiment, we started with a conditional
Movado Tiffany Sekonda .

Seiko TechnoMarine Rolexes ra_ndom field (Q_RF) (Lafferty et al., 2001) tagger
Gucci Franck Muller | Harry Winston with a competitive baseline (Table 6). The base-

Patek Philippe| _~ Versace | Hampton Spirit line tagger was trainédon the full CONLL-2003

Piaget Raymond Weil | Girard Perregaux . .

Omega Guess Frank Mueller shared task data. We experimented with the LOC,
Citizen § Croton Daviﬁ YurnJan ORG and PER lists that were automatically gener-
Armani Audemars Piguet Chopar ; :

DVD DVDs Chinese ated in Section 4.1. In Ta_ble 7, we show t_he accuracy
Breitling Montres Rolex Armitron of the tagger for the entity types for which we had
Tourneau cD NFL induced lists. The test conditions are just baseline

fFatures with no list membership, baseline plus seed
Ist membership features, and baseline plus induced
list membership features. For completeness, we also
show in Table 8 accuracy on the full CoNLL task

This experiment is interesting for several reasongour entity types) without lists, with seed list only,

First, it shows that the method presented in this pajnq with the three induced lists. The seed lists (Sec-
per is effective even with small number of seed ingion 4.1) were prepared from training data itself and

stances. From this we conclude that the unambigyence with increasing training data size, the model
ous nature of seed instances is much more importagerfitted as it became completely reliant on these
than the size of the seed list. Second, no negatig,oq |ists. From Tables 7 & 8 we see that incor-

information was used during pattern ranking in this,,ration of token membership in the extended lists
experiment. This suggests that for relatively unamsg adgitional membership features led to improve-
biguous categories, itis possible to successfully rankients across categories and at all sizes of training
patterns using positive instances only. data. This also shows that the extended lists are of
good quality, since the tagger is able to extract useful

S ised gel I inert evidence from them.
upervised modeis hormally outperform unsuper- Relatively small sizes of training data pose inter-

vised models in extraction tasks. The downside of .. . o A i .
. o . g esting learning situation and is the case with practi-
supervised learning is expensive training data.

Onala lications. It is encouraging to observe that the
the other hand, massive amounts of unlabeled d (fa P ' 9ing
are readily available. The goal of semi-supervise

dSt features lead to significant improvements in such
learning to combine the best of both worlds. Rece

ases. Also, as can be seen from Table 7 & 8, these
. . ists are effective even with mature taggers trained
research have shown that improvements in super-
) . . . on large amounts of labeled data.
vised taggers are possible by including features de-
rived from unlabeled data (Miller et al., 2004; Liang,m " hic inf i N haract
i .. . andard ortnographnic intormation, such as character n-
2005; Ando and Zhang, 2005). Similarly, aUtomat"grams, capitalization, tokens in immediate context, chiags,

cally generated entity lists can be used as additionahd POS were used as features.

4.3 Extended Listsas Featuresin a Tagger
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Training Data Test-a Test-b
(Tokens) No List | Seed List| Unsup. List| No List | Seed List| Unsup. List
9268 68.16 70.91 72.82 60.30 63.83 65.56
23385 78.36 79.21 81.36 71.44 72.16 75.32
46816 82.08 80.79 83.84 76.44 75.36 79.64
92921 85.34 83.03 87.18 81.32 78.56 83.05
203621 89.71 84.50 91.01 84.03 78.07 85.70

Table 7: CRF tagger F-measure on LOC, ORG, PER extraction.

Training Data Test-a Test-b
(Tokens) No List | Seed List| Unsup. List| No List | Seed List| Unsup. List
9229 68.27 70.93 72.26 61.03 64.52 65.60
204657 89.52 84.30 90.48 83.17 77.20 84.52

Table 8: CRF tagger F-measure on LOC, ORG, PER and MISC ¢xinac

5 Related Work seed lists at high precision, we have successfully in-
cluded membership in these automatically generated

The method presented in this paper is similar ifexicons as features in a high quality named entity
many respects to some of the previous work Ogagger improving its performance.

context pattern induction (Riloff and Jones, 1999; _
Agichtein and Gravano, 2000; Lin et al., 2003; Et6 Conclusion

zioni et al., 2005), but there are important dn‘fer—We have presented a novel language-independent

: ) . . . . Tontext pattern induction method. Starting with a
tion extraction while we are interested in entity ex;

tracti M Adichtei 4G 2000few seed examples, the method induces in an unsu-
raction. Vioreover, Agichtein and \sravano ( ervised way context patterns and extends the seed
depend on an entity tagger to initially tag unlabele

data wh do not h h , LT st by extracting more instances of the same cat-

g1c Wnereas We ¢o nol nats sueh red ieme . oy at fairly high precision from unlabeled data.
pattern learning methods of Riloff and Jones (1999) ., \"o1e able to mprove a CRF-based high quality
and the generic extraction patterns of Etzioni et ah

. . amed entity tagger by using membership in these
(2005) use language-specific information (for eXamélutomaticalIy generated lists as additional features.

ple, chunks). In contrast, the method presented herePattern and entity ranking methods need further

is language independent. For instance, the Engl'?r%estigation. Thorough comparison with previ-

pattern induction system presented here was appli% sly proposed methods also needs to be carried out.

on German data_ without any change. Also, in th%lso, it will be interesting to see whether the fea-
current method, induced automata compactly repre-

?ures enerated in this paper complement some of
sent all induced patterns. The patterns induced d hap P

‘%He other methods (Miller et al., 2004; Liang, 2005;
Riloff and Jones (1999) extract NPs and that deter; ( ' ) 9 '

) . _ .__Ando and Zhang, 2005) that also generate features
mines the number of tokens to include in a smgl?.
. . ) rom unlabeled data.
extraction. We avoid using such language dependent
chunk information as the patterns in our case includg  Acknowledgements

right® boundary tokens thus explicitly specifying the _
slot in which an entity can occur. Another interest\Ve thank the three anonymous reviewers as well as

ing deviation here from previous work on context/Voiciech Skut, Vrishali Wagle, Louis Monier, and

pattern induction is the fact that on top of extending €t€r Norvig for valuable suggestions. This work is
supported in part by NSF grant EIA-0205448.

®In case of predictive left context.
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Induced LOC Patterns

Extracted LOC Entities

Induced PER Patterns

Extracted PER Entities

troops in- ENT- to us compatriot- ENT- . Tiger Woods
Cup qualifier againstENT- in United States compatriot- ENT- in Andre Agassi
southerr+ ENT- town Japan Rep.- ENT-, Lleyton Hewitt
war - torn- ENT- . South Africa Actor - ENT- is Ernie Els
countries including ENT- . China Sir- ENT- Serena Williams
Bangladesh andENT-, Pakistan Actor - ENT-, Andy Roddick
England in- ENT- in France Tiger Woods - ENT- and Retief Goosen
west of- ENT- and Mexico movie starring ENT- . Vijay Singh
plane crashed inENT- . Israel compatriot- ENT- and Jennifer Capriati
Cup qualifier againstENT- , Pacific movie starring ENT- and Roger Federer

Induced ORG Patterns

Extracted ORG Entities

analyst at ENT- .

companies such asENT- .

analyst with- ENT- in

Boston Red Sox
St. Louis Cardinals
Chicago Cubs

Florida Marlins
Montreal Expos
San Francisco Giants

series against theENT- tonight
Today ’s Schaeffer 's Option Activity Watch featureENT- (
Cardinals and ENT-,

sweep of the ENT- with Red Sox
joint venture with- ENT- ( Cleveland Indians
rivals - ENT- Inc. Chicago White Sox

Friday night 's game againstENT- . Atlanta Braves

Table 9: Top ranking LOC, PER, ORG induced pattern and eetaentity examples.

Percy Liang. 2005. Semi-supervised learning for natural

) i i language MEng. Thesis, MIT
Eugene Agichtein and Luis Gravano. 2000. Snowball:

Extracting relations from large plain-text collections.Winston Lin, Roman Yangarber, and Ralph Grishman.
In Proceedings of the Fifth ACM International Con-  2003. Bootstrapped learning of semantic classes from
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reversible grammar induction.ECAI Workshop on
Machine Learning for Information Extraction
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Abstract

Each year the Conference on Com-
putational Natural Language Learning
(CoNLL)! features a shared task, in which
participants train and test their systems on
exactly the same data sets, in order to bet-
ter compare systems. The tenth CoNLL
(CoNLL-X) saw a shared task on Multi-
lingual Dependency Parsing. In this pa-
per, we describe how treebanks for 13 lan-
guages were converted into the same de-
pendency format and how parsing perfor-
mance was measured. We also give an
overview of the parsing approaches that
participants took and the results that they
achieved. Finally, we try to draw gen-
eral conclusions about multi-lingual pars-
ing: What makes a particular language,
treebank or annotation scheme easier or
harder to parse and which phenomena are
challenging for any dependency parser?

Erwin Marsi
Communication & Cognition
Tilburg University
5000 LE Tilburg, The Netherlands
e.c.marsi @vt . nl

1 Introduction

Previous CoNLL shared tasks focused on NP chunk-
ing (1999), general chunking (2000), clause iden-
tification (2001), named entity recognition (2002,

2003), and semantic role labeling (2004, 2005). This
shared task on full (dependency) parsing is the log-
ical next step. Parsing is an important preprocess-
ing step for many NLP applications and therefore
of considerable practical interest. It is a complex
task and as it is not straightforwardly mappable to a
“classical” segmentation, classification or sequence
prediction problem, it also poses theoretical chal-
lenges to machine learning researchers.

During the last decade, much research has been
done on data-driven parsing and performance has in-
creased steadily. For training these parsers, syntac-
tically annotated corpora (treebanks) of thousands
to tens of thousands of sentences are necessary; so
initially, research has focused on English. Dur-
ing the last few years, however, treebanks for other
languages have become available and some parsers
have been applied to several different languages.
See Section 2 for a more detailed overview of re-

lated previous research.

So far, there has not been much comparison be-
Many thanks to Amit Dubey and Yuval Kry- tween different dependency parsers on exactly the
molowski, the other two organizers of the sharedame data sets (other than for English). One of the
task, for discussions, converting treebanks, writingeasons is the lack of a de-facto standard for an eval-
software and helping with the papérs. uation metric (labeled or unlabeled, separate root ac-
- curacy?), for splitting the data into training and test-
;see http://ilps.science.uva.nIFerikt/sigr_rI_I/conII/ _ ing portions and, in the case of constituency tree-
Thanks also to Alexander Yeh for additional help with the,

paper reviews. His work was made possible by the MITRE CorbamfS converted to dependency form_at' for this C(?n'
poration’s Sponsored Research Program. version. Another reason are the various annotation

Acknowledgement
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schemes and logical data formats used by differeidudson, 1984) and link grammar (Sleator and Tem-
treebanks, which make it tedious to apply a parser foerley, 1993).
many treebanks. We hOpe that this shared task will Some re|ative|y recent rule-based full depen_

improve the situation by introducing a uniform ap-gency parsers are Kurohashi and Nagao (1994) for

proach to dependency parsing. See Section 3 for thepanese, Oflazer (1999) for Turkish, Tapanainen
detailed task definition and Section 4 for informationand Jarvinen (1997) for English and Elworthy

about the conversion of all 13 treebanks. (2000) for English and Japanese.

In this shared task, participants had two to three \yhjje phrase structure parsers are usually evalu-
months to implement a parsing system that could be e with the GEIG/PARSEVAL measures of preci-
trained for all these languages and four days t0 pargg,, and recall over constituents (Black et al., 1991),
unseen test data for each. 19 participant groups sy, (1995) and others have argued for an alterna-
mitted parsed test data. Of these, all but one parsgge ‘gependency-based evaluation. That approach is
all 12 required languages and 13 also parsed the Qpsqeq on a conversion from constituent structure to

tional Bulgarian data. A wide variety of parsing jenendency structure by recursively defining a head
approaches were used: some are extensions of Pfg: oo constituent.

viously published approaches, others are new. See
Section 5 for an overview.
Systems were scored by computing tabeled

The same idea was used by Magerman (1995),
who developed the first “head table” for the Penn
Treebank (Marcus et al., 1994), and Collins (1996),

attachment score (LAS), i.e. the percentage of . L

. - . . hose constituent parser is internally based on prob-

scoring” tokens for which the system had predicted | . .. I S )
abilities of bilexical dependencies, i.e. dependencies

the correct head and dependency label. Punctuation . ,
; etween two words. Collins (1997)'s parser and
tokens were excluded from scoring. Results across . . . .
; . ifs reimplementation and extension by Bikel (2002)

languages and systems varied widely from 37.8%

have by now been applied to a variety of languages:
. 0 :
(worst score on Turkish) to 91.7% (best score ofl | o ollins, 1999), Czech (Collins et al., 1999),
Japanese). See Section 6 for detailed results. .
. . erman (Dubey and Keller, 2003), Spanish (Cowan
However, variations are consistent enough to al-

. . d Collins, 2005), French (Arun and Keller, 2005),
low us to draw some general conclusions. Section £, . : . o
. Lo hinese (Bikel, 2002) and, according to Dan Bikel's
discusses the implications of the results and analyzes .
- . . . \Web page, Arabic.
the remaining problems. Finally, Section 8 describes , ,
possible directions for future research. Eisner (1996) introduced a data-driven depen-
dency parser and compared several probability mod-
2 Previous research els on (English) Penn Treebank data. Kudo and
. ) ) Matsumoto (2000) describe a dependency parser for
Tesniére (1959) mtr_oduged the _|dea of a d'epen(jeng)épanese and Yamada and Matsumoto (2003) an ex-
tree (a “stemma” in his terminology), in Which onqion for English. Nivre's parser has been tested
words stand in direct head-dependent relations, f@g. s\vedish (Nivre et al., 2004), English (Nivre and

representing the syntactic structure of a sentencg.p), 2004), Czech (Nivre and Nilsson, 2005)
Hays (1964) and Gaifman (1965) studied the forg,,garian (Marinov and Nivre, 2005) and Chinese

mal properties oprojective dependency grammars, cheng et al. (2005), while McDonald’s parser has

i.e. those where dependency links are not allowed {g., applied to English (McDonald et al., 2005a),

cross. Mel'€uk (1988) describes a multistratal dex,ach (McDonald et al., 2005b) and, very recently,
pendency grammar, i.e. one that distinguishes bgy,ish (McDonald and Pereira, 20086).
tween several types of dependency relations (mor- ’

phological, syntactic and semantic). Other theories

related to dependency grammar are word grammar Data format, task definition

*Some though had significantly less time: One participamThe training data derived from the original treebanks
registered as late as six days before the test data relesgse (r . . .
istration was a prerequisite to obtain most of the data setd) (see Section 4) and given to the shared task partic-
still went on to submit parsed test data in time. ipants was in a simple column-based format that is
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an extension of Joakim Nivre’s Malt-TAB fornfat resulting from the PHEAD column is guaranteed to
for the shared task and was chosen for its processibg projective (but is not available for all data sets),
simplicity. All the sentences are in one text file andvhereas the structure resulting from the HEAD col-
they are separated by a blank line after each seamn will be non-projective for some sentences of
tence. A sentence consists of one or more tokensome languages (but is always available).

Each token is represented on one line, consisting of 10) PDEPREL: Dependency relation to the
10 fields. Fields are separated from each other byRHEAD, or an underscore if not available.

TAB.® The 10 fields are: As should be obvious from the description above,
1) ID: Token counter, starting at 1 for each newour format assumes that each token has exactly one
sentence. head. Some dependency grammars, and also some

2) FORM: Word form or punctuation symbol. treebanks, allow tokens to have more than one head,
For the Arabic data only, FORM is a concatenatiorlthough often there is a distinction between primary
of the word in Arabic script and its transliteration inand optional secondary relations, e.g. in the Danish
Latin script, separated by an underscore. This re@ependency Treebank (Kromann, 2003), the Dutch
resentation is meant to suit both those that do arpino Treebank (van der Beek et al., 2002b) and
those that do not read Arabic. the German TIGER treebank (Brants et al., 2002).

3) LEMMA : Lemma or stem (depending on theFor this shared task we decided to ignore any ad-
particular treebank) of word form, or an underscorélitional relations. However the data format could
if not available. Like for the FORM, the values for easily be extended with additional optional columns
Arabic are concatenations of two scripts. in the future. Cycles do not occur in the shared task

4) CPOSTAG: Coarse-grained part-of-speechdata but are scored as normal if predicted by parsers.
tag, where the tagset depends on the treebank. The character encoding of all data files is Unicode

5) POSTAG: Fine-grained part-of-speech tag,(specifically UTF-8), which is the only encoding to
where the tagset depends on the treebank. It is ide¢ver all languages and therefore ideally suited for
tical to the CPOSTAG value if no POSTAG is avail-multilingual parsing.
able from the original treebank. While the training data contained all 10 columns

6) FEATS: Unordered set of syntactic and/or(although sometimes only with dummy values, i.e.
morphological features (depending on the particiwnderscores), the test data given to participants con-
lar treebank), or an underscore if not available. Sé@ined only the first 6. Participants’ parsers then
members are separated by a vertical bar ( predicted the HEAD and DEPREL columns (any

7) HEAD: Head of the current token, which is predicted PHEAD and PDEPREL columns were ig-

either a value of ID, or zero (0") if the token links Nored). The predicted values were compargd. to the
to the virtual root node of the sentence. Note the0!d standard HEAD and DEPRELThe official

depending on the original treebank annotation, the,@/aluati_on metric is théabeled “attac_hnjf—:-nt score
may be multiple tokens with a HEAD value of zero.(LAS), i.e. the percentage of “scoring™ tokens for
8) DEPREL: Dependency relation to the HEAD. Which the system has predicted the correct HEAD

The set of dependency relations depends on the p&?d DEPREL. The evaluation script defines a non-

ticular treebank. The dependency relation of a tgScoring token as a token W_here all characters of the
ken with HEAD=0 may be meaningful or simply FORM value have the Unicode category property

i H ,,7
'ROOT’ (also depending on the treebank). “Punctuation”.
9) PHEAD: Projective head of current token, °The official scoring scripeval . pl , data sets for some

which is either a value of ID or zero ('0’), or an un- languages and instructions on how to get the rest, the saftwa
! used for the treebank conversions, much documentatioh, ful

derscore if not available. The dependency structuigsuits and other related information will be availablenirthe
- permanent URLht t p: / / deppar se. uvt. nl (also linked

“http://w3.msi.vxu.se/ nivre/research/MaltXML.html from the CoNLL web page).

SConsequently, field values cannot contain TABs. In the ’Seeman per| uni code for the technical details and the
shared task data, field values are also not supposed to cafhrared task website for our reasons for this decision. Note
tain any other whitespace (although unfortunately someespa that an underscore and a percentage sign also have the @nicod
slipped through in the Spanish data). “Punctuation” property.
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We tried to take a test set that was representatii@anish Dependency TreebaddkKromann, 2003);
of the genres in a treebank and did not cut througBwedish Talbanken05* (Teleman, 1974; Einars-
text samples. We also tried to document how weon, 1976; Nilsson et al., 2005Jurkish: Metu-
selected this sét.We aimed at having roughly the Sabanci treebafk (Oflazer et al., 2003; Atalay et
same size for the test sets of all languages: 5,0@0., 2003).
scoring tokens. This is not an exact requirement as The conversion of these treebanks was the easi-
we do not want to cut sentences in half. The relest task as the linguistic representation was already
atively small size of the test set means that evewhat we needed, so the information only had to be
for the smallest treebanks the majority of tokens isonverted from SGML or XML to the shared task
available for training, and the equal size means th&rmat. Also, the relevant information had to be dis-
for the overall ranking of participants, we can sim-ributed appropriately over the CPOSTAG, POSTAG
ply compute the score on the concatenation of alnd FEATS columns.
test sets. For the Swedish data, no predefined distinction
into coarse and fine-grained PoS was available, so
the two columns contain identical values in our for-

In selecting the treebanks, practical consideratiorf§at. For the Czech data, we sampled both our train-
were the major factor. Treebanks had to be actualj?d and test data from the official “training” partition
available, large enough, have a license that allowefcause only that one contains gold standard PoS
free use for research or kind treebank providers wh@ds, which is also what is used in most other data
temporarily waived the fee for the shared task, angets. The Czech DEPREL values include the suf-
be suitable for conversion into the common formafixes to mark coordination, apposition and parenthe-
within the limited time. In addition, we aimed at aSiS, While these have been ignored during the con-
broad coverage of different language famife#s version of the much smaller Slovene data. For the
a general rule, we did not manually correct errors if\rabic data, sentences with missing annotation were
treebanks if we discovered some during the convefltered out during the conversion.

sion, see also Buchholz and Green (2006), although The Turkish treebank posed a special problem
we did report them to the treebank providers anfecause it analyzes each word as a sequence of

4 Treebanks and their conversion

several got corrected by them. one or more inflectional groups (IGs). Each IG
consists of either a stem or a derivational suffix
4.1 Dependency treebanks plus all the inflectional suffixes belonging to that

We used the following six dependency treebankstem/derivational suffix. The head of a whole word
Czech Prague Dependency Treebdhk(PDT) is not just another word but a specific IG of another
(Bohmova et al., 2003Arabic: Prague Arabic De- word® One can easily map this representation to
pendency Treebahk (PADT) (Haji¢ et al., 2004; one in which the head of a word is a word but that
Smrz et al., 2002)Slovene Slovene Dependency treebank for us.

Treebank? (SDT) (Déeroski et al., 2006)Danish: BMany thanks to Matthias Trautner Kromann and assistants

- for creating the DDT and releasing it under the GNU General
®See the shared task website for a more detailed discussigpublic License and to Joakim Nivre, Johan Hall and Jens Nils-
®That was also the reason why we decided not to includson for the conversion of DDT to Malt-XML.

a fifth Germanic language (English) although the freelylavai  *Many thanks to Jens Nilsson, Johan Hall and Joakim Nivre

able SUSANNE treebank (Sampson, 1995) or possibly the Perigr the conversion of the original Talbanken to Talbanken05

Treebank would have qualified otherwise. and for making it freely available for research purposestand
Many thanks to Jan Haiji¢ for granting the temporary li-Joakim Nivre again for prompt and proper respons to all our

cense for CoNLL-X and talking to LDC about it, to Christo- questions.

pher Cieri for arranging distribution through LDC and to Jon  ®Many thanks to Bilge Say and Kemal Oflazer for grant-

Castelletto for handling the distribution. ing the license for CoNLL-X and answering questions and to
Many thanks to Yuval Krymolowski for converting the tree- Gillsen Eryigit for making many corrections to the tregband

bank, Otakar Smrz for valuable help during the conversimh a discussing some aspects of the conversion.

thanks again to Jan Haji¢, Christopher Cieri and Tony Gaste 1°This is a bit like saying that in “the usefulness of X for

letto. Y”, “for Y” links to “use-" and not to “usefulness”. Only that
2Many thanks to the SDT people for granting the speciain Turkish, “use”, “full” and “ness” each could have their ow

license for CoNLL-X and to Tomaz Erjavec for converting theinflectional suffixes attached to them.
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mapping would lose information and it is not cleartreebank® (Chen et al., 2003).

whether the result is linguistically meaningful, prac- Their conversion to dependency format required
tically useful, or even easier to parse because in thie definition of a head table. Fortunately, in con-
original representation, each IG has its own PoS anghst to the Penn Treebank for which the head ta-
morphological features, so itis not clear how thatinble is based on PG3 we could use the gram-
formation should be represented if all IGs of a wordnatical functions annotated in these treebanks.
are conflated. We therefore chose to represent eatherefore, head rules are often of the form: the
IG as a separate token in our format. To make thikead child of a VP/clause is the child with the
result a connected dependency structure, we defingiD/predicator/hd/Head function. The DEPREL
the HEAD of each non-word-final IG to be the fol-value for a token is the function of the biggest con-
lowing I1G and the DEPREL to be “DERIV”. We as- stituent of which this token is the lexical head. If the
signed the stem of the word to the first IG's LEMMA constituent comprising the complete sentence did
column, with all non-first IGs having LEMMA_®,  not have a function, we gave its lexical head token
and the actual word form to the last IG, with all non-the DEPREL “ROOT".

last IGs having FORM_. As already mentioned in  For the Chinese treebank, most functions are not
Section 3, the underscore has the punctuation chgjrammatical functions (such as “subject”, “object”)
acter property, therefore non-last IGs (whose HEABut semantic roles (such as “agent”, “theme”). For
and DEPREL were introduced by us) are not scoringhe Portuguese treebank, the conversion was compli-
tokens. We also attached or reattached punctuatieated by the fact that a detailed specification existed
(see the README available at the shared task welvhich tokens should be the head of which other to-
site for details.) kens, e.g. the finite verb must be the head of the
subject and the complementzier but the main verb
must be the head of the complements and adjuicts.
Given that the Floresta sinta(c)tica does not use tra-
We used the following five treebanks of this typeditional VP constituents but rather verbal chunks
German: TIGER treebank’ (Brants et al., 2002), (Consisting main|y of Verbs), a Simp|e Magerman-
Japanese Japanese Verbmobil treebafiKawata Collins-style head table was not sufficient to derive
and Bartels, 2000)Portuguese The Bosque part the required dependency structure. Instead we used
of the Floresta sinta(c)ti¢d (Afonso et al., 2002); a head table that defined several types of heads (syn-

Dutch: Alpino treebank® (van der Beek et al., tactic, semantic) and a link table that specified what
2002b; van der Beek et al., 2002&hinese Sinica  |inked to which type of hea&*

Y"Many thanks to the TIGER team for allowing us to use the Another problem existed with the Dutch tree-
treebank for the shared task and to Amit Dubey for convertingpank. Its original PoS tag set is very coarse and

the treebank. _ _ the PoS and the word stem information is not very
Many thanks to Yasuhiro Kawata, Julia Bartels and col- . 25 .
leagues from Tibingen University for the constructiontué t T€liable=> We therefore decided to retag the tree-

original Verbmobil treebank for Japanese and to Sandrdefilb bank automatically using the Memory-Based Tag-
for providing the data and granting the special license fober (MBT) (Daelemans et al., 1996) which uses a
CoNLL-X. . . - .

19\iany thanks to Diana Santos, Eckhard Bick and otheVerY fine-grained tag set. However, this created a

Floresta sint(c)tica project members for creating thebme& problem with multiwords. MBT does not have the

and making it publicly available, for answering many quassi ; ;

about the treebank (Diana and Eckhard), for correcting -probconcept of multiwords and therefore tags all of their

lems and making new releases (Diana), and for sharing script—,————— o .

and explaining the head rules implemented in them (Eckhard) ~ Many thanks to Academia Sinica for granting the tempo-

Thanks also to Jason Baldridge for useful discussions and {8'Y license for CoNLL-X, to Keh-Jiann Chen for answering

Ben Wing for independently reporting problems which DiangPUr questions and to Amit Dubey for converting the treebank.

then fixed. Zcontaining rules such as: the head child of a VP is the left-
2OMany thanks to Gertjan van Noord and the other people dpost “to”, or el_se the leftmost past tense verb, or else etc.

the University of Groningen for creating the Alpino Treekan - Eckhard Bick, p.c.

and releasing it for free, to Gertjan van Noord for answesilg **See the conversion scriffosque2MALT. py and the

our questions and for providing extra test material and ttaAn README file at the shared task website for details.

van den Bosch for help with the memory-based tagger. Bhttp://www.let.rug.nl/vannoord/trees/Papers/difts.p

4.2 Phrase structure with functions for all
constituents
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components individually. As Alpino does not pro-tion)”.2°
vide an internal structure for multiwords, we had
to treat multiwords as one token. However, w® Approaches

then lack a proper PoS for the multiword. AfterTable 2 tries to give an overview of the wide variety

mucdhtg'sgsgg_}jAVé%&%\ClS?d IOI?SS'g dn e"’_‘tCh m d“'%’f parsing approaches used by participants. We refer
word the (multiword unit) an to the individual papers for details. There are several

a POSTAG which is the concgtenatlon of the Po%imensions along which to classify approaches.
of all the components as predicted by MBT (sepa-

rated by an underscore). Likewise, the FEATS arg.1 Top-down, bottom-up

a concatenation of the morphological features of a e
. . -Phrase structure parsers are often classified in terms
components. This approach resulted in many dif-

. of the parsing order: top-down, bottom-up or var-
ferent POSTAG values for the training set and even parsing P P
. . . Ious combinations. For dependency parsing, there
in unseen values in the test set. It remains to be . . .
s?em to be two different interpretations of the term

tzftseﬂt\gg(feé?e;?lsjiaapt?]g)r??}:]eri?iulitsglm data sets b"'n't:)ottom-up”. Nivre and Scholz (2004) uses this
P 9 ginal. term with reference to Yamada and Matsumoto
(2003), whose parser has to find all children of a
token before it can attach that token to its head.
We used two treebanks of this typeSpanish  we will refer to this as “bottom-up-trees”. An-
Cast3LB® (Civit Torruella and Marti Antonin, other use of “bottom-up” is due to Eisner (1996),
2002; Navarro et al., 2003; Civit et al., 200Bul-  who introduced the notion of a “span”. A span
garian: BulTreeBanK’ (Simov et al., 2002; Simov consists of a potential dependency arbetween
and Osenova, 2003; Simov et al., 2004; Osenova amfjo tokensi and j and all those dependency arcs
Simov, 2004; Simov et al., 2005). that would be spanned by, i.e. all arcs between
Converting a phrase structure treebank with onljokensk and ! with i < k,I < j. Parsing in
a few functions to a dependency format usually rethis order means that the parser has to find all chil-
quires linguistic competence in the treebank’s landren and siblings on one side of a token before it
guage in order to create the head table and missan attach that token to a head on the same side.
ing function labels. We are grateful to Chanev eThis approach assumes projective dependency struc-
al. (2006) for converting the BulTreeBank to thetures. Eisner called this approach simply “bottom-
shared task format and to Montserrat Civit for proup”, while Nivre, whose parser implicitly also fol-
viding us with a head table and a function mappingpws this order, called it “top-down/bottom-up” to

4.3 Phrase structure with some functions

for Cast3LB28 distinguish it from the pure “bottom-up(-trees)” or-
o der of Yamada and Matsumoto (2003). To avoid
4.4 Data set characteristics confusion, we will refer to this order as “bottom-up-

Table 1 shows details of all data sets. FollowingPans’.
Nivre and Nilsson (2005) we use the following def-
inition: “an arc (i, j) is projective iff all nodes oc-

curring between i and j are dominated by i (wherd>iven that the parser needs to predict the HEAD as

dominates is the transitive closure of the arc relavell as the DEPREL value, different approaches are
possible: predict the (probabilities of the) HEADs

Z8Many thanks to Montserrat Civit and Toni Marti for allow- of all tokens first, or predict the (probabilities of
ing us to use Cast3LB for CoNLL-X and to Amit Dubey for ’

5.2 Unlabeled parsing versus labeling

converting the treebank. the) DEPRELs of all tokens first, or predict the
~ #'Many thanks to Kiril Simov and Petya Osenova for allow-HEAD and DEPREL of one token before predict-
ing us to use the BulTreeBank for CONLL-X. ing these values for the next token. Within the

ZA|though unfortunately, due to a bug, the function list was;. .
not used and the Spanish data in the shared task ended up \mtrﬁt approach, each depc_endency can be labeled in-
many DEPREL values being simply‘ By the time we dis- dependently (Corston-Oliver and Aue, 2006) or a
covered this, the test data release date was very close andwe
decided not to release new bug-fixed training material titat | 2Thanks to Joakim Nivre for explaining this.
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\ | Ar] Ch| Cz| Da] Dul Ge] Ja Po| SI| Sp| Sw| Tu| Bu|
lang. fam. ||Sem| Sin.| Sla.| Ger.| Ger.| Ger.| Jap/Rom. Sla.|Rom. Ger.| Ura.| Sla.
genres 1. ne 6 3| 8+| 5+|1:ne| 1l:di| 1. nell:no 9 4+ 8| 12
annotation d c+f d d| dc+f| dc+f| c+f| dc+f d| c(+f) |dc+f/d d| c+t
training data
tokens (k) 54 337|1249 94| 195| 700| 151 207 29| 89| 191] 58| 190
%non-scor.|| 8.8 20.8| 14.9] 13.9] 11.3 11.5] 11.6] 14.2| 17.3] 12.6| 11.0/°33.1] 14.4

units (k) 1.5 57.0 72.7| 5.2| 13.3] 39.2| 17.0, 9.1] 1.5/ 3.3 11.00 5.0| 12.8
tokens/unit || €37.2 d5.9] 17.2| 18.2| 14.6| 17.8| ©8.9| 22.8| 18.7| 27.0] 17.3] 11.5| 14.8
LEMMA f(+) — +| - + -] = + + + — +| -

CPOSTAGS| 14| 13+9] 12| 10| 13| 92, 20| 15| 11| 15 370 14, 11
POSTAGs 19|M294+9| 63| 24|'302| 52| 77| 21| 28| 38 37, 30, 53

FEATS 19 —-| 61 47| 81| - 4| 146, 51| 33 —| 82| 50
DEPRELs 27 82| 78] 52| 26| 46 7| 55| 25| 21 56| 254 18
D.sH.=0 15 1] 14 1 1 1 1 6 6 1 1 1 1

%HEAD=0| 554 16.9 6.7/ 6.4 8.9| 6.3] 186/ 5.1 59| 4.2| 6.5| 134 7.9
%H. preced| 82.9| 24.8| 50.9| 75.0| 46.5| 50.9| 8.9| 60.3| 47.2| 60.8/ 52.8) 6.2| 62.9
%H. follow. | 11.6| 58.2| 42.4| 18.6| 44.6| 42.7| 72.5| 34.6| 46.9| 35.1| 40.7| 80.4| 29.2
H.=0/unit 1.9 1.0/ 1.0/ 1.0, 1.2/ 1.0/ 15/ 1.0/ 0.9 1.0, 1.0/ 1.0/ 1.0
%n.p. arcs | 0.4 0.0 1.9] 1.0 5.4| 23] k.1 1.3] 1.9] '0.1] 1.0] 15 0.4
%n.p. units || 11.2 0.0| 23.2| 15.6| 36.4| 27.8| 5.3| 18.9| 22.2| 1.7| 9.8 11.6| 5.4
test data
scor. tokeng| 4990, 4970| 5000|5010|4998| 5008/ 5003| 5009 5004 4991| 5021| 5021|5013
%new form| 17.3 9.3| 5.2| 18.1] 20.7| 6.5| 0.96| 11.6| 22.0| 14.7| 18.0| 41.4| 14.5
%new lem. 4.3 n/a| 1.8/ n/a| 15.9] n/a| n/a] 7.8/ 9.9 9.7 n/a| 13.2| n/a

Table 1: Characteristics of the data sets for the 13 languages (zhteé by their first two letters): language family (Semitic
Sino-Tibetan, Slavic, Germanic, Japonic (or languageatsdl Romance, Ural-Altaic); number of genres, and genoalif one
(news, dialogue, novel); type of annotation (d=dependensgonstituents, dc=discontinuous constituents, +f\iiinctions,
+t=with types). For the training data: number of tokens &m.000); percentage of non-scoring tokens; number of pase&nits
(usually sentences, times 1000); average number of (§carid non-scoring) tokens per parse tree unit; whether a earrstem

is available; how many different CPOSTAG values, POSTAGies) FEATS components and DEPREL values occur for scoring
tokens; how many different values for DEPREL scoring tokeith HEAD=0 can have (if that number is 1, there is one degiggha
label (e.g. “ROQOT") for tokens with HEAD=0); percentage obsing tokens with HEAD=0, a head that precedes or a head that
follows the token (this nicely shows which languages arelgm@nantly head-initial or head-final); the average nundjescoring
tokens with HEAD=0 per parse tree unit; the percentage afriisg and non-scoring) non-projective relations and okparee
units with at least one non-projective relation. For the tega: number of scoring tokens; percentage of scoringn®okéth a
FORM or a LEMMA that does not occur in the training data.

final punctuation was deliberately left out during the casian (as it is explicitly excluded from the tree structure)

bthe non-last IGs of a word are non-scoring, see Section 4.1

in many cases the parse tree unit in PADT is not a sentencegaragraph

din many cases the unit in Sinica is not a sentence but a coreparated clause or phrase

°the treebank consists of transcribed dialogues, in whiahessentences are very short, e.g. just “Hai.” (“Yes.”)

fonly part of the Arabic data has non-underscore values &tEMMA column

9no mapping from fine-grained to coarse-grained tags wasahlej same for Swedish

"9 values are typos; POSTAGs also encode subcategorizafiommiation for verbs and some semantic information for con-
junctions and nouns; some values also include parts in eduackets which in hindsight should maybe have gone to FEATS

'due to treatment of multiwords

Iprobably due to some sentences consisting only of nonsagtokens, i.e. punctuation

kthese are all disfluencies, which are attached to the viraminode

'from co-indexed items in the original treebank; same foratibn
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\ | algorithm | ver. | hor. |search | lab. [ non-proj| learner |pre [post |opt]
all pairs

McD || MST/Eisner b-s |irr. |opt/approx.|2nd|+2 MIRA - |- —

Cor ||MST/Eisner b-s |irr. |optimal 2nd | — BPMP+ME [SVM] [+€¢ |— —

Shi [|[MST/CLE irr. |irr. |optimal 1st |+, CLE |MIRA - — —

Can | own algorithm irr. |irr. [approx.(?) |int. [+9 TiMBL - = +

Rie |/ILP irr. |irr. |increment. |int. |+€ MIRA - |- +

Bic ||CG-inspired mpf| mpf | backtrack(?)int. |[+T MLE(?) +9 [+0h [
stepwise

Dre | had/Eisner/rerankb-s |irr. |best 1st exh2nd | — MLE - = +J

Liu |lown algorithm |b-t |mpf|det./local |int. |— MLE - |- —

Car ||Eisner b-s |irr. |approx. int. |— perceptron - |- —

stepwise: classifier-based

Att [[Y&M b-t [for. |determin. [int. [+K ME [MBL,SVM,...] | stem — —

Cha | Y&M b-t |for. |local 2nd |- perceptron (SNoW) proj | — —

Yur | own algorithm b-s |irr. |determin. |int. |— decision list (GPAY| - |- —

Che ||[chunker+Nivre |b-s |for. |determin. [int."|— SVM+ME [CRF] |- |- —

Niv | Nivre b-s |for. |determin. |int. |+, ps-pr|SVM proj |deproj| +

Joh || Nivre+MST/CLE |b-s |f+b°|N-best int.? |+, CLE |SVM (LIBSVM) - |-

Wu ||Nivre+root parsen b-s |f/b% |det.[+exh.] |int. |—[+] |SVM (SVMLight) |— [[+]" |-
other

Sch ||PCFG/CKY [b-t [irr. |opt. lint. |+, trace§ MLE [ME] |d2c [c2d |-

Table 2. Overview of parsing approaches taken by particigagroups (identified by the first three letters

of the first author): algorithm (Y&M: Yamada and Matsumot®@3), ILP: Integer Linear Programming),

vertical direction (irrelevant, mpf: most probable firsbttom-up-spans, bottom-up-trees), horizontal direc-
tion (irrelevant, mpf: most probable first, forward, backd)a search (optimal, approximate, incremental,
best-first exhaustive, deterministic), labeling (intavied, separate and 1st step, separate and 2nd step),

non-projective (ps-pr: through pseudo-projective apginpalearner (ME: Maximum Entropy; learners in

brackets were explored but not used in the official submigsjareprocessing (projectivize, d2c: dependen-
cies to constituents), postprocessing (deprojectivi2d; constituents to dependencies), learner parameter

optimization per language

#non-projectivity through approximate search, used forestanguages

20 averaged perceptrons combined into a Bayes Point Machine
‘introduced a single POS tag “aux” for all Swedish auxilianglanodel verbs
by having no projectivity constraint

®selective projectivity constraint for Japanese

fseveral approaches to non-projectivity

Y9using some FEATS components to create some finer-grainedAR@@&lues
*_‘reattachment rules for some types of non-projectivity

'head automaton grammar

ldetermined the maximally allowed distance for relations

kthrough special parser actions

'pseudo-projectivizing training data only

"Greedy Prepend Algorithm

"but two separate learners used for unlabeled parsing viziseling

°both foward and backward, then combined into a single tréle GiLE

Pbut two separate SVMs used for unlabeled parsing versubrigbe
Yorward parsing for Japanese and Turkish, backward foreke r
"attaching remaining unattached tokens through exhausti@ech (not for submitted runs)
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sequence classifier can label all children of a tokeapproaches can use an explicit probability model
together (McDonald et al., 2006). Within the thirdover next steps, e.g. a generative one (Eisner, 1996;
approach, HEAD and DEPREL can be predicted sBreyer et al., 2006), or train a machine learner to
multaneously, or in two separate steps (potentiallgredict those. The approach can be deterministic (at
using two different learners). each point, one step is chosen) or employ various
_ types of search. In addition, parsing can be done in
5.3 Allpairs a bottom-up-constituent or a bottom-up-spans fash-
At the highest level of abstraction, there are two funion (or in another way, although this was not done in
damental approaches, which we will call “all pairs”this shared task). Finally, parsing can start at the first
and “stepwise”. In an “all pairs” approach, everyor the last token of a sentence. When talking about
possible pair of two tokens in a sentence is considanguages that are written from left to right, this dis-
ered and some score is assigned to the possibilitynction is normally referred to as left-to-right ver-
of this pair having a (directed) dependency relatiorsus right-to-left. However, for multilingual parsing
Using that information as building blocks, the parsewhich includes languages that are written from right
then searches for the best parse for the sentente.left (Arabic) or sometimes top to bottom (Chi-
This approach is one of those described in Eisnerese, Japanese) this terminology is confusing be-
(1996). The definition of “best” parse depends orause it is not always clear whether a left-to-right
the precise model used. That model can be one thadrser for Arabic would really start with the left-
defines the score of a complete dependency tree m®st (i.e. last) token of a sentence or, like for other
the sum of the scores of all dependency arcs in ilanguages, with the first (i.e. rightmost). In general,
The search for the best parse can then be formalizethrting with the first token (“forward”) makes more
as the search for the maximum spanning tree (MSEBense from a psycholinguistic point of view but start-
(McDonald et al., 2005b). If the parse has to be prang with the last (“backward”) might be beneficial
jective, Eisner's bottom-up-span algorithm (Eisnerfor some languages (possibly related to them being
1996) can be used for the search. For non-projectiveead-initial versus head-final languages). The pars-
parses, McDonald et al. (2005b) propose using thag order directly determines what information will
Chu-Liu-Edmonds (CLE) algorithm (Chu and Liu, be available from the history when the next decision
1965; Edmonds, 1967) and McDonald and Pereinaeeds to be made. Stepwise parsers tend to inter-
(2006) describe an approximate extension of Eideave the prediction of HEAD and DEPREL.
ner’'s algorithm. There are also alternatives to MST o
which allow imposing additional constraints on the®-2 Non-projectivity
dependency structure, e.g. that at most one depehH data sets except the Chinese one contain some
dent of a token can have a certain label, such as “suben-projective dependency arcs, although their pro-
ject”, see Riedel et al. (2006) and Bick (2006). Byportion varies from 0.1% to 5.4%. Participants took
contrast, Canisius et al. (2006) do not even enfordie following approaches to non-projectivity:
the tree constraint, i.e. they allow cycles. In a vari- ) ) o
ant of the “all pairs” approach, only those pairs of ® Ignore, i.e. predict only projective parses. De-

tokens are considered that are not too distant (Cani- PeNding on the way the parser is trained, it
sius et al., 2006). might be necessary to at least projectivize the

training data (Chang et al., 2006).

5.4 Stepwise o )
e Always allow non-projective arcs, by not im-

In a stepwise approach, not all pairs are considered. posing any projectivity constraint (Shimizu,
Instead, the dependency tree is built stepwise and  506: Canisius et al. 2006).

the decision about what step to take next (e.g. which

dependency to insert) can be based on information e Allow during parsing under certain conditions,
about, in theory all, previous steps and their results  e.g. for tokens with certain properties (Riedel
(in the context of generative probabilistic parsing, et al., 2006; Bick, 2006) or if no alternative
Black et al. (1993) call this the history). Stepwise projective arc has a score above the threshold
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(Bick, 2006) or if the classifier chooses a spef | form | lem. | cpos| pos| feats |

cial action (Attardi, 2006) or the parser predicts McD || ++2 | +? | —2 | + +, CO+Cr.pr.
a trace (Schiehlen and Spranger, 2006). Cor || + + +C ++ | +, co+cr.pd
Shi + — + - | =
e Introduce through post-processing, e. “Can I + — — T _
_through reattachment rules (Bick, 2006) of Rie [ +¢ | + ; +T [ +ocrpr.
if the change increases overall parse treegic ©) n + 0 n ©)
probability (McDonald et al., 2006). =
Dre ++ + rer. |rer.| —
e The pseudo-projective approach (Nivre angtl¥ | () [+ |++ [+ |~
Nilsson, 2005): Transform non-projective S8 || ++ |+ |++ |+ |+comp.
training trees to projective ones but encodeAtt || (+) |+ + - | ()
the information necessary to make the inverseCha || — + — + + atomic
transformation in the DEPREL, so that this in{ Yur + + + + +comp.
verse transformation can also be carried out gnChe | + + + + + atomic?
the test trees (Nivre et al., 2006). Niv + + + + + comp.
Joh || + — + + + comp.
5.6 Data columns used Wu + —_ + + —
Table 3 shows which column values have Sch [? [(®H)' [?2 [ (H) [ () |

been used by participants. Nobody used th . . -
PHEAD/PDEPREL column in any way. It is likely %"?'e 3: Overview of df‘ta CO'UIm”S used tt)y pa:'ct"
that those who did not use any of the other cqumn'gﬁl |f13.grougs_. B t ? cotumn va}uetwas n‘0+Lf.S(3/ a
did so mainly for practical reasons, such as thg" T- usedinatieast some features. (+)" Vari-

limited time and/or the difficulty to integrate it into an;[ of F?R'}AFUESK_?SO”IV g LE'J\:IMA |sdm|ssmg, tor
an existing parser. only parts o used. “++" used more exten-

sively than another column containing related infor-
5.6.1 FORM versus LEMMA mation (where FORM and LEMMA are related, as

. . . are CPOSTAG and POSTAG), e.g. also in combina-
Lemma or stem information has often been ig-.

. . tlan features or features for context tokens in addi-
nored in previous dependency parsers. In the shar

task data, it was available in just over half the data " to features for the focus token(s). “rer”. used

sets. Both LEMMA and FORM encode lexical in- 'Cnog:e rfrca:)nriegr?gxs i?r :hf Ica;ztsg_oltj(gzzctatomlc,
formation. There is therefore a certain redundancy. P-= P » CLpr = P '

Participants have used these two columns in differ- “also prefix and suffix for labeler
ent ways: Yinstead of form for Arabic and Spanish
’ ‘instead of POSTAG for Dutch and Turkish

dfor labeler; unlab. parsing: only some for global features
e Use only one (see Table 3). calso prefix

falso 1st character of POSTAG

T ; _ Yonly as backoff
* Use both, in different features. Typically, a fea Preranker: also suffix; if no lemma, use prefix of FORM

ture selection routine and/or the learner itself i epiva, POSTAG, FEATS only for back-off smoothing
(through weights) will decide about the impor-
tance of the resulting features.
5.6.2 CPOSTAG versus POSTAG
e Use a variant of the FORM as a substitute for a|| data sets except German and Swedish had dif-
a missing LEMMA. Bick (2006) used the low- ferent values for CPOSTAG and POSTAG, although
ercased FORM if the LEMMA is not available, tne granularity varied widely. Again, there are dif-

Corston-Oliver and Aue (2006) a prefix and At-ferent approaches to dealing with the redundancy:
tardi (2006) a stem derived by a rule-based sys-

tem for Danish, German and Swedish. e Use only one for all languages.
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e Use both, in different features. Typically, a fea-| ltc|ch[si [scldi]in [gl[colac]|la [op |

ture selection routine and/or the learner itselfMcD [+ [I [+ [I |2 |1 [I [+ [=[I [(+)?
(through weights) will decide about the impor-[Cor [+ [IP|I [+ [p[—= [+ [+ [= |- [[(+)°
tance of the resulting features. shi T+1=1=1=T+1= =1+ =1+ [[=
Can ||+ |— |— [—|+|— |—-|—|—-|— |-
e Use one or the other for each language. Rie T+ = =855 =+ - T+el+
5.6.3 Using FEATS Bic [+ [+'[+9[—|+[+"[-[+ [-[++]®)
By design, a FEATS column value has internalDre |ir |r |+ |r |[+|r |—|+ |—|r |T
structure. Splitting it at the*3* results in a set of |Liu | —|+ |—= |+ |+ |— |[—|+ |— |- |~
components. The following approaches have beerCar ||+ |— |+ |— [+ [+ |— [+ |— |+ [ —
used: Att ||+ [+ [+ |—|— |—|= |+ |+ ||(+)
Cha [+ |+ |[— [l |—|— |—|*+ |+ ]|— |-
e Ignore the FEATS. YT 2 e e
e Treat the complete FEATS value as atomic, i.e Che ot e A e e el el el i
do not split it into components. Niv ||+ |+ |[— |+ || |||+ |t
Joh ||+ |+ |— |+ |—=|— |—=|=|—=|+ | —
e Use only some components, e.g. Bick (2006w, 1+ 1+ = |+ |—|— |—|+ |— |+ |-
uses only case, mood and pronoun subclass arg - 1 - -1
Attardi (2006) uses only gender, number, per
son and case. Table 4: Overview of features used by participating

Igroups. See the text for the meaning of the column
abbreviations. For separate HEAD and DEPREL as-
signment: p: only for unlabeled parsing, I: only for
labeling, r: only for reranking.

e Use one binary feature for each cross-product aForm versus LEMMA
of the FEATS components éfand the FEATS Phumber of tokens governed by child
. . . Cc
components of. This is likely to be useful for ~ POSTAG versus CPOSTAG
for arity constraint
agreement phenomena. *for arity constraint

_ ffor “full” head constraint
e Use one binary feature for each FEATS com- 9or uniqueness constraint

ponent ofi that also exists foj. Thisis amore  "for barrier constraint

. . ! i
explicit way to model agreement. jgfggrﬁitrzzg'\}fsize

e Use one binary feature for each componen
This is likely to be useful if grammatical func-
tion is indicated by case.

5.7 Types of features

When deciding whether there should be a depe
dency relation between tokersand j, all parsers trees/spans, or ancestorsiand j; distance fromi

uzzlf}t Ieﬁt |rflfc|)|rm§1t|on about th(?s_eftwo t?kens. ll% j; information derived from all the tokeria be-
addtion, the following sources ol information can,,.oqp; andj (e.g. whether there is an intervening

be used (see Ta_ble 4): token _contencof(a limited verb or how many intervening commas there are);
n_umber (deterr_mned by the_ W,mdo,\_N S'_Ze) Of_ t_Oken%Iobal features (e.g. does the sentence contain a fi-
dlrectly preceding or following or j; chﬂdreq. " hite verb); explicit featureombinations (depending
fF_)rmajtlon .a.bout the already found ch.||c-jren.mind .. .on the learner, these might not be necessary, e.g. a
J; siblings: n a set-up yvheri the Eeqs'on IS not ISpolynomial kernel routinely combines features); for
there_arelatlon betweer_andj but *is Z.th? hegd of classifier-based parsers: the previagions, i.e.
4" or in a separate labeling step, the siblingg afe

the already found child . structural toxt classifications; whether information abdabels is
e already found children gf structural contex used as input for other decisions. Finally, the pre-

%%r for Dutch, also at the * cise set of features can bptimized per language.

rEé(:) other than children/siblings: neighboring sub-
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6 Results | | LAS || unlabeled || label acc. |

Table 5 shows the official results for submitted M.CD 80.3 f 86.6) —1|867
1 . ) Niv | 80.2 =|855| +1]86.8
parser outputd! The two participant groups with

: O'N 78.4 =| 853| -1| 850
the highest total score are McDonald et al. (2006) Ri =79 —T850 17849

and Nivre et al. (2006). As both groups had much 1€ - — - — -
prior experience in multilingual dependency pars- Si]g 78| -2 837 +_2 856
ing (see Section 2), it is not too surprising that they Che | 77.7) +1]846 =842
both achieved good results. It is surprising, how- Cor | 76.9 +} 844 —1,840
ever, how similar their total scores are, given that Cha | 76.8 =835 +1)841
Joh | 749| -1 80.4 = | 83.7

their approaches are quite different (see Table 2).
The results show that experiments on just one or two Car | 74.7] +1]812 = 1835
languages certainly give an indication of the useful- | Wu | 71.7] —1]784] -1|79.1
ness of a parsing approach but should not be taken | Can | 70.8| +1|78.4) —1]|78.6
as proof that one algorithm is better for “parsing” (in Bic | 70.0)| =]77.5] %2803
general) than another that performs slightly worse. | Dre | 65.2| —1|745| -1 752
The Bulgarian scores suggest that rankings would | Yur | 65.0| -1 | 73.5| -2 | 70.9

not have been very different had it been the 13th Liu 63.3|| —2 | 70.7 =| 736
obligatory languages. Sch | 62.8] =721 P3| 757

Table 6 shows that the same holds had we used an- | Att 61.2| °+4 | 76.2 =707
other evaluation metric. Note that a negative number | Shi 34.2 = 38.7 = | 39.7

in both the third and fifth column indicates that er- ) ) ] ]

rors on HEAD and DEPREL occur together on thel@Ple 6: Differences in ranking depending on the
same token more often than for other parsers. pgvaluation metric. The second column repeats the
nally, we checked that, had we also scored on IOunefficial metric (LAS). The third column shows how

tuation tokens, total scores as well as rankings would€ ranking for each participant changes (or not: =)
only have shown very minor differences if the unlabeled attachment scores, as shown in the

fourth column, are used. The fifth column shows

7 Result analysis how the ranking changes (in comparison to LAS) if
the label accuracies, as shown in the sixth column,
7.1 Across data sets are used.

The average LAS over all data sets varies between 2in Bick's method, preference is given to the assignment of

56.0 for Turkish and 85.9 for Japanese. Top scoré@%es”?]e_“ﬁ?’ |a2e|§. - et labels for his PCFG
vary between 65.7 for Turkish and 91.7 forJapanesBroacﬁ f'r%metr;]e%ggmt;,_e V%?S:;'.tuem apels foris o

In general, there is a high correlation between the °Due to the bug (see footnote with Table 5).
best scores and the average scores. This means that

data sets are inherently easy or difficult, no mat-

ter what the parsing approach. The “easiest” one is

. can be seen in Table 1, there are very few new

clearly the Japanese data set. However, it would . L .
) . ORM values in the test data, which is an indica-
wrong to conclude from this that Japanese in general

) . . lon of many dialogues in the treebank being sim-
is easy to parse. Itis more likely that the effect stem ” . .

- ifar. In addition, parsing units are short on aver-
from the characteristics of the data. The Japanese : )
Verbmobil treebank contains dialogue within a re29¢ Finally, the set of DEPREL values is very small

g and consequently the ratio between (C)POSTAG and

stricted domain (making business appointments). ABEPREL values is extremely favorable. It would
3iynfortunately, urgent other obligations prevented two parbe interesting to apply the shared task parsers to
tiCiPa{)‘tS (Jﬁh_“ ?;Nei:ja”dkKe“iLsil_%a?) fronr Sme_itt(iL_‘Eha pathe Kyoto University Corpus (Kurohashi and Nagao,
per al out their shared task work. eir results are in ;e . .
1997), which is the standard treebank for Japanese

a smaller font. Sagae used a best-first probabilistic versfo
Y&M (p.c.). and has also been used by Kudo and Matsumoto
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Ar Ch Cz Da Du Ge Ja Po SI Sp Sw TuTot| SD| Bu
McD | 66.9 85.9 80.2 84.8 79.2 87.390.7 86.8 73.4 82.382.6 63.2 80.3| 8.4/87.6
Niv |66.7 86.9 78.484.8 78.6 85.8 91.7 87.6 70.3 81.3 84.6 65.7 80.2| 8.5/87.4
ON | 66.7 867 76.6 828 775 854 90.6 847 711 798 818 57.984| 94| 852
Rie |66.7 90.0 67.4 83.6 78.6 86.2 90.5 84.4 71.2 77.4 80.7 58.6/7.9/10.1| 0.0
Sag | 62.7 847 752 816 76.6 849 904860 69.1 77.7 820 632 778/ 9.0| 0.0
Che |65.2 84.3 76.2 81.7 71.8 84.1 89.9 851 714 805 8l1.1 6¥27| 8.7/86.3
Cor |63.5 79.9 745 81.7 71.4 835 90.0 84&.4 80.4 79.7 61.7 76.9| 8.5/83.4
Cha |[60.9 85.1 729 80.6 729 84.2 89.1 84.0 69.5 79.7 82.3 606.8| 9.4| 0.0
Joh [64.3 725 715 815 72.7 80.4 85.6 84.6 66.4 78.2 78.1 634.9| 7.7| 0.0
Car |60.9 83.7 68.8 79.7 67.3 82.4 88.1 834 684 77.2 78.7 584.7| 9.7(/83.3
Wu (63.8 74.8 59.4 784 68.5 76.5 90.1 815 67.8 73.0 71.7 B551.7| 9.7|79.7
Can |57.6 78.4 609 779 746 77.6 87.4 77.4 59.2 68.3 79.2 570.8/11.1|78.7
Bic |55.4 76.2 63.0 74.6 69.5 74.7 84.8 78.2 64.3 71.4 74.1 |530.0/ 9.3|/79.2
Dre |53.4 71.6 60.5 66.6 61.6 71.0 829 75.3 58.7 67.6 67.6 4®3.2| 9.9/74.8
Yur |52.4 727 519 71.6 62.8 63.8 844 70.4 55.1 69.6 65.2 6@G3.0] 9.5|73.5
Liu |50.7 75.3 58,5 77.7 59.4 68.1 70.8 71.1 57.2 65.1 63.8 4563.3/10.4|67.6
Sch |44.4 66.2 53.3 76.1 72.1 68.7 83.4 71.0 50.7 47.0 71.1 4%38|13.0/] 0.0
Att [53.8 54.9 59.8 66.4 58.2 69.8 65.4 75.4 57.2 67.4 68.8 3BB2| 9.9|72.9
Shi [628 00 0.0 758 00 00 00 0.0 646 73.2 79.5 %434.2/36.3| 0.0
Av 599 783 67.2 78.3 70.7 78.6 85.9 80.6 65.2 73.5 76.4 56.0 80.0
SD 65 88 89 55 67 75 7.1 58 6.8 84 65 .7 6.3

Table 5: Labeled attachment scores of parsers on the 13tsstThe total score (Tot) and standard devia-
tions (SD) from the average per participant are calculated the 12 obligatory languages (i.e. excluding
Bulgarian). Note that due to the equal sizes of the test setallflanguages, the total scores, i.e. the LAS
over the concatenation of the 12 obligatory test sets, argtichl (up to the first decimal digit) to the average
LAS over the 12 test sets. Averages and standard deviatemdapa set are calculated ignoring zero scores
(i.e. results not submitted). The highest score for eactnanland those not significantly worge < 0.05)

are shown in bold face. Significance was computed using fii@abfscoring scripteval . pl and Dan
Bikel's Randomized Parsing Evaluation Comparator, whicplements stratified shuffling.

2Attardi's submitted results contained an unfortunate binichy caused the DEPREL values of all tokens with HEAD=0 to
be an underscore (which is scored as incorrect). Using thplsiheuristic of assigning the DEPREL value that most featiy
occured with HEAD=0 in training would have resulted in a t&tAS of 67.5.

(2000), or to the domain-restricted Japanese diare the shortest. and Chinese parsing units are the

logues of the ATR corpus (Lepage et al., 1998).  shortest. We note that all “easier” data sets offer
Other relatively “easy” data sets are Portuguesiarge to middle-sized training sets.

(2nd highest average score but, interestingly, the The most difficult data set is clearly the Turkish

third-longest parsing units), Bulgarian (3rd), Gerone. It is rather small, and in contrast to Arabic

man (4th) and Chinese (5th). Chinese also has tlamd Slovene, which are equally small or smaller, it

second highest top scdfeand Chinese parsing units covers 8 genres, which results in a high percentage
%2Unfortunately, both these treebanks need to be bought, of new FORM and LEMMA values in the test set.

iﬁ). .
they could not be used for the shared task. Note also th& IS also possible that parsers get confused by the

Japanese dependency parsers often operate on “bunsetsus’High proportion (one third!) of non-scoring tokens

stead of words. Bunsetsus are related to chunks and cofisist o

a content word and following particles (if any). al. (2006)’s top score is more than 3% absolute above the sec-
3Although this seems to be somewhat of a mystery comend highest score and they offer no clear explanation far the

pared to the ranking according to the average scores. Ridelsuccess.
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and the many tokens with'‘as either the FORM or all ranking. There are some outliers though. For
LEMMA. There is a clear need for further researctexample, Johansson and Nugues (2006) and Yuret
to check whether other representations result in bef2006) are seven ranks higher for Turkish than over-
ter performance. all, while Riedel et al. (2006) are five ranks lower.
The second-most difficult data set is Arabic. It isCanisius et al. (2006) are six and Schiehlen and
quite small and has by far the longest parsing unit§Spranger (2006) even eight ranks higher for Dutch
The third-most difficult data set is Slovene. It haghan overall, while Riedel et al. (2006) are six ranks
the smallest training set. However, its average dewer for Czech and Johansson and Nugues (2006)
well as top score far exceed those for Arabic andlso six for Chinese. Some of the higher rankings
Turkish, which are larger. Interestingly, although theould be related to native speaker competence and
treebank text comes from a single source (a transleesulting better parameter tuning but other outliers
tion of Orwell’'s novel “1984"), there is quite a high remain a mystery. Even though McDonald et al.
proportion of new FORM and LEMMA values in the (2006) and Nivre et al. (2006) obtained very simi-
test set. The fourth-most difficult data set is Czechar overall scores, a more detailed look at their per-
in terms of the average score and Dutch in terms dérmance shows clear differences. Taken over all 12
the top score. The diffence in ranking for Czech i®bligatory languages, both obtain a recall of more
probably due to the fact that it has by far the largeghan 89% on root tokens (i.e. those with HEAD=0)
training set and ironically, several participants couldbut Nivre's precision on them is much lower than
not train on all data within the limited time, or elseMcDonald’s (80.91 versus 91.07). This is likely to
had to partition the data and train one model for eadbe an effect of the different parsing approaches.
partition. Likely problems with the Dutch data set
are: noisy (C)POSTAG and LEMMA, (C)POSTAG 7.3  Across part-of-speech tags

for multiwords, and the highest proportion of nonyypen breaking down by part-of-speech the results

projectivity. _ of all participants on all data sets, one can observe
Factors that have been discussed so far are: thgme patterns of “easy” and “difficult’ parts-of-

size of the training data, the proportion of négpeech, at least in so far as tag sets are compara-
FORM and LEMMA values in the test set, the rajje across treebanks. The one PoS that everybody
tio of (C)POSTAG to DEPREL values, the averaggyot 100% correct are the German infinitival mark-
length of the parsing unit the proportion of non-g¢ (tag PTKZU: like “to” in English). Accuracy on
projective arcs/parsing units. It would be interestyhe s\wedish equivalent (IM) is not far off at 98%.
ing to derive a formula based on those factors th@hiher easy PoS are articles, with accuracies in the
fits the shared task data and see how well it presineties for German, Dutch, Swedish, Portuguese
dicts results on new data sets. One factor that seemsq Spanish. As several participants have remarked

to be irrelevant is the head-final versus head-initia}}1 their papers, prepositions are much more difficult,

distinction, as both the “easiest” and the most difyjth typical accuracies in the fifties or sixties. Simi-

ficult data sets are for head-final languages. Theygyy conjunctions typically score low, with accura-
is also no clear proof that some language familiegies even in the forties for Arabic and Dutch.
are easier (with current parsing methods) than oth-

ers. It would be interesting to test parsers on th§ Eyture research

Hebrew treebank (Sima’an et al., 2001), to compare

performance to Arabic, the other Semitic languag@&here are many directions for interesting research
in the shared task, or on the Hungarian Szeged Cdsuilding on the work done in this shared task. One
pus (Csendes et al., 2004), for another agglutinativie the question which factors make data sets “easy”

language. or difficult. Another is finding out how much of
o parsing performance depends on annotations such
7.2 Across participants as the lemma and morphological features, which

For most parsers, their ranking for a specific lanare not yet routinely part of treebanking efforts. In
guage differs at most a few places from their overthis respect, it would be interesting to repeat ex-
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periments with the recently released new version af.
the TIGER treebank which now contains this in-
formation. One line of research that does not re-
quire additional annotation effort is defining or im-
proving the mapping from coarse-grained to fineY
grained PoS tag¥. Another is harvesting and using
large-scale distributional data from the internet. We

Chaney, K. Simov, P. Osenova, and S. Marinov. 2006. De-
pendency conversion and parsing of the BulTreeBank. In
Proc. of the LREC-Workshop Merging and Layering Lin-
guistic Information

Cheng, M. Asahara, and Y. Matsumoto. 2005. Chinese
deterministic dependency analyzer: Examining effects of
global features and root node finder. Pnoc. of SIGHAN-
2005

also hope that by combining parsers we can achieéwg;, chy and T.H. Liu. 1965. On the shortest arborescence of a

even better performance, which in turn would facili-

tate the semi-automatic enlargement of existing tregy

banks and possibly the detection of remaining er-
rors. This would create a positive feedback loop.

Finally one must not forget that almost all of they,

LEMMA, (C)POSTAG and FEATS values and even
part of the FORM column (the multiword tokens

used in many data sets and basically all tokenizav.

directed graphScience Sinical4:1396—1400.

Collins, J. Hajic, L. Ramshaw, and C. Tillmann. 1999.
A statistical parser for Czech. IRroc. of the 37th Annual
Meeting of the ACL

Collins. 1996. A new statistical parser based on bigram
lexical dependencies. IRroc. of the 34th Annual Meeting
of the ACL

Collins. 1997. Three generative, lexicalised modelsstar

mally not delimited by spaces) have been manually

created or corrected and that the general parsing taldkCollins. 1999.Head-Driven Statistical Models for Natural

has to integrate automatic tokenization, morphologi-

Language ParsingPh.D. thesis, University of Pennsylvania.

cal analysis and tagging. We hope that the resourcesCowan and M. Collins. 2005. Morphology and reranking for

created and lessons learned during this shared tas
will be valuable for many years to come but also
that they will be extended and improved by others
in the future, and that the shared task website wilf”
grow into an informational hub on multilingual de-
pendency parsing.

W.
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1 Introduction

Parsing natural language is an essential step in
several applications that involve document
analysis, e.g. knowledge extraction, question
answering, summarization, filtering. The best
performing systems at the TREC Question
Answering track employ parsing for analyzing
sentences in order to identify the query focus, to
extract relations and to disambiguate meanings of
words.

These are often demanding applications, which
need to handle large collections and to provide
results in a fraction of a second. Dependency
parsers are promising for these applications since a
dependency tree provides predicate-argument
relations which are convenient for use in the later
stages. Recently statistical dependency parsing
techniques have been proposed which are
deterministic and/or linear (Yamada and
Matsumoto, 2003; Nivre and Scholz, 2004). These
parsers are based on learning the correct sequence
of Shift/Reduce actions used to construct the
dependency tree. Learning is based on techniques
like SVM (Vapnik 1998) or Memory Based
Learning (Daelemans 2003), which provide high
accuracy but are often computationally expensive.
Kudo and Matsumoto (2002) report a two week
learning time on a Japanese corpus of about 8000
sentences with SVM. Using Maximum Entropy
(Berger, et al. 1996) classifiers I built a parser that
achieves a throughput of over 200 sentences per
second, with a small loss in accuracy of about 2-
3 %.

The efficiency of Maximum Entropy classifiers
seems to leave a large margin that can be exploited
to regain accuracy by other means. I performed a

series of experiments to determine whether
increasing the number of features or combining
several classifiers could allow regaining the best
accuracy. An experiment cycle in our setting
requires less than 15 minutes for a treebank of
moderate size like the Portuguese treebank
(Afonso et al., 2002) and this allows evaluating the
effectiveness of adding/removing features that
hopefully might apply also when using other
learning techniques.

I extended the Yamada-Matsumoto parser to
handle labeled dependencies: 1 tried two
approaches: using a single classifier to predict
pairs of actions and labels and using two separate
classifiers, one for actions and one for labels.

Finally, I extended the repertoire of actions used
by the parser, in order to handle non-projective
relations. Tests on the PDT (Bohmova et al., 2003)
show that the added actions are sufficient to handle
all cases of non-projectivity. However, since the
cases of non-projectivity are quite rare in the
corpus, the general learner is not supplied enough
of them to learn how to classify them accurately,
hence it may be worthwhile to exploit a second
classifier trained specifically in handling non-
projective situations.

1. Summary of the approach

The overall parsing algorithm is an inductive
statistical parser, which extends the approach by
Yamada and Matsumoto (2003), by adding six new
reduce actions for handling non-projective
relations and also performs dependency labeling.

Parsing is deterministic and proceeds bottom-up.
Labeling is integrated within a single processing
step.
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The parser is modular: it can use several
learning algorithms: Maximum Entropy, SVM,
Winnow, Voted Perceptron, Memory Based
Learning, as well as combinations thereof. The
submitted runs used Maximum Entropy and I
present accuracy and performance comparisons
with other learning algorithms.

No additional resources are used.

No pre-processing or post-processing is used,
except stemming for Danish, German and Swedish.

2  Features

Columns from input data were used as follows.

LEMMA was used in features whenever
available, otherwise the FORM was used. For
Danish, German and Swedish the Snowball
stemmer (Porter 2001) was used to generate a
value for LEMMA. This use of stemming slightly
improved both accuracy and performance.

Only CPOSTAG were used. PHEAD/PDEPREL
were not used.

FEATS were used to extract a single token
combining gender, number, person and case,
through a language specific algorithm.

The selection of features to be used in the parser
is controlled by a number of parameters. For ex-
ample, the parameter PosFeatures determines
for which tokens the POS tag will be included in
the context, PosLeftChildren determines how
many left outermost children of a token to con-
sider, PastActions tells how many previous ac-
tions to include as features.

The settings used in the submitted runs are listed
below and configure the parser for not using any
word forms. Positive numbers refer to input to-
kens, negative ones to token on the stack.

LemmaFeatures -2 -10123
PosFeatures -2 -10123
MorphoFeatures -1012
DepFeatures -10
PoslLeftChildren 2
PosLeftChild -10
DeplLeftChild -10
PosRightChildren 2
PosRightChild -10
DepRightChild -1
PastActions 1

The context for POS tags consisted of 1 token left
and 3 tokens to the right of the focus words, except
for Czech and Chinese were 2 tokens to the left

and 4 tokens to the right were used. These values
were chosen by performing experiments on the
training data, using 10% of the sentences as held-
out data for development.

3 Inductive Deterministic Parsing

The parser constructs dependency trees employing
a deterministic bottom-up algorithm which per-
forms Shift/Reduce actions while analyzing input
sentences in left-to-right order.

Using a notation similar to (Nivre and Scholz,
2003), the state of the parser is represented by a
quadruple ¢S, I, T, A), where S is the stack, [ is the
list of (remaining) input tokens, T is a stack of
temporary tokens and A is the arc relation for the
dependency graph.

Given an input string W, the parser is initialized
to (O, W, 0, ), and terminates when it reaches a
configuration (S, (), (), A).

The parser by Yamada and Matsumoto (2003)
used the following actions:

Shift in a configuration (S, nll, T, A), pushes
n to the stack, producing the configura-
tion (nlS, I, T, A).

in a configuration (sIS, nll, T, A), adds
an arc from s; to n and pops s, from the
stack, producing the configuration (S,
nll, T, Au{(sy, r,n)}).

in a configuration (sIS, nll, T, A), adds
an arc from »n to sy, pops n from input,
pops s; from the stack and moves it
back to I, producing the configuration
(S, s, T, Au{(n, r, s)}).

Right

Left

At each step the parser uses classifiers trained on
treebank data in order to predict which action to
perform and which dependency label to assign
given the current configuration.

4 Non-Projective Relations

For handling non-projective relations, Nivre and
Nilsson (2005) suggested applying a pre-
processing step to a dependency parser, which con-
sists in lifting non-projective arcs to their head re-
peatedly, until the tree becomes pseudo-projective.
A post-processing step is then required to restore
the arcs to the proper heads.

! Nivre and Scholz reverse the direction, while I follow here
the terminology in Yamada and Matsumoto (2003).
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I adopted a novel approach, which consists in
adding six new parsing actions:
Right2 in a configuration (sls.IS, nll, T, A),
adds an arc from s, to n and removes s,
from the stack, producing the configu-
ration {s(IS, nll, T, AU{ (s>, r, n)}).
in a configuration (sils,IS, nll, T, A),
adds an arc from n to s,, pops n from
input, pops s; from the stack and moves
it back to /, producing the configuration
(oIS, s, T, Au{(n, r, s5)}).
in a configuration (sils,ls;IS, nll, T, A),
adds an arc from s; to n and removes s3
from the stack, producing the configu-
ration (s,ls,lS, nll, T, AU{(s3, r, n) }).
in a configuration (sils,ls;IS, nll, T, A),
adds an arc from n to s3, pops n from
input, pops s; from the stack and moves
it back to /1, producing the configuration
(sals3lS, s, T, Au{(n, r, s3)}).
in a configuration (sils,IS, nll, T, A),
move s, from the stack to the temporary
stack, then Shift, producing the con-
figuration (nls|IS, I, s,IT, A).
in a configuration (S, 1, 5,IT, A), pops s,
from T and pushes it to the stack, pro-
ducing the configuration {s,IS, I, T, A).

Left2

Right3

Left3

Extract

Insert

The actions Right2 and Left2 are sufficient to
handle almost all cases of non-projectivity: for in-
stance the training data for Czech contain 28081
non-projective relations, of which 26346 can be

handled by Left2/Right2, 1683 by
Left3/Right3 and just 52 require Ex-
tract/Insert.

Here is an example of non-projectivity that can
be handled with Right2 (nejen — ale) and Left3
(fax — Vetsinu):

Veétsinu téchto pristrojii Ize take pouZivat nejen jako fax,
ale soucasne ...

I_il

Vétsinu téchto piistroji Ize take pouZzivat nejen jako fax , ale

The remaining cases are handled with the last two
actions: Extract is used to postpone the creation
of a link, by saving the token in a temporary stack;

Insert restores the token from the temporary
stack and resumes normal processing.

zou gemaakt moeten worden in

This fragment in Dutch is dealt by performing an
Extract in configuration (moetenlgemaaktizou,
wordenlin, A) followed immediately by an In-
sert, leading to the following configuration,
which can be handled by normal Shift/Reduce
actions:

v v Iy lv |

zou moeten worden gemaakt in

Another linguistic phenomenon is the anticipation
of pronouns, like in this Portuguese fragment:

Tudo é possivel encontrar em o IX
Saldo de Antiguidades, desde objectos
de ouro e prata, moedas,

The problem here is due to the pronoun Tudo
(Anything), which is the object of encontrar
(find), but which is also the head of desde (from)
and its preceding comma. In order to be able to
properly link desde to Tudo, it is necessary to
postpone its processing; hence it is saved with Ex-
tract to the temporary stack and put back later in
front of the comma with Insert. In fact the pair
Extract/Insert behaves like a generalized
Rightn/Leftn, when n is not known. As in the
example, except for the case where n=2, it is diffi-
cult to predict the value of n, since there can be an
arbitrary long sequence of tokens before reaching
the position where the link can be inserted.

5 Performance

I used my own C++ implementation of Maximum
Entropy, which is very fast both in learning and
classification. On a 2.8 MHz Pentium Xeon PC,
the learning time is about 15 minutes for Portu-
guese and 4 hours for Czech. Parsing is also very
fast, with an average throughput of 200 sentences
per second: Table 1 reports parse time for parsing
each whole test set. Using Memory Based Learn-
ing increases considerably the parsing time, while
as expected learning time is quite shorter. On the
other hand MBL achieves an improvement up to
5% in accuracy, as shown in detail in Table 1.
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Language Maximum Entropy MBL
Las | €O | uas | ra | Traim ) Parse ¢ ) yag | pa | Train | Parse
% rected % % time time % % % time time
LAS sec sec sec sec

Arabic 53.81 54.15 69.50 | 72.97 181 2.6 | 59.70 | 74.69 | 75.49 24 950
Bulgarian 72.89 | 7290 | 85.24 | 77.68 452 1.5 7917 | 8592 | 8322 88 353
Chinese 54.89 | 70.00 [ 81.33 | 58.75 1156 1.8 72.17 | 83.08 [ 75.55 540 478
Czech 59.76 | 62.10 7344 | 69.84 | 13800 12.8 69.20 | 80.22 | 77.72 496 | 13500
Danish 66.35 | 71.72 | 78.84 | 74.65 386 32| 76.13 | 83.65| 82.06 52 627
Dutch 5824 | 6371 | 6893 | 6647 679 33| 6897 | 74.73 | 75.93 132 923
German 69.77 | 75.88 80.25 | 78.39 9315 4.3 79.79 | 84.31 86.88 1399 3756
Japanese 65.38 | 78.01 82.05 | 73.68 129 0.8 83.39 | 86.73 89.95 44 97
Portuguese 7536 | 79.40 | 85.03 | 80.79 1044 49| 8097 | 86.78 | 85.27 160 670
Slovene 57.19 | 60.63 72.14 | 69.36 98 30| 62.67 | 76.60 | 72.72 16 547
Spanish 67.44 | 70.33 74.25 82.19 204 24 ( 7437 | 79.70 85.23 54 769
Swedish 68.77 | 7520 | 83.03 | 7242 1424 29| 7485 | 8373 | 7781 96 1177
Turkish 37.80 | 48.83 | 6525 | 49.81 177 23| 4758 | 6525 | 59.65 43 727

Table 1. Results for the CoNLL-X Shared task (official values in italics).

For details on the CoNLL-X shared task and the
measurements see (Buchholz, et al. 2006).

6 Experiments

I performed several experiments to tune the parser.

I also tried alternative machine learning algo-
rithms, including SVM, Winnow, Voted Percep-
tron.

The use of SVM turned out quite impractical
since the technique does not scale to the size of
training data involved: training an SVM with such
a large number of features was impossible for any
of the larger corpora. For smaller ones, e.g. Portu-
guese, training required over 4 days but produced a
bad model which could not be used (I tried both
the TinySVM (Kudo 2002) and the LIBSVM
(Chang and Lin 2001) implementations).

Given the speed of the Maximum Entropy clas-
sifier, I explored whether increasing the number of
features could improve accuracy. I experimented
adding various features controlled by the parame-
ters above: none appeared to be effective, except
the addition of the previous action.

The classifier returns both the action and the la-
bel to be assigned. Some experiments were carried
out splitting the task among several specialized
classifiers. I experimented with:

three classifiers: one to decide between
Shift/Reduce, one to decide which Reduce
action and a third one to choose the depend-
ency in case of Left/Right action

two classifiers: one to decide which action to
perform and a second one to choose the de-
pendency in case of Left/Right action

None of these variants produced improvements in
precision. Only a small improvement in labeled
attachment score was noticed using the full, non-
specialized classifier to decide the action but dis-
carding its suggestion for label and using a special-
ized classifier for labeling. However this was
combined with a slight decrease in unlabeled at-
tachment score, hence it was not considered worth
the effort.

7  Error Analysis

The parser does not attempt to assign a dependency
relation to the root. A simple correction of assign-
ing a default value for each language gave an im-
provement in the LAS as shown in Table 1.

7.1 Portuguese

Out of the 45 dependency relations that the parser
had to assign to a sentence, the largest number of
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errors occurred assigning N<PRED (62), ACC (46),
PIV (43), CJT (40), N< (34), P<(30).

The highest number of head error occurred at
the CPOS tags PRP with 193 and V with 176. In
particular just four prepositions (em, de, a, para)
accounted for 120 head errors.

Most of the errors occur near punctuations. Of-
ten this is due to the fact that commas introduce
relative phrases or parenthetical phrases (e.g. “o
suspeito, de 38 anos, que trabalha”),
that produce diversions in the flow. Since the
parser makes decisions analyzing only a window
of tokens of a limited size, it gets confused in cre-
ating attachments. I tried to add some global con-
text features, to be able to distinguish these cases,
in particular, a count of the number of punctuation
marks seen so far, whether punctuation is present
between the focus words. None of them helped
improving precision and were not used in the sub-
mitted runs.

7.2 Czech

Most current parsers for Czech do not perform well
on Apos (apposition), Coord (coordination) and
ExD (ellipses), but they are not very frequent. The
largest number of errors occur on Obj (166), Adv
(155), Sb (113), Atr (98). There is also often con-
fusion among these: 33 times Obj instead of Adv,
32 Sbinstead of Obj, 28 Atr instead of Adv.

The high error rate of J (adjective) is expected,
mainly due to coordination problems. The error of
R (preposition) is also relatively high. Prepositions
are problematic, but their error rate is higher than
expected since they are, in terms of surface order,
rather regular and close to the noun. It could be
that the decision by the PDT to hang them as heads
instead of children, causes a problem in attaching
them. It seems that a post-processing may correct a
significant portion of these errors.

The labels ending with _Co, _Ap or _Pa are
nodes who are members of the Coordination, Ap-
position or the Parenthetical relation, so it may be
worth while omitting these suffixes in learning and
restore them by post-processing.

An experiment using as training corpus a subset
consisting of just sentences which include non-
projective relations achieved a LAS of 65.28 %
and UAS of 76.20 %, using MBL.

Acknowledgments. Kiril Ribarov provided in-
sightful comments on the results for Czech.

The following treebanks were used for training the
parser: (Afonso et al., 2002; Atalay et al., 2003;
Bohmova et al., 2003; Brants et al., 2002; Chen et
al., 2003; Civit Torruella and Marti Antonin, 2002;
Dzeroski et al., 2006; Haji¢ et al., 2004; Kawata
and Bartels, 2000; Kromann, 2003; Nilsson et al.,
2005; Oflazer et al., 2003; Simov et al., 2005; van
der Beek et al., 2002).
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Abstract

This paper presents a Constraint Grammar-
inspired machine learner and parser, Ling-
Pars, that assigns dependencies to morpho-
logically annotated treebanks in a function-
centred way. The system not only bases at-
tachment probabilities for PoS, case, mood,
lemma on those features' function probabili-
ties, but also uses topological features like
function/PoS n-grams, barrier tags and
daughter-sequences. In the CoNLL shared
task, performance was below average on at-
tachment scores, but a relatively higher
score for function tags/deprels in isolation
suggests that the system's strengths were not
fully exploited in the current architecture.

1 Introduction

This paper describes LingPars, a Constraint Gram-
mar-inspired language-independent treebank-learn-
er developed from scratch between January 9" and
March 9" 2006 in the context of the CoNLL-X
2006 shared task (http:/nextens.uvt.nl/~conll/), or-
ganized by Sabine Buchholz, Erwin Marsi, Yval
Krymolowski and Amit Dubey. Training treebanks
and test data were provided for 13 different lan-
guages: Arabic (Smrz et al. 2002), Chinese (Chen
et al. 2003), Czech (Haji¢ et al. 2001), Danish
(Kromann 2003), Dutch (van der Beek et al. 2002),
German (Brants et.al 2002), Japanese (Kawata and
Bartels), Portuguese (Afonso et al. 2002), Slovene
(DzZerosky et al. 2006), Spanish (Palomar et al.
2004), Swedish (Nilsson et al. 2005), Turkish

(Oflazer et al. 2003 and Nart et.al 2003), Bulgarian
(Simov et al. 2005). A number of these treebanks
were not originally annotated in dependency style,
but transformed from constituent tree style for the
task, and all differ widely in terms of tag granulari-
ty (21-302 part-of-speech tags, 7-82 function la-
bels). Also, not all treebanks included morphologi-
cal information, and only half offered a lemma
field. Such descriptive variation proved to be a
considerable constraint for our parser design, as
will be explained in chapter 2. No external re-
sources and no structural preprocessing were used'.

2 Language independence versus theory
independence

While manual annotation and/or linguistic, rule-
based parsers are necessary for the creation of its
training data, only a machine learning based parser
(as targeted in the CoNNL shared task) can hope to
be truly language independent in its design. The
question is, however, if this necessarily implies in-
dependence of linguistic/descriptive theory.

In our own approach, LingPars, we thus depart-
ed from the Constraint Grammar descriptive model
(Karlsson et al. 2005), where syntactic function
tags (called DEPREL or dependency relations in
the shared task) rank higher than dependency/con-
stituency and are established before head attach-
ments, rather than vice versa (as would be the case
for many probabilistic, chunker based systems, or

"The only exception is what we consider a problem in the dependency-version
of the German TIGER treebank, where postnominal attributes of nouns appear
as dependents of that noun's head if the latter is a preposition, but not otherwise
(e.g. if the head's head is a preposition). LingPars failed to learn this somewhat
idiosyncratic distinction, but performance improved when the analysis was pre-
processed with an additional np-layer (to be re-flattened after parsing.).
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the classical PENN treebank descriptive model). In
our hand-written, rule based parsers, dependency
treebanks are constructed by using sequential at-
tachment rules, generally attaching functions (e.g.
subject, object, postnominal) to forms (finite verb,
noun) or lexical tags (tense, auxiliary, transitive),
with a direction condition and the possibility of
added target, context or barrier conditions (Bick
2005).

In LingPars, we tried to mimic this methodology
by trying to learn probabilities for both CG style
syntactic-function contexts and function-to-form
attachment rules. We could not, however, imple-
ment the straightforward idea of learning probabili-
ties and optimal ordering for an existing body of
(manual) seeding rules, because the 13 treebanks
were not harmonized in their tag sets and descrip-
tive conventions®.

As an example, imagine a linguistic rule that
triggers "subclause-hood" for a verb-headed de-
pendency-node as soon as a subordinator attaches
to it, and then, implementing "subclause-hood",
tries to attach the verb not to the root, but to anoth-
er verb left of the subordinator, or right to a root-
attaching verb. For the given set of treebanks prob-
abilities and ordering priorities for this rule cannot
be learned by one and the same parser, simply be-
cause some treebanks attach the verb to the subor-
dinator rather than vice versa, and for verb chains,
there is no descriptive consensus as to whether the
auxiliary/construction verb (e.g. Spanish) or the
main verb (e.g. Swedish) is regarded as head.

3 System architecture

The point of departure for pattern learning in Ling-
Pars were the fine-grained part of speech (PoS)
tags (POSTAG) and the LEMMA tag. For those
languages that did not provide a lemma tag, lower-
cased word form was used instead. Also, where
available from the FEATS field and not already in-
tegrated into the PoS tag, the following informa-
tion was integrated into the PoS tag:

a) case, which was regarded as a good predictor
for function, as well as a good dependency-indica-
tor for e.g. preposition- and adnominal attachment

b) mood/finiteness, in order to predict subordina-
tion and verb chaining, especially in the absence of

% Neither was there time (and for some languages: reading knowledge) to write
the necessary converters to and from a normalized standard formalism for each
treebank.

auxiliary class information in the FEATS field

¢) pronoun subclass, in order to predict adnomi-
nal vs. independent function as well as subordinat-
ing function (relatives and interrogatives)

A few treebanks did not classify subordinating
words as conjunctions, relatives, interrogatives
etc., but lumped them into the general adverb and
pronoun classes. Danish is a case in point - here,
the treebank classified all non-inflecting words as
PoS 'U". Our solution, implemented only for Dan-
ish and Swedish, was to introduce a list of struc-
ture-words, that would get their PoS appended with
an '-S', enabling the learner to distinguish between
e.g. "ordinary" ADV, and "structural" ADV-S.

3.1 The parser

In a first round, our parser calculates a preference
list of functions and dependencies for each word,
examining all possible mother-daughter pairs and
n-grams in the sentence (or paragraph). Next, de-
pendencies are adjusted for function, basically
summing up the frequency-, distance- and direc-
tion-calibrated function—PoS attachment probabil-
ities for all contextually allowed functions for a
given word. Finally, dependency probabilities are
weighted using linked probabilities for possible
mother-, daughter- and sister-tags in a second pass.

The result are 2 arrays, one for possible daugh-
ter—mother pairs, one for word:function pairs.
Values in both arrays are normalized to the 0..1 in-
terval, meaning that for instance even an originally
low probability, long distance attachment will get
high values after normalization if there are few or
no competing alternatives for the word in question.

LingPars then attempts to "effectuate" the de-
pendency (daughter—mother) array, starting with
the - in normalized terms - highest value®. If the
daughter candidate is as yet unattached, and the de-
pendency does not produce circularities or crossing
branches, the corresponding part of the (ordered)
word:function array is calibrated for the suggested
dependency, and the top-ranking function chosen.

In principle, one pass through the dependency
array would suffice to parse a sentence. However,
3For the treebank as such, no information is lost, since it will be recoverable

from the function tag. In a training situation, however, there is much less to train
on than in a treebank with a more syntactic definition of PoS.

4 Though we prefer to think of attachments as bottom-up choices, the value-or-
dered approach is essentially neither bottom-up nor top-down, depending on the
language and the salience of relations in a sentence, all runs had a great varia-
tion in the order of attachments. A middle-level attachment like case-based
preposition-attachment, for instance, can easily outperform (low) article- or
(high) top-node-attachment.
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due to linguistic constraints like uniqueness princi-
ple, barrier tags and "full" heads’, some words may
be left unattached or create conflicts for their
heads. In these cases, weights are reduced for the
conflicting functions, and increased for all daugh-
ter—mother values of the unattached word. The
value arrays are then recomputed and rerun. In the
case of unattached words, a complete rerun is per-
formed, allowing problematic words to attach be-
fore those words that would otherwise have
blocked them. In the case of a function (e.g subject
uniqueness) conflict, only the words involved in
the conflict are rerun. If no conflict-free solution is
found after 19 runs, barrier-, uniqueness- and pro-
jectivity-constraints are relaxed for a last run®.

Finally, the daughter-sequence for each head
(with the head itself inserted) is checked against
the probability of its function sequence (learned
not from n-grams proper, but from daughter-se-
quences in the training corpus). For instance, the
constituents of a clause would make up such a se-
quence and allow to correct a sequence like SUBJ
VFIN ARG2 ARGI into SUBJ VFIN ARGI
ARG2, where ARG1 and ARG2 are object func-
tions with a preferred order (for the language
learned) of ARG1 ARG2.

3.2 Learning functions (deprels)

LingPars computes function probabilities (VT,
function value) at three levels: First, each lemma
and PoS is assigned local (context-free) probabili-
ties for all possible functions. Second, the proba-
bility of a given function occurring at a specific
place in a function n-gram (func-gram, example
(a)) is calculated (with n between 2 and 6). The
learner only used endocentric func-grams, marking
which of the function positions had their head
within the func-gram. If no funcgram supported a
given function, its probability for the word in ques-
tion was set to zero. At the third level, for each en-
docentric n-gram of word classes (PoS), the proba-
bility for a given function occurring at a given po-
sition in the n-gram (position 2 in example (b))
was computed. Here, only the longest possible n-
grams were used by the parser, and first and last
positions of the n-gram were used only to provide
context, not to assign function probabilities.

*Head types with a limited maximum number of dependents (usually, one)

°In the rare case of still missing heads or functions, these are computed using
probabilities for a simplified set of word classes (mostly the CPOSTAG), or - as
a last resort - set to ROOT-attachment.

(a)>N—2 SUBJ—4 <N—2 AUX MV—4 ACC—5
(b) art—2 n:SUBJ—4 adj—2 v-fin v-inf—4 n—5

3.3 Learning dependencies

In a rule based Constraint Grammar system, depen-
dency would be expressed as attachment of func-
tions to forms (i.e. subject to verb, or modifier to
adjective). However, with empty deprel fields,
LingPars cannot use functions directly, only their
probabilities. Therefore, in a first pass, it computes
the probability for the whole possible attachment
matrix for a sentence, using learned mother- and
daughter-normalized frequencies for attachments
of type (a) PoS—PoS, (b) PoS—Lex, (c)
Lex—PoS and (d) Lex—Lex, taking into account
also the learned directional and distance prefer-
ences. Each matrix cell is then filled with a value
Vfa ("function attachment value") - the sum of the
individual normalized probabilities of all possible
functions for that particular daughter given that
particular mother multiplied with the preestab-
lished, attachment-independent Vf value for that
token-function combination.

Inspired by the BARRIER conditions in CG rule
contexts, our learner also records the frequency of
those PoS and those functions (deprels) that may
appear between a dependent of PoS A and a head
of PoS B. The parser then regards all other, non-
registered interfering PoS or functions as blocking
tokens for a given attachment pair, reducing its at-
tachment value by a factor of 1/100.

In a second pass, the attachment matrix is cali-
brated using the relative probabilities for depen-
dent daughters, dependent sisters and head mother
given. This way, probabilities of object and object
complement sisters will enhance each other, and
given the fact that treebanks differ as to which ele-
ment of a verb chain arguments attach to, a verbal
head can be treated differently depending on
whether it has a high probability for another verb
(with auxiliary, modal or main verb function) as
mother or daughter or not.

Finally, like for functions, n-grams are used to
calculate attachment probabilities. For each endo-
centric PoS n-gram (of length 6 or less), the proba-
bilities of all treebank-supported PoS:function
chains and their dependency arcs are learned, and
the value for an attachment word pair occurring in
the chain will be corrected using both the chain/n-
gram probability and the Vf value for the function
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associated with the dependent in that particular
chain. For contextual reasons, arcs central to the n-
gram are weighted higher than peripheral arcs.’

3.4 Non-projectivity and other language-spe-
cific problems

As a general rule, non-projective arcs were only al-
lowed if no other, projective head could be found
for a given word. However, linguistic knowledge
suggests that non-projective arcs should be particu-
larly likely in connection with verb-chain-depen-
dencies, where subjects attach to the finite verb,
but objects to the non-finite verb, which can create
crossing arcs in the case of object fronting, chain
inversion etc. Since we also noted an error-risk
from arguments getting attached to the closest verb
in a chain rather than the linguistically correct
one®, we chose to introduce systematic, after-parse
raising of certain pre-defined arguments from the
auxiliary to the main verb. This feature needs lan-
guage-dependent parameters, and time constraints
only allowed the implementation for Danish, Span-
ish, Portuguese and Czech. For Dutch, we also dis-
covered word-class-related projectivity-errors, that
could be remedied by exempting certain FEATS
classes from the parser's general projectivity con-
straint altogether (prep-voor and V-hulp)’.

In order to improve root accuracy, topnode
probability was set to zero for verbs with a safe
subordinator dependent. However, even those tree-
banks descriptively supporting this did not all PoS-
mark subordinators. Therefore, FEATS-informa-
tion was used, or as a last resort - for Danish and
Swedish - word forms.

A third language-specific error-source was
punctuation, because some treebanks (cz, sl, es) al-
lowed punctuation as heads. Also, experiments for
the Germanic and Romance languages showed that
performance decreased when punctuation was al-
lowed as BARRIER, but increased, when a fine-
grained punctuation PoS'" was included in function
and dependency n-grams.

WARRIERconmaimS, or simply because of insufficient training data in
the face of a very detailed tag set, it may be impossible to assign all words n-
gram supported functions or dependencies. In the former case, local function

probabilities are used, in the latter attachment is computed as function — PoS
probability only, using the most likely function.

8 Single verbs being more frequent than verb chains, the learner tended to gener-
alize close attachment, and even (grand)daughter and (grand)mother conditions
could not entirely remedy this problem.

Though desirable, there was no time to implement this for other languages.

10 Only for Spanish and Swedish was there a subdivision of punctuation PoS, so
we had to supply this information in all other cases by adding token-informa-
tion to the POSTAG field.

4 Evaluation

Because of LingPars' strong focus on function tags,
a separate analysis of attachment versus label per-
formance was thought to be of interest. Ill. 1 plots
the latter (Y-axis) against the former (X-axis), with
dot size symbolizing treebank size. In this evalua-
tion, a fixed training chunk size of 50,000 tokens''
was used, and tested on a different sample of 5,000
tokens (see also 5/50 evaluation in ill. 2). For most
languages, function performance was better than
attachment performance (3.2 percentage points on
average, as opposed to 0.44 for the CoNLL sys-
tems overall), with dots above the hyphenated "di-
agonal of balance". Interestingly, the graphics also
makes it clear that performance was lower for
small treebanks, despite the fact that training cor-
pus size had been limited in the experiment, possi-
bly indicating correlated differences in the balance
between tag set size and treebank size.

100]  Function/Label -
accuracy (%
- v ja &3~ a00
90 es 75.9- 851
0 pt__.8‘2.1 -83.6
a0 - s172.2- ??1' da 79.3- 80,8
ar B9.6- 747 se309-731
T o zh 841-78.89
tuk5.3-7480
7L 7424782
cz’71.8- 748
B0
£ Attachment
accuracy (%)
L I A NN (RN NN M M
1 1 1 1 1 I 1 1 1 1
g0 7o 20 a0 100

Illustration 1: Attachment accuracy
(x-axis) vs. label accuracy (y-axis)

Ill. 2 keeps the information from ill. 1 (5/50-dep
and 5/50-func), represented in the two lower lines,
but adds performance for maximal training corpus
size' with (a) a randomly chosen test chunk of
5,000 tokens not included in the training corpus
(5/all-5) and (b) a 20,000 token chunk from the
training corpus (20/all). Languages were sorted ac-

""Smaller for Slovene and Arabic (for these languages: largest possible)

’Due to deadline time constraints, an upper limit of 400,000 lines was forced on
the biggest treebanks, when training for unknown test data, meaning that only %2
of the German data and 1/3 of the Czech data could be used.

174



cording to 20/all-func accuracy. As can be seen
from the dips in the remaining (lower) curves,
small training corpora (asterisk-marked languages)
made it difficult for the parser (1) to match 20/all
attachment performance on unknown data, and (2)
to learn labels/functions in general (dips in all
function curves, even 20/all). For the larger tree-
banks, the parser performed better (1-3 percentage
points) for the full training set than for the 50,000
token training set.

97,5

95
0.5 7?&—4/»
9 S —
87.5 \ o
85 %7
82,5 S Ly
80 4~ D / i 5/50 dep
% 5/50 func
77,5 + \v’ \ 20/all dep
75 L \ - N 20/all func
725 / *\_ 5/all-5 dep
, P 5/all-5 func
70
67,5 \
65 T T T T [ T T T T T 1

cz de pt bu se nl tu ar sl da ja es zh

Illustration 2: Performance with different training cor-
pus sizes (upper 2 curves: Test data included)

5 Outlook

We have shown that a probabilistic dependency
parser can be built on CG-inspired linguistic prin-
ciples with a strong focus on function and tag se-
quences. Given the time constraint and the fact that
the learner had to be built from scratch, its perfor-
mance would encourage further research. In partic-
ular, a systematic parameter/performance analysis'
should be performed for the individual languages.
In the long term, a notational harmonization of the
treebanks should allow the learner to be seeded
with existing hand-written dependency rules.

References

Afonso, S., E. Bick, R. Haber and D. Santos. Floresta
Sinta(c)tica: A treebank of Portuguese. In Proceed-
ings of LREC'02. pp. 1698-1703 . Paris: ELRA

van der Beek, L. G. Bouma, R. Malouf, G. van Noord.
2002. The Alpino Dependency Treebank. In: Compu-
tational Linguistics in the Netherlands CLIN 2001.

BParameters like uniqueness and directedness are already learned by the system
(through probability thresholds), while others, like function weights, structural
word classes and frequency thresholds for barriers and lexeme n-grams are used
now, but with a fixed value for all languages.

pp- 8-22. Rodopi

Bick, Eckhard. 2005. Turning Constraint Grammar Data
into Running Dependency Treebanks. In: Civit,
Montserrat & Kiibler, Sandra & Marti, Ma. Antonia
(ed.), Proceedings of TLT 2005, Barcelona. pp.19-2

Brants, S., S. Dipper, S. Hansen, W. Lezius, G. Smith.
2002. The TIGER Treebank. Proc. of TLT1, Sozopol

DzZerosky, S., T. Erjavec, N. Ledinek, P. Pajas, Z.
Zabokrtsky, A. Zele. 2006. Towards a Slovene De-
pendency Treebank. In Proc. of LREC'06, Genoa

Hajic, J., B. Hladka, and P. Pajas. 2001. The Prague De-
pendency Treebank: Annotation Structure and Sup-
port. In Proc. of the IRCS Workshop on Linguistic
Databases, pp. 105-114. University of Pennsylvania.

Karlsson, Fred, Atro Vouitilainen, Jukka Heikkild and
A. Anttila. 1995. Constraint Grammar - A Language-
Independent System for Parsing Unrestricted Text.
Mouton de Gruyter: Berlin.

Kawata, Y. and J. Bartels. 2000. Stylebook for the
Japanese Treebank in VERBMOBIL. Universitit
Tiibingen: Verbmobil-Report 240.

Chen, Keh-Jiann, Chu-Ren Huang, Feng-Yi Chen, Chi-
Ching Luo, Ming-Chung Chang, Chao-Jan Chen, and
Zhao-Ming Gao. 2003. Sinica Treebank: Design Cri-
teria, Representational Issues and Implementation. In
A. Abeille (ed.) Treebanks Building and Using
Parsed Corpora. Dordrecht:Kluwer, pp231-248.

Kromann, M. T. 2003. The Danish Dependency Tree-
bank. In J. Nivre and E. Hinrichs (ed.) Proceedings of
TLT2003. Véaxjo University Press, Sweden

Nart, B. Atalay, Kemal Oflazr, Bilge Say. 2003. The
Annotation Process in the Turkish Treebank. In Pro-
ceedings of the EACL Workshop on Linguistically In-
terpreted Corpora - LINC 2003. Budapest

Nilsson, J, J. Hall and J. Nivre. 2005. MAMBA Meets
TIGER: Reconstructing a Swedish Treebank from
Antiquity. In Proceedings NODALIDA 2005. Joenssu

Oflazer, K., B. Say, D.Z. Hakkani-Tir, G. Tir. 2003.
Building a Turkish Treebank. In A. Abeillé (ed.)
Building and Exploiting Syntactically-annotated Cor-
pora. Kluwer

Palomar, M. et. al. 2004. Construccion de una base de
datos de arboles sintactico-semanticos para el catalan,
euskera y castellano. In: Proceedings of SEPLN XX,
pp 81-88. Barcelona: ISSN 1135-5948

Simov, K., P. Osenova, A. Simov, M. Kouylekov. 2004.
Design and Implementation of the Bulgarian HPSG-
based Treebank. In E. Hinrichs and K. Simov (ed.),
Journal of Research on Language and Computation,
Vol. 2, No. 4, pp. 495-522. Kluwer

Smrz, Otakar, Jan Snaidauf, and Petr Zemanek. 2002.
Prague Dependency Treebank for Arabic: Multi-Lev-
el Annotation of Arabic corpus. In Proceedings of the
International Symposium on Processing of Arabic,
pages 147-155, Manouba, Tunisia, April 2002.

175



Dependency Parsing by Inference over High-recall Dependency Predictions

Sander Canisius, Toine Bogers,

Antal van den Bosch, Jeroen Geertzen
ILK / Computational Linguistics and Al
Tilburg University, P.O. Box 90153,
NL-5000 LE Tilburg, The Netherlands
{S.V.M.Canisius,A.M.Bogers,
Antal.vdnBosch, J.Geertzen}Quvt.nl

1 Introduction

As more and more syntactically-annotated corpora
become available for a wide variety of languages,
machine learning approaches to parsing gain inter-
est as a means of developing parsers without having
to repeat some of the labor-intensive and language-
specific activities required for traditional parser de-
velopment, such as manual grammar engineering,
for each new language. The CoNLL-X shared task
on multi-lingual dependency parsing (Buchholz et
al., 2006) aims to evaluate and advance the state-of-
the-art in machine learning-based dependency pars-
ing by providing a standard benchmark set compris-
ing thirteen languages'. In this paper, we describe
two different machine learning approaches to the
CoNLL-X shared task.

Before introducing the two learning-based ap-
proaches, we first describe a number of baselines,
which provide simple reference scores giving some
sense of the difficulty of each language. Next, we
present two machine learning systems: 1) an ap-
proach that directly predicts all dependency relations
in a single run over the input sentence, and 2) a cas-
cade of phrase recognizers. The first approach has
been found to perform best and was selected for sub-
mission to the competition. We conclude this paper
with a detailed error analysis of its output for two of
the thirteen languages, Dutch and Spanish.

!The data sets were extracted from various existing tree-
banks (Haji¢ et al., 2004; Simov et al., 2005; Simov and Osen-
ova, 2003; Chen et al., 2003; B6hmova et al., 2003; Kromann,
2003; van der Beek et al., 2002; Brants et al., 2002; Kawata and
Bartels, 2000; Afonso et al., 2002; Dzeroski et al., 2006; Civit
Torruella and Marti Antonin, 2002; Nilsson et al., 2005; Oflazer
et al., 2003; Atalay et al., 2003)

Erik Tjong Kim Sang
Informatics Institute
University of Amsterdam, Kruislaan 403
NL-1098 SJ Amsterdam, The Netherlands
erikt@science.uva.nl

2 Baseline approaches

Given the diverse range of languages involved in
the shared task, each having different characteristics
probably requiring different parsing strategies, we
developed four different baseline approaches for as-
signing labeled dependency structures to sentences.
All of the baselines produce strictly projective struc-
tures. While the simple rules implementing these
baselines are insufficient for achieving state-of-the-
art performance, they do serve a useful role in giving
a sense of the difficulty of each of the thirteen lan-
guages. The heuristics for constructing the trees and
labeling the relations used by each of the four base-
lines are described below.

Binary right-branching trees The first baseline
produces right-branching binary trees. The first to-
ken in the sentence is marked as the top node with
HEAD 0 and DEPREL ROOT. For the rest of the
tree, token n — 1 serves as the HEAD of token n.
Figure 1 shows an example of the kind of tree this
baseline produces.

Binary left-branching trees The binary left-
branching baseline mirrors the previous baseline.
The penultimate token in the sentence is marked as
the top node with HEAD 0 and DEPREL ROOT
since punctuation tokens can never serve as ROOT?.
For the rest of the tree, the HEAD of token n is token
n+ 1. Figure 2 shows an example of a tree produced
by this baseline.

>We simply assume the final token in the sentence to be
punctuation.
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Inward-branching trees In this approach, the
first identified verb® is marked as the ROOT node.
The part of the sentence to the left of the ROOT is
left-branching, the part to the right of the ROOT is
right-branching. Figure 3 shows an example of a
tree produced by this third baseline.

Nearest neighbor-branching trees In our most
complex baseline, the first verb is marked as the
ROOT node and the other verbs (with DEPREL vc)
point to the closest preceding verb. The other to-
kens point in the direction of their nearest neighbor-
ing verb, i.e. the two tokens at a distance of 1 from
a verb have that verb as their HEAD, the two tokens
at a distance of 2 have the tokens at a distance of 1
as their head, and so on until another verb is a closer
neighbor. In the case of ties, i.e. tokens that are
equally distant from two different verbs, the token is
linked to the preceding token. Figure 4 clarifies this
kind of dependency structure in an example tree.

ROOT

P VAVEAVE VA VAN

verb verb punct

Figure 1: Binary right-branching tree for an example
sentence with two verbs.

ROOT

AVAVAVEAVEVES

verb verb punct

Figure 2: Binary left-branching tree for the example
sentence.

ROOT
verb verb punct

Figure 3: Binary inward-branching tree for the ex-
ample sentence.

3We consider a token a verb if its CPOSTAG starts with a
‘V’. This is an obviously imperfect, but language-independent
heuristic choice.

ROOT

Vava' 2VaVavaN

verb verb punct

Figure 4: Nearest neighbor-branching tree for the
example sentence.

Labeling of identified relations is done using a
three-fold back-off strategy. From the training set,
we collect the most frequent DEPREL tag for each
head-dependent FORM pair, the most frequent DE-
PREL tag for each FORM, and the most frequent
DEPREL tag in the entire training set. The rela-
tions are labeled in this order: first, we look up if the
FORM pair of a token and its head was present in
the training data. If not, then we assign it the most
frequent DEPREL tag in the training data for that
specific token FORM. If all else fails we label the
token with the most frequent DEPREL tag in the en-
tire training set (excluding punct* and ROOT).

language  baseline wunlabeled labeled
Arabic left 58.82 39.72
Bulgarian  inward 41.29 29.50
Chinese NN 37.18 25.35
Czech NN 34.70 22.28
Danish inward 50.22 36.83
Dutch NN 34.07 26.87
German NN 33.71 26.42
Japanese right 67.18 64.22
Portuguese right 25.67 22.32
Slovene right 24.12 19.42
Spanish inward 32.98 27.47
Swedish NN 34.30 21.47
Turkish right 49.03 31.85

Table 1: The labeled and unlabeled scores for the
best performing baseline for each language (NN =
nearest neighbor-branching).

The best baseline performance (labeled and un-
labeled scores) for each language is listed in Table
1. There was no single baseline that outperformed
the others on all languages. The nearest neighbor
baseline outperformed the other baselines on five
of the thirteen languages. The right-branching and

4Since the evaluation did not score on punctuation.
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inward-branching baselines were optimal on four
and three languages respectively. The only language
where the left-branching trees provide the best per-
formance is Arabic.

3 Parsing by inference over high-recall
dependency predictions

In our approach to dependency parsing, a machine
learning classifier is trained to predict (directed) la-
beled dependency relations between a head and a de-
pendent. For each token in a sentence, instances are
generated where this token is a potential dependent
of each of the other tokens in the sentence®. The
label that is predicted for each classification case
serves two different purposes at once: 1) it signals
whether the token is a dependent of the designated
head token, and 2) if the instance does in fact corre-
spond to a dependency relation in the resulting parse
of the input sentence, it specifies the type of this re-
lation, as well.

The features we used for encoding instances for
this classification task correspond to a rather simple
description of the head-dependent pair to be clas-
sified. For both the potential head and dependent,
there are features encoding a 2-1-2 window of words
and part-of-speech tags®; in addition, there are two
spatial features: a relative position feature, encoding
whether the dependent is located to the left or to the
right of its potential head, and a distance feature that
expresses the number of tokens between the depen-
dent and its head.

One issue that may arise when considering each
potential dependency relation as a separate classifi-
cation case is that inconsistent trees are produced.
For example, a token may be predicted to be a de-
pendent of more than one head. To recover a valid
dependency tree from the separate dependency pre-
dictions, a simple inference procedure is performed.
Consider a token for which the dependency relation
is to be predicted. For this token, a number of clas-
sification cases have been processed, each of them

>To prevent explosion of the number of classification cases
to be considered for a sentence, we restrict the maximum dis-
tance between a token and its potential head. For each language,
we selected this distance so that, on the training data, 95% of the
dependency relations is covered.

More specifically, we used the part-of-speech tags from the
POSTAG column of the shared task data files.

indicating whether and if so how the token is related
to one of the other tokens in the sentence. Some of
these predictions may be negative, i.e. the token is
not a dependent of a certain other token in the sen-
tence, others may be positive, suggesting the token
is a dependent of some other token.

If all classifications are negative, the token is as-
sumed to have no head, and consequently no depen-
dency relation is added to the tree for this token; the
node in the dependency tree corresponding to this
token will then be an isolated one. If one of the clas-
sifications is non-negative, suggesting a dependency
relation between this token as a dependent and some
other token as a head, this dependency relation is
added to the tree. Finally, there is the case in which
more than one prediction is non-negative. By defi-
nition, at most one of these predictions can be cor-
rect; therefore, only one dependency relation should
be added to the tree. To select the most-likely can-
didate from the predicted dependency relations, the
candidates are ranked according to the classification
confidence of the base classifier that predicted them,
and the highest-ranked candidate is selected for in-
sertion into the tree.

For our base classifier we used a memory-based
learner as implemented by TiMBL (Daelemans et
al., 2004). In memory-based learning, a machine
learning method based on the nearest-neighbor rule,
the class for a given test instance is predicted by per-
forming weighted voting over the class labels of a
certain number of most-similar training instances.
As a simple measure of confidence for such a pre-
diction, we divide the weight assigned to the major-
ity class by the total weight assigned to all classes.
Though this confidence measure is a rather ad-hoc
one, which should certainly not be confused with
any kind of probability, it tends to work quite well
in practice, and arguably did so in the context of
this study. The parameters of the memory-based
learner have been optimized for accuracy separately
for each language on training and development data
sampled internally from the training set.

The base classifier in our parser is faced with a
classification task with a highly skewed class dis-
tribution, i.e. instances that correspond to a depen-
dency relation are largely outnumbered by those that
do not. In practice, such a huge number of nega-
tive instances usually results in classifiers that tend
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to predict fairly conservatively, resulting in high pre-
cision, but low recall. In the approach introduced
above, however, it is better to have high recall, even
at the cost of precision, than to have high precision at
the cost of recall. A missed relation by the base clas-
sifier can never be recovered by the inference proce-
dure; however, due to the constraint that each token
can only be a dependent of one head, excessive pre-
diction of dependency relations can still be corrected
by the inference procedure. An effective method for
increasing the recall of a classifier is down-sampling
of the training data. In down-sampling, instances
belonging to the majority class (in this case the neg-
ative class) are removed from the training data, so
as to obtain a more balanced distribution of negative
and non-negative instances.

Figure 5 shows the effect of systematically re-
moving an increasingly larger part of the negative in-
stances from the training data. First of all, the figure
confirms that down-sampling helps to improve re-
call, though it does so at the cost of precision. More
importantly however, it also illustrates that this im-
proved recall is beneficial for the performance of the
dependency parser. The shape of the performance
curve of the dependency parser closely follows that
of the recall. Remarkably, parsing performance con-
tinues to improve with increasingly stronger down-
sampling, even though precision drops considerably
as a result of this. This shows that the confidence
of the classifier for a certain prediction is a suffi-
ciently reliable indication of the quality of that pre-
diction for fixing the over-prediction of dependency
relations. Only when the number of negative train-
ing instances is reduced to equal the number of pos-
itive instances, the performance of the parser is neg-
atively affected. Based on a quick evaluation of var-
ious down-sampling ratios on a 90%-10% train-test
split of the Dutch training data, we decided to down-
sample the training data for all languages with a ratio
of two negative instances for each positive one.

Table 2 lists the unlabeled and labeled attachment
scores of the resulting system for all thirteen lan-
guages.

4 Cascaded dependency parsing

One of the alternative strategies explored by us was
modeling the parsing process as a cascaded pair of

100 T T T T T

40

Precision
Recall -------
System LAS --------
0 L L L L |
10 8 6 4 2
Sampling ratio

Figure 5: The effect of down-sampling on precision
and recall of the base classifier, and on labeled ac-
curacy of the dependency parser. The x-axis refers
to the number of negative instances for each posi-
tive instance in the training data. Training and test-
ing was performed on a 90%-10% split of the Dutch
training data.

basic learners. This approach is similar to Yamada
and Matsumoto (2003) but we only use their Left
and Right reduction operators, not Shift. In the first
phase, each learner predicted dependencies between
neighboring words. Dependent words were removed
and the remaining words were sent to the learners for
further rounds of processing until all words but one
had been assigned a head. Whenever crossing links
prevented further assignments of heads to words, the
learner removed the remaining word requiring the
longest dependency link. When the first phase was
finished another learner assigned labels to pairs of
words present in dependency links.

Unlike in related earlier work (Tjong Kim Sang,
2002), we were unable to compare many different
learner configurations. We used two different train-
ing files for the first phase: one for predicting the
dependency links between adjacent words and one
for predicting all other links. As a learner, we used
TiMBL with its default parameters. We evaluated
different feature sets and ended up with using words,
lemmas, POS tags and an extra pair of features with
the POS tags of the children of the focus word. With
this configuration, this cascaded approach achieved
a labeled score of 62.99 on the Dutch test data com-
pared to 74.59 achieved by our main approach.
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language  unlabeled labeled
Arabic 74.59 57.64
Bulgarian 82.51 78.74
Chinese 82.86 78.37
Czech 72.88 60.92
Danish 82.93 77.90
Dutch 77.79 74.59
German 80.01 77.56
Japanese 89.67 87.41
Portuguese 85.61 77.42
Slovene 74.02 59.19
Spanish 71.33 68.32
Swedish 85.08 79.15
Turkish 64.19 51.07

Table 2: The labeled and unlabeled scores for the
submitted system for each of the thirteen languages.

5 Error analysis

We examined the system output for two languages
in more detail: Dutch and Spanish.

5.1 Dutch

With a labeled attachment score of 74.59 and an
unlabeled attachment score of 77.79, our submitted
Dutch system performs somewhat above the average
over all submitted systems (labeled 70.73, unlabeled
75.07). We review the most notable errors made by
our system.

From a part-of-speech (CPOSTAG) perspective,
a remarkable relative amount of head and depen-
dency errors are made on conjunctions. A likely
explanation is that the tag “Con;j” applies to both co-
ordinating and subordinating conjunctions; we did
not use the FEATS information that made this dis-
tinction, which would have likely solved some of
these errors.

Left- and right-directed attachment to heads is
roughly equally successful. Many errors are made
on relations attaching to ROOT; the system appears
to be overgenerating attachments to ROOT, mostly
in cases when it should have generated rightward
attachments. Unsurprisingly, the more distant the
head is, the less accurate the attachment; especially
recall suffers at distances of three and more tokens.

The most frequent attachment error is generat-
ing a ROOT attachment instead of a “mod” (mod-
ifier) relation, often occurring at the start of a sen-

tence. Many errors relate to ambiguous adverbs such
as bovendien (moreover), tenslotte (after all), and
zo (thus), which tend to occur rather frequently at
the beginning of sentences in the test set, but less
so in the training set. The test set appears to con-
sist largely of formal journalistic texts which typi-
cally tend to use these marked rhetorical words in
sentence-initial position, while the training set is a
more mixed set of texts from different genres plus
a significant set of individual sentences, often man-
ually constructed to provide particular examples of
syntactic constructions.

5.2 Spanish

The Spanish test data set was the only data set on
which the alternative cascaded approach (72.15) out-
performed our main approach (68.32). A detailed
comparison of the output files of the two systems
has revealed two differences. First, the amount of
circular links, a pair of words which have each other
as head, was larger in the analysis of the submitted
system (7%) than in the cascaded analysis (3%) and
the gold data (also 3%). Second, the number of root
words per sentence (always 1 in the gold data) was
more likely to be correct in the cascaded analysis
(70% correct; other sentences had no root) than in
the submitted approach (40% with 20% of the sen-
tences being assigned no roots and 40% more than
one root). Some of these problems might be solvable
with post-processing
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Abstract achieves moderate but encouraging results, with an

overall labeled attachment accuracy of 74.72% on
We describe an online learning depen-  the CoNLL-X test set.

dency parser for the CoNLL-X Shared
Task, based on the bottom-up projective 2 Parsing and Learning Algorithms

algorithm of Eisner (2000). We experi-  This section describes the three main components of
ment with a large feature set that mod-  the dependency parsing: the parsing model, the pars-

els: the tokens involved in dependencies  ing algorithm, and the learning algorithm.
and their immediate context, the surface-

text distance between tokens, and the syn- 2.1 Model

tactic context dominated by each depen-  |et1,..., L be the dependency labels, defined be-
dency. In experiments, the treatment of  forehand. Letr be a sentence of words,z; . . . z,,.
multilingual information was totally blind. Finally, let)(z) be the space of well-formed depen-
dency trees for. A dependency treg € V() is a
1 Introduction set of n dependencies of the foriiih, m, [], where

)JL is the index of the head word) (< h < n,

We describe a learning system for the CoNLL- where 0 means root)p is the index of the modi-

Shared Task on multilingual o!ependency parsinﬁer word (L < m < n), andl is the dependency
(Buchholz et al., 2006), for 13 different languages. label (L < I <_L) E_ach ,vvord of: participates as a
Our system is a bottom-up projective dependen%odifier_in e;actl'y one dependencymf

parser, based on the cubic-time algorithm by Eisner Our dependency parseip, returns the maximum

(1996; 2000). The parser uses a learning functiogCored dependency tree for a senterce
that scores all possible labeled dependencies. This P y

function is trained globally with online Perceptron,
. " o dp(z, W) = arg max Z sco([h, m, 1], z,y, W)
by parsing training sentences and correcting its pa- ve ()
i . [h,m,l]ey

rameters based on the parsing mistakes. The features
used to score, while based on the previous work in In the formula, w is the weight vector of the
dependency parsing (McDonald et al., 2005), introparser, that is, the set of parameters used to score de-
duce some novel concepts such as better codificatipendencies during the parsing process. It is formed
of context and surface distances, and runtime infoby a concatenation of L weight vectors, one for each
mation from dependencies previously parsed. dependency labely = (w',... ,w/,...,wl). We

Regarding experimentation, the treatment of mulassume a feature extraction functi@n,that repre-
tilingual data has been totally blind, with no spesents an unlabeled dependeffieym] in a vector of
cial processing or features that depend on the la> features. Each of the/ has D parameters or
guage. Considering its simplicity, our systemdimensions, one for each feature. Thus, the global
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weight vectorw maintainsL x D parameters. The w=0

. L . fort=1toT
scoring function is defined as follows: foreachtraining examplez, y) do
g = dp(z, w) A
SCO([hv m, l]7 Y, W) = (Z)(hv m,zx, y) ’ Wl foreach [h’ s l] € y\y do

foreach [h,m,l] € §\y do
Wl = Wl - ¢(h7 m,x, g)
returnw

Note that the scoring of a dependency makes use
of y, the tree that contains the dependency. As de-
scribed next, at scoring timgjust contains the de-
pendencies found betweérandm.

Figure 1: Pseudocode of the Perceptron Algorithffi.is a
parameter that indicates the number of epochs that the algorithm
cycles the training set.

We use the cubic-time algorithm for dependency

parsing proposed by Eisner (1996; 2000). This par artial parsing (Carreras et al., 2005) or even depen-

ing algorithm assumes that trees are projective, th Ency parsing (McDonald et al., 2005)
is, dependencies never cross in a tree. While this as-Perceptron is an online Iear’ning algorithm that

sumptlon_ clearly does nothold in the CONLL-_X d_ata1earns by correcting mistakes made by the parser
(only Chinese trees are actually 100% proJeCt'\/e}/\/hen visiting training sentences. The algorithm is

we chose this algorithm for simplicity. As it will be extremely simple, and its cost in time and memory

S.hOW.”’ thte percr?ntr?ge zf r:on-:or(::]ectlve Oleptendef}findependent from the size of the training corpora.
cles 1S hot very nigh, and clearly the rror rates W, tayms of efficiency, though, the parsing algorithm
obtain are caused by other major factors. must be run at every training sentence.

The parser is a bottom-up dynamic programming Our system uses the regular Perceptron working

algorithm that visits sentence spans of increasirm primal form. Figure 1 sketches the code. Given

length. In a given shan, from wordto worde, it the number of languages and dependency types in
completes two partial dependency trees that COVRe CONLL-X exercise, we found prohibitive to

all words within the span: one rooted aand the work with a dual version of Perceptron, that would

oth_er rooted at. Thisis done in _tWO steps. First, theallow the use of a kernel function to expand features.
optimal dependency structure internal to the span is

chosen, by combining partial solutions from inter3 Features

nal spans. This structure is completed with a depet]_—he feature extraction functiosy(h, m, z. 1), rep-

dency covering the whole span, in two ways: from .
. __resents in a feature vector a dependency from word
s to e, and frome to s. In each case, the scoring

O sitionsm to h, in the context of a senteneeand a
function is used to select the dependency label th T

o ependency treg. As usual in discriminative learn-
maximizes the score.

. . in e work with binary indicator features: if a cer-
We take advantage of this two-step processing Io.g’W WOTK WIth binary ind u !

. . . ain feature is observed in an instance, the value of
introduce features for the scoring function that rep- o . :

. . that feature is 1; otherwise, the value is 0. For con-

resentsomeof the internal dependencies of the span . , "

. . venience, we describgas a composition of several

(see Section 3 for details). It has to be noted th%[ . .

) . ase feature extraction functions. Each extracts a

the parsing algorithm we use does not score depen- L .

. S number of disjoint features. The feature extraction

dencies on top of every possible internal structur

Thus, by conditioning on features extracted frgm ?unctloncz)(h, m, z,y) is calculated as:

2.2 Parsing Algorithm

we are making the search approximative. Proken (T, h, “head”) + Grera(2, h, “head”) +
thoken (.’L‘, m, “mOd”) + thctx ($, m, “’I’)’lOd”) +
2.3 Perceptron Learning Gdep(x, mmdp m) + Gdeta (T, mmdp, ) +

As learning algorithm, we use Perceptron tailored Pdist (T, MMdpm) + Gruntime (€, Y, by M, dpm)

for structured scenarios, proposed by Collins (2002)vhere ¢;,1e, €Xtracts context-independent token
In recent years, Perceptron has been used in a nufeatures, ¢;.;, computes context-based token fea-
ber of Natural Language Learning works, such as itures, ¢4, computes context-independent depen-

182



¢token (X7 i3 type) d)diSt (X7 i7j7 dir)
type - w(z;) foreach(ke (3, 5)): dir - cp(z;) - ep(xk) - ep(x;)
type - 1(x;) number of tokens betweerand;
type - cp(x;) number of verbs betweerand;
type - fp(z:) number of coordinations betweemnd j
foreachgns): type - ms(x;) number of punctuations signs betweeand;
type - w(w:) - cp(w:)
foreach{ns): type - w(x;) - ms(x:) Table 3:Surface distance features between poiaisd;. Nu-
dtetx (X, 1, type) meric features are discretized using “binning” to a small number
qbtoken(x 1 — 1, type - string(i — 1)) of intervals.
Gtoken (T,1 — 2, type - string(i — 2))
¢t0k€"(‘r Z + 1 typ@ ! StT’I:’ILg(’I: + 1)) ()bruntime (X7 y7 h7 m’ dir)
Ptoken (T, + 2, type - string(i + 2)) letly,...,ls be the labels of dependencies
type - Cp(“) cp(@i-1) in y that attach td: and are found fromn to h.
type th(wZ) ( ()xl 1() ()wZ*Q foreachi, 1 <i<S : dir - cp(zn) - cp(xm) - ls
ype - cpiTi) - CPTi+1 if S>1,dir-cp(an) - cp(zm) - It
type - cp(a:) - cp(@is1) - ep(Tit2) it S>2,dir-cp(xn) - cp(zm) -l - 12
Table 1: Token features, both context-independet,fc) :I g;i ' gZﬁ . Eggzzg 22%;:% . 2 Z . ij s
and context-basedpf.:»). type - token type, i.e. “head” or if S=0 dir - ep(xn) - cp(zm) - null
“mod”, w - token word/ - token lemmagp - token coarse part- if 0<S<4,dir-cp(zn) - cplzm) - regular
of-speech (POS) tagfp - token fine-grained POS tagps - it S>4,dir - cp(zn) - cplam) - big

token morpho-syntactic feature. Theperator stands for string

concatenation. Table 4:Runtime features af betweenn andh.

ddep (X, 1, j, dir)
dir ’d;’;@;;) (;f;(‘”l)('x (?21))(;?’)(% ) tant for the work presented here is that we construct
dir - w(z;) - w(z)) - cpla,) explicit feature combinations (see above tables) be-
dir - w(x:) - cp(xi) - ep(x;) cause we configured our linear predictors in primal
dir d?f;( 13(;1;(%)(;‘3(%) form, in order to keep training times reasonable.
dir - cp(mz) : Cp(xjj) While the features presented in Tables 1, 2, and 3
Pdctx (X, 1, ], dir) are straightforward exploitations of the training data,

dir - cp(z:) - cp(wit) - ep(a;-1) - cp(z;)
d?T~Cp(sz 1) Cp(ﬂfz) ep(zj—1) - ep(x;)
dir - cp( ) - ep(xs) - ep(zj41)
dir - cp(wi— 1) ep(xi) - ep(z;) - ep(xj+1)

the runtime featuresi{...+ime) take a different, and
to our knowledge novel in the proposed framework,
approach: for a dependency framto h, they rep-
) resent the dependencies found betweerand i
Table 2: Dependency features, both context-lndepe‘nder}hat attach also td. The d ibed in detail
(¢aep) and context-basedf.¢..), between two points and j, y are described in detai
i < j. dir - dependency direction: left to right or right to left. in Table 4. As we have noted above, these fea-
tures are possible because of the parsing scheme,
which scores a dependency only after all dependen-
dency features,gq., extracts contextual depen-cies spanned by it are scored.
dency featuresyy;; calculates surface-distance fea-
tures between the two tokens, and finally,..ine 4 EXPeriments and Results
computes dynamic features at runtime based on thge experimented on the 13 languages proposed
dependencies previously built for the given intervain the CoNLL-X Shared Task (Hdjiet al., 2004;
during the bottom-up parsingnmdy, ,,, is a short-  Simov et al., 2005; Simov and Osenova, 2003; Chen
hand for a triple of numbersnin(h, m), max(h, m) et al., 2003; Bhmo\a et al., 2003; Kromann, 2003;
anddy, ,, (a sign indicating the direction, i.e1if van der Beek et al.,, 2002; Brants et al., 2002;
m < h, and—1 otherwise). Kawata and Bartels, 2000; Afonso et al., 2002;
We detail the token features in Table 1, the depezeroski et al., 2006; Civit and Mar2002; Nilsson
dency features in Table 2, and the surface-distanetal., 2005; Oflazer et al., 2003; Atalay et al., 2003).
features in Table 3. Most of these features are ir@ur approach to deal with many different languages
spired by previous work in dependency parsing (Mcwas totally blind: we did not inspect the data to mo-
Donald et al., 2005; Collins, 1999). What is impor-tivate language-specific features or processes.
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We did feature filtering based on frequency GOLD UAS 1AS

. Bulgarian 99.56 88.81 83.30

counts. Our_feqtur(_e extraction patterns, that ex- Arabic 9976 72.65 60.94

ploit both lexicalization and combination, gener- Chinese 100.0  88.65 83.68

ate millions of feature dimensions, even with small g;ﬁfshh gg-zg ;;-g? gg-gi

datasets. Our criterion was to use at most 500,000 Dutch 9456 71.39 67.25

different dimensions in each label weight vector. For German 98.84  85.90 82.41

; Japanese 99.16  90.7988.13

each Ianggage, we generated all pOSS|bI_e features, Portuguese 9R5A 87768337

and then filtered out most of them according to the Slovene 98.38 77.72 68.43

counts. Depending on the number of training sen- gpargsf;] 38-22 gg-gz ;;-‘1;53
wedis! . . .

tences, our counts cut-offs vary from 3 to 15 Turkish 98.41 7005 5806

For each language, we held out from training data “Overall 98.68 81.19 74.72

a portion of sentences (300, 500 or 1000 depend-

ing on the total number of sentences) and trained K:0I€ 5: Results of the system on test data. GOLD: labeled
attachment score using gold scoring functions; the loss in ac-

model for up to 20 epochs in the rest of the data. Weuracy is caused by the projectivity assumption made by the
evaluated each model on the held out data for diffeparser. UAS : unlabeled attachment score. LAS : labeled at-
fa ichment score, the measure to compare systems in CoNLL-X.
e_nt numb_er of training epochs, and selected the Ogulgarian is excluded from overall scores.
timum point. Then, we retrained each model on the
whole training set for the selected number of epochs. o % % o %
Table 5 shows the attachment scores obtained Turkish 33.02 4800 ©55.33 57.16 58.06
by our system, both unlabeled (UAS) and labeled ﬁgftz';:‘ese 1280 5380 0818 A TR
(LAS) The-ﬁrst column (GOLD) presgnts the LAS Japanese 38..78 78..13 86'.87 88..27 88..13
obtained with a perfect scoring function: the loss in
accuracy is related to the projectivity assumption o-fab'? 6: '—é;beled atta?h¢ment SCtOtrr?S ﬁt ingreasing Lt??tlge con-
. . igurations. ¢; uses onlyg:.x. at the head and modifiet2
our parsing a_lgorlthm. Dutch tu_ms out to_ be th xtendsp, with ¢q.p. ¢3 incorporates context features, namely
most non-projective language, with a 10Ss in acCu,.., at the head and modifier, amict». ¢4 extendsps with
racy of 5.44%. In our opinion, the loss in other |an§dist..thl:(i;ally, the final feature extraction functiahincreases
. . . . . . wi runtime-
guages is relatively small, and is not a major limita-* ‘
tion to achieve a high performance in the task. Our
system gchlevgs_an overall LAS of 74.72%, withoyr generic factors that we believe caused the most
substantial variation from one language to anothegors across all languages:

Turkish, Arabic, Dutch, Slovene and Czech turn out o ]
Size of training sets the relation between the

to be the most difficult languages for our system; o ;
with accuracies below 70%. The easiest languagdnount of training data and performance is strongly

is clearly Japanese, with a LAS of 88.13%, followeUPPorted in learning theory. We saw the same re-

by Chinese, Portuguese, Bulgarian and German ézhtion in this evaluation: for Turkish, Arabic, and
with LAS above 80%. ' Slovene, languages with limited number of train-

Table 6 shows the contribution of base feature ed'd Sentences, our system obtains accuracies below

traction functions. For four languages, we trained 070- However, one can not argue that the training
models that increasingly incorporate base function§/2€ IS the only cause of errors: Czech has the Ioargest
It can be shown that all functions contribute to a bedfiNing set, and our accuracy is also below 70%.

ter score. Contextual featuressj bring the system Modeling large distance dependencies even
to the final order of performance, while distangg)( though we include features to model the distance
and runtime ¢) features still yield substantial im- between two dependency words,{;;), our analy-

provements. sis indicates that these features fail to capture all the
] ) intricacies that exist in large-distance dependencies.
5 Analysis and Conclusions Table 7 shows that, for the two languages analyzed,

Itis difficult to explain the difference in performancethe system performance decreases sharply as the dis-
across languages. Nevertheless, we have identifieahce between dependency tokens increases.
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to root 1 2 3—6 | >=7 Fully One token Fully
Spanish 83.04 | 93.44 | 86.46 | 69.97 | 61.48 lexicalized | unlexicalized | unlexicalized
Portuguese| 90.81 | 96.49 | 90.79 | 74.76 | 69.01 Spanish 34.80% 54.77% 10.43%
Portuguese  42.94% 49.26% 7.80%

Table 7:Fs_, score related to dependency token distance.
Table 8:Degree of dependency lexicalization.

Modeling context many attachment decisions, e.g.

prepositional attachment, depend on additional coecuracy of 74.81% LAS for Spanish (2.33éwer

text outside of the two dependency tokens. To adhan the overall score) and of 83.77% LAS for Por-
dress this issue, we have included in our model feduguese (0.40% higher than the overall score). This
tures to capture context, both statig,{, ande;cs.) analysis indicates that our model has limited gains
and dynamic §,uniime). Nevertheless, our error (if any) from lexicalization.

analysis indicates that our model is not rich enough In order to improve the quality of our dependency
to capture the context required to address compld@rser we will focus on previously reported issues
dependencies. All the top 5 focus words with théhat can be addressed by a parsing model: large-
majority of errors for Spanish and Portuguese — uyngjistance dependencies, better modeling of context,
“de”, “a”, “en”, and “que” for Spanish, and “em”, and non-projective parsing algorithms.

“de”, “a”, “e”, and “pgra” for Portuguese_.— indicate Acknowledgements
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Abstract

We present a new machine learning frame-
work for multi-lingual dependency pars-
ing. The framework uses a linear, pipeline
based, bottom-up parsing algorithm, with
a look ahead local search that serves to
make the local predictions more robust.
As shown, the performance of the first
generation of this algorithm is promising.

1 System Description

1.1 Parsing as a Pipeline

Pipeline computation is a common computational
strategy in natural language processing, where a task
is decomposed into several stages that are solved se-
quentially. For example, a semantic role labeling
program may start by using a part-of-speech tagger,
than apply a shallow parser to chunk the sentence
into phrases, and continue by identifying predicates
and arguments and then classifying them.

(Yamada and Matsumoto, 2003) proposed a
bottom-up dependency parsing algorithm, where the
local actions, chosen from among Shift, Left, Right,
are used to generate a dependency tree using a
shift-reduce parsing approach. Moreover, they used
SVMs to learn the parsing decisions between pairs
of consecutive words in the sentences !. This is
a true pipeline approach in that the classifiers are
trained on individual decisions rather than on the
overall quality of the parser, and chained to yield the

'A pair of words may become consecutive after the words
between them become the children of these two words

global structure. It suffers from the limitations of
pipeline processing, such as accumulation of errors,
but nevertheless, yields very competitive parsing re-
sults.

We devise two natural principles for enhancing
pipeline models. First, inference procedures should
be incorporated to make robust prediction for each
stage. Second, the number of predictions should
be minimized to prevent error accumulation. Ac-
cording to these two principles, we propose an im-
proved pipeline framework for multi-lingual depen-
dency parsing that aims at addressing the limitations
of the pipeline processing. Specifically, (1) we use
local search, a look ahead policy, to improve the ac-
curacy of the predicted actions, and (2) we argue that
the parsing algorithm we used minimizes the num-
ber of actions (Chang et al., 2006).

We use the set of actions: Shift, Left, Right, Wait-
Left, WaitRight for the parsing algorithm. The pure
Wait action was suggested in (Yamada and Mat-
sumoto, 2003). However, here we come up with
these five actions by separating actions Left into
(real) Left and WaitLeft, and Right into (real) Right
and WaitRight. Predicting these turns out to be eas-
ier due to finer granularity. We then use local search
over consecutive actions and better exploit the de-
pendencies among them.

The parsing algorithm is a modified shift-reduce
parser (Aho et al., 1986) that makes use of the ac-
tions described above and applies them in a left
to right manner on consecutive word pairs (a,b)
(a < b) in the word list T'. T is initialized as the full
sentence. Latter, the actions will change the contents
of T'. The actions are used as follows:

186

Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL-X)
pages 186-190, New York City, June 20@®2006 Association for Computational Linguistics



Shift: there is no relation between a and b.

Right: b is the parent of a,

Left: a is the parent of b

WaitLeft: a is the parent of b, but it’s possible that
b is a parent of other nodes. Action is deferred.

The actions control the procedure of building
trees. When Left or Right is performed, the algo-
rithm has found a parent and a child. Then, the func-
tion deleteWord will be called to eliminate the child
word, and the procedure will be repeated until the
tree is built. In projective languages, we discovered
that action WaifRight is not needed. Therefore, for
projective languages, we just need 4 actions.

In order to complete the description of the algo-
rithm we need to describe which pair of consecu-
tive words to consider once an action is taken. We
describe it via the notion of the focus point, which
represents the index of the current word in 7. In
fact, determining the focus point does not affect the
correctness of the algorithm. It is easy to show that
any pair of consecutive words in the sentence can
be considered next. If the correct action is chosen
for the corresponding pair, this will eventually yield
the correct tree (but may necessitate multiple cycles
through the sentence).

In practice, however, the actions chosen will be
noisy, and a wasteful focus point policy will result
in a large number of actions, and thus in error accu-
mulation. To minimize the number of actions taken,
we want to find a good focus point placement policy.

There are many natural placement policies that we
can consider (Chang et al., 2006). In this paper, ac-
cording to the policy we used, after S and WL, the
focus point moves one word to the right. After L or
R, we adopt the policy Step Back: the focus moves
back one word to the left. Although the focus place-
ment policy here is similar to (Yamada and Mat-
sumoto, 2003), they did not explain why they made
this choice. In (Chang et al., 2006), we show that
the policy movement used here minimized the num-
ber of actions during the parsing procedure. We can
also show that the algorithm can parse a sentence
with projective relationships in only one round.

Once the parsing algorithm, along with the focus
point policy, is determined, we can train the action
classifiers. Given an annotated corpus, the parsing
algorithm is used to determine the action taken for
each consecutive pair; this is used to train a classifier

Algorithm 1 Pseudo Code of the dependency pars-
ing algorithm. getFeatures extracts the features
describing the currently considered pair of words;
getAction determines the appropriate action for the
pair; assignParent assigns the parent for the child
word based on the action; and deleteWord deletes the
word which become child once the action is taken.
Let ¢ represents for a word and its part of speech
For sentence T = {t1,t2,...,t,}
focus=1
while focus< |T'| do
U = getFeatures(t focus, t focus+1)
a = getAction(t focus, t focus+15 V)
if o« = L or @ = R then
assignParent(t focus, tfocus+1, )
deleteWord(T, focus, )
// performing Step Back here
focus = focus — 1
else
focus = focus + 1
end if
end while

to predict one of the four actions. The details of the
classifier and the features are given in Section 3.

When we apply the trained model on new data,
the sentence is processed from left to right to pro-
duce the predicted dependency tree. The evaluation
process is somewhat more involved, since the action
classifier is not used as it is, but rather via a local
search inference step. This is described in Section 2.
Algorithm 1 depicts the pseudo code of our parsing
algorithm.

Our algorithm is designed for projective lan-
guages. For non-projective relationships in some
languages, we convert them into near projective
ones. Then, we directly apply the algorithm on mod-
ified data in training stage. Because the sentences in
some language, such as Czech, etc. , may have multi
roots, in our experiment, we ran multiple rounds of
Algorithm 1 to build the tree.

1.2 Labeling the Type of Dependencies

In our work, labeling the type of dependencies is
a post-task after the phase of predicting the head
for the tokens in the sentences. This is a multi-
class classification task. The number of the de-
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pendency types for each language can be found in
the organizer’s introduction paper of the shared task
of CoNLL-X. In the phase of learning dependency
types, the parent of the tokens, which was labeled
in the first phase, will be used as features. The pre-
dicted actions can help us to make accurate predic-
tions for dependency types.

1.3 Dealing with Crossing Edges

The algorithm described in previous section is pri-
marily designed for projective languages. To deal
with non-projective languages, we use a similar ap-
proach of (Nivre and Nilsson, 2005) to map non-
projective trees to projective trees. Any single
rooted projective dependency tree can be mapped
into a projective tree by the Lift operation. The
definition of Lift is as follows: Lift(w; — wy) =
parent(w;) — wy, where a — b means that a is the
parent of b, and parent is a function which returns
the parent word of the given word. The procedure is
as follows. First, the mapping algorithm examines if
there is a crossing edge in the current tree. If there is
a crossing edge, it will perform Lift and replace the
edge until the tree becomes projective.

2 Local Search

The advantage of a pipeline model is that it can use
more information that is taken from the outcomes
of previous prediction. However, this may result in
accumulating error. Therefore, it is essential for our
algorithm to use a reliable action predictor. This mo-
tivates the following approach for making the local
prediction in a pipeline model more reliable. Infor-
mally, we devise a local search algorithm and use it
as a look ahead policy, when determining the pre-
dicted action.

In order to improve the accuracy, we might want
to examine all the combinations of actions proposed
and choose the one that maximizes the score. It is
clearly intractable to find the global optimal predic-
tion sequence in a pipeline model of the depth we
consider. The size of the possible action sequence
increases exponentially so that we can not examine
every possibility. Therefore, a local search frame-
work which uses additional information, however, is
suitable and tractable.

The local search algorithm is presented in Al-

Algorithm 2 Pseudo code for the local search al-
gorithm. In the algorithm, y represents the a action
sequence. The function search considers all possible
action sequences with |depth| actions and returns
the sequence with highest score.

Algo predictAction(model, depth, State)

x = getNextFeature(Srate)

y = search(x, depth, model, State)

lab = y/[1]

State = update(State, lab)

return lab

Algo search(x, depth, model, State)
maxScore = —o0
F={y |yl = depth}
for y in F' do
s = 0, TmpState = State
for : =1...depthdo
x = getNextFeature(TmpState)
s = s + log(score(y|[i], z))
TmpState = update(TmpState, y|i])
end for
if s > maxScore then
y=y
maxScore = s
end if
end for
return y

gorithm 2. The algorithm accepts two parameters,
model and depth. We assume a classifier that can
give a confidence in its prediction. This is repre-
sented here by model. depth is the parameter de-
termining the depth of the local search. Stare en-
codes the configuration of the environment (in the
context of the dependency parsing this includes the
sentence, the focus point and the current parent and
children for each node). Note that the features ex-
tracted for the action classifier depends on State, and
State changes by the update function when a predic-
tion is made. In this paper, the update function cares
about the child word elimination, relationship addi-
tion and focus point movement.

The search algorithm will perform a search of
length depth. Additive scoring is used to score the
sequence, and the first action in this sequence is per-
formed. Then, the State is updated, determining the
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next features for the action classifiers and search is
called again.

One interesting property of this framework is that
we use future information in addition to past infor-
mation. The pipeline model naturally allows access
to all the past information. But, since our algorithm
uses the search as a look ahead policy, it can produce
more robust results.

3 Experiments and Results

In this work we used as our learning algorithm a
regularized variation of the perceptron update rule
as incorporated in SNoW (Roth, 1998; Carlson et
al., 1999), a multi-class classifier that is specifically
tailored for large scale learning tasks. SNoW uses
softmax over the raw activation values as its confi-
dence measure, which can be shown to be a reliable
approximation of the labels’ probabilities. This is
used both for labeling the actions and types of de-
pendencies. There is no special language enhance-
ment required for each language. The resources pro-
vided for 12 languages are described in: (Haji¢ et
al., 2004; Chen et al., 2003; Bohmova et al., 2003;
Kromann, 2003; van der Beek et al., 2002; Brants
et al., 2002; Kawata and Bartels, 2000; Afonso et
al., 2002; DzZeroski et al., 2006; Civit Torruella and
Marti Antonin, 2002; Nilsson et al., 2005; Oflazer et
al., 2003; Atalay et al., 2003).

3.1 Experimental Setting

The feature set plays an important role in the qual-
ity of the classifier. Basically, we used the same
feature set for the action selection classifiers and
for the label classifiers. In our work, each exam-
ple has average fifty active features. For each word
pair (w1, w2), we used their LEMMA, the POSTAG
and also the POSTAG of the children of w; and
ws. We also included the LEMMA and POSTAG
of surrounding words in a window of size (2,4).
We considered 2 words before wy and 4 words af-
ter wo (we agree with the window size in (Yamada
and Matsumoto, 2003)). The major difference of
our feature set compared with the one in (Yamada
and Matsumoto, 2003) is that we included the pre-
vious predicted action. We also added some con-
junctions of the above features to ensure expressive-
ness of the model. (Yamada and Matsumoto, 2003)

made use of the polynomial kernel of degree 2 so
they in fact use more conjunctive features. Beside
these features, we incorporated the information of
FEATS for the languages when it is available. The
columns in the data files we used for our work are
the LEMMA, POSTAG, and the FEATS, which is
treated as atomic. Due to time limitation, we did not
apply the local search algorithm for the languages
having the FEATS features.

3.2 Results

Table 1 shows our results on Unlabeled Attachment
Scores (UAS), Labeled Attachment Scores (LAS),
and Label Accuracy score (LAC) for 12 languages.
Our results are compared with the average scores
(AV) and the standard deviations (SD), of all the sys-
tems participating in the shared task of CoNLL-X.

Our average UAS for 12 languages is 83.54%
with the standard deviation 6.01; and 76.80% with
the standard deviation 9.43 for average LAS.

4 Analysis and Discussion

We observed that our UAS for Arabic is generally
lower than for other languages. The reason for the
low accuracy of Arabic is that the sentence is very
long. In the training data for Arabic, there are 25%
sentences which have more than 50 words. Since
we use a pipeline model in our algorithm, it required
more predictions to complete a long sentence. More
predictions in pipeline models may result in more
mistakes. We think that this explains our relatively
low Arabic result. Moreover, in our current system,
we use the same window size (2,4) for feature ex-
traction in all languages. Changing the windows size
seems to be a reasonable step when the sentences are
longer.

For Czech, one reason for our relatively low result
is that we did not use the whole training corpus due
to time limitation 2 . Actually, in our experiment
on the development set, when we increase the size
of training data in the training phase we got signif-
icantly higher result than the system trained on the
smaller data. The other problem for Czech is that
Czech is one of the languages with many types of
part of speech and dependency types, and also the

*Training our system for most languages takes 30 minutes

or 1 hour for both phases of labeling HEAD and DEPREL. It
takes 6-7 hours for Czech with 50% training data.
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Language UAS LAS LAC
Ours | AV | SD | Ours| AV| SD| Ours| AV | SD
Arabic 76.09 | 73.48 | 4.94 || 60.92 | 59.94 [ 6.53 [ 75.69 | 75.12 | 5.49
Chinese 89.60 | 84.85 | 5.99 || 85.05 | 78.32 | 8.82 || 87.28 | 81.66 | 7.92
Czech 81.78 | 77.01 | 6.70 || 72.88 | 67.17 | 8.93 | 80.42 | 76.59 | 7.69
Danish 86.85 | 84.52 | 8.97 || 80.60 | 7831 | 11.34 | 86.51 | 84.50 | 4.35
Dutch 76.25 | 75.07 | 5.78 || 72.91 | 70.73 | 6.66 || 80.15 | 77.57 | 5.92
German 86.90 | 82.60 | 6.73 || 84.17 | 78.58 | 7.51 | 91.03 | 86.26 | 6.01
Japanese | 90.77 | 89.05 | 5.20 || 89.07 | 85.86 | 7.09 || 92.18 | 89.90 | 5.36
Portuguese || 88.60 | 86.46 | 4.17 || 83.99 | 80.63 | 5.83 || 88.84 | 8535 | 5.45
Slovene 80.32 | 76.53 | 4.67 || 69.52 | 65.16 | 6.78 || 79.26 | 76.31 | 6.40
Spanish 83.09 | 77.76 | 7.81 || 79.72 | 73.52 | 8.41 | 89.26 | 85.71 | 4.56
Swedish || 89.05 | 84.21 | 5.45 || 82.31 | 76.44 | 6.46 | 84.82 | 80.00 | 6.24
Turkish 73.15 | 69.35 | 5.51 || 60.51 | 55.95 | 7.71 || 73.75 | 69.59 | 7.94

Table 1:

Our results are compared with the average scores.

UAS=Unlabeled Attachment Score,

LAS=Labeled Attachment Score, LAC=Label Accuracy, AV=Average score, and SD=standard deviation.

length of the sentences in Czech is relatively long.
These facts make recognizing the HEAD and the
types of dependencies more difficult.

Another interesting aspect is that we have not
used the information about the syntactic and/or mor-
phological features (FEATS) properly. For the lan-
guages for which FEATS is available, we have a
larger gap, compared with the top system.

5 Further Work and Conclusion

In the shared task of CoNLL-X, we have shown that
our dependency parsing system can do well on mul-
tiple languages without requiring special knowledge
for each of the languages.

From a technical perspective, we have addressed
the problem of using learned classifiers in a pipeline
fashion, where a task is decomposed into several
stages and classifiers are used sequentially to solve
each stage. This is a common computational strat-
egy in natural language processing and is known to
suffer from error accumulation and an inability to
correct mistakes in previous stages. We abstracted
two natural principles, one which calls for making
the local classifiers used in the computation more
reliable and a second, which suggests to devise the
pipeline algorithm in such a way that it minimizes
the number of actions taken.

However, since we tried to build a single approach
for all languages, we have not fully utilized the capa-

bilities of our algorithms. In future work we will try
to specify both features and local search parameters
to the target language.
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Abstract

In this paper, we present a framework for
multi-lingual dependency parsing. Our
bottom-up deterministic parser adopts
Nivre’s algorithm (Nivre, 2004) with a
preprocessor. Support Vector Machines
(SVMs) are utilized to determine the word
dependency attachments. Then, a maxi-
mum entropy method (MaxEnt) is used
for determining the label of the depend-
ency relation. To improve the perform-
ance of the parser, we construct a tagger
based on SVMs to find neighboring at-
tachment as a preprocessor. Experimental
evaluation shows that the proposed exten-
sion improves the parsing accuracy of our
base parser in 9 languages. (Haji¢ et al.,
2004; Simov et al.,, 2005; Simov and
Osenova, 2003; Chen et al., 2003; Boh-
mova et al., 2003; Kromann, 2003; van
der Beek et al., 2002; Brants et al.,
2002; Kawata and Bartels, 2000; Afonso
et al., 2002; Dzeroski et al., 2006; Civit
and Marti, 2002; Nilsson et al., 2005;
Oflazer et al., 2003; Atalay et al., 2003).

1 Introduction

The presented dependency parser is based on our
preceding work (Cheng, 2005a) for Chinese. The
parser is a bottom-up deterministic dependency
parser based on the algorithm proposed by (Nivre,
2004). A dependency attachment matrix is con-
structed, in which each element corresponds to a
pair of tokens. Each dependency attachment is in-
crementally constructed, with no crossing con-
straint. In the parser, SVMs (Vapnik, 1998)
deterministically estimate whether a pair of words
has either of four relations: right, left, shift and
reduce. While dependency attachment is estimated
by SVMs, we use a MaxEnt (Ratnaparkhi, 1999)
based tagger with the output of the parser to esti-

mate the label of dependency relations. This tagger
uses the same features as for the word dependency
analysis.

In our preceding work (Cheng, 2005a), we not
only adopted the Nivre algorithm with SVMs, but
also tried some preprocessing methods. We inves-
tigated several preprocessing methods on a Chi-
nese Treebank. In this shared task (Buchholz et. al,
2006), we also investigate which preprocessing
method is effective on other languages. We found
that only the method that uses a tagger to extract
the word dependency attachment between two
neighboring words works effectively in most of the
languages.

2 System Description

The main part of our dependency parser is based
on Nivre’s algorithm (Nivre, 2004), in which the
dependency relations are constructed by a bottom-
up deterministic schema. While Nivre’s method
uses memory-based learning to estimate the de-
pendency attachment and the label, we use SVMs
to estimate the attachment and MaxEnt to estimate

Input sentence (word tokens)

¥

(i)Preprocessor (neighboring
relation tagger)

A

(i1)Get contextual features

None

iii)Estimate dependency
attachment by SVM

Left or Right attachment

(iv)Tag label by MaxEnt

Construct Subtree
I

No more construction
False

Dependency tree

Fig. 1 The architecture of our parser
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A feature: the distance between the position ¢ and n

position #-2  position ¢-/ position ¢ position n  position n+Iposition n+2
BOS i |[ B i ERS T

BOS e No || DE VH Nac
BOS \ N DE v N
s v I
st FORM | ~—__
LEMMA

Na
/ N

The child of the position #-7
Fig. 2. The features for dependency analysis

Key: The features for machine

CPOSTAG| jearming of each token

POSTAG
FEATS

the label. The architecture of the parser consists of

four major procedures and as in Fig.1:

(1) Decide the neighboring dependency at-
tachment between all adjacent words in the
input sentence by SVM-based tagger (as a
preprocessing)

(i1) Extract the surrounding features for the
focused pair of nodes.

(ii1) Estimate the dependency attachment op-
eration of the focused pair of nodes by
SVMs.

(iv) If there is a left or right attachment, esti-

mate the label of dependency relation by
MaxEnt.
We will explain the main procedures (steps (ii)-
(iv)) in sections 2.1 and 2.2, and the preprocessing
in section 2.3.

2.1 Word dependency analysis

In the algorithm, the state of the parser is repre-
sented by a triple <S v ,A>. S and [ are stacks, S

keeps the words being in consideration, and [
keeps the words to be processed. 4 is a list of de-
pendency attachments decided in the algorithm.
Given an input word sequence W, the parser is ini-
tialized by the triple <nil, W,¢>. The parser esti-

mates the dependency attachment between two
words (the top elements of stacks S and /). The
algorithm iterates until the list / becomes empty.
There are four possible operations (Right, Left,
Shift and Reduce) for the configuration at hand.

Right or Left: If there is a dependency relation
that the word ¢ or » attaches to word » or ¢, add the
new dependency relation (t —>n) or (n - t)into A,

remove ¢ or n from S or /.

If there is no dependency relation between »n and
t, check the following conditions.
Reduce: If there is no word »' (n'e I') which may
depend on ¢, and ¢ has a parent on its left side, the
parser removes ¢ from the stack S.

Shift: If there is no dependency between n and ¢,
and the triple does not satisfy the conditions for
Reduce, then push 7 onto the stack S.

In this work, we adopt SVMs for estimating the
word dependency attachments. SVMs are binary
classifiers based on the maximal margin strategy.
We use the polynomial kernel: K(x,z)=(1+x-z)’
with d =2. The performance of SVMs is better than
that of the maximum entropy method in our pre-
ceding work for Chinese dependency analysis
(Cheng, 2005b). This is because that SVMs can
combine features automatically (using the polyno-
mial kernel), whereas the maximum entropy
method cannot. To extend binary classifiers to
multi-class classifiers, we use the pair-wise method,
in which we make ,C,' binary classifiers between

all pairs of the classes (Krefel, 1998). We use
Libsvm (Lin et al., 2001) in our experiments.

In our method, the parser considers the depend-
ency attachment of two nodes (#,7). The features of
a node are the word itself, the POS-tag and the in-
formation of its child node(s). The context features
are 2 preceding nodes of node # (and ¢ itself), 2 suc-
ceeding nodes of node n (and # itself), and their
child nodes. The distance between nodes n and ¢ is
also used as a feature. The features are shown in
Fig.2.

2.2 Label tagging

We adopt MaxEnt to estimate the label of depend-
ency relations. We have tried to use linear-chain
conditional random fields (CRFs) for estimating
the labels after the dependency relation analysis.
This means that the parser first analyzes the word
dependency (head-modifier relation) of the input
sentence, then the CRFs model analyzes the most
suitable label set with the basic information of in-
put sentence (FORM, LEMMA, POSTAG...... etc)
and the head information (FORM and POSTAG)
of each word. However, as the number of possible
labels in some languages is large, training a CRF
model with these corpora (we use CRF++ (Kudo,
2005)) cost huge memory and time.

Instead, we combine the maximum entropy
method in the word dependency analysis to tag the
label of dependency relation. As shown in Fig. 1,
the parser first gets the contextual features to esti-
mate the word dependency. If the parsing operation

! To estimate the current operation (Left, Right, Shift and
Reduce) by SVMs, we need to build 6 classifiers(Left-Right,
Left-Shift, Left-Reduce, Right-Shift, Right-Reduce and Shift-

Reduce).
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is “Left” or “Right”, the parser then use MaxEnt
with the same features to tag the label of relation.
This strategy can tag the label according to the cur-
rent states of the focused word pair. We divide the
training instances according to the CPOSTAG of
the focused word n, so that a classifier is con-
structed for each of distinct POS-tag of the word n.

2.3 Preprocessing

2.3.1 Preceding work

In our preceding work (Cheng, 2005a), we dis-
cussed three problems of our basic methods (adopt
Nivre’s algorithm with SVMs) and proposed three
preprocessing methods to resolve these problems.
The methods include: (1) using global features and
a two-steps process to resolve the ambiguity be-

tween the parsing operations “Shift” and “Reduce”.

(2) using a root node finder and dividing the sen-
tence at the root node to make use of the top-down
information. (3) extracting the prepositional phrase
(PP) to resolve the problem of identifying the
boundary of PP.

We incorporated Nivre’s method with these
preprocessing methods for Chinese dependency
analysis with Penn Chinese Treebank and Sinica
Treebank (Chen et al., 2003). This was effective
because of the properties of Chinese: First, there is
no multi-root in Chinese Treebank. Second, the
boundary of prepositional phrases is ambiguous.
We found that these methods do not always im-
prove the accuracy of all the languages in the
shared task.

We have tried the method (1) in some lan-
guages to see if there is any improvement in the
parser. We attempted to use global features and
two-step analysis to resolve the ambiguity of the
operations. In Chinese (Chen et al., 2003) and
Danish (Kromann, 2003), this method can improve
the parser performance. However, in other lan-
guages, such as Arabic (Hajic et al., 2004), this
method decreased the performance. The reason is
that the sentence in some languages is too long to
use global features. In our preceding work, the
global features include the information of all the
un-analyzed words. However, for analyzing long
sentences, the global features usually include some
useless information and will confuse the two-step
process. Therefore, we do not use this method in
this shared task.

In the method (2), we construct an SVM-based
root node finder to identify the root node and di-
vided the sentence at the root node in the Chinese

Treebank. This method is based on the properties
of dependency structures “One and only one ele-
ment is independent” and “An element cannot have
modifiers lying on the other side of its own head”.
However, there are some languages that include
multi-root sentences, such as Arabic, Czech, and
Spanish (Civit and Marti, 2002), and it is difficult
to divide the sentence at the roots. In multi-root
sentences, deciding the head of the words between
roots is difficult. Therefore, we do not use the
method (2) in the share task.

The method (3) -namely PP chunker— can iden-
tify the boundary of PP in Chinese and resolve the
ambiguity of PP boundary, but we cannot guaran-
tee that to identify the boundary of PP can improve
the parser in other languages. Even we do not un-
derstand construction of PP in all languages.
Therefore, for the robustness in analyzing different
languages, we do not use this method.

2.3.2
tagger

Neighboring dependency attachment

In the bottom-up dependency parsing approach, the
features and the strategies for parsing in early stage
(the dependency between adjacent” words) is dif-
ferent from parsing in upper stage (the dependency
between phrases). Parsing in upper stage needs the
information at the phrases not at the words alone.
The features and the strategies for parsing in early
and upper stages should be separated into distinct.
Therefore, we divide the neighboring dependency
attachment (for early stage) and normal depend-
ency attachment (for upper stage), and set the
neighboring dependency attachment tagger as a
preprocessor.

When the parser analyzes an input sentence, it
extracts the neighboring dependency attachments
first, then analyzes the sentence as described be-
fore. The results show that tagging the neighboring
dependency word-pairs can improve 9 languages
out of 12 scoring languages, although in some lan-
guages it degrades the performance a little. Poten-
tially, there may be a number of ways for
decomposing the parsing process, and the current
method is just the simplest decomposition of the
process. The best method of decomposition or dy-
namic changing of parsing models should be inves-
tigated as the future research.

2 We extract all words that depend on the adjacent word (right
or left).
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3 Experiment

3.1 Experimental setting

Our system consists of three parts; first, the SVM-
based tagger extracts the neighboring attachment
relations of the input sentence. Second, the parser
analyzes further dependency attachments. If a new
dependency attachment is generated, the MaxEnt
based tagger estimates the label of the relation. The
three parts of our parser are trained on the avail-
able data of the languages.

In our experiment, we used the full information
of each token (FORM, LEMMA, CPOSTAG,
POSTAG, FEATS) when we train and test the
model. Fig. 2 describes the features of each token.
Some languages do not include all columns; such
that the Chinese data does not include LEMMA
and FEATURES, these empty columns are shown
by the symbol “-” in Fig. 2. The features for the
neighboring dependency tagging are the informa-
tion of the focused word, two preceding words and
two succeeding words. Fig. 2 shows the window
size of our features for estimating the word de-
pendency in the main procedures. These features
include the focused words (n, f), two preceding

words and two succeeding words and their children.

The features for estimating the relation label are
the same as the features used for word dependency
analysis. For example, if the machine learner esti-
mates the operation of this situation as “Left” or
“Right” by using the features in Fig. 2, the parser
uses the same features in Fig. 2 and the depend-
ency relation to estimate the label of this relation.
For training the models efficiently, we divided
the training instances of all languages at the
CPOSTAG of the focused word # in Fig .2. In our
preceding work, we found this procedure can get
better performance than training with all the in-
stances at once. However, only the instances in
Czech are divided at the CPOSTAG of the focused
word-pair #-rn’. The performance of this procedure
is worse than using the CPOSTAG of the focused
word 7, because the training instances of each
CPOSTAG-pair will become scarce. However, the
data size of Czech is much larger than other lan-
guages; we couldn’t finish the training of Czech
using the CPOSTAG of the focused word n, before
the deadline for submitting. Therefore we used this
procedure only for the experiment of Czech.

? For example, we have 15 SVM-models for Arabic according
to the CPOSTAG of Arabic (A, C, D, F, G...etc.). However,
we have 139 SVM-models for Czech according the
CPOSTAG pair of focused words (A-A, A-C, A-D...etc.)

All our experiments were run on a Linux ma-
chine with XEON 2.4GHz and 4.0GB memory.
The program is implemented in JAVA.

3.2 Results

Table 1 shows the results of our parser. We do not
take into consideration the problem of cross rela-
tion. Although these cross relations are few in
training data, they would make our performance
worse in some languages. We expect that this is
one reason that the result of Dutch is not good. The
average length of sentences and the size of training
data may have affected the performance of our
parser. Sentences of Arabic are longer and training
data size of Arabic is smaller than other languages;
therefore our parser is worse in Arabic. Similarly,
our result in Turkish is also not good because the
data size is small.

We compare the result of Chinese with our pre-
ceding work. The score of this shared task is better
than our preceding work. It is expected that we
selected the FORM and CPOSTAG of each nodes
as features in the preceding work. However, the
POSTAG is also a useful feature for Chinese, and
we grouped the original POS tags of Sinica Tree-
bank from 303 to 54 in our preceding work. The
number of CPOSTAG(54) in our preceding work
is more than the number of CPOSTAG(22) in this
shared task, the training data of each CPOSTAG in
our preceding work is smaller than in this work.
Therefore the performance of our preceding work
in Sinica Treebank is worse than this task.

The last column of the Table 1 shows the unla-
beled scores of our parser without the preprocess-
ing. Because our parser estimates the label after the
dependency relation is generated. We only con-
sider whether the preprocessing can improve the
unlabeled scores. Although the preprocessing can
not improve some languages (such as Chinese,
Spanish and Swedish), the average score shows
that using preprocessing is better than parsing
without preprocessing.

Comparing the gold standard data and the sys-
tem output of Chinese, we find the CPOSTAG
with lowest accuracy is “P (preposition)”, the accu-
racy that both dependency and head are correct is
71%. As we described in our preceding work and
Section 2.3, we found that boundaries of preposi-
tional phrases are ambiguous for Chinese. The bot-
tom-up algorithm usually wrongly parses the
prepositional phrase short. The parser does not
capture the correct information of the children of
the preposition. According to the results, this prob-
lem does not cause the accuracy of head of
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Language:| LAS: | UAS: | LAcc. ;ﬁ;srovgétshsi?;;
Arabic | 65.19 | 77.74 | 79.02 76.74
Chinese | 84.27 | 89.46 | 86.42 90.03
Czech |76.24 | 83.4 | 83.52 82.88
Danish | 81.72 | 88.64 | 86.11 88.45
Dutch | 71.77 | 75.49 | 75.83 74.97
German | 84.11 | 87.66 | 90.67 87.53
Japanese | 89.91 | 93.12 | 92.40 92.99
Portugese | 85.07 | 90.3 | 88.00 90.21
Slovene | 71.42 | 81.14 | 80.96 80.43
Spanish | 80.46 | 85.15 | 88.90 85.19
Swedish | 81.08 | 88.57 | 83.99 88.83
Turkish | 61.22 | 74.49 | 73.91 74.3
AV: 77.7 | 84.6 | 84.1 84.38
SD: 8.67 | 6.15 | 5.78 6.42
Bulgarian | 86.34 | 91.3 | 89.27 91.44

Table 1: Results

CPOSTAG “P” decrease. Actually, the head accu-
racy of “P” is better than the CPOSTAG “C” or
“V”. However, the dep. accuracy of “P” is worse.
We should consider the properties of prepositions
in Chinese to resolve this question. In Chinese,
prepositions are derived from verbs; therefore
some prepositions can be used as a verb. Naturally,
the dependency relation of a preposition is differ-
ent from that of a verb. Important information for
distinguishing whether the preposition is a verb or
a preposition is the information of the children of
the preposition. The real POS tag of a preposition
which includes few children is usually a verb; on
the other hand, the real POS tag of a preposition is
usually a preposition.

If our parser considers the preposition which
leads a short phrase, the parser will estimate the
relation of the preposition as a verb. At the same
time, if the boundary of prepositional phrase is
analyzed incorrectly, other succeeding words will
be wrongly analyzed, too.

Error analysis of Japanese data (Kawata and
Bartels, 2000) shows that CNJ (Conjunction) is a
difficult POS tag. The parser does not have any
module to detect coordinate structures. (Kurohashi,
1995) proposed a method in which coordinate
structure with punctuation is detected by a coeffi-

cient of similarity. Similar framework is necessary
for solving the problem.

Another characteristic error in Japanese is seen
at adnominal dependency attachment for a com-
pound noun. In such dependency relations, adjec-
tives and nouns with "no" (genitive marker) can be
a dependent and compound nouns which consist of
more than one consecutive nouns can be a head.
The constituent of compound nouns have same
POSTAG, CPOSTAG and FEATS. So, the ma-
chine learner has to disambiguate the dependency
attachment with sparce feature LEMMA and
FORM. Compound noun analysis by semantic fea-
ture is necessary for addressing the issue.

4 Conclusion

This paper reported on multi-lingual dependency
parsing on combining SVMs and MaxEnt. The
system uses SVMs for word dependency attach-
ment analysis and MaxEnt for the label tagging
when the new dependency attachment is generated.
We discussed some preprocessing methods that are
useful in our preceding work for Chinese depend-
ency analysis, but these methods, except one, can-
not be used in multi-lingual dependency parsing.
Only using the SVM-based tagger to extract the
neighbor relation could improve many languages
in our experiment, therefore we use the tagger in
the parser as its preprocessing.

References

S. Buchholz, E. Marsi, A. Dubey and Y. Krymolowski. 2006.
CoNLL-X: Shared Task on Multilingual Dependency Pars-
ing, CONLL 2006.

Yuchang Cheng, Masayuki Asahara and Yuji Matsumoto.
2005a. Chinese Deterministic Dependency Parser: Exam-
ining Effects of Global Features and Root Node Finder,
Fourth SIGHAN Workshop, pp.17-24.

Yuchang Cheng, Masayuki Asahara and Yuji Matsumoto.
2005b. Machine Learning-based Dependency Parser for
Chinese, the International Conference on Chinese Comput-
ing, pp.66-73.

Ulrich. H.-G. Kreel, 1998. Pairwise classification and sup-
port vector machines. In Advances in Kernel Methods, pp.

255-268. The MIT Press.

Taku Kudo. CRF++: Yet Another CRF
http://www.chasen.org/~taku/software/ CRF++/.
Sadao Kurohashi. 1995. Analyzing Coordinate Structures

Including Punctuation in English, In IWPT-95, pp. 136-147.

Chih Jen Lin, 2001. 4 practical guide to support vector classi-
fication, http://'www.csie.ntu.edu.tw/~cjlin/libsvm/.

Joakim Nivre, 2004. Incrementality in Deterministic Depend-
ency Parsing, In Incremental Parsing: Bringing Engineer-
ing and Cognition Together. Workshop at ACL-2004, pp.
50-57.

Adwait Ratnaparkhi, 1999. Learning to parse natural lan-
guage with maximum entropy models. Machine Learning,
34(1-3):151-175.

Vladimir N. Vapnik, 1998. Statistical Learning Theory. A
Wiley-Interscience Publication.

toolkit,

195



Dependency Parsing with Reference to Slovene, Spanish and Swedish

Simon Corston-Oliver
Natural Language Processing
Microsoft Research
One Microsoft Way
Redmond WA 98052

simonco@microsoft.com

Abstract

We describe a parser used in the CoNLL
2006 Shared Task, “Multingual Depen-
dency Parsing.” The parser first identi-
fies syntactic dependencies and then labels
those dependencies using a maximum en-
tropy classifier. We consider the impact of
feature engineering and the choice of ma-
chine learning algorithm, with particular
focus on Slovene, Spanish and Swedish.

1 Introduction

The system that we submitted for the CoNLL 2006
Shared Task, “Multingual Dependency Parsing,”
(Buchholz et al., 2006) is a two stage pipeline. The
first stage identifies unlabeled directed dependen-
cies using an extension of the parser described in
(Corston-Oliver et al., 2006). The second stage is a
maximum entropy classifier that labels the directed
dependencies. The system was trained on the twelve
obligatory languages, as well as the optional lan-
guage, Bulgarian (Haji€ et al., 2004; Simov et al.,
2005; Simov and Osenova, 2003; Chen et al., 2003;
Bohmova et al., 2003; Kromann, 2003; van der Beek
et al., 2002; Brants et al., 2002; Kawata and Bar-
tels, 2000; Afonso et al., 2002; DZeroski et al., 2006;
Civit Torruella and Marti Antonin, 2002; Nilsson et
al., 2005; Oflazer et al., 2003; Atalay et al., 2003).
Table 1 presents the results of the system de-
scribed in the current paper on the CoNLL shared
task, including the optional evaluation on Bulgar-
ian. For Slovene, we ranked second with a labeled

Anthony Aue
Natural Language Processing
Microsoft Research
One Microsoft Way
Redmond WA 98052

anthaue@microsoft.com

Language | Unlabeled | Labeled
Attachment | Attachment
Arabic 78.40 63.53
Bulgarian | 90.09 83.36
Chinese 90.00 79.92
Czech 83.02 74.48
Danish 87.94 81.74
Dutch 74.83 71.43
German 87.20 83.47
Japanese | 92.84 89.95
Portugese | 88.96 84.59
Slovene 81.77 72.42
Spanish 84.87 80.36
Swedish | 89.54 79.69
Turkish 73.11 61.74

Table 1: Results on CoNLL 2006 shared task.

dependency accuracy of 72.42%. This was not sta-
tistically significantly different from the top-ranked
score of 73.44%. For Spanish, our labeled depen-
dency accuracy of 80.36% is within 0.1% of the
third-ranked score of 80.46%. Our unlabeled de-
pendency accuracy for Swedish was the best of all
the systems at 89.54%. Our labeled accuracy for
Swedish, however, at 79.69%, fell far short of the
third-best score of 82.31%. We therefore focus on
Swedish when considering the impact of our choice
of learning algorithm on our label accuracy.

2 Data

We divided the shared data into training and devel-
opment test sets, using larger development test sets
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for the languages supplied with more data. The de-
velopment test set consisted of 250 sentences for
Arabic, Slovene, Spanish and Turkish, 500 sen-
tences for Danish and Portuguese, and 1,000 sen-
tences for the other languages.

3 The Parser

The baseline parser predicts unlabeled directed de-
pendencies. As described in (Corston-Oliver et al.,
2006), we reimplemented the parser described in
(McDonald et al., 2005) and validated their results
for Czech and English.

The parser finds the highest-scoring parse ¢
among all possible parses y € Y for a given sen-
tence:

o |
g argr;leagw(y) (D

The score s of a given parse y is the sum of the
scores of all the dependency links (i,j) € y:

(i,5)€y (i,5)€y

where the link (i,j) indicates a parent-child depen-
dency between the token at position ¢ and the token
at position j. The score d(i, j) of each dependency
link (i,j) is further decomposed as the weighted sum
of its features f(i, 7).

To set w, we trained twenty averaged perceptrons
on different shuffles of the training data, using the
development test set to determine when the percep-
trons had converged. The averaged perceptrons were
then combined to make a Bayes Point Machine (Har-
rington et al., 2003). At both training and run time,
edges are scored independently, and Eisner’s O(N?3)
decoder (Eisner, 1996) is used to find the optimal
parse. This decoder produces only projective analy-
ses, although it does allow for analyses with multiple
roots.

The features used for scoring the edges prior to
applying Eisner’s algorithm are extracted from each
possible parent-child dependency. The features in-
clude the case-normalized original form and lemma'
of each token , the part of speech (POS) tag of each
token, the POS tag of each intervening token and

'If no lemma was specified, we truncated the original form
by taking the first two characters for Chinese words consisting
of two characters or more and the first five characters for words
consisting of five characters or more in the other languages.

of each token to the left and right of the parent and
child. Additional features are created by combining
these atomic features, as described in (McDonald et
al., 2005). All features are in turn combined with
the direction of attachment and the distance between
tokens. Distance was discretized, with individual
buckets for distances 0-4, a single bucket for 5-9,
and a single bucket for 10+. In sections 3.1 and 3.2
we discuss the feature engineering we performed.

3.1 Part of Speech Features

We experimented with using the coarse POS tag and
the fine POS tag. In our official submission, we
used fine POS tags for all languages except Dutch
and Turkish. For Dutch and Turkish, using the fine
POS tag resulted in a reduction in unlabeled depen-
dency accuracy of 0.12% and 0.43% respectively
on the development test sets, apparently because of
the sparsity of the fine POS tags. For German and
Swedish, the fine and coarse POS tags are the same
so using the fine POS tag had no effect. For other
languages, using the fine POS tag showed modest
improvements in unlabeled dependency accuracy.

For Swedish, we performed an additional manipu-
lation on the POS tags, normalizing the distinct POS
tags assigned to each verbal auxiliary and modal to
a single tag “aux”. For example, in the Swedish
data all inflected forms of the verb “vara” (“be”) are
tagged as AV, and all inflected forms of the modal
“maste” (“must”) are tagged as MV. This normaliza-
tion caused unlabeled dependency accuracy on the
Swedish development set to improve from 89.23%
to0 89.45%.

3.2 Features for Root Identification

Analysis of the baseline parser’s errors suggested
the need for additional feature types to improve the
identification of the root of the sentence. In particu-
lar, the parser was frequently making errors in iden-
tifying the root of periphrastic constructions involv-
ing an auxiliary verb or modal and a participle. In
Germanic languages, for example, the auxiliary or
modal typically occurs in second position in declar-
ative main clauses or in initial position in cases of
subject-aux inversion. We added a collection of fea-
tures intended to improve the identification of the
root. The hope was that improved root identifica-
tion would have a positive cascading effect in the
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identification of other dependencies, since a failure
to correctly identify the root of the sentence usually
means that the parse will have many other errors.

We extracted four feature types, the original form
of the first and last tokens in the sentence and the
POS of the first and last tokens in the sentence.
These features were intended to identify declarative
vs. interrogative sentences.

For each child and parent token being scored, we
also noted the following four features: “child/parent
is first non-punctuation token in sentence”,
“child/parent is second non-punctuation token in
sentence”. The features that identify the second
token in the sentence were intended to improve
the identification of verb-second phenomena. Of
course, this is a linguistic oversimplification. Verb-
second phenomena are actually sensitive to the order
of constituents, not words. We therefore added four
feature types that considered the sequence of POS
tags to the left of the child or parent if they occurred
within ten tokens of the beginning of the sentence
and the sequence of POS tags to the right of the
child or parent if they occurred within ten tokens of
the end of the sentence.

We also added features intended to improve the
identification of the root in sentences without a fi-
nite verb. For example, the Dutch training data
contained many simple responses to a question-
answering task, consisting of a single noun phrase.
Four simple features were used “Child/Parent is the
leftmost noun in the sentence”, “Child/Parent is a
noun but not the leftmost noun in the sentence”.
These features were combined with an indicator
“Sentence contains/does not contain a finite verb”.

Child or parent tokens that were finite verbs were
flagged as likely candidates for being the root of
the sentence if they were the leftmost finite verb in
the sentence and not preceded by a subordinating
conjunction or relative pronoun. Finite verbs were
identified by POS tags and morphological features,
e.g. in Spanish, verbs without the morphological
feature “mod=n" were identified as finite, while in
Portuguese the fine POS tag “v-fin” was used.

Similarly, various sets of POS tags were used to
identify subordinating conjunctions or relative pro-
nouns for different languages. For example, in Bul-
garian the fine POS tag “pr” (relative pronoun) and
“cs” (subordinating conjunction) were used. For

Dutch, the morphological features “onder”, “betr”
and “voorinf” were used to identify subordinating
conjunctions and relative pronouns.

These features wreaked havoc with Turkish, a
verb-final language. For certain other languages,
dependency accuracy measured on the develop-
ment test set improved by a modest amount, with
more dramatic improvements in root accuracy (F1
measure combining precision and recall for non-
punctuation root tokens).

Since the addition of these features had been mo-
tivated by verb-second phenomena in Germanic lan-
guages, we were surprised to discover that the only
Germanic language to demonstrate a marked im-
provement in unlabeled dependency accuracy was
Danish, whose accuracy on the development set rose
from 87.51% to 87.72%, while root accuracy F1
rose from 94.12% to 94.72%. Spanish showed a
modest improvement in unlabeled dependency accu-
racy, from 85.08% to 85.13%, but root F1 rose from
80.08% to 83.57%.

The features described above for identifying the
leftmost finite verb not preceded by a subordinat-
ing conjunction or relative pronoun did not im-
prove Slovene unlabeled dependency accuracy, and
so were not included in the set of root-identifying
features in our Slovene CoNLL submission. Closer
examination of the Slovene corpus revealed that pe-
riphrastic constructions consisting of one or more
auxiliaries followed by a participle were annotated
with the participle as the head, whereas for other
languages in the shared task the consensus view ap-
pears to be that the auxiliary should be annotated
as the head. Singling out the leftmost finite verb in
Slovene when a participle ought to be selected as the
root of the sentence is therefore counter-productive.
The other root identification features did improve
root F1 in Slovene. Root F1 on the development test
set rose from 45.82% to 46.43%, although overall
unlabeled dependency accuracy on the development
test set fell slightly from 80.24% to 79.94%.

3.3 Morphological Features

As the preceding discussion shows, morphological
information was occasionally used to assist in mak-
ing finer-grained POS distinctions than were made
in the POS tags, e.g., for distinguishing subordi-
nating vs. coordinating conjunctions. Aside from
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these surgical uses of the morphological information
present in the CoNLL data, morphology was not ex-
plicitly used by the baseline parser. For example,
there were no features that considered subject-verb
agreement nor agreement of an adjective with the
number or lexical gender of the noun it modified.
However, it is possible that morphological informa-
tion influenced the training of edge weights if the
information was implicit in the POS tags.

4 The Dependency Labeler

4.1 Classifier

We used a maximum entropy classifier (Berger et al.,
1996) to assign labels to the unlabeled dependen-
cies produced by the Bayes Point Machine. We used
the same training and development test split that was
used to train the dependency parser. We chose to use
maximum entropy classifiers because they can be
trained relatively quickly while still offering reason-
able classification accuracy and are robust in the face
of large numbers of superfluous features, a desirable
property given the requirement that the same parser
handle multiple languages. Furthermore, maximum
entropy classifiers provide good probability distribu-
tions over class labels. This was important to us be-
cause we had initially hoped to find the optimal set
of dependency labels for the children of a given node
by modeling the probability of each set of labels
conditioned on the lemma and POS of the parent.
For example, labeling each dependant of a parent
node independently might result in three OBJECT
relations dependent on a single verb; modeling sets
of relations ought to prevent this. Unfortunately, this
approach did not outperform labeling each node in-
dependently.

Therefore, the system we submitted labeled each
dependency independently, using the most probable
label from the maximum entropy classifier. We have
noted in previous experiments that our SVM imple-
mentation often gives better one-best classification
accuracy than our maximum entropy implementa-
tion, but did not have time to train SVM classifiers.

To see how much the choice of classification al-
gorithm affected our official results, we trained a lin-
ear SVM classifier for Swedish after the competition
had ended, tuning parameters on the development
test set. As noted in section 1, our system scored

highest for Swedish in unlabeled dependency accu-
racy at 89.54% but fell well short of the third-ranked
system when measuring labeled dependency accu-
racy. Using an SVM classifier instead of a maxi-
mum entropy classifier, Swedish label accuracy rose
from 82.33% to 86.06%, and labeled attachment ac-
curacy rose from 79.69% to 82.95%, which falls
between the first-ranked score of 84.58% and the
second-ranked score of 82.55%. Similarly, Japanese
label accuracy rose from 93.20% to 93.96%, and
labeled attachment accuracy rose from 89.95% to
90.77% when we replaced a maximum entropy clas-
sifier with an SVM. This labeled attachment result
of 90.77% is comparable to the official second place
result of 90.71% for Japanese. We conclude that a
two stage pipeline such as ours, in which the sec-
ond stage labels dependencies in isolation, is greatly
impacted by the choice of classifier.

4.2 Features Used for Labeling

We extracted features from individual nodes in the
dependency tree, parent-child features and features
that took nodes other than the parent and child into
account.

The features extracted from each individual par-
ent and child node were the original surface form,
the lemma (see footnote 1 above), the coarse and fine
POS tags and each morphological feature.

The parent-child features are the direction of
modification, the combination of the parent and
child lemmata, all combinations of parent and child
lemma and coarse POS tag (e.g. child lemma com-
bined with coarse POS tag of the parent) and all pair-
wise combinations of parent and child morphology
features (e.g. parent is feminine and child is plural).

Additional features were verb position (whether
the parent or child is the first or last verb in the sen-
tence), coarse POS and lemma of the left and right
neighbors of the parent and child, coarse POS and
lemma of the grandparent, number and coarse POS
tag sequence of siblings to the left and to the right of
the child, total number of siblings of the child, num-
ber of tokens governed by child, whether the par-
ent has a verbal ancestor, lemma and morphological
features of the verb governing the child (if any), and
coarse POS tag combined with relative offset of each
sibling (e.g., the sibling two to the left of the child is
a determiner).
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For Slovene, the label accuracy using all of the
features above was 81.91%. We retrained our max-
imum entropy classifier by removing certain classes
of features in order to determine their contribu-
tion. Removing the weight features caused a notable
drop, with label accuracy on the development test set
falling 0.52% to 81.39%. Removing the grandpar-
ent features (but including weight features) caused
an even greater drop of 1.03% to 80.88%. One place
where the grandparent features were important was
in distinguishing between Adv and Atr relations. It
appears that the relation between a noun and its gov-
erning preposition or between a verb and its govern-
ing conjunction is sensitive to the part of speech of
the grandparent. For example, we observed a num-
ber of cases where the relation between a noun and
its governing preposition had been incorrectly la-
beled as Adv when it should have been Atr. The
addition of grandparent features allowed the classi-
fier to make the distinction by looking at the POS of
the grandparent; when the POS was noun, the clas-
sifier tended to correctly choose the Atr label.

5 Conclusion

We have described a two stage pipeline that first pre-
dicts directed unlabeled dependencies and then la-
bels them. The system performed well on Slovene,
Spanish and Swedish. Feature engineering played
an important role both in predicting dependencies
and in labeling them. Finally, replacing the maxi-
mum entropy classifier used to label dependencies
with an SVM improves upon our official results.
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Abstract the positive side, its decoding algorithms have guar-
anteedD(n) runtime, and training takes only a cou-

We describe our entry in the CoNLL-X shared taskple of hours. Having designed primarily fspeed
The system consists of three phases: a probabilisé¢idrobustness we sacrifice accuracy. Bettesti-
vine parser (Eisner and N. Smith, 2005) that promation, reranking on larger datasets, and more fine-
duces unlabeled dependency trees, a probabilisticained parsing constraints are expected to boost ac-
relation-labeling model, and a discriminative mini-curacy while maintaining speed.
mum risk reranker (D. Smith and Eisner, 2006). The .
system is designed for fast training and decoding ardl  Notation

for high precision. We describe sources of Cross-4; 5 sentence — (x1, %2, ..., zn), Where eachy; is
- ’ )y N/ 1

lingual error and ways to ameliorate them. We theq tuple containing a part-of-speech tagnd a word

provide a detailed error analysis of parses produc%ii, and possibly more informatiohz, is a special

for s_entgnces i_n_German (much training data) ar\ga” symbol, $, on the left. A dependency trge
Arabic (little training data). is defined by three functionst;.; andy i (both
{0,1,2,...,n} — 2{12--7}) that map each word to
1 Introduction its sets of left and right depe.ndents, respectivgly, and
Viabel : {1,2,...,n} — D, which labels the relation-
Standard state-of-the-art parsing systems (e.ghip between wordand its parent from label sél.
Charniak and Johnson, 2005) typically involve two In this work, the graph is constrained to bpra-
passes. First, parser produces a list of the most jectivetree rooted at $: each word except $ has a sin-
likely n parse trees under a generative, probabilistigle parent, and there are no cycles or crossing depen-
model (usually some flavor of PCFG). A discrim-dencies. Using a simple dynamic program to find the
inative reranker then chooses among trees in thisninimum-error projective parse, we find that assum-
list by using an extended feature set (Collins, 2000)ng projectivity need not harm accuracy very much
This paradigm has many advantages: PCFGs af®ab. 1, col. 3).
fast to train, can be very robust, and perform bet-
ter as more data is made available; and reranke®s Unlabeled Parsing

train quickly (compared to discriminative mOOIeIS)"I’he first component of our system is an unlabeled

:Lej?euslre few parameters, and permit arbitrary feaﬁarser that, given a sentence, finds thdest un-

We d i h depend labeled trees under a probabilistic model using a
€ describe such a system tependencypars- bottom-up dynamic programming algoritfimThe

ing. Our shared task entry is a preliminary Systerpnodel is a probabilistic head automaton grammar

Qevelgped in only 3 person-weeks, and its accurai)&lshawi, 1996) that assumes conditional indepen-
is typically one s.d. below the average across sy

tems and 10-20 points below the best system. On We used words and fine tags in our parser and labeler, with
coarse tags in one backoff model. Other features are used in

*This work was supported by NSF ITR grant 11S-0313193feranking; we never used the given morphological features or

an NSF fellowship to the second author, and a Fannie and Jokite “projective” annotations offered in the training data.

Hertz Foundation fellowship to the third author. The views ex- 2The execution model we use is best-first, exhaustive search,

pressed are not necessarily endorsed by the sponsors. We thaskdescribed in Eisner et al. (2004). All of our dynamic pro-

Charles Schafer, Keith Hall, Jason Eisner, and Sanjeev Khudagramming algorithms are implemented concisely in the Dyna

pur for helpful conversations. language.
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Arabic 10 4| 998 90.7] 715 68.1 68.7] 50.7 52.0] 53.4 68.5 63.4 76.(
Bulgarian | 5 4| 996 90.7| 864 80.1 80.5/ 851 73.0| 748 82.0 743 86.3
Chinese 4 4] 100.0 931|899 794 777|886 726|716 77.6 614 80.8
Czech 6 4| 978 905|792 70.3 715/ 728 58.1| 60.5 70.7 64.8 75.7
Danish 5 4| 992 0914|846 77.7 78.6| 793 655/ 66.6 77.5 714 834
Dutch 6 5| 946 883|775 67.9 68.8| 736 59.4| 61.6 68.3 604 73.0
German 8 7| 988 909|834 755 76.2| 823 70.1| 71.0 77.0 70.2 829
Japanese | 4 1| 99.2 922|907 86.3 85.1/894 816|829 86.0 685 915
Portuguese 5 5| 988 915|859 814 825/ 837 734|753 824 76.2 87.0
Slovene 6 4| 985 917|805 72.0 73.3| 728 57.5|58.7 729 66.3 785
Spanish 5 61000 912|773 715 72.6| 749 66.2| 67.6 729 69.3 80.7
Swedish 4 5| 997 940|875 79.3 79.6/ 81.0 655|676 795 726 83.3
Turkish 6 1| 986 895|730 61.0 61.8| 644 44.9| 46.1 605 485 61.6
parser reranker labeler reranker
1 2 3 4 5 6 7 8 9 10 11 12 13

Table 1. Parameters and performance on test datand B, were chosen to retain 90% of dependencies

in training data. We show oracle, 1-best, and reranked performance on the test set at different stages of the
system. Boldface marks oracle performance that, given perfect downstream modules, would supercede the
best system. Italics mark the few cases where the reranker increased error rate. Columns 8-10 show labeled
accuracy; column 10 gives the final shared task evaluation scores.

dence between the left yield and the right yield othild and its parent, with the exception of nodes at-
a given head, given the head (Eisner, 1997)he taching to $. Bounds of this kind are intended to im-
best known parsing algorithm for such a model iprove precision of non-$ attachments, perhaps sac-
O(n?) (Eisner and Satta, 1999). Thébest list is rificing recall. Fixing bound3,, no left dependency
generated using Algorithm 3 of Huang and Chiangnay exist between child; and parent:; such that
(2005). j—i > By (similarly for right dependencies arig}.).

As aresult, edge-factored parsing runtime is reduced
3.1 Vine parsing (dependency length bounds)  from O(n?) to O(n(B2 + B2)). For each language,

Following Eisner and N. Smith (2005), we also im-we chooseB, (B;) to be the minimum value that

pose a bound on the string distance between evewjll allow recovery of 90% of the left (right) depen-
dencies in the training corpus (Tab. 1, cols. 1, 2, and

To empirically test this assumption across languages, w, i ;
measured the mutual information between different features cﬁ)' In order to match the training data to the parsing

Viert () andy gne (7), givena;. (Mutual information is a statis- Mmodel, we re-attach disallowed long dependencies
tic that equals zero iff conditional independence holds.) A deto $ during training.

tailed discussion, while interesting, is omitted for space, but we

highlight some of our findings. First, unsurprisingly, the split- . .

head assumption appears to be less valid for languages with2 Estimation

freer word order (Czech, Slovene, German) and more valid for . .

more fixed-order languages (Chinese, Turkish, Arabic) or corf he probability model predicts, for each parent word
pora (Japanese). The children of verbs and conjunctions are the, {f’%}z‘eyleﬂ, (j and {ffi}ieyﬁgh,,(j)- An advantage

most frequent violators. The mutual information between the]h d aut t is that. f .
sequence of dependency labels on the left and on the right, givel h€ad automaton grammars is that, for a given par-

the head's (coarse) tag, only once exceeded 1 bit (Slovene). ent noder;, the children on the same sidg,.s (),
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for example, can depend on each other (cf. McDorsystem, although the oracle is never on par with the
ald etal., 2005). Child nodes in our model are genebestunlabeledperformance.
ated outward, conditional on the parent and the most
recent same-side sibling (MRSSS). This increasef Labeling
our parser's theoretical runtime @(n (B} + B?)),
which we found was quite manageable. The second component of our system is a labeling
Letpar, : {1,2,...,n} — {0,1,...,n} map each model thatindependentigelects a label fror for
node to its parent iy. Letpred,, : {1,2,...,n} — each parent/child pair in a tree. Given thebest
{0,1,2,...,n} map each node to the MRSSSyinf  unlabeled trees for a sentence, the labeler produces
it exists and) otherwise. LetA; = |i — j| if jisi's the L bestlabeled trees for each unlabeled one.
parent. Our (probability-deficient) model defines  The computation involves aii(|D|n) dynamic pro-
gramming algorithm, the output of which is passed
n to Huang and Chiang’s (2005) algorithm to generate
piy)=1]] ( I »plas A xj,xpredy(i>,left)) the L-best list.
7T NI en () We separate the labeler from the parser for two
reasons: speed and candidate diversity. In prin-
ciple the vine parser could jointly predict depen-
x ( II p@iAila;,pred, (), right)) dency labels along with structures, but parsing run-
€Y right (3) . .
time would increase by at least a factor|®f|. The
Xp(STOP | zj, Tmax ) oo .
y two stage process also forces diversity in the candi-
Due to the familiar sparse data problem, a maxidate list (20 structures with 50 labelings each); the
mum likelihood estimate for thes in Eq. 1 performs 1,000-best list ofointly-decoded parses often con-
very badly (2-23% unlabeled accuracy). Good stdained many (bad) relabelings of the same tree.
tistical parsers smooth those distributions by mak- In retrospect, assuming independence among de-
ing conditional independence assumptionamong pendency labels damages performance substantially
variables, including backoff and factorization. Ar-for some languages (Turkish, Czech, Swedish, Dan-
guably the choice of assumptions made (or interpash, Slovene, and Arabic); note the often large drop
lated among) is central to the success of many exist oracle performance between Tab. 1, cols. 5 and
ing parsers. 8. This assumption is necessary in our framework,
Noting that (a) there are exponentially many suchecause th@®(|D|**1n) runtime of decoding with
options, and (b) the best-performing independenaan M th-order Markov model of labelds in general
assumptions will almost certainly vary by languageprohibitive—in some casd®| > 80. Pruning and
we use a mixture among 8 such models. The sansearch heuristics might ameliorate runtime.
mixture is used for all languages. The models were |f z; is a child ofz; in direction D, andx,,., is
not chosen with particular cafeand the mixture is the MRSSS (possiblf)), whereA; = |i — j|, we es-
not trained—the coefficients are fixed at uniform,timatep(g, Ty Tj, Tpred, Ai | D) by @ mixture (un-
with a unigram coarse-tag model for backoff. Intrained, as in the parser) of four backed-off, factored
principle, this mixture should be trained (e.g., tGestimates.
maximize likelihood or minimize error on a devel-  after parsing and labeling, we have for each sen-
opment dataset). tence a list of/ x L candidates. Both the oracle
The performance of our unlabeled model's togyerformance of the best candidate in tB8 x 50)-
choice and the top-20 oracle are shown in Tab. hest ist and the performance of the top candidate are
cols. 5-6. In 5 languages (boldface), perfect labekhown in Tab. 1, cols. 8-9. It should be clear from
ing and reranking at this stage would have resulted e drop in both oracle and 1-best accuracy that our
performance superior to the language’s best labelggheling model is a major source of error.
“Our infrastructure provides a concise, interpreted langua

for expressing the models to be mixed, so large-scale combina- *We tested first-order Markov models that conditioned on
tion and comparison are possible. parent or MRSSS dependency labels.

xp(STOP | z;, Tming, () > left)

right) Q)

right (3) 77
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5 Reranking Performance Accuracy of the top parses after
reranking is shown in Tab. 1, cols. 10-11. Reranking

We train a log-linear model combining many feature .
almost always gave some improvement over 1-best

scores (see below), including the log-probabilities _ .~ g . .
. . arsing® Because of the vine assumption and the
from the parser and labeler. Training m|n|m|ze§3

reprocessing step that re-attaches all distant chil-
the expected error under the model; we use deté? P g step

. . g'ren to $, our parser learns to over-attach to $, treat-
ministic annealing to smooth the error surface an
avoid local minima (Rose, 1998; D. Smith and Eis-

Ing $-attachment as a default/agnostic choice. For

many applications a local, incomplete parse may be

ner, 2006). ufficiently useful, so we also measured non-$ unla-
We reserved 200 sentences in each language fS ’

. . Seled precision and recall (Tab. 1, cols. 12—-13); our
training the reranker, plus 200 for choosing amon .
. . ... _parser has> 80% precision on 8 of the languages.
rerankers trained on different feature sets and diffe{ . . .
ent(U x L)-best lists® e also applied reranking (with unlabeled features)
' to the 20-best unlabeled parse lists (col. 7).
Features Our reranking features predict tags, la-

bels, lemmata, suffixes and other information give® Error Analysis: German

all or some of the following non-local conditioning The plurality of errors (38%) in German were er-

context: bigrams and trigrams of tags or dependenc%neous $ attachments. For ROOT dependency la-

labels; parent and grandparent dependency labeLSéIs we have a high recall (92.7%), but low pre-
subcategorization frames (in terms of tags or depen: .’ : '

) 0 .
dency labels); the occurrence of certain tags betwe Gision (72.4%), due most likely to the dependency

n
head and child; surface features like the lemarad ?ength bounds. Among the most frequent tags, our

. . system has most trouble finding the correct heads of
the 3-character suffix. In some cases the children § . o .
) . repositions (APPR), adverbs (ADV), finite auxil-
a node are considered all together, and in other cases X .
. 1lary verbs (VAFIN), and conjunctions (KON), and
left and right are separated.

The highest-ranked features during training, fandmg the correct_ d_epend_e_ncy labels for preposi-
|ons, nouns, and finite auxiliary verbs.

all languages, are the parser and labeler probabi . . : .
guag P P The German conjunctioand is the single word

ities, followed byp(A; | ¢ , p(directi _
YP(A; | tparent), pldirection | with the most frequent head attachment errors. In
tparent), P(label | labelyreq, label gyee, subcat), and
many of these cases, our system does not learn

p(coarse(t) | D,coarse(tparent), Betw), where ) .
Betw is TRUE iff an instance of the coarse tag tyloethe subtle difference between enumerations that are

with the highest mutual information between its Ie@eaded byAin A und B with two childrenund and

and right children (usually verb) is between the chil on th? right, an_d those headedBywith undand
and its head. A as children on its left.

Unlike in some languages, our labeled oracle ac-

Feature and Model Selection For training speed curacy is nearly as good as our unlabeled oracle ac-
and to avoid overfitting, only a subset of the aboveuracy (Tab. 1, cols. 8, 5). Among the ten most fre-
features are used in reranking. Subsets of diffegquent dependency labels, our system has the most
ent sizes (10, 20, and 40, plus “all) are identifieddifficulty with accusative objects (OA), genitive at-
for each language using two'iva feature-selection tributes (AG), and postnominal modifiers (MNR).
heuristics based on independent performance of feaecusative objects are often mistagged as subject
tures. The feature subset with the highest accura¢gB), noun kernel modifiers (NK), or AG. About
on the 200 heldout sentences is selected. 32% of the postnominal modifier relatioreirf Platz

§In training our system, we made a serious mistake in trainln der Geschichte‘a place in history’) are labeled
ing the reranker on only 200 sentences. As a result, our preis modifiersif die Stadt fliegenfly into the city’).

testing estimates of performance (on data reserved for mo . : :
selection) were very bad. The reranker, depending on conditigg,em“ve attributes are often tagged as NK since both

had only 2—20 times as many examples as it had parametersate frequently realized as nouns.
estimate, with overfitting as the result. -

"The first 4 characters of a word are used where the lemma ®The exception is Chinese, where the training set for rerank-
is not available. ing is especially small (see fn. 6).
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7 Error Analysis: Arabic reranking models. As it stands, our system performs
poorly, largely because the estimation is not state-

As with German, the greatest portion of Arabic CTof-the-art, but also in part due to dependency length

rors (40%) involved attachments to 3. Prepositiongounds’ which are rather coarse at present. Better re-

are consistently attached too low and accounted f%'ijlts are achievable by picking different bounds for

220/:: of errors. ngr tixanl:e' '_f a form 'nhconStrucécdifferent head tags (Eisner and N. Smith, 2005). Ac-
(idafa) governed both a following noun phrase an uracy should not be difficult to improve using bet-

a prepositional phrase, the preposition usually afér learning methods, especially given our models’
taches to the lower noun phrase. Similarly, ’

" PrePYinear-time inference and decoding.
sitions usually attach to nearby noun phrases when

they should attach to verbs farther to the left. References

We see a more serious casualty of the dependenc . .
length bounds with conjunctions. In ground trutht- Alshawi. 1996. Head automata and bilingual
test data, 23 conjunctions are attached to $ and 141 tiling: Translation with minimal representations.
to non-$ to using the GORD relation, whereas 100 _ 1N Proc. of ACL _
conjunctions are attached to $ and 67 to non-$ uds- Charmniak and M. Johnson. 2005. Coarse-to-fine
ing the AUXY relation. Our system overgeneralizes 7"PeSt parsing and maxent discriminative rerank-
and attaches 84% of @RD and 71% of AJXY ing. InProc. of ACL _
relations to $. Overall, conjunctions account forM. Collins. 2000. Dlsprlmlnatlve reranking for nat-
15% of our errors. The BXY relation is defined _ Urallanguage parsing. faroc. of ICML

as “auxiliary (in compound expressions of various’- Eisner and G. Satta. 1999. Efficient parsing
kinds)”; in the data, it seems to be often used for for bilexical context-free grammars and head au-

waw-consecutive or paratactic chaining of narrative tomaton grammars. IRroc. of ACL
clauses. If the conjunctiowa (‘and’) begins a sen- J. Eisner and N. A. Smith. 2005. Parsing with soft

tence, then that conjunction is tagged in ground truth @nd hard constraints on dependency length. In
as attaching to $; if the conjunction appears in the Proc. of IWPT _
middle of the sentence, it may or may not be atd- Eisner, E. Goldlust, and N. A. Smith. 2004.

tached to $. Dyna: A declarative language for implementing
Noun attachments exhibit a more subtle problem. dylnaml)c programs. Iroc. of ACL(companion
volume).

The direction of system attachments is biased more '~ o _
strongly to the left than is the case for the true data+ EiSner. 1997. Bilexical grammars and a cubic-
In canonical order, Arabic nouns do generally attach time probabilistic parser. IRroc. of IWPT

on the right: subjects and objects follow the verb; i Huang and D. Chiang. 2005. Bettebest pars-

construct, the governed noun follows its governor, Ng- INProc. of IWPT

When the data deviate from this canonical order—R- McDonald, F. Pereira, K. Ribarov, and J. Kaji
2005. Non-projective dependency parsing us-

when, e.g, a subject precedes its verb—the system* - )
prefers to find some other attachment point to the "9 SElinn'”g tree algorithms.  FAroc. of HLT-

left. Similarly, a noun to the left of a conjunction o )
often erroneously attaches to its left. SuchrAre- K. Rose. 1998. Deterministic annealing for cluster-
ing, compression, classification, regression, and

lations account for 35% of noun-attachment errors. At
related optimization problem®roc. of the IEEE

8 Conclusion 86(11):2210-2239.

. D. A. Smith and J. Eisner. 2006. Minimum risk an-
The tradeoff between speed and accuracy is famil- heging for training log-linear models. To appear
iar to any parsing researcher. Rather than starting i, proc. of COLING-ACL

with an accurate system and then applying corpus-
specific speedups, we start by imposing carefully-
chosen constraints (projectivity and length bounds)
for speed, leaving accuracy to the parsing and
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Abstract

In this paper, we describe a system for
the CoNLL-X shared task of multilin-
gual dependency parsing. It uses a base-
line Nivre’s parser (Nivre, 2003) that first
identifies the parse actions and then la-
bels the dependency arcs. These two steps
are implemented as SVM classifiers using
LIBSVM. Features take into account the
static context as well as relations dynami-
cally built during parsing.

We experimented two main additions to
our implementation of Nivre’s parser: V-
best search and bidirectional parsing. We
trained the parser in both left-right and
right-left directions and we combined the
results. To construct a single-head, rooted,
and cycle-free tree, we applied the Chu-
Liuv/Edmonds optimization algorithm. We
ran the same algorithm with the same pa-
rameters on all the languages.

1 Nivre’s Parser

Nivre (2003) proposed a dependency parser that cre-
ates a projective and acyclic graph. The parser is an
extension to the shift-reduce algorithm. As with the
regular shift-reduce, it uses a stack S and a list of
input words W. However, instead of finding con-
stituents, it builds a set of arcs GG representing the
graph of dependencies.

Nivre’s parser uses two operations in addition to
shift and reduce: left-arc and right-arc. Given a se-
quence of words, possibly annotated with their part

Pierre Nugues
Department of Computer Science
LTH, Lund University
221 00 Lund, Sweden

Pierre.Nugues@cs.lth.se

of speech, parsing simply consists in applying a se-
quence of operations: left-arc (1a), right-arc (ra),
reduce (re), and shift (sh) to the input sequence.

2 Parsing an Annotated Corpus

The algorithm to parse an annotated corpus is
straightforward from Nivre’s parser and enables us
to obtain, for any projective sentence, a sequence of
actions taken in the set {1a, ra, re, sh} that parses
it. At a given step of the parsing process, let TOP
be the top of the stack and F'/ RST, the first token of
the input list, and arc, the relation holding between
a head and a dependent.

1. if arc(TOP,FIRST) € G, then ra;
2. else if arc(FIRST,TOP) € G, then 1a;

3. else if 3k € Stack,arc(FIRST,k) € G or
arc(k, FIRST) € G, then re;

4. else sh.

Using the first sentence of the Swedish corpus
as input (Table 1), this algorithm produces the se-
quence of 24 actions: sh, sh, la, ra, re, la, sh,
sh, sh, 1a, 1a, ra, ra, sh, la, re, ra, ra, ra,
re,re, re, re, and ra (Table 2).

3 Adapting Nivre’s Algorithm to

Machine-Learning

3.1 Overview

We used support vector machines to predict the
parse action sequence and a two step procedure to
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Table 1: Dependency graph of the sentence Akten-
skapet och familjen dr en gammal institution, som
funnits sedan 1800-talet ‘Marriage and family are
an old institution that has been around from the 19th
century’.

ID Form POS Head Rel.
1 Aktenskapet NN 4 SS
2  och ++ 3 ++
3 familjen NN 1 CC
4 & AV 0 ROOT
5 en EN 7 DT
6  gammal Al 7 AT
7 institution NN 4 SP
8 , IK 7 IK
9 som PO 10 SS
10  funnits \'AY 7 ET
11 sedan PR 10 TA
12 1800-talet NN 11 PA
13 IP 4 IP

produce the graph. We first ran the classifier to se-
lect unlabeled actions, 1a, ra, sh, re. We then ran
a second classifier to assign a function to ra and 1a
parse actions.

We used the LIBSVM implementation of the
SVM learning algorithm (Chang and Lin, 2001). We
used the Gaussian kernel throughout. Optimal val-
ues for the parameters (C' and «) were found using a
grid search. The first predicted action is not always
possible, given the parser’s constraints. We trained
the model using probability estimates to select the
next possible action.

3.2 Feature Set

We used the following set of features for the classi-
fiers:

e Word and POS of TOP and FIRST
e Word and POS of the second node on the stack

e Word and POS of the second node in the input
list

POS of the third and fourth nodes in the input
list

The dependency type of TOP to its head, if any

e The word, POS, and dependency type of the
leftmost child of TOP to TOP, if any

e The word, POS, and dependency type of the
rightmost child of TOP to TOP, if any

e The word, POS, and dependency type of the
leftmost child of FIRST to FIRST, if any

For the POS, we used the Coarse POS, the Fine
POS, and all the features (encoded as boolean flags).
We did not use the lemma.

Table 2: Actions to parse the sentence Aktenskapet
och familjen dr en gammal institution, som funnits
sedan 1800-talet.

Ac. Top word First word Rel.
sh  nil Aktenskapet

sh  Aktenskapet och

la  och familjen ++
ra  Aktenskapet familjen CC
re  familjen ar

la Aktenskapet  dr SS
sh  nil ar

sh dr en

sh en gammal

la  gammal institution AT
la en institution DT
ra ar institution SP
ra institution , IK
sh , som

la som funnits SS
re , funnits

ra institution funnits ET
ra funnits sedan TA

ra sedan 1800-talet PA
re 1800-talet
re sedan

re funnits
re institution
ra ar . IP

4 Extensions to Nivre’s Algorithm

4.1 N-best Search

We extended Nivre’s original algorithm with a beam
search strategy. For each action, 1a, ra, shand re,
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we computed a probability score using LIBSVM.
These scores can then be used to carry out an N-
best search through the set of possible sequences of
actions.

We measured the improvement over a best-first
strategy incrementing values of N. We observed the
largest difference between N =1 and IV = 2, then
leveling off and we used the latter value.

4.2 Bidirectionality and Voting

Tesniere (1966) classified languages as centrifuge
(head to the left) and centripetal (head to the right)
in a table (page 33 of his book) that nearly exactly
fits corpus evidence from the CONLL data. Nivre’s
parser is inherently left-right. This may not fit all
the languages. Some dependencies may be easier
to capture when proceeding from the reverse direc-
tion. Jin et al. (2005) is an example of it for Chinese,
where the authors describe an adaptation of Nivre’s
parser to bidirectionality.

We trained the model and ran the algorithm in
both directions (left to right and right to left). We
used a voting strategy based on probability scores.
Each link was assigned a probability score (simply
by using the probability of the 1a or ra actions for
each link). We then summed the probability scores
of the links from all four trees. To construct a single-
head, rooted, and cycle-free tree, we finally applied
the Chu-Liu/Edmonds optimization algorithm (Chu
and Liu, 1965; Edmonds, 1967).

S Analysis

5.1 Experimental Settings

We trained the models on “projectivized” graphs fol-
lowing Nivre and Nilsson (2005) method. We used
the complete annotated data for nine langagues. Due
to time limitations, we could not complete the train-
ing for three languages, Chinese, Czech, and Ger-
man.

5.2 Overview of the Results

We parsed the 12 languages using exactly the same
algorithms and parameters. We obtained an average
score of 74.93 for the labeled arcs and of 80.39 for
the unlabeled ones (resp. 74.98 and 80.80 for the
languages where we could train the model using the
complete annotated data sets). Table 3 shows the

results per language. As a possible explanation of
the differences between languages, the three lowest
figures correspond to the three smallest corpora. It
is reasonable to assume that if corpora would have
been of equal sizes, results would have been more
similar. Czech is an exception to this rule that ap-
plies to all the participants. We have no explanation
for this. This language, or its annotation, seems to
be more complex than the others.

The percentage of nonprojective arcs also seems
to play a role. Due to time limitations, we trained
the Dutch and German models with approximately
the same quantity of data. While both languages
are closely related, the Dutch corpus shows twice
as much nonprojective arcs. The score for Dutch is
significantly lower than for German.

Our results across the languages are consistent
with the other participants’ mean scores, where we
are above the average by a margin of 2 to 3% ex-
cept for Japanese and even more for Chinese where
we obtain results that are nearly 7% less than the av-
erage for labeled relations. Results are similar for
unlabeled data. We retrained the data with the com-
plete Chinese corpus and you obtained 74.41 for the
labeled arcs, still far from the average. We have no
explanation for this dip with Chinese.

5.3 Analysis of Swedish and Portuguese
Results

5.3.1 Swedish

We obtained a score of 78.13% for the labeled at-
tachments in Swedish. The error breakdown shows
significant differences between the parts of speech.
While we reach 89% of correct head and dependents
for the adjectives, we obtain 55% for the preposi-
tions. The same applies to dependency types, 84%
precision for subjects, and 46% for the OA type of
prepositional attachment.

There is no significant score differences for the
left and right dependencies, which could attributed
to the bidirectional parsing (Table 4). Distance plays
a dramatic role in the error score (Table 5). Preposi-
tions are the main source of errors (Table 6).

5.3.2 Portuguese

We obtained a score 84.57% for the labeled at-
tachments in Portuguese. As for Swedish, error
distribution shows significant variations across the
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Table 3: Summary of results. We retrained the Chi-
nese* model after the deadline.

tion. Swedish.

Table 4: Precision and recall of binned HEAD direc-

Languages Unlabeled Labeled Dir. Gold Cor. Syst. R P
Completed training to_root 389 330 400 84.83 82.50
Arabic 75.53 6429 left 2745 2608 2759 95.01 94.53
Chinese* 79.13 7441 right 1887 1739 1862 92.16 93.39
Danish 86.59 81.54
Dutch 76.01 72.67
Japanese 87.11 83.63 Table 5: Precision and recall of binned HEAD dis-
Portuguese 88.4 84.57 tance. Swedish.
Slovene 74.36 66.43
Spanish 81.43 78.16 Dist. Gold Cor. Syst. R P
Turkish 73.59 63.39 1 2512 2262 2363 90.05 95.73
= 30.80 74.08 2 1107 989 1122 89.34 88.15
o 5.99 8.63 3-6 803 652 867 81.20 75.20
Noncompleted training 7-... 210 141 269 67.14 5242
Chinese 77.04 72.49
Czech 77.4 71.46
German 83.09 80.43 Table 6: Focus words where most of the errors occur.
7 all languages 80.39 7493  Swedish.
o all languages 5.36 7.65 Word POS Any Head Dep Both
till PR 48 20 45 17
i PR 42 25 34 17

parts of speech, with a score of 94% for adjectives
and only 67% for prepositions.

As for Swedish, there is no significant score dif-
ferences for the left and right dependencies (Ta-
ble 7). Distance also degrades results but the slope is
not as steep as with Swedish (Table 8). Prepositions
are also the main source of errors (Table 9).

5.4 Acknowledgments

This work was made possible because of the anno-
tated corpora that were kindly provided to us: Ara-
bic (Haji¢ et al., 2004), Bulgarian (Simov et al.,
2005; Simov and Osenova, 2003), Chinese (Chen
et al., 2003), Czech (Bohmova et al., 2003), Danish
(Kromann, 2003), Dutch (van der Beek et al., 2002),
German (Brants et al., 2002), Japanese (Kawata and
Bartels, 2000), Portuguese (Afonso et al., 2002),
Slovene (Dzeroski et al., 2006), Spanish (Civit Tor-
ruella and Marti Antonin, 2002), Swedish (Nilsson
et al., 2005), and Turkish (Oflazer et al., 2003; Ata-
lay et al., 2003).

pa PR 39 22 32 15
med PR 28 11 25 8
for PR 27 22 25 20

Table 7: Precision and recall of binned HEAD direc-
tion. Portuguese.

Dir. Gold Cor. Syst. R |

to_root 288 269 298 93.40 90.27
left 3006 2959 3020 98.44 97.98
right 1715 1649 1691 96.15 97.52

Table 8: Precision and recall of binned HEAD dis-
tance. Portuguese.

Dist. Gold Cor. Syst. R P

to_root 288 269 298  93.40 90.27
1 2658 2545 2612 95.75 97.43
2 1117 1013 1080 90.69 93.80
3-6 623 492 647 7897 76.04
7-... 323 260 372 80.50 69.89
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Table 9: Focus words where most of the errors occur.
Portuguese.

Word POS Any Head Dep Both
em prp 66 38 47 19
de prp 51 37 35 21

a prp 46 30 39 23

e conj 28 28 0 0
para  prp 21 13 18 10
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Abstract

This paper presents a deterministic pars-
ing algorithm for projective dependency
grammar. In a bottom-up way the al-
gorithm finds the local optimum dynam-
icaly. A constraint procedure is made
to use more structure information. The
algorithm parses sentences in linear time
and labeling isintegrated with the parsing.
This parser achieves 63.29% labeled at-
tachment score on the average in CoNLL-
X Shared Task.

1 Introduction

Recently, dependency grammar has gained renewed
attention in the parsing community. Good results
have been achieved in some dependency parsers
(Yamada and Matsumoto, 2003; Nivre et al., 2004).
With the availability of many dependency treebanks
(van der Beek et a., 2002; Hgic et al., 2004,
Bohmova et a., 2003; Kromann, 2003; DZeroski et
al., 2006) and more other treebanks which can be
converted to dependency annotation (Brants et al.,
2002; Nilsson et al., 2005; Chen et d., 2003; Kawata
and Bartels, 2000), multi-lingual dependency pars-
ing is proposed in CoNLL shared task (Buchholz et
al., 2006).

Many previous works focus on unlabeled parsing,
in which exhaustive methods are often used (Eis-
ner, 1996). Their global searching performs well
in the unlabeled dependency parsing. But with the
increase of parameters, efficiency has to be consid-

ered in labeled dependency parsing. Thus determin-
istic parsing was proposed as a robust and efficient
method in recent years. Such method breaks the
construction of dependency tree into a series of ac-
tions. A classifier is often used to choose the most
probable action to assemble the dependency tree.
(Yamada and Matsumoto, 2003) defined three ac-
tions and used a SVM classifier to choose one of
them in a bottom-up way. The algorithm in (Nivre
et a., 2004) is a blend of bottom-up and top-down
processing. Itsclassifier istrained by memory-based
learning.

Deterministic parsing derives an analysis without
redundancy or backtracking, and linear time can be
achieved. But when searching the local optimum in
the order of left-to-right, some wrong reduce may
prevent next analysis with more possibility. (Jin et
al., 2005) used a two-phase shift-reduce to decrease
such errors, and improved the accuracy of long dis-
tance dependencies.

In this paper a deterministic parsing based on dy-
namic local optimization is proposed. According to
the probabilities of dependency arcs, the agorithm
dynamically finds the one with the highest probabil-
ities instead of dealing with the sentence in order.
A procedure of constraint which can integrate more
structure information is made to check the rational-
ity of the reduce. Finally our results and error anal-
ysis are presented.

2 Dependency Probabilities

An example of Chinese dependency tree is showed
in Figurel. Thetree can be represented as a directed
graph with nodes representing word tokens and arcs
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Figure 1: A Chinese dependency tree

representing dependency relations. The assumption
that the arcs are independent on each other often is
made so that parsing can be handled easily. On the
other side the independence assumption will result
in the loss of information because dependencies are
interrelated on each other actually. Therefore, two
kinds of probabilities are used in our parser. Oneis
arc probabilities which are the possibility that two
nodes form an arc, and the other is structure proba-
bilities which are used to describe some specific syn-
tactic structures.

2.1 ArcProbabilities

A dependency arc A; can be expressed as a 4-tuple
A; = <Node;, Node;, D, R>. Node; and Node; are
nodes that constitute the directed arc. D isthe direc-
tion of the arc, which can be left or right. Risrela
tion typelabeled on the arc. Under the independence
assumption that an arc depends on its two nodes we
can calculate arc probability given two nodes. In our
paper the arc probabilities are calculated as follows:

P; = P(RD|CTag;, CTag;, Dist)

P, = P(RD|FTag;, FTag;)

Ps = P(RD|CTag;, Word;)

P, = P(RD|Word;, CTag;)

Ps = P(R,D|Word;,CTag;, Word;,CTag;)

Ps = P(RD|CTag;—1, CTag;, CTag;, CTag;1)

Where CTag is coarse-grained part of speech tag
and FTag is fine-grained tag. Asto Word we choose
its lemmaif it exists. Dist is the distance between
Node; and Node;. It isdivided into four parts:

Dist=1 if j-i=1
Dist=2 if j-i=2
Dist=3 if 3<j-i<6
Dist=4 if j-i>6

All the probabilities are obtained by maximum
likelihood estimation from the training data. Then
interpolation smoothing is made to get the final arc
probabilities.

2.2 Structure Probabilities

Structure information plays the critical role in syn-
tactic analysis. Nevertheless the flexibility of syn-
tactic structures and data sparseness pose obstacles
to us. Especialy some structures are related to spe-
cific language and cannot be employed in multi-
lingual parsing. We have to find those language-
independent features.

In valency theory “valence’ represents the num-
ber of arguments that a verb is able to govern. In
this paper we extend the range of verbs and argu-
ments to al the words. We call the new “valence’
Governing Degree (GD), which means the ability of
one node governing other nodes. In Figurel, the GD
of node “ & J{” is 2 and the GDs of two other nodes
are 0. The governing degree of nodesin dependency
tree often shows directionality. For example, Chi-
nese token “f1)” always governs one left node. Fur-
thermore, we subdivide the GD into Left Governing
Degree (LGD) and Right Governing Degree (RGD),
which are the ability of words governing their |eft
children or right children. In Figure 1 the LGD and
RGD of verb “ & Ii{" are both 1.

In the paper we use the probabilities of GD
over the fine-grained tags. The probabilities of
P(LDG|FTag) and P(RGD|FTag) are calculated
from training data. Then we only reserve the FTags
with large probability because their GDs are stable
and helpful to syntactic analysis. Other FTags with
small probabilities are unstable in GDs and cannot
provide efficient information for syntactic anaysis.
If their probabilities are less than 0.65 they will be
ignored in our dependency parsing.

3 Dynamic local optimization

Many previous methods are based on history-based
models. Despite many obvious advantages, these
methods can be awkward to encode some constrains
within their framework (Collins, 2000). Classifiers
are good at encoding more features in the determin-
istic parsing (Yamada and Matsumoto, 2003; Nivre
et a., 2004). However, such algorithm often make
more probable dependencies be prevented by pre-
ceding errors. An example is showed in Figure 2.
Arc ais afrequent dependency and b is an arc with
more probability. Arc b will be prevented by aif the
reduceis carried out in order.
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Figure 2: A common error in deterministic parsing

3.1 Our algorithm

Our deterministic parsing is based on dynamic local
optimization. The algorithm cal culates the arc prob-
abilities of two continuous nodes, and then reduces
the most probable arc. The construction of depen-
dency tree includes four actions. Check, Reduce,
Delete, and Insert. Before a node is reduced, the
Check procedure is made to validate its correctness.
Only if the arc passes the Check procedure it can
be reduced. Otherwise the Reduce will be delayed.
Delete and Insert are then carried out to adjust the
changed arcs. The complete algorithm is depicted
asfollows:

Input Sentence: S= (wy, Ws,
Initialize:
fori=1ton
R; = GetArcProb(w;,w;1);
Push(R;) onto Stack;
Sort(Stack);
Start:
i=0;
While Stack.empty = false
R = Stack.top+i;
if Check(R) = true
Reduce(R);
Delete(R');
Insert(R”);
i=0;
else
i++;

1 Wn)

The agorithm has following advantages:

e Projectivity can be guaranteed. The node is
only reduced with its neighboring node. If a
node is reduced as a leaf it will be removed
from the sentence and doesn’t take part in next
Reduce. So no cross arc will occur.

e After n-1 pass a projective dependency tree is
complete. Algorithm isfinished in linear time.

e Thealgorithm always reducesthe nodewith the

R

"y -
bR 88 B’ —> tFE &
Figure 3: Adjustment

R RII

highest probability if it passes the Check. No
any limitation on order thus the spread of errors
can be mitigated effectively.

e Check is an open process. Various constrains
can be encoded in this process. Structural con-
strains, partial parsed information or language-
dependent knowledge can be added.

Adjustment is illustrated in Figure 3, where “5
F%" isreduced and arc R’ is deleted. Then the algo-
rithm computes the arc probability of R’ and inserts
it to the Stack.

3.2 Checking

The information in parsing falls into two kinds:
static and dynamic. The arc probabilitiesin 2.1 de-
scribe the static information which is not changed in
parsing. They are obtained from the training datain
advance. The structure probabilitiesin 2.2 describe
the dynamic information which variesin the process
of parsing. The use of dynamic information often
depends on what current dependency treeis.

Besides the governing degree, Check procedure
also uses another dynamic information—Sequential
Dependency. Whether current arc can be reduced is
relating to previousarc. In Figure 3 the reduce of the
arc Rdependsonthearc R'. If R' has been delayed
or its probability is little less than that of R, arc R
will be delayed.

If the arc doesn't pass the Check it will be de-
layed. The delayed time ranges from 1 to Length
which isthe length of sentence. If the arc is delayed
Length timesit will be blocked. The Reduce will be
delayed in the following cases:

e GD(Node;) > 0 and its probability is P. If
GD(Node;) = 0 and Node; is made as child
in the Reduce, the Node; will be delayed
Length* P times.

e GD(Node) < m (m > 0) and its probability
is P. If GD(Node;) = m and Node; is made as
parent in the Reduce, the Node; will be delayed
Length* P times.
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e P(R) > AP(R), the current arc R will be de-
layed Length* (P(R')/P(R)) times. R’ isthe pre-
ceding arc and A = 0.60.

e If arc R isblocking, the arc Rwill be delayed.

GDis empirical value and GD is current value.

4 Experimentsand analysis

Our parsing results and average results are listed
in the Table 1. It can be seen that the attachment
scores vary greatly with different languages. A gen-
eral analysisand a specific analysis are made respec-
tively in this section.

4.1 General analysis

We try to find the properties that make the differ-
enceto parsing results in multi-lingual parsing. The
properties of all the training data can be found in
(Buchholz et al., 2006). Intuitively the size of train-
ing data and average length of per sentence would
be influential on dependency parsing. The relation
of these properties and scores are showed in the Fig-
ure4 and 5.

From the charts we cannot assuredly find the
properties that are proportional to score. Whether
Czech language with the largest size of training data
or Chinese with the shortest sentence length, don’t
achievethe best results. It seemsthat no any factor is

determining to parsing results but all the properties
exert influence on the dependency parsing together.

Another factor that maybe explain the difference
of scoresin multi-lingual parsing is the characteris-
tics of language. For example, the number of tokens
with HEAD=0 in a sentenceis not one for some lan-
guages. Table 1 shows the range of governing de-
gree of head. This statistics is somewhat different
with that from organizers because we don't distin-
guish the scoring tokens and non-scoring tokens.

Another characteristic is the directionality of de-
pendency relations. As Table 1 showed, many rela-
tionsin treebanks are bi-directional, which increases
the number of therelation actually. Furthermore, the
flexibility of some grammatical structures poses dif-
ficulties to language model. For instance, subject
can appear in both sides of the predicates in some
treebanks which tends to cause the confusion with
the object (Kromann, 2003; Afonso et a., 2002;
Civit Torruella and Marti Antonin, 2002; Oflazer et
al., 2003; Atalay et al., 2003).

Asto our parsing results, which are lower than all
the average results except for Danish. That can be
explained from the following aspects:

(1) Our parser uses a projective parsing algorithm
and cannot deal with the non-projective tokens,
which exist in all the languages except for Chinese.

(2) The information provided by training data is not
fully employed. Only POS and lemmaare used. The
morphological and syntactic features may be helpful
to parsing.

(3) We haven't explored syntactic structures in depth
for multi-lingual parsing and more structural fea
tures need to be used in the Check procedure.

4.2 Specific analysis

Specifically we make error analysis to Chinese and
Turkish. In Chinese result we found many errors
occurred near the auxiliary word “[1J” (DE). We call
the noun phrases with “#]” DE Structure. The word
“[¥)” appears 355 timesin the all 4970 dependencies
of the test data. In Table 2 the second row showsthe
frequencies of “DE” as the parent of dependencies.
The third row shows the frequencies while it is as
child. Its error rate is 33.1% and 43.4% in our re-
sults respectively. Furthermore, each head error will
result in more than one errors, so the errors from DE
Sructures are nearly 9% in our results.
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Ar Ch Cz Da Du Ge

Ja0 Po S S Sv Tu

our

50.74 7529 5852 7770 5936 6811 70.84 7113 5721 6508 63.83 41.72

ave

5994 7832 6717 7616 70.73 7858 8586 80.63 6516 7352 76.44 5595

NH 17 1 28 4 9

14 1 11 1 1 5

BD

27/24 78/55 82/72 54/24 26/17 46/40

7/2  55/40 26/23 21/19 64/54 26/23

Table 1: The second and third rows are our scores and average scores. The fourth row lists the maximal
number of tokens with HEAD=0 in a sentence. The last row lists the number of relations/the number of
bi-directional relations of them (Our statistics are dightly different from that of organizers).

gold system error headerr
parent 320 354 106 106
child 355 355 154 74

Table 2: Chinese DE Structure Errors

The high error rate is due to the flexibility of DE
Sructure. The children of DE can be nouns and
verbs, thus the ambiguities will occur. For example,
the sequence “V N1 DE N2” is a common ambigu-
ious structure in Chinese. It needs to be solved with
semantic knowledge to some extent. The errors of
DE being child are mostly from noun compounds.
For example, the string “JEE 1 15 il 4E7E” results
in the error: “DE” asthe child of “{E/”. 1t will be
better that noun compounds are processed specially.

Our results and average results achieve the low-
est score on Turkish. We try to find some reasons
through the following analysis. Turkish is a typi-
cal head-final language and 81.1% of dependencies
areright-headed. The monotone of directionality in-
creasesthe difficulties of identification. Another dif-
ficulty isthe diversity of the same pair. Taking noun
and pronoun as example, which only achieve the ac-
curacy of 25% and 28% in our results, there are 14
relations in the noun-verb pairs and 11 relations in
the pronoun-verb pairs. Table 3 illustrates the distri-
bution of some common relationsin the test data.

The similarity of these dependencies makes our
parser only recognize 23.3% noun-verb structures
and 21.8% pronoun-verb structures. The syntactic
or semantic knowledge maybe hel pful to distinguish
these similar structures.

5 Conclusion

This paper has applied a deterministic agorithm
based on dynamic local optimization to muilti-

total obj sub mod DA LA

Noun-V 1300 494 319 15 102 78

Pron-v 215 91 60 9 37 3

Table 3: The distribution of some common relations

lingual dependency parsing. Through the error
analysis for some languages, we think that the dif-
ference between languages is a main obstacle posed
on multi-lingual dependency parsing. Adopting
different learners according to the type of languages
may be helpful to multi-lingual dependency parsing.
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Abstract ability to easily model non-projectivity in freer-word

order languages. Nivre (2005) gives an introduction

We present a two-stage multilingual de-
pendency parser and evaluate it on 13
diverse languages. The first stage is
based on the unlabeled dependency pars-
ing models described by McDonald and
Pereira (2006) augmented with morpho-
logical features for a subset of the lan-

to dependency representations of sentences and re-
cent developments in dependency parsing strategies.
Dependency graphs also encode much of the deep
syntactic information needed for further process-
ing. This has been shown through their success-
ful use in many standard natural language process-
ing tasks, including machine translation (Ding and

guages. The second stage takes the out-
put from the first and labels all the edges
in the dependency graph with appropri-
ate syntactic categories using a globally
trained sequence classifier over compo-
nents of the graph. We report results on
the CoNLL-X shared task (Buchholz et
al., 2006) data sets and present an error
analysis.

Palmer, 2005), sentence compression (McDonald,
2006), and textual inference (Haghighi et al., 2005).

In this paper we describe a two-stage discrimi-
native parsing approach consisting of an unlabeled
parser and a subsequent edge labeler. We evaluate
this parser on a diverse set of 13 languages using
data provided by the CoNLL-X shared-task organiz-
ers (Buchholz et al., 2006; Haji¢ et al., 2004; Simov
et al., 2005; Simov and Osenova, 2003; Chen et al.,
2003; Bohmova et al., 2003; Kromann, 2003; van
der Beek et al., 2002; Brants et al., 2002; Kawata
and Bartels, 2000; Afonso et al., 2002; Dzeroski et
Often in language processing we require a deep SyﬁL, 2006; Civit Torruella and Marti Antonin, 2002;
tactic representation of a sentence in order to assisilsson et al., 2005; Oflazer et al., 2003; Atalay et
further processing. With the availability of resourcegl., 2003). The results are promising and show the
such as the Penn WSJ Treebank, much of the féanguage independence of our system under the as-
cus in the parsing community had been on producing/mption of a labeled dependency corpus in the tar-
syntactic representations based on phrase-structug€t language.

However, recently their has been a revived interest For the remainder of this paper, we denote by
in parsing models that produce dependency grapt = z1,...x, a sentence witlm words and by
representations of sentences, which model wordg a corresponding dependency graph. A depen-
and their arguments through directed edges (Hudlency graph is represented by a set of ordered pairs
son, 1984; MéEuk, 1988). This interest has gener-(z, j) € y in which z; is a dependent angj is the

ally come about due to the computationally efficientorresponding head. Each edge can be assigned a la-
and flexible nature of dependency graphs and thetrel (; ;) from a finite setl. of predefined labels. We

1 Introduction
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assume that all dependency graphs are trees but m@gyrticular label; ;). Ideally one would like to make
be non-projective, both of which are true in the datall parsing and labeling decisions jointly so that the

sets we use. shared knowledge of both decisions will help resolve
_ any ambiguities. However, the parser is fundamen-
2 Stage 1: Unlabeled Parsing tally limited by the scope of local factorizations that

The first stage of our system creates an unIabeIéHake inference tractable. In our case this means

. . . we are forced only to consider features over single
parsey for an input sentencec. This system is

primarily based on the parsing models describe%dges or pairs of edges. However, in a two stage

by McDonald and Pereira (2006). That work ex_system we can incorporate features over the entire

. . gutput of the unlabeled parser since that structure is
tends the maximum spanning tree dependency parf|S>Zed as input. The simplest labeler would be to take
ing framework (McDonald et al., 2005a; McDonald put. P

et al., 2005b) to incorporate features over multipléﬂhS '?prtlan.tEdhgei;j ) te y for sentencer and find
edges in the dependency graph. An exact projec-e abel with highest score,
tive and an approximate non-projective parsing al- li,j) = argmax s(l, (4,5),y, T)
gorithm are presented, since it is shown that non- !
projective dependency parsing becomes NP-hafoing this for each edge in the tree would pro-
when features are extended beyond a single edge.duce the final output. Such a model could easily be

That system uses MIRA, an online large-margirirained using the provided training data for each lan-
learning algorithm, to compute model parameterguage. However, it might be advantageous to know
Its power lies in the ability to define a rich set of feathe labels of other nearby edges. For instance, if we
tures over parsing decisions, as well as surface levednsider a head; with dependents;;,, ..., z;,,, it
features relative to these decisions. For instance, tieoften the case that many of these dependencies
system of McDonald et al. (2005a) incorporates feawill have correlated labels. To model this we treat
tures over the part of speech of words occurring bdhe labeling of the edges, j1), . . ., (4,ja) as a se-
tween and around a possible head-dependent refguence labeling problem,
tion. These features are highly important to over- T T

) - ) = (gyys -5 ligay) =1 = argmax s(l,4,y, )

all accuracy since they eliminate unlikely scenarios i
suc_:h as a preposition mo_difying a noun_not directl)(Ne use a first-order Markov factorization of the
to its left, or a noun modifying a verb with anotherSCore
verb occurring between them.

We augmented this model to incorporate morpho-
logical features derived from each token. Consider a

dd d fad non the head
proposed dependency of a dependgnon the hea in which each factor is the score of labeling the adja-

x;, each with morphological featuréd; and\/; re- daes;. i a0 i in th Wi
spectively. We then add to the representation of tH&"t © 3E§Z’hjm) a(r; (ZI\’/I]mI; 1) ;nt e treey. s at-h
edge: M; as head features\l; as dependent fea- (MPted higher-order Markov factorizations but they

tures, and also each conjunction of a feature frorﬂid not improvg performance L_Jnif_qrmly across lan-
both sets. These features play the obvious role gHages and tralnlpg became S|gn|f|cantly slower.
explicitly modeling consistencies and commonali- For score fun(-:tlons,.we use simple dot prodgcts
ties between a head and its dependents in terms %(?tween _hlgh dimensional feature representations
attributes like gender, case, or number. Not all dat%nd a weight vector

sets in our experiments include morphological fea-

tures, so we use them only when available. S(l(i,jm)v l(z',jmfw i,Y,T) = .
W ’ f(l(7‘7.]m)7 l@yjm—l)? Z’ y7 m)

M
| = arg max Z $(U(i jm) s Ui m1)2 8 Y T)
! m=2

3 Stage 2: Label Classification _ _
Assuming we have an appropriate feature repre-

The second stage takes the output payder sen- sentation, we can find the highest scoring label se-
tencex and classifies each eddg j) € y with a quence with Viterbi’s algorithm. We use the MIRA
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online learner to set the weights (Crammer and DATA SET UA LA

Singer, 2003; McDonald et al., 2005a) since we ARABIC 79.3 66.9
found it trained quickly and provide good perfor- BULGARIAN  92.0  87.6
quickly P good p CHINESE 91.1 85.9
mance. Furthermore, it made the system homoge- CzECH 87.3 80.2
neous in terms of learning algorithms since that is DANISH 90.6 84.8
. . DuTcH 83.6 79.2
what is used to train our unlabeled parser (McDon- GERMAN 904 873
ald and Pereira, 2006). Of course, we have to define JAPANESE 92.8 90.7
a set of suitable features. We used the following: PORTUGUESE 91.4  86.8
SLOVENE 83.2 73.4
, SPANISH 86.1 82.3
e Edge Features: Word/pre-suffix/part-of-speech SWEDISH 88.9 825
(POS)/morphological feature identity of the head and the TURKISH 747 63.2
dependent (affix lengths 2 and 3). Does the head and its
AVERAGE 87.0 80.8

dependent share a prefix/suffix? Attachment direction.
What morphological features do head and dependent
have the same value for? Is the dependent the firstlad@ble 1: Dependency accuracy on 13 languages.

word in the sentence? Unlabeled (UA) and Labeled Accuracy (LA).

e Sibling Features: Word/POS/pre-suffix/morphological fqrms again based on performance on held-out
feature identity of the dependent’s nearest left/right sib ’

lings in the tree (siblings are words with same parent irdatd'- ) )
the tree). Do any of the dependent’s siblings share its Results on the test set are given in Table 1. Per-

POS? formance is measured through unlabeled accuracy,
e Context Features:POS tag of each intervening word be-WhICh is the Percentage of words that modify the
tween head and dependent. Do any of the words betwe@orrect head in the dependency graph, and labeled

the head and the dependent have a parent other than i i
head? Are any of the words between the head and the d%gcuracy’ which is the percentage of words that

pendent not a descendant of the head (i.e. non-projectiV®0dify the correct headnd label the dependency

edge)? edge correctly in the graph. These results show that
the discriminative spanning tree parsing framework

- : i 2 .
e Non-local: How many children does the dependent haveg\/chonald et al., 2005b; McDonald and Pereira,

What morphological features do the grandparent and th
dependent have identical values? Is this the left/right2006) is easily adapted across all these languages.
most dependent for the head? Is this the first depende@my Arabic, Turkish and Slovene have parsing ac-
to the left/right of the head? . o

curacies significantly below 80%, and these lan-

cEuages have relatively small training sets and/or are

based on performance on held-out data. Note th i[ghly inflected with little to no word order con-

many of these features are beyond the scope of tﬁgamts. Furthermore, these results show that a two-

edge based factorizations of the unlabeled parsgtl.age system can achieve a relatively high perfor-
ance. In fact, for every language our models per-

Thus a joint model of parsing and labeling could no orm significantly higher than the average perfor-

easily include them without some form ofre-rankingm nce for all th tems reported in Buchholz et
or approximate parameter estimation. ance for all the systems reporte uchholz €

al. (2006).

4 Results For the remain_der of the paper we provide a gen-
eral error analysis across a wide set of languages

We trained models for all 13 languages providegblus a detailed error analysis of Spanish and Arabic.

by the CoNLL organizers (Buchholz et al., 2006). _

Based on performance from a held-out section of tne  General Error Analysis

training data, we used non-projective parsing algqyr system has several components, including the

rithms for Czech, Danish, Dutch, German, Japanesgyjiry to produce non-projective edges, sequential
Portuguese and Slovene, and projective parsingal-__~

gorithms for Arabic, Bulgarian, Chinese, Spanish, 'Using the non-projective parser for all languages does not

. . . ffect performance significantly. Similarly, using the @dted
Swedish and Turkish. Furthermore, for Arabic an ord form instead of the lemma for all languages does not

Spanish, we used lemmas instead of inflected worthange performance significantly.

Various conjunctions of these were include
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SysTEM UA LA objects from81.7%/75.6% to 84.2%/81.3% (la-

N+S+M  86.3 79.7 beled precision/recall) and the labeling of subjects
E:g:g gg:g ;g:g from 86._8%/88.2% t0 90.5%/90.4% for Swedish.

N+A+M 86.3 79.4 Similar improvements are common across all lan-
P+A+B 848 77.7 guages, though not as dramatic. Even with this im-

. . \Provement, the labeling of verb dependents remains
Table 2: Error analysis of parser components av: .
the highest source of error.

eraged over Arabic, Bulgarian, Danish, Dutch,
Japanese, Portuguese, Slovene, Spanish, Swedésh
and Turkish. N/P: Allow non-projective/Force pro-

jective, S/A: Sequential labeling/Atomic labeling,6.1 Spanish

fl\ggEtﬁl:JrIQ;:Iude morphology features/No morIOhOIOgyAlthough overall unlabeled accuracy 86%, most

verbs and some conjunctions attach to their head
assignment of edge labels instead of individual asvords with much lower accuracy69% for main
signment, and a rich feature set that incorporategerbs, 75% for the verbser, and 65% for coor-
morphological properties when available. The benedinating conjunctions. These words forti% of
fit of each of these is shown in Table 2. These resultbe test corpus. Other high-frequency word classes
report the average labeled and unlabeled precisiovith relatively low attachment accuracy are preposi-
for the 10 languages with the smallest training setsions 80%), adverbs §2%) and subordinating con-
This allowed us to train new models quickly. junctions 80%), for a total of anothe3% of the

Table 2 shows that each component of our systeffist corpus. These weaknesses are not surprising,
does not change performance significantly (rows &ince these decisions encode the more global as-
4 versus row 1). However, if we only allow projec-Pects of sentence structure: arrangement of clauses
tive parses, do not use morphological features arhd adverbial dependents in multi-clause sentences,
label edges with a simple atomic classifier, the ove@nd prepositional phrase attachment. In a prelimi-
all drop in performance becomes significant (rovpary test of this hypothesis, we looked at all of the
5 versus row 1). Allowing non-projective parsessentences from a development set in which a main
he|ped with freer word order |anguages like Dutcwerb is incorrectly attached. We confirmed that the
(78.8%/74.7% to 83.6%/79.2%, unlabeled/labeled main clause is often misidentified in multi-clause
accuracy)_ |nc|uding rich morpho|ogy features natusentences, or that one of several conjoined clauses
rally helped with highly inflected languages, in pards incorrectly taken as the main clause. To test this
ticular Spanish, Arabic, Turkish, Slovene and to &urther, we added features to count the number of
lesser extent Dutch and Portuguese. Derived mogommas and conjunctions between a dependent verb

phological features improved accuracy in all thes@nd its candidate head. Unlabeled accuracy for all
languages by 1-3% absolute. verbs increases froml% to 73% and for all con-

tJunctions from71% to 74%. Unfortunately, accu-

tle effect on overall labeled accuracy9(4% to acy for other word types decreases somewhat, re-
79.7%)2. The major contribution was in helping to sulting in no_5|gn|f|cant.ne.:t accuracy_change. Nev-
distinguish subjects, objects and other dependerff§Neless, this very preliminary experiment suggests
of main verbs, which is the most common lapelthat wider-range features may be useful in improv-
ing error. This is not surprising since these edg@g the recognition of overall sentence structure.
labels typically are the most correlated (i.e., if you Another common verb attachment error is a
already know which noun dependent is the subjecWitch between head and dependent verb in phrasal
then it should be easy to find the object). For inYerb forms likedejan intrigar or giero decir, possi-

stance, sequential labeling improves the labeling &y because the non-finite verb in these cases is often
a main verb in training sentences. We need to look

2This difference was much larger for experiments in whicH"O"€ .carefu.lly at verb features f[h"_"t m_ay b_e_userI
gold standard unlabeled dependencies are used. here, in particular features that distinguish finite and

Detailed Analysis

Sequential classification of labels had very li
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non-finite forms. al. (McDonald et al., 2005b; McDonald and Pereira,

In doing this preliminary analysis, we noticed2006) generalizes well to languages other than En-
some inconsistencies in the reference dependenglish. In the future we plan to extend these mod-
structures. For example, in the test sentehoe els in two ways. First, we plan on examining the
gue decia Mae West de si misma gdadnos decirlo performance difference between two-staged depen-
tambén los hombres:,.decids head is given ade- dency parsing (as presented here) and joint parsing
cirlo, although the main verbs of relative clauses arplus labeling. It is our hypothesis that for languages
normally dependent on what the relative modifies, inith fine-grained label sets, joint parsing and label-
this case the articlko. ing will improve performance. Second, we plan on

. integrating any available morphological features in

6.2 Arabic a more principled manner. The current system sim-
A quick look at unlabeled attachment accuracies irply includes all morphological bi-gram features. It
dicate that errors in Arabic parsing are the most our hope that a better morphological feature set
common across all languages: prepositiod®)(), will help with both unlabeled parsing and labeling
conjunctions §9%) and to a lesser extent verbsfor highly inflected languages.
(73%). Similarly, for labeled accuracy, the hard-
est edges to label are for dependents of verbs, i.e.,
subjects, objects and adverbials. Note the diffefReferences
ence in error between the unlabeled parser and tise Buchholz, E. Marsi, A. Dubey, and Y. Krymolowski.
edge labeler: the former makes mistakes on edges2006. CoNLL-X shared task on multilingual depen-
into prepositions, conjunctions and verbs, and the 9€NCY Parsing. SIGNLL.
latter makes mistakes on edges into nouns (sukz Crammer and Y. Singer. 2003. Ultraconservative on-
ject/objects). Each stage by itself is relatively ac- line algorithms for multiclass problemdMLR
curate (unlabeled accuracy9% and labeling ac- v, ping and M. Palmer. 2005. Machine translation using
curacy is also79%), but since there is very little  probabilistic synchronous dependency insertion gram-
overlap in the kinds of errors each makes, overall la- mars. InProc. ACL
beled accuracy drops &7%. This drop is notnearly A Haghighi, A. Ng, and C. Manning. 2005. Robust
as significant for other languages. textual inference via graph matching. Rroc. HTL-

Another source of potential error is that the aver- EMNLP.

age sentence length of Arabic is much higher thag Hydson. 1984word Grammar Blackwell.

other languages (around 37 words/sentence). How- ) i )

ever, if we only look at performance for sentence&: McDonald and F. Pereira. 2006. Online learning of
. ~ approximate dependency parsing algorithmsPioc.

of length less than 30, the labeled accuracy is still gacL

only 71%. The fact that Arabic has only 1500 train- MeDonald. K. C 4 E. Pereira. 2005a. O

f . f . . Mcbonald, K. Crammer, an . Pereira. a. n-

Ing _mStancefS might also be problematic. For _ex_a " line large-margin training of dependency parsers. In

ple if we train on 200, 400, 800 and the full training  pyoc. ACL

set, labeled accuracies @&, 60%, 62% and67%. _ _ "

Clearly adding more data is improving performance’ 'Mgﬁg?&g&i}g%@ggﬁdKéEC'Sa;%‘;’S ?Qg ﬂ'svnﬂlcépzfnon?r?g

However, when compared to the performance of gee algorithms. IProc. HLT-EMNLP

Slovene (1500 training instances) and Spanish (3300

: ; : .o : . McDonald. 2006. Discriminative sentence compres-
instances), it appears that Arabic parsing is Iagglnd?. sion with soft syntactic constraints. Rroc. EACL P

7 Conclusions I.LA. Mel’tuk. 1988. Dependency Syntax: Theory and
. . Practice State University of New York Press.
We have presented results showing that the spanning
tree dependency parsing framework of McDonald et Nivre. 2005. Dependency grammar and dependency
parsing. Technical Report MSI report 05133, Vaxjo
3Labeling accuracy is the percentage of words that correctly University: School of Mathematics and Systems Engi-
label the dependency between the head that they modify, even neering.
if the right head was not identified.
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Abstract 2 Parsing Methodology

We use SVM classifiers to predict the next ~ 2-1 Parsing Algorithm

action of a deterministic parser that builds The parsing algorithm used for all languages is the
labeled projective dependency graphs in  deterministic algorithm first proposed for unlabeled
an incremental fashion. Non-projective dependency parsing by Nivre (2003) and extended
dependencies are captured indirectly by  tolabeled dependency parsing by Nivre et al. (2004).
projectivizing the training data for the The algorithm builds a labeled dependency graph in
classifiers and applying an inverse trans-  one left-to-right pass over the input, using a stack
formation to the output of the parser. We to store partially processed tokens and adding arcs
present evaluation results and an error  using four elementary actions (wheopis the token
analysis focusing on Swedish and Turkish.  on top of the stack andextis the next token):

e SHIFT: Pushnextonto the stack.
1 Introduction e REDUCE: Pop the stack.
o _ e RIGHT-ARC(r): Add an arc labeled from top
The CoNLL-X shared task consists in parsing texts (g next pushnextonto the stack.
in multiple languages using a single dependency LEFT-ARC(r): Add an arc labeled from next
parser that has the capacity to learn from treebank ¢, top; pop the stack.

data. Our methodology for performing this task is _ o
based on four essential components: Although the parser only derives projective gr_aph_s,
o _ o the fact that graphs are labeled allows non-projective
e A deterministic algorithm for building labeled dependencies to be captured using the pseudo-
projective dependency graphs (Nivre, _20_06)- projective approach of Nivre and Nilsson (2005) .
* History-based feature models for predicting the - Another limitation of the parsing algorithm is that
next parser action (Black et al., 1992). it does not assign dependency labels to roots, i.e., to
e Support vector machines for mapping historiegsokens havingiEAD=0. To overcome this problem,
to parser actions (Kudo and Matsumoto, 2002)we have implemented a variant of the algorithm that
e Graph transformations for recovering non-starts by pushing an artificial root token with=0
projective structures (Nivre and Nilsson, 2005)onto the stack. Tokens havingeaAb=0 can now
) . be attached to the artificial root in a&HT-ARC(7)
Al expenr_nents have been perfo_rmed usmg,Mal_téction, which means that they can be assigned any
Parser (N_|vre et al., 2006_)’ version 0.4, which Sabel. Since this variant of the algorithm increases
made available together with the suite of programs, o overall nondeterminism, it has only been used
used for pre- and post-processing. for the data sets that include informative root labels

www.msi.vxu.se/users/nivre/research/MaltParser.html  (Arabic, Czech, Portuguese, Slovene).
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=t F+° : S E iE f converted to numerical features using the standard
sﬁtog—l + technique of binarization, and we split values of the
I: next + o+ o+ o+ o+ FEATsfield into its atomic components.

' Egig " N For some languages, we divide the training data
I: next-3 + into smaller sets, based on some featufeormally

G: head otop + thecpPosor Posof the next input token), which may

G leftmost dep ofop N reduce training times without a significant loss in
G: rightmost dep ofop + eauce training es out a significant loss '
G: leftmost dep ohext + accuracy (Yamada and Matsumoto, 2003). To avoid

too small training sets, we pool together categories

Table 1: Base model; S: stack, I input, G graph; it have a frequency below a certain threstiold
FO: FORM, L: LEMMA , C: CPOS P: POS

FE. FEATS, D: DEPREL 2.4 Pseudo-Projective Parsing

_ Pseudo-projective parsing was proposed by Nivre
2.2 History-Based Feature Models and Nilsson (2005) as a way of dealing with

History-based parsing models rely on features of th@on-projective structures in a projective data-driven
derivation history to predict the next parser actionparser. We projectivize training data by a minimal
The features used in our system are all symboligansformation, lifting non-projective arcs one step
and extracted from the following fields of the data@t a time, and extending the arc label of lifted arcs
representatiorfFORM, LEMMA , CPOSTAG POSTAG ~ Using the encoding scheme calledAb by Nivre
FEATS, andDEPREL Features of the typpepreL  and Nilsson (2005), which means that a lifted arc is
have a special status in that they are extracted duriggsigned the labeil s, wherer is the original label
parsing from the partially built dependency graptandh is the label of the original head in the non-
and may therefore contain errors, whereas all tHefojective dependency graph.
other features have gold standard values during both Non-projective dependencies can be recovered by
training and parsing. applying an inverse transformation to the output of
Based on previous research, we defined a baite parser, using a left-to-right, top-down, breadth-
model to be used as a starting point for languagédirst search, guided by the extended arc labgls
specific feature selection. The features of this mod@ssigned by the parser. This technique has been used
are shown in Table 1, where rows denote tokens ivithout exception for all languages.
a parser configuration (defined relative to the stack, _
the remaining input, and the partially built depen3 EXperiments

dency graph), and where columns correspond to daégl(nce the projective parsing algorithm and graph

fields. The base model contains twenty features, th . .
. ransformation techniques are the same for all data
note that the fieldsEMMA, CPOSandrFEATSare not

. sets, our optimization efforts have been focused on
available for all languages. : . S
feature selectionusing a combination of backward
and forward selection starting from the base model
W t vect hife dict th ¢ described in section 2.2, apdrameter optimization
€ use support vector machines predict th€ next ¢, 1pe gym learner, using grid search for an optimal

Egrser al\jtlon from. ? fe”ature vectoLrI l;esp\r/el\jegt;]ng N mbination of the kernel parameteysandr, the
Istory. More specifically, we use (Chang penalty parametat’ and the termination criterion

andTLln, 2091) \éwt: abqlljlafjranc kernﬁl(xi,”:cj) ~ as well as the splitting featureand the frequency
(vz; ;j+r)” and the built-in one-versus-all strategy,, . snoldr. Feature selection and parameter opti-

for multi-class classification. Symbolic features are - otion have to some extent been interleaved. but

2The fieldsPHEAD andPDEPRELhave not been used at all, the amount of work done varies between languages.
since we rely on pseudo-projective parsing for the treatmén
non-projective structures. “Preliminary experiments showed a slight improvement for
3We also ran preliminary experiments with memory-baseanost languages when splitting theATs values, as opposed to
learning but found that this gave consistently lower accyira  taking every combination of atomic values as a distinct@alu

2.3 Support Vector Machines
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Ara Bul Chi Cze Dan Dut Ger Jap Por Slo Spa Swe urotal
LAS [66.71 87.41 86.92 78.42 84.77 78.59 85.82 91.65 87.60 7013Q9884.58 65.6880.19
UAS | 77.52 91.72 90.54 84.80 89.80 81.35 88.76 93.10 91.22 784.87889.50 75.8285.48
LAcc|80.34 90.44 89.01 85.40 89.16 83.69 91.03 94.34 91.54 80(h086987.39 78.4986.75

Table 2: Evaluation on final test set; LAS = labeled attachraseare, UAS = unlabeled attachment score,
LAcc = label accuracy score; total score excluding Bulgaria

The main optimization criterion has been labeledefore we turn to Swedish and Turkish, focusing on
attachment score on held-out data, using ten-folecall and precision of root nodes, as a reflection of
cross-validation for all data sets with 100k tokengjlobal syntactic structure, and on attachment score
or less, and an 80-20 split into training and devtesis a function of arc length. If we start by considering
sets for larger datasets. The number of features languages with a labeled attachment score of 85% or
the optimized models varies from 16 (Turkish) to 3thigher, they are characterized by high precision and
(Spanish), but the models use all fields available faecall for root nodes, typically 95/90, and by a grace-
a given language, except thdRM is not used for ful degradation of attachment score as arcs grow
Turkish (onlyLEMMA). The SVM parameters fall longer, typically 95-90-85, for arcs of length 1, 2
into the following rangesz: 0.12-0.20;: 0.0-0.6; and 3-6. Typical examples are Bulgarian (Simov
C: 0.1-0.7;e: 0.01-1.0. Data has been split on theet al., 2005; Simov and Osenova, 2003), Chinese
pos of the next input token for Czecht € 200), (Chen et al., 2003), Danish (Kromann, 2003), and
German { = 1000), and Spanish & 1000), and Swedish (Nilsson et al., 2005). Japanese (Kawata
on thecposof the next input token for Bulgarian and Bartels, 2000), despite a very high accuracy, is
(t = 1000), Slovenet(= 600), and Turkishi(= 100). different in that attachment score drops from 98%
(For the remaining languages, the training data has 85%, as we go from length 1 to 2, which may
not been split at all®) A dry run at the end of the have something to do with the data consisting of
development phase gave a labeled attachment scar@nscribed speech with very short utterances.
of 80.46 over the twelve required languages. A second observation is that a high proportion of

Table 2 shows final test results for each languageon-projective structures leads to fragmentation in
and for the twelve required languages together. THbe parser output, reflected in lower precision for
total score is only 0.27 percentage points below theots. This is noticeable for German (Brants et al.,
score from the dry run, which seems to indicate th&2002) and Portuguese (Afonso et al., 2002), which
models have not been overfitted to the training datatill have high overall accuracy thanks to very high
The labeled attachment score varies from 91.65 titachment scores, but much more conspicuous for
65.68 but is above average for all languages. Wezech (Bhmowa et al., 2003), Dutch (van der Beek
have the best reported score for Japanese, Swedgthal., 2002) and Slovene Zeroski et al., 2006),
and Turkish, and the score for Arabic, Danishwhere root precision drops more drastically to about
Dutch, Portuguese, Spanish, and overall does n69%, 71% and 41%, respectively, and root recall is
differ significantly from the best one. The unlabeledlso affected negatively. On the other hand, all three
score is less competitive, with only Turkish havinganguages behave like high-accuracy languages with
the highest reported score, which indirectly indicategespect to attachment score. A very similar pattern
that the integration of labels into the parsing proceds found for Spanish (Civit Torruella and MaAn-

primarily benefits labeled accuracy. tonin, 2002), although this cannot be explained by
a high proportion of non-projective structures. One
4 Error Analysis possible explanation in this case may be the fact that

dependency graphs in the Spanish data are sparsely

An overall error analysis is beyond the scope of thifsabeled, which may cause problem for a parser that
paper, but we will offer a few general observation§e”es on dependency labels as features

SDetailed specifications of the feature models and learning The results for Arabic (H"’m et al., 2004; Snzr
algorithm parameters can be found on the MaltParser weh pagat al., 2002) are characterized by low root accuracy
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as well as a rapid degradation of attachment scomncatenated suffixes carry information that in other
with arc length (from about 93% for length 1 to 67%languages may be expressed by separate words. The
for length 2). By contrast, Turkish (Oflazer et al., Turkish treebank therefore divides word forms into
2003; Atalay et al., 2003) exhibits high root accusmaller units, called inflectional groups (IGs), and
racy but consistently low attachment scores (abotite task of the parser is to construct dependencies
88% for length 1 and 68% for length 2). It is note-between IGs, not (primarily) between word forms
worthy that Arabic and Turkish, being “typological (Eryigit and Oflazer, 2006). It is then important
outliers”, show patterns that are different both fromio remember that an unlabeled attachment score
each other and from most of the other languages. of 75.8% corresponds to a word-to-word score of
) 82.7%, which puts Turkish on a par with languages
4.1 Swedish like Czech, Dutch and Spanish. Moreover, when
A more fine-grained analysis of the Swedish resultwe break down the results according to whether the
reveals a high accuracy for function words, whicthead of a dependency is part of a multiple-IG word
is compatible with previous studies (Nivre, 2006)or a complete (single-1G) word, we observe a highly
Thus, the labeled F-score is 100% for infinitivesignificant difference in accuracy, with only 53.2%
markers (IM) and subordinating conjunctions (UK),unlabeled attachment score for multiple-IG heads
and above 95% for determiners (DT). In additionyersus 83.7% for single-IG heads. It is hard to say
subjects (SS) have a score above 90%. In all these this stage whether this means that our methods
cases, the dependent has a configurationally definatk ill-suited for 1G-based parsing, or whether it is
(but not fixed) position with respect to its head.  mainly a case of sparse data for multiple-1G words.
Arguments of the verb, such as objects (DO, 10) When we break down the results by dependency
and predicative complements (SP), have a slightlype, we can distinguish three main groups. The first
lower accuracy (about 85% labeled F-score), whicbonsists of determiners and particles, which have
is due to the fact that they “compete” in the samean unlabeled attachment score over 80% and which
structural positions, whereas adverbials (labels thate found within a distance of 1-1.4 1Gs from their
end in A) have even lower scores (often below 70%head’ The second group mainly contains subjects,
The latter result must be related both to the relativelgbjects and different kinds of adjuncts, with a score
fine-grained inventory of dependency labels for adn the range 60-80% and a distance of 1.8-5.2 IGs to
verbials and to attachment ambiguities that involvéheir head. In this group, information about case and
prepositional phrases. The importance of this kinflossessive features of nominals is important, which
of ambiguity is reflected also in the drastic differ-is found in therEATSfield in the data representation.
ence in accuracy between noun pre-modifiers (ATYVe believe that one important explanation for our
(F > 97%) and noun post-modifiers (ET) §75%). relatively good results for Turkish is that we break
Finally, itis worth noting that coordination, which down theFEATS information into its atomic com-
is often problematic in parsing, has high accuracyonents, independently @fosand cpostags, and
The Swedish treebank annotation treats the secot#t the classifier decide which one to use in a given
conjunct as a dependent of the first conjunct and &ituation. The third group contains distant depen-
the head of the coordinator, which seems to facidencies, such as sentence modifiers, vocatives and
itate parsind. The attachment of the second con-appositions, which have a much lower accuracy.
junct to the first (CC) has a labeled F-score above _
80%, while the attachment of the coordinator to th® Conclusion

second conjunct (++) has a score well above 90%.The evaluation shows that labeled pseudo-projective
42 Turkish dependency parsing, using a deterministic parsing

_algorithm and SVM classifiers, gives competitive

In Turkish, very essential syntactic information ISparsing accuracy for all languages involved in the

contained in the rich morphological structure, where =~
'Given that the average IG count of a word is 1.26 in the

5The analysis is reminiscent of the treatment of coordimatiotreebank, this means that they are normally adjacent toehd h
in the Collins parser (Collins, 1999). word.
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shared task, although the level of accuracy varies.

considerably between languages. To analyze in

Eryigit and K. Oflazer. 2006. Statistical dependency parsing
of Turkish. InProc. of EACL-2006

depth the factors determining this variation, and t@, Hajg, 0. Smg, P. Zeranek, JSnaidauf, and E. Bika. 2004.

improve our parsing methods accordingly to meet
the challenges posed by the linguistic diversity, will
be an important research goal for years to come. V.

Acknowledgments

We are grateful for the support fromUBITAK
(The Scientific and Technical Research Council of
Turkey) and the Swedish Research Council. We alsb
want to thank Atanas Chanev for assistance with
Slovene, the organizers of the shared task for all
their hard work, and the creators of the treeban
for making the data available.

References

A. Abeillé, editor. 2003. Treebanks: Building and Using J.
Parsed Corporavolume 20 ofText, Speech and Language
Technology Kluwer Academic Publishers, Dordrecht.

. Afonso, E. Bick, R. Haber, and D. Santos. 2002. “Floresta
sinta(c)tica”: a treebank for Portuguese. Rroc. of LREC-
2002 pages 1698-1703.

. B. Atalay, K. Oflazer, and B. Say. 2003. The annotation
process in the Turkish treebank. Pnoc. of LINC-2003

M.

Prague Arabic dependency treebank: Development in data
and tools. InProc. of NEMLAR-2004pages 110-117.

Kawata and J. Bartels. 2000. Stylebook for the Japanese
treebank in VERBMOBIL. Verbmobil-Report 240, Seminar
fur Sprachwissenschaft, UniveidifTubingen.

T. Kromann. 2003. The Danish dependency treebank and
the underlying linguistic theory. IRroc. of TLT-2003

Kudo and Y. Matsumoto. 2002. Japanese dependency anal-
ysis using cascaded chunking. Rroc. of CoNLL-2002
pages 63-69.

Nilsson, J. Hall, and J. Nivre. 2005. MAMBA meets TIGER:
Reconstructing a Swedish treebank from antiquityPtac.
of the NODALIDA Special Session on Treebanks

. Nivre and J. Nilsson. 2005. Pseudo-projective deperydenc

parsing. InProc. of ACL-2005pages 99-106.

Nivre, J. Hall, and J. Nilsson. 2004. Memory-based depen-
dency parsing. IProc. CoNLL-2004pages 49-56.

J. Nivre, J. Hall, and J. Nilsson. 2006. MaltParser: A data-

driven parser-generator for dependency parsing?rbt. of
LREC-2006

J. Nivre. 2003. An efficient algorithm for projective depen-

dency parsing. IfProc. of IWPT-2003pages 149-160.

J. Nivre. 2006.Inductive Dependency Parsingpringer.

. Black, F. Jelinek, J. D. Lafferty, D. M. Magerman, R. L. Mer

cer, and S. Roukos. 1992. Towards history-based grammais;

Using richer models for probabilistic parsing. Fnoc. of the
5th DARPA Speech and Natural Language Worksipages
31-37.
K.
. Bbhmowg, J. Haj€, E. Hajtova, and B. Hladk. 2003. The
PDT: a 3-level annotation scenario. In Abeil{Abeillé,
2003), chapter 7.

K.
. Brants, S. Dipper, S. Hansen, W. Lezius, and G. Smith. 2002
The TIGER treebank. IRroc. of TLT-2002

C.-C. Chang and C.-J. Lin, 2001. LIBSVM: A Library
for Support Vector Machines Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

. Chen, C. Luo, M. Chang, F. Chen, C. Chen, C. Huang, and
Z. Gao. 2003. Sinica treebank: Design criteria, representa
tional issues and implementation. In Abei{Abeille, 2003),
chapter 13, pages 231-248. L.

. Civit Torruella and M* A. Marti Antorin. 2002. Design
principles for a Spanish treebank. Pnoc. of TLT-2002

0.

Oflazer, B. Say, D. Zeynep Hakkaniif, and G. Tr. 2003.
Building a Turkish treebank. In Abedl (Abeille, 2003),
chapter 15.

Simov and P. Osenova. 2003. Practical annotation scheme
for an HPSG treebank of Bulgarian. Rroc. of LINC-2003
pages 17-24.

Simov, P. Osenova, A. Simov, and M. Kouylekov. 2005.
Design and implementation of the Bulgarian HPSG-based
treebank. InJournal of Research on Language and Com-
putation — Special Issu@ages 495-522. Kluwer Academic
Publishers.

Sme, J.Snaidauf, and P. Zeamek. 2002. Prague depen-
dency treebank for Arabic: Multi-level annotation of Arabi
corpus. InProc. of the Intern. Symposium on Processing of
Arabic, pages 147-155.

van der Beek, G. Bouma, R. Malouf, and G. van Noord.
2002. The Alpino dependency treebank.Gomputational
Linguistics in the Netherlands (CLIN)

H. Yamada and Y. Matsumoto. 2003. Statistical dependency

. Collins. 1999.Head-Driven Statistical Models for Natural
Language ParsingPh.D. thesis, University of Pennsylvania.

. DZeroski, T. Erjavec, N. Ledinek, P. PajasZZbokrtsky, and
A. Zele. 2006. Towards a Slovene dependency treebank. In
Proc. of LREC-2006

225

analysis with support vector machines. Rroc. of IWPT-
2003 pages 195-206.



1

Multi-lingual Dependency Parsing with Incremental Integer Linear
Programming

Sebastian Riedeland Ruket Cakicl and lvan Meza-Ruiz
ICCS
School of Informatics
University of Edinburgh
Edinburgh, EH8 9LW, UK
S.R.Riedel,R.Cakici,|.V.Meza-Ruiz@sms.ed.ac.uk

Abstract

Our approach to dependency parsing is
based on the linear model of McDonald

et al.(McDonald et al., 2005b). Instead of

solving the linear model using the Max-

imum Spanning Tree algorithm we pro-

pose an incremental Integer Linear Pro-
gramming formulation of the problem that

allows us to enforce linguistic constraints.

Our results show only marginal improve-

ments over the non-constrained parser. In
addition to the fact that many parses did
not violate any constraints in the first place
this can be attributed to three reasons: 1)
the next best solution that fulfils the con-

straints yields equal or less accuracy, 2)
noisy POS tags and 3) occasionally our
inference algorithm was too slow and de-
coding timed out.

Introduction

However, McDonald and Pereira (2006) mention
the restrictive nature of this parsing algorithm. In
their original framework, features are only defined
over single attachment decisions. This leads to cases
where basic linguistic constraints are not satisfied
(e.g. verbs with two subjects). In this paper we
present a novel way to implement the parsing al-
gorithms for projective and non-projective parsing
based on a more generic incremental Integer Linear
Programming (ILP) approach. This allows us to in-
clude additional global constraints that can be used
to impose linguistic information.

The rest of the paper is organised in the following
way. First we give an overview of the Integer Linear
Programming model and how we trained its param-
eters. We then describe our feature and constraint
sets for the 12 different languages of the task (Eaji
etal., 2004; Chen et al., 2003pBmo\a et al., 2003;
Kromann, 2003; van der Beek et al., 2002; Brants
et al., 2002; Kawata and Bartels, 2000; Afonso et
al., 2002; Zeroski et al., 2006; Civit Torruella and
Marti Antonin, 2002; Nilsson et al., 2005; Oflazer et
al., 2003; Atalay et al., 2003). Finally, our results are

This paper presents our submission for the CoNLEiscussed and error analyses for Chinese and Turk-
2006 shared task of multilingual dependency paré§h are presented.

ing.  Our parser is inspired by McDonald ety \odel

al.(2005a) which treats the task as the search for the

highest scoring Maximum Spanning Tree (MST) ifour model is based on the linear model presented in
a graph. This framework is efficient for both pro-McDonald et al. (2005a),

jective and non-projective parsing and provides a . .

online learning algorithm which combined with a&) sEy)= D s(,5) =) w-(ij)

rich feature set creates state-of-the-art performance
across multiple languages (McDonald and Pereirayherex is a sentencey a parse and a score func-
2006). tion over sentence-parse paifs(i, j) is a multidi-

(i.5)€y

226

Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL-X)
pages 226-230, New York City, June 2002006 Association for Computational Linguistics



i i . Solve IPP;
mensional fgature vecf[or representation of the_ edg%‘ Find violated constraint§’ in the solution ofP;
from tokeni to tokenj andw the corresponding 3. it ¢ = ¢ we are done

weight vector. Decoding in this model amounts to 4. Pit1 =P UC

- : e 5. i=i+1
finding they for a givenx that maximises (x,y) 6 goto ()
Y = argmazys (x,y) Figure 1: Incremental Integer Linear Programming

andy contains no cycles, attaches exactly one hea}g

to each non-root token and no head to the root nodﬁépractlce, this technique showed fast convergence

ss than 10 iterations) in most cases, yielding solv-
2.1 Decoding ing times of less than 0.5 seconds. However, for

. . some sentences in certain languages, such as Chi-
Instead of using th.e MST algquthm (McDonald etnese or Swedish, an optimal solution could not be
al., 2005b) to maximise equation 1, we present

: . 3dund after 500 iterations.
equivalent ILP formulation of the problem. An ad- _In the following section we present the bjective

:ﬁl ntac?de_tpf a %iniLal plyrpo_s ?. mfliarencte_: tetczmquefl?nction, variables and linear constraints that make
e addition of further linguistically motivate con-UPthe Integer Linear Program.

straints. For instance, we can add constraints tha
enforce that a verb can not have more than one sub-1.1 Variables
jectargument or that coordination arguments should |n the implementatioh of McDonald et al.

have compatible types. Roth and Yih (2005) ig2005b) dependency labels are handled by finding

similarly motivated and uses ILP to deal with adthe best scoring label for a given token pair so that
ditional hard constraints in a Conditional Random

Field model for Semantic Role Labelling. 5(i,7) = max s (i, j, label)

There are several explicit formulations of the into Equation 1. This | | tas|
MST problem as integer programs in the Iiteraturfoes Into Equation 1. This IS only exact as fong as no

(Williams, 2002). They are based on the concept Prther constraints are added. Since our aim is to add

eliminating subtours (cycles), cuts (disconnectionsé

or requiring intervertex flows (paths). However, in

practice these cause long solving times. While th

first two types yield an exponential number of con-

straints, the latter one scales cubically but produces

non-fractional solutions in its relaxed version, causwheren is the number of tokens and the index 0

ing long runtime of the branch and bound algorithmrepresents the root tokenest; (i, j) is the set ob

In practice solving models of this form did not con-labels with maximak (i, j, label). 1; j iape1 €QuAls 1

verge after hours even for small sentences. if there is a dependency with the laBebel between
To get around this problem we followed an incretoken: (head) and (child), O otherwise.

mental approach akin to Warme (1998). Instead of Furthermore, we introduce binary auxiliary vari-

adding constraints that forbid all possible cycles imbles

advance (this would result in an exponential num- d; Vi€ 0.n,j€l.n

ber of constraints) we first solve the problem without . .
representing the existence of a dependency between

any cycle constralntg. Only if the _result contains Yiokensi an d;j. We connect these to ttig, u.; vari-

cles we add constraints that forbid these cycles an . >
. . ) ables by a constraint

run the solver again. This process is repeated un-

til no more violated constraints are found. Figure 1 dij = Z i j.tabel

shows this algorithm. bl

Groetschel et al. (1981) showed that such an ap-
Proa(_:h will _converge after a polynomial numper Ol 1Note, however, that labelled parsing is not described in the
iterations with respect to the number of variablesublication.

onstraints our variables need to explicitly model la-
el decisions. Therefore, we introduce binary vari-
gbles

li j1abetVi € 0..n, j € 1..n, label € besty, (i, 7)
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2.1.2 Objective Function Projective Parsing In the incremental ILP frame-
Given the above variables our objective functiofvork projective parsing can be easily implemented

can be represented as by checking for crossing dependencies after each it-
eration and forbidding them in the next. If we see
Y. > s(iglabel) - lijiaber two dependencies that cros,; anddy;, we add
1,j label€besty(i,5) the constraint
with a suitablek. dij+dig <1
2.1.3 Constraints Added in Advance to prevent this in the next iteration. This can also
Only One Head In all our languages every token be used to prevent specific types of crossings. For
has exactly one head. This yields instance, in Dutch we could only allow crossing de-
pendencies as long as none of the dependencies is a
> dij=1 “Determiner” relation.
i>0
for non-root tokeng > 0 and 2.2 Training
_ We used single-best MIRA(Crammer and Singer,
Y dig=0 : e
- 2003).For all experiments we uséd training iter-

ations and non-projective decoding. Note that we
used the original spanning tree algorithm for decod-
Typed Arity Constraints We might encounter so- ing during training as it was faster.

lutions of the basic model that contain, for instance,

verbs with two subjects. To forbid these we simplyd System Summary

augment our model with constraints such as

for the artificial root node.

We use four different feature sets. The first fea-
> lijsubject <1 ture set,BASELINE, is taken from McDonald and
j Pereira (2005b). It uses tR®ORMand thePOSTAG
fields. This set also includes features that combine
the label and POS tag of head and child such as
2.1.4 Incremental Constraints (Label, POSHeqq) and (Label, POSchia—1). For
No Cycles If a solution contains one or more cy-our Arabic and Japanese development sets we ob-

clesC we add the fo”owing constraints to our |P:tained the best results with this Configuration. We

for all verbs: in a sentence.

For everyc € C we add also use this configuration for Chinese, German and
Portuguese because training with other configura-
> dij <l -1 tions took too much time (more than 7 days).
(i.g)€c The BASELINE also uses pseudo-coarse-POS tag
to forbid c. (1st character of thd?OSTAG and pseudo-lemma

tag @ characters of thdcORM when the length
Coordination Argument Constraints In coordi- is more than3). For the next configuration we
nation conjuncts have to be of compatible types. Fa§,pstitute these pseudo-tags by @ROSTAGand
example, nouns can not coordinate with verbs. WegnMA fields that were given in the data. This con-
implemented this constraint by checking the parsegyyration was used for Czech because for other con-
for occurrences of incompatible arguments. If Wgjgurations training could not be finished in time.
find two argumentg, k for a conjunction: d;; and  The third feature set tries to exploit the generic
di andj is a noun and: is a verb then we add FEATSfield, which can contain a list features such

ditdi. <1 as case and gender. A set of features per depen-
1,J i,k . . . .

dency is extracted using this information. It con-
to forbid configurations in which both dependenciesists of cross product of the featuresHEATS We
are active. used this configuration for Danish, Dutch, Spanish
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and Turkish where it showed the best results during.1 Chinese

development. For Chinese the parser was augmented with a set of

The fourth feature set uses the triplet of lagonstraints that disallowed more than one argument
bel, POS child and head as a feature such asgf the typeg']ead, goaL nominaL range, theme’ rea-
(Label, POSHead, POSchila). It also uses the son, DUMMY, DUMMY &AndDUMMY2
CPOSTAGand LEMMA fields for the head. This gy enforcing arity constraints we could either turn
configuration is used for Slovene and Swedish daWrong labels/heads into right ones and improve ac-
where it performed best during development. curacy or turn right labels/heads into wrong ones and

Finally, we add constraints for Chinese, Dutchdegrade accuracy. For the test set the number of im-
Japanese and Slovene. In particular, arity constrairpggovements (36) was higher than the number of er-
to Chinese and Slovene, coordination and arity comers (22). However, this margin was outweighed by
straints to Dutch, arity and selective projectivitya few sentences we could not properly process be-
constraints for Japanese-or all experiments was cause our inference method timed out. Our overall
set to 2. We did not apply additional constraints témprovement was thus unimpressive 7 tokens.
any other languages due to lack of time. In the context of duplicate “head” dependencies
(that is, dependencies labelled “head”) the num-
ber of sentences where accuracy dropped far out-
weighed the number of sentences where improve-
, ments could be gained. Removing the arity con-
Our results on the test set are shown in Table Ly inis on “head” labels therefore should improve
Our results are well above the average for all Ia”éur results.
guages but Czech. For Chinese we perform signif- This shows the importance of good second best

icantly better than all other participants £ 0.00) dependencies. If the dependency with the second

and we are in the top three entries for Duich, Gerﬁighest score is the actual gold dependency and its

man, Danish. Although Dutch_a}nd Chinese are IalrEcore is close to the highest score, we are likely to
guages were we included additional constraints, og

4 Results

ick this dependency in the presence of additional
scores are not a result of these. Table 2 compares Snstraints. On the other hand, if the dependency

result for the languages with additional constraint%ith the second highest score is not the gold one and

Adding const'ralnts only marginally helps t°_'mpr°‘_’e|ts score is too high, we will probably include this
the system (in the case of Slovene a bug in our i

. rTHependency in order to fulfil the constraints.
plementation even degraded accuracy). A more de- .

) . i N . There may be some further improvement to be
tailed explanation to this observation is given in the _. . . .

, . ) ; gained if we train our model using-best MIRA

following section. A possible explanation for our: . . : - . :

. . . with &£ > 1 since it optimises weights with respect
high accuracy in Chinese could be the fact that WF

- 0 thek best parses.

were not able to optimise the feature set on the de-
velopment set (see the previous section). Maybe thhs_2 Turkish
prevented us from overfitting. It should be noted that _ _
we did use non_projective parsing for Chinese, a|There is a considerable gap between the unlabelled
results in comparison with other participants can bgels the POS typBoungives the worst performance
seen for Czech. We attribute this to the reducefecause many times a subject was classified as ob-
training set we had to use in order to produce KCtOrvice aversa.

model in time, even when using the original MST Case information in Turkish assigns argument
algorithm. roles for nouns by marking different semantic roles.

Many errors in the Turkish data might have been

e _ caused by the fact that this information was not ad-
This is done in order to capture the fact that crossing de- | d. | d of fi . f
pendencies in Japanese could only be introduced through d§GUately used. Instead of fine-tuning our feature set

fluencies. to Turkish we used the feature cross product as de-
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Model | AR CH Ccz DA DU GE JP PO SL SP SW TU

OURS | 66.65| 89.96 | 67.64 | 83.63| 78.59 | 86.24 | 90.51 | 84.43| 71.20| 77.38 | 80.66 | 58.61
AVG 5994 | 78.32| 67.17| 78.31| 70.73| 78.58 | 85.86 | 80.63 | 65.16 | 73.53 | 76.44 | 55.95
Top 66.91 | 89.96 | 80.18 | 84.79| 79.19 | 87.34| 91.65| 87.60| 73.44| 82.25| 84.58 | 65.68

Table 1: Labelled accuracy on the test sets.

[ Constraints] DU [ CH [ SL [ JA | by adding constraints during the branch and bound
with 3927 | 4464 3612 | 4526 : .
~ihout—1 3928 44711 35631 2578 algorithm, avoiding the need to resol_ve the full prgb—
lem “from scratch” for every constraint added. With
Table 2: Number of tokens correctly classified withthese remedies significant improvements to the ac-
and without constraints. curacy for some languages might be possible.
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Abstract

Unlexicalized probabilistic context-free
parsing is a general and flexible approach
that sometimes reaches competitive re-
sults in multilingual dependency parsing
even if a minimum of language-specific
information is supplied. Furthermore, in-
tegrating parser results (good at long de-
pendencies) and tagger results (good at
short range dependencies, and more easily
adaptable to treebank peculiarities) gives
competitive results in all languages.

1 Introduction

Unlexicalized probabilistic context-free parsing is
a simple and flexible approach that nevertheless
has shown good performance (Klein and Manning,
2003). We applied this approach to the shared task
(Buchholz et al., 2006) for Arabic (Hajic et al.,
2004), Chinese (Chen et al., 2003), Czech (Boh-
mova et al., 2003), Danish (Kromann, 2003), Dutch
(van der Beek et al., 2002), German (Brants et al.,
2002), Japanese (Kawata and Bartels, 2000), Por-
tuguese (Afonso et al., 2002), Slovene (DZeroski et
al., 2006), Spanish (Civit Torruella and Marti An-
tonin, 2002), Swedish (Nilsson et al., 2005), Turk-
ish (Oflazer et al., 2003; Atalay et al., 2003), but
not Bulgarian (Simov et al., 2005). In our ap-
proach we put special emphasis on language inde-
pendence: We did not use any extraneous knowl-
edge; we did not do any transformations on the
treebanks; we restricted language-specific parame-

ters to a small, easily manageable set (a classifica-
tion of dependency relations into complements, ad-
juncts, and conjuncts/coordinators, and a switch for
Japanese to include coarse POS tag information, see
section 3.4). In a series of post-submission experi-
ments, we investigated how much the parse results
can help a machine learner.

2 Experimental Setup

For development, we chose the initial n sentences of
every treebank, where n is the number of the sen-
tences in the test set. In this way, the sizes were
realistic for the task. For parsing the test data, we
added the development set to the training set.

All the evaluations on the test sets were performed
with the evaluation script supplied by the conference
organizers. For development, we used labelled F-
score computed from all tokens except the ones em-
ployed for punctuation (cf. section 3.2).

3 Context Free Parsing

3.1 TheParser

Basically, we investigated the performance of a
straightforward unlexicalized statistical parser, viz.
BitPar (Schmid, 2004). BitPar is a CKY parser that
uses bit vectors for efficient representation of the
chart and its items. If frequencies for the grammat-
ical and lexical rules in a training set are available,
BitPar uses the Viterbi algorithm to extract the most
probable parse tree (according to PCFG) from the
chart.
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3.2 Converting Dependency Structureto
Constituency Structure

In order to determine the grammar rules required by
the context-free parser, the dependency trees in the
CONLL format have to be converted to constituency
trees. Gaifman (1965) proved that projective de-
pendency grammars can be mapped to context-free
grammars. The main information that needs to be
added in going from dependency to constituency
structure is the category of non-terminals. The usage
of special knowledge bases to determine projections
of categories (Xia and Palmer, 2001) would have
presupposed language-dependent knowledge, so we
investigated two other options: Flat rules (Collins
et al., 1999) and binary rules. In the flat rules ap-
proach, each lexical category projects to exactly one
phrasal category, and every projection chain has a
length of at most one. The binary rules approach
makes use of the X-bar-scheme and thus introduces
along with the phrasal category an intermediate cate-
gory. The phrasal category must not occur more than
once in a projection chain, and a projection chain
must not end in an intermediate category. In both ap-
proaches, projection is only triggered if dependents
are present; in case a category occurs as a depen-
dent itself, no projection is required. In coordination
structures, the parent category is copied from that of
the last conjunct.

Non-projective relations can be treated as un-
bounded dependencies so that their surface posi-
tion (antecedent position) is related to the position
of their head (trace position) with an explicit co-
indexed trace (like in the Penn treebank). To find
the position of trace and antecedent we assume three
constraints: The antecedent should c-command its
trace. The antecedent is maximally near to the trace
in depth of embedding. The trace is maximally near
to the antecedent in surface order.

Finally the placement of punctuation signs has
a major impact on the performance of a parser
(Collins et al., 1999). In most of the treebanks, not
much effort is invested into the treatment of punc-
tuation. Sometimes, punctuation signs play a role
in predicate-argument structure (commas acting as
coordinators), but more often they do not, in which
case they are marked by special roles (e.g. “pnct”,
“punct”, “PUNC”, or “PUNCT”). We used a general

mechanism to re-insert such signs, for all languages
but CH (no punctuation signs) and AR, CZ, SL (re-
liable annotation). Correct placement of punctua-
tion presupposes knowledge of the punctuation rules
valid in a language. In the interest of generality, we
opted for a suboptimal solution: Punctuation signs
are inserted in the highest possible position in a tree.

3.3 Subcategorization and Coordination

The most important language-specific information
that we made use of was a classification of de-
pendency relations into complements, coordina-
tors/conjuncts, and other relations (adjuncts).

Given knowledge about complement relations, it
is fairly easy to construct subcategorization frames
for word occurrences: A subcategorization frame is
simply the set of the complement relations by which
dependents are attached to the word. To give the
parser access to these lists, we annotated the cate-
gory of a subcategorizing word with its subcatego-
rization frame. In this way, the parser can learn to as-
sociate the subcategorization requirements of a word
with its local syntactic context (Schiehlen, 2004).

Coordination constructions are marked either in
the conjuncts (CH, CZ, DA, DU, GE, PO, SW) or
the coordinator (AR, SL). If conjuncts show coordi-
nation, a common representation of asyndetic coor-
dination has one conjunct point to another conjunct.
It is therefore important to distinguish coordinators
from conjuncts. Coordinators are either singled out
by special dependency relations (DA, PO, SW) or by
their POS tags (CH, DU). In German, the first con-
junct phrase is merged with the whole coordinated
phrase (due to a conversion error?) so that determin-
ing the coordinator as a head is not possible.

We also experimented with attaching the POS
tags of heads to the categories of their adjunct de-
pendents. In this way, the parser could differenti-
ate between e.g. verbal and nominal adjuncts. In
our experiments, the performance gains achieved by
this strategy were low, so we did not incorporate it
into the system. Possibly, better results could be
achieved by restricting annotation to special classes
of adjuncts or by generalizing the heads’ POS tags.

3.4 Categories

As the treebanks provide a lot of information with
every word token, it is a delicate question to de-
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Ch| Da Ge| Ja Po| Sp| Tu
coarse POS 72.99(69.3869.27 —|79.07 66.09
fine POS 61.21(69.78 |67.72| 7.40|73.44|71.75 54.96
POS + feat —142.67 [40.40 -
dep-rel 76.61|72.77|70.70(70.31|78.12|72.93|66.93 | 65.03
coarse + dep-rel |77.61|67.56(69.43 —-181.36 64.03
fine + dep-rel 51.21|57.72|68.55 46.28 |36.59 |54.97

Figure 1: Types of Categories (Development Results)

cide on the type and granularity of the information to
use in the categories of the grammar. The treebanks
specify for every word a (fine-grained) POS tag, a
coarse-grained POS tag, a collection of morphosyn-
tactic features, and a dependency relation (dep-rel).
Only the dependency relation is really orthogonal,
the other slots contain various generalizations of the
same morphological information. We tested sev-
eral options: coarse-grained POS tag (if available),
fine-grained POS tag, fine-grained POS tag with
morphosyntactic features (if available), name of de-
pendency relation, and the combinations of coarse-
grained or fine-grained POS tags with the depen-
dency relation.

Figure 1 shows F-score results on the develop-
ment set for several languages and different com-
binations. The best overall performer is dep-rel;
this somewhat astonishing fact may be due to the
superior quality of the annotations in this slot (de-
pendency relations were annotated by hand, POS
tags automatically). Furthermore, being checked in
evaluation, dependency relations directly affect per-
formance. Since we wanted a general language-
independent strategy, we used always the dep-rel
tags but for Japanese. The Japanese treebank fea-
tures only 8 different dependency relations, so we
added coarse-grained POS tag information. In the
categories for Czech, we deleted the suffixes mark-
ing coordination, apposition and parenthesis (Co,
Ap, Pa), reducing the number of categories roughly
by a factor of four. In coordination, conjuncts inherit
the dep-rel category from the parent.

Whereas the dep-rel information is submitted to
the parser directly in terms of the categories, the
information in the lemma, POS tag and morpho-
syntactic features slot was used only for back-off
smoothing when associating lexical items with cate-

Cz Ge Sp Sw
dep-rel 52.66 | 70.31 | 66.93 | 72.91
new classific | 58.92 | 74.32 | 66.09 | 61.59
new + dep-rel | 56.94 | 78.40 | 64.03 | 66.32

Figure 4: Manual POS Tag Classes (Development)

gories. A grammar with this configuration was used
to produce the results submitted (cf. line labelled CF
in Figures 2 and 3).

Instead of using the category generalizations sup-
plied with the treebanks directly, manual labour can
be put into discovering classifications that behave
better for the purposes of statistical parsing. So,
Collins et al. (1999) proposed a tag classification
for parsing the Czech treebank. We also investi-
gated a classification for German?, as well as one for
Swedish and one for Spanish, which were modelled
after the German classification. The results in Fig-
ure 4 show that new classifications may have a dra-
matic effect on performance if the treebank is suf-
ficiently large. In the interest of generality, we did
not make use of the language dependent tag classifi-
cations for the results submitted, but we will never-
theless report results that could have been achieved
with these classifications.

3.5 Markovization

Another strategy that is often used in statistical pars-
ing is Markovization (Collins, 1999): Treebanks

*punctuation {$( $” $, $.} adjectives {ADJA ADJD CARD}
adverbs {ADV PROAV PTKA PTKNEG PTKVZ PWAV}
prepositions {APPR APPO APZR APPRART KOKOM} nouns
{NN NE NNE PDS PIS PPER PPOSS PRELS PRF PWS
SYM} determiners {ART PDAT PIAT PRELAT PPOSAT
PWAT} verb forms {VAFIN VMFIN VVFIN} {VAIMP
VVIMP} {VAINF VMINF VVINF} {VAPP VMPP VVPP}
{VVIZU PTKZU} clause-like items {ITJ PTKANT KOUS}
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Ar| Ch| Cz| Da| Du| Ge| Ja Po Sl Sp| Sw| Tu| Bu
Best 66.91|89.96|80.18 |84.79 | 79.19 |87.34 |91.65 |87.60 | 73.44 | 82.25 |84.58 | 65.68 | 87.57
Average 59.94|78.32|67.17|76.16 | 70.73 | 78.58 | 85.86 | 80.63 | 65.16 | 73.52 | 76.44 | 55.95 | 79.98
CF (submitted) |44.39|66.20|53.34|76.05|72.11|68.73 |83.35|71.01|50.72 |46.96 | 71.10 |49.81 -
MaxEnt 59.16 |61.65|63.28 | 73.25|64.47 |73.94 |82.79 |80.30 |66.27 |69.73 | 72.99 |47.16 -
combined 61.82|73.34|71.74|79.64 | 75.51|80.75 | 88.15 |82.43 |67.09 | 71.15 | 76.88 | 53.65 -
CF+Markov 45.37|70.76 | 55.14 | 74.49|72.55 | 68.87 |84.57 | 71.89 |55.16 |47.95|71.18 |51.64 -
CFM+newcl 73.84162.10 77.76 49.61 -
combined 76.84|72.76 82.59 69.38|72.57 -
new rules (in %)| 7.15| 6.03| 4.64| 7.34| 5.03| 7.42| 559| 6.69|21.00| 9.50|10.14 |14.23
Figure 2: Labelled Accuracy Results on the Test Sets
Ar Ch| Cz| Da| Du| Ge| 1Ja Po Sl Sp| Sw/| Tu
CF 41.91|76.61|52.66|72.77|70.69 | 70.31|81.36 | 72.76 |49.00 |66.93 | 72.91 |65.03
CF+Markov | 63.00|80.25|52.80|73.31|70.70(70.51|82.59|74.37 |52.43 |67.81 | 73.56 |82.80
CFM-+newcl 83.07|59.03 80.42 69.30
Figure 3: F Score Results on the Development Sets
usually contain very many long rules of low fre- If the bigram symbols [C, H,R;,R;_1] and

quency (presumably because inserting nodes costs
annotators time). Such rules cannot have an impact
in a statistical system (the line new-rules in Figure 2
shows the percentage of rules in the test set that are
not in the training set); it is better to view them as
products of a Markov process that chooses first the
head, then the symbols left of the head and finally
the symbols right of the hand. In a bigram model, the
choice of left and right siblings is made dependent
not only on the parent and head category, but also on
the last sibling on the left or right, respectively. For-
mally the probability of a rule with left hand side C
and right hand side L,,... LiHR; ... R, is bro-
ken down to the product of the probability Py, (H|C)
of the head, the probabilities of the left siblings
P(L;|L;—1,H,C) and those of the right siblings
P.(R;|R;—1, H,C). Generic symbols designate be-
ginning (Lo, Ro) and end (L, 41, Rym+1) of the sib-
ling lists. The method can be transferred to plain
unlexicalized PCFG (Klein and Manning, 2003) by
transforming long rules into a series of binary rules:

C+«+ L, (CH,L,,L,_1)

<C, H, Li—l—laLi) «— LZ <C, H, LiaLi—1>
<C, H,Ll,L()) — [C, H, Rn,Rnfl] Rn
[C, H, Ri+17Ri] $— [C, H, RiaRi—l] Ri
[C,H,Rl,Ro] — H

(C,H, L;, L; 1) occur in less than a certain number
of rules (50 in our case), we smooth to unigram
symbols instead ([C, H, R;] and (C, H, L;)). We
used a script of Schmid (2006) to Markovize
infrequent rules in this manner (i.e. all rules with
less than 50 occurrences that are not coordination
rules).

For time reasons, Markovization was not taken
into account in the submitted results. We refer to
Figures 2 and 3 (line labelled CF+Markov) for a list-
ing of the results attainable by Markovization on the
individual treebanks. Performance gains are even
more dramatic if in addition dependency relations +
manual POS tag classes are used as categories (line
labelled CFM+newcl in Figures 2 and 3).

3.6 From Constituency Structure Back to
Dependency Structure

In a last step, we converted the constituent trees back
to dependency trees, using the algorithm of Gaifman
(1965). Special provisos were necessary for the root
node, for which no head is given in certain treebanks
(DZeroski et al., 2006). To interpret the context-free
rules, we associated their children with dependency
relations. This information was kept in a separate
file that was invisible to the parser. In cases there
were several possible interpretations for a context
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free rule, we always chose the most frequent one in
the training data (Schiehlen, 2004).

4 MachineLearning

While the results coming from the statistical parser
are not really competitive, we believe that they nev-
ertheless present valuable information for a machine
learner. To give some substance to this claim, we
undertook experiments with the Zhang Le’s Max-
Ent Toolkit?. For this work, we recast the depen-
dency parsing problem as a classification problem:
Given some feature information on the word to-
ken, in which dependency relations does it stand
to which head? While the representation of depen-
dency relations is straightforward, the representation
of heads is more difficult. Building on past exper-
iments (Schiehlen, 2003), we chose the “nth-tag”
representation which consists of three pieces of in-
formation: the POS tag of the head, the direction in
which the head lies (left or right), and the number of
words with the same POS tag between head and de-
pendent. We used the following features to describe
a word token: the fine-grained POS tag, the lemma
(or full form) if it occurs at least 10 times, the mor-
phosyntactic features, and the POS tags of the four
preceding and the four following word tokens. The
learner was trained in standard configuration (30 it-
erations). The results for this method on the test data
are shown in Figure 2 (line MaxEnt).

In a second experiment we added parsing results
(obtained by 10-fold cross validation on the training
set) in two features: proposed dependency relation
and proposed head. Results of the extended learning
approach are shown in Figure 2 (line combined).

5 Conclusion

We have presented a general approach to parsing
arbitrary languages based on dependency treebanks
that uses a minimum overhead of language-specific
information and nevertheless supplies competitive
results in some languages (Da, Du). Even better re-
sults can be reached if POS tag classifications are
used in the categories that are optimized for specific
languages (Ge). Markovization usually brings an
improvement of up to 2%, a higher gain is reached in
Slovene (where many new rules occur in the testset)

2http://homepages.inf.ed.ac.uk/s0450736/maxent_toolkit.html

and Chinese (which has the highest number of de-
pendency relations). Comparable results in the liter-
ature are Schiehlen’s (2004) 81.03% dependency f-
score reached on the German NEGRA treebank and
Collins et al.’s (1999) 80.0% labelled accuracy on
the Czech PDT treebank. Collins (1999) used a lex-
icalized approach, Schiehlen (2004) used the manu-
ally annotated phrasal categories of the treebank.
Our second result is that context-free parsing
can also boost the performance of a simple tagger-
like machine learning system. While a maximum-
entropy learner on its own achieves competitive re-
sults for only three languages (Ar, Po, SI), compet-
itive results in basically all languages are produced
with access to the results of the probabilistic parser.
Thanks go to Helmut Schmid for providing sup-
port with his parser and the Markovization script.
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Abstract 2005). In this paper, we investigate the effective-
ness of (McDonald et al., 2005) in the various lan-

Following (McDonald et al., 2005), we guages given by the CoNLL 2006 shared task for
present an application of a maximum non-projective labeled dependency parsing.
spanning tree algorithm for a directed The paper is structured as follows: in section 2
graph to non-projective labeled depen- and 3, we review the decoding and learning aspects
dency parsing. Using a variant of the of (McDonald et al., 2005), and in section 4, we de-
voted perceptron (Collins, 2002; Collins scribe the extension of the algorithm and the features
and Roark, 2004; Crammer and Singer, needed for the CoNLL 2006 shared task.
2003), we discriminatively trained our
parser in an on-line fashion. After just one 2 Non-Projective Dependency Parsing
epoch of training, we were generally able
to attain average results in the CoNLL
2006 Shared Task. Let us definer to be a generic sequence of input to-
kens together with their POS tags and other morpho-
logical features, ang to be a generic dependency
structure, that is, a set of edges far We use the

Recently, we have seen dependency parsing grd@minology in (Taskar et al., 2004) for a generic
more popular. It is not rare to see dependency réiructured output prediction, and definpat

lations used as features, in tasks such as relation ex-A part represents an edge together with its label.
traction (Bunescu and Mooney, 2005) and machin® part is a tuple(DEPREL i, j) wherei is the start
translation (Ding and Palmer, 2005). Although Enpoint of the edgej is the end point, anBEPRELis
glish dependency relations are mostly projective, ithe label of the edge. The tokensais the head of
other languages with more flexible word order, sucke token ay.

as Czech, non-projective dependencies are more fre-Table 1 shows our formulation of building a non-
quent. There are generally two methods for learrProjective dependency tree as a prediction problem.
ing non-projective dependencies. You could map &he task is to predicy, the set of parts (column 3,
non-projective dependency tree to a projective ondable 1), givenz, the input tokens and their features
learn and predict the tree, then bring it back to thécolumn 1 and 2, Table 1).

non-projective dependency tree (Nivre and Nilsson, In this paper we use the common method of fac-
2005). Non-projective dependency parsing can aldoring the score of the dependency structure as the
be represented as search for a maximum spannisgm of the scores of all the parts.

tree in a directed graph, and this technique has beenA dependency structure is characterized by its
shown to perform well in Czech (McDonald et al.,features, and for each feature, we have a correspond-

2.1 Dependency Structure

1 Introduction
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Token POS _ Edge Part Informally, the algorithm has each vertex

Joh NN SUBJ2, 1 : : . )
Sgw" VBD EPRE[]) 0’72>> in the graph greedily select the incoming

a DT  (DET,4,3) edge with highest weight.

dog NN (OBJ, 2, 4)

yesterday RB  (ADJU,2,5) Note that the edge is coming from the parent to the
which WDT  (MODWH, 7, 6) - i i i ,

was VBD (MODPRED.7) Chl|d: Thls means that given a child noderd;, we

a DT  (DET,10,8) are finding the parent, or the headrd; such that
Yorkshire NN (MODN, 10, 9) the edge(i, j) has the highest weight among all
Terrier NN (OBJ, 7,10) £ g

: . (,10,11) L7

If a tree results, then this must be the max-
imum spanning tree. If not, there must be
a cycle. The procedure identifies a cycle
ing weight. The score of a dependency structure and contracts it into a single vertex and
is the sum of these weights. Now, the dependency recalculates edge weights going into and
structures are factored by the parts, so that each fea- out of the cycle. It can be shown that a
ture is some type of a specialization of a part. Each  maximum spanning tree on the contracted
part in a dependency structure maps to several fea- graph is equivalent to a maximum span-
tures. If we sum up the weights for these features, ning tree in the original graph (Leonidas,

we have the score for the part, and if we sum up the  2003). Hence the algorithm can recur-
scores of the parts, we have the score for the depen- sively call itself on the new graph.

dency structure.

For example, let us say we would like to find th
score of the parfOBJ, 2,4). This is the edge going Again following (McDonald et al., 2005), we have
to the 4th token "dog” in Table 1. Suppose there arased the single best MIRA (Crammer and Singer,
two features for this part. 2003), which is a variant of the voted perceptron

_ _ ~ (Collins, 2002; Collins and Roark, 2004) for struc-
e Thereis an edge labeled with "OBJ" that pointsreq prediction. In short, the update is executed
to the right. (=DEPREL dir (i, j) ) when the decoder fails to predict the correct parse,
starting a@nd we compare the correct palﬁean_d the incpr-
rect parsey’ suggested by the decoding algorithm.
The weights of the features iriwill be lowered, and
the weights of the features ifi will be increased ac-

If a statement is never true during the training, theordingly.

weight for it will be 0. Otherwise there will be a .

positive weight value. The score will be the sum ot4 Experiments

all the weights of the features given by the part.  Our experiments were conducted on CoNLL-X
In the upcoming section, we explain a decodinghared task, with various datasets (Hajic et al., 2004;

algorithm for the dependency structures, and latesimov et al., 2005; Simov and Osenova, 2003; Chen

we give a method for learning the weight vector usedt al., 2003; Bohmova et al., 2003; Kromann, 2003;

Table 1: Example Parts

e3 OnlineLearning

e There is an edge labeled with "OBJ”
the token "saw” which points to the right. ( =
DEPREL dir(i, j), word; )

in the decoding. van der Beek et al., 2002; Brants et al., 2002;
52 Maxi ina Tree Alaorith Kawata and Bartels, 2000; Afonso et al.,, 2002;
' aximum Spanning Tree Algorithm Dzeroski et al., 2006; Civit Torruella and Marti An-

As in (McDonald et al., 2005), the decoding algotonin, 2002; Nilsson et al., 2005; Oflazer et al.,

rithm we used is the Chu-Liu-Edmonds (CLE) al-2003; Atalay et al., 2003) .

gorithm (Chu and Liu, 1965; Edmonds, 1967) for .

finding the Maximum Spanning Tree in a directed+1 Dependency Relation

graph. The following is a nice summary by (Mc-The CLE algorithm works on a directed graph with

Donald et al., 2005). unlabeled edges. Since the CoNLL-X shared task
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Given a par{ DEPREL 1, j)

DEPREL dir (i, )

DEPREL dir(i, j), word;

DEPREL dir(, j), pos:

DEPREL dir(i, j), word;

DEPREL dir(i, j), pos;

DEPREL dir(, j), words, pos;
DEPREL dir(i, j), word;, pos;
DEPREL dir(i, j), word;—1
DEPREL dir(i, j), posi—1
DEPREL dir(i, j), word;—1, posi—1
DEPREL dir(i, j), word;—1
DEPREL dir(i, j), pos;—1
DEPREL dir(i, j), word;—1, posj—1
DEPREL dir(i, j), word;+1
DEPREL dir(i, j), posi+1
DEPREL dir(i, j), wordi+1, posi+1
DEPREL dir(i, j), word;+1
DEPREL dir(i, j), pos;+1
DEPREL dir(i, j), word;+1, posj+1
DEPREL dir(i, j), posi—2
DEPREL dir(i, j), posi+2

DEPREL dir(i, j), distance 45 — i|

additional features

DEPREL dir(i, j), word;, word;

the "additional features” listed in Table 2 for all lan-
guages except for Danish and Swedish. The reason
for this is simply that the model with the additional
features did not fit in the 4 GB of memory used in
the training.

Although we could do batch learning by running
the online algorithm multiple times, we run the on-
line algorithm just once. The hardware used is an
Intel Pentinum D at 3.0 Ghz with 4 GB of memory,
and the software was written in C++. The training
time required was Arabic 204 min, Slovene 87 min,
Spanish 413 min, Swedish 1192 min, Turkish 410
min, Danish 381 min.

5 Results

The results are shown in Table 3. Although our fea-
ture set is very simple, the results were around the
averages. We will do error analysis of three notable

DEPREL dir (i, j), posi+1, posi, posit1 languages: Arabic, Swedish and Turkish.
DEPREL dir(i, j), posi+1, words, posi+1

DEPREL dir(i, j), words, posi, pos; 51 Arabic

DEPREL dir(i, j), posi, wordy;, pos;

_ Of 4990 words in the test set, 800 are prepositions.
Table 2: Binary Features for Each Part The prepositions are the most frequently found to-
kens after nouns in this set. On the other hand,

. . . 0 iti
requires the labeling of edges, as a preprocessu”? _rhead attachment error was 44% for prepositions.

stage, we created a directed complete graph wit _|ven.the relatively _Ia_rgg number of prepositions
out multi-edges, that is, given two distinct nodes found in the test set, it is important to get the prepo-

and j, exactly two edges exist between them, Ongit_ion attachment right _to achievg a_higher mark in
from i to j, and the other from to i. There is no this language. The obvious solution is to hgve a fea-
self-pointing edge. Then we labeled each edge wit“r‘r’r_e that connects f[he head of a preposition 1o the
the highest scoring dependency relation. This corﬁ:—hIIOI of the preposition. Hoyvever, such a fea_lture
plete graph was given to the CLE algorithm and thgffe_cts the edge ba_sed factoring and th_e decoding al-
edge labels were never altered in the course of finé’-or'thm’ and we will be forced to modify the MST

ing the maximum spanning tree. The result is thglgorithm in some ways.
non-projective dependency tree with labeled edges; o  gyedish

Due to the memory constraint on the computer, we
did not use the additional features for Swedish and
The features we used to score each part (edggir feature heavily relied on the CPOS tag. At the
(DEPREL G, j) are shown in Table 2. The indéx same time, we have noticed that relatively higher
is the pOSition of the parent a.lde that of the child. performance of our parser Compared to the average
word,; = the word token at the position coincides with the bigger tag set for CPOS for this
pos; = the coarse part-of-speechjat corpus. This suggests that we should be using more

dir(i, j) = Rif i < j, and L otherwise. fine grained POS in other languages.
No other features were used beyond the combina-

tions of the CPOS tag and the word token in Table 2-3  Turkish
We have evaluated our parser on Arabic, Danisf;he difficulty with parsing Turkish stems from the
Slovene, Spanish, Turkish and Swedish, and usdarge unlabeled attachment error rate on the nouns

4.2 Features
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Language LAS AV SD
Arabic 62.83% 59.92% 6.53

terminer, (2) noun, (3) preposition, (4) verb would

Danish 75.81% 78.31% 5.45 be one such ordering. We propose the following al-
Slovene  64.57% 65.61% 6.78 gorithm:

Spanish 73.17% 73.52% 8.41

Swedish  79.49% 76.44% 6.46 e Assume we have tokens as nodes in a graph and no edges
Turkish 54.23% 55.95% 7.71 are present at first. For example, we have tokens "I”,
Language UAS AV SD "ate”, "with”, "a”, "spoon”, and no edges between them.
Arabic 74.27% 73.48% 4.94

Danish 81.72% 84.52% 4.29 e Take the POS tag that needs to be decided next. Find all
Slovene 74.88% 76.53% 4.67 edges that go to each token labeled with this POS tag,
Spanish 77.58% 77.76% 7.81 and put them in the graph. For example, if the POS is
Swedish 86.62% 84.21% 5.45 noun, put edges from "ate” to "I", from "ate” to "spoon”,
Turkish 68.77% 69.35% 5.51 from "with” to "I, from "with” to "spoon”, from "I” to

"spoon”, and from "spoon” to "I".

Table 3: Labeled and Unlabeled Attachment Score
e Run the CLE algorithm on this graph. This selects the

highest i_ncoming edge to each tokgn with the POS tag we
(39%). Since the nouns are the most frequently oc- are looking at, and remove cycles if any are present.
curring words in the test set (2209 out of 5021 to- o Take the resulting forests and for each edge, bring the in-
tal), this seems to make Turkish the most challeng-  formation on the child node to the parent node. For ex-

. . ample, if this time POS was noun, and there is an edge to
ing language for any system in the shared task. On a preposition "with” from a noun "spoon’”, then "spoon”

the average, there are 1.8 or so verbs per sentence, is absorbed by "with”. Note that since no remaining de-
and nouns have a difficult time attaching to the cor- ~ pendency relation will attach to "spoon”, we can safely
rect verb or postposition. This, we think, indicates 910" "Spoon” from now on.

that there are morphological features or word order- e Go back and repeat until no POS is remaining and we

ing features that we really need in order to disam-  have a dependency tree. Now in the next round, when
deciding the score of the edge from "ate” to "with”, we

biguate them. can use the all information at the token "with”, including
"spoon”.
6 Future Work
7 Conclusion
As well as making use of fine-grained POS tags and o
other morphological features, given the error analy¥Ve have extended non-projective unlabeled de-

sis on Arabic, we would like to add features that ar@®endency parsing (McDonald et al., 2005) to a

dependent on two or more edges. very simple non-projective labeled dependency and
showed that the parser performs reasonably well
6.1 Bottom-Up Non-Projective Parsing with small number of features and just one itera-

In order to incorporate features which depend offO" Of training. Based on the analysis of the Ara-

other edges, we propose Bottom-Up Non-ProjectivBIC Parsing results, we have proposed a bottom-
Parsing. It is often the case that dependency rel4P Non-projective labeled dependency parsing algo-
tions can be ordered by how close one relation is tgihm that allows us to use features dependent on
the root of dependency tree. For example, the dél©"® than one edge, with very little disadvantage
pendency relation between a determiner and a no@MPared to the original algorithm.

should be decided before that between a preposition

and a noun, and that of a verb and a preposition, arfgeferences

so on. We can use this information to do bottom-up _ _ .
parsing. A. Abeillé, editor. 2003.Treebanks: Building and Us-

. ing Parsed Corporavolume 20 ofText, Speech and
Suppose all words have a POS tag assigned t0| gngyage TechnologyKluwer Academic Publishers,

them, and every edge labeled with a dependency re-Dordrecht.
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: : ; . Afonso, E. Bick, R. Haber, and D. Santos. 2002. “Flo-
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Abstract

In this paper, we propose a three-step
multilingual dependency parser, which
generalizes an efficient parsing algorithm
at first phase, a root parser and post-
processor at the second and third stages.
The main focus of our work is to provide
an efficient parser that is practical to use
with combining only lexical and part-of-
speech features toward language inde-
pendent parsing. The experimental results
show that our method outperforms Malt-
parser in 13 languages. We expect that
such an efficient model is applicable for
most languages.

1 Introduction

The target of dependency parsing is to automati-
cally recognize the head-modifier relationships
between words in natural language sentences. Usu-
ally, a dependency parser can construct a similar
grammar tree with the dependency graph. In this
year, CONLL-X shared task (Buchholz et al., 2006)
focuses on multilingual dependency parsing with-
out taking the language-specific knowledge into
account. The ultimate goal of this task is to design
an ideal multilingual portable dependency parsing
system.

To accomplish the shared task, we present a very
light-weight and efficient parsing model to the 13
distinct treebanks (Haji¢ et al., 2004; Simov et al.,
2005; Simov and Osenova, 2003; Chen et al., 2003;
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Ming Chuan University
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Graduate Institute of Net-
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Béhmova et al., 2003; Kromann 2003; van der
Beek et al., 2002; Brants et al., 2002; Kawata and
Bartels, 2000; Afonso et al., 2002; Dzeroski et al.,
2006; Civit and Marti 2002; Nivre et al., 2005;
Oflazer et al., 2003; Atalay et al., 2003) with a
three-step process, Nivre’s algorithm (Nivre, 2003),
root parser, and post-processing. Our method is
quite different from the conventional three-pass
processing, which usually exhaustively processes
the whole dataset three times, while our method
favors examining the “un-parsed” tokens, which
incrementally shrink. At the beginning, we slightly
modify the original parsing algorithm (proposed by
(Nivre, 2003)) to construct the initial dependency
graph. A root parser is then used to recognize root
words, which were not parsed during the previous
step. At the third phase, the post-processor (which
is another learner) recognizes the still un-parsed
words. However, in this paper, we aim to build a
multilingual portable parsing model without em-
ploying deep language-specific knowledge, such as
lemmatization, morphologic analyzer etc. Instead,
we only make use of surface lexical and part-of-
speech (POS) information. Combining these shal-
low features, our parser achieves a satisfactory re-
sult for most languages, especially Japanese.

In the remainder of this paper, Section 2 describes
the proposed parsing model, and Section 3 lists the
experimental settings and results. Section 4 pre-
sents the discussion and analysis of our parser with
three selected languages. In Section 5, we draw the
future direction and conclusion.

2 System Description
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Over the past decades, many state-of-the-art pars-
ing algorithm were proposed, such as head-word
lexicalized PCFG (Collins, 1998), Maximum En-
tropy (Charniak, 2000), Maximum/Minimum
spanning tree (MST) (McDonald et al., 2005), Bot-
tom-up deterministic parsing (Yamada and Ma-
tsumoto, 2003), and Constant-time deterministic
parsing (Nivre, 2003). Among them, the Nivre’s
algorithm (Nivre, 2003) was shown to be most ef-
ficient method, which only costs at most 2n transi-
tion actions to parse a sentence (O(n®) for the
bottom-up or MST approaches). Nivre’s method is
mainly consists of four transition actions,
Left/Right/Reduce/Shift. We further extend these
four actions by dividing the “reduce” into “reduce”
and “sleep (reduce-but-shift)” two actions. Because
the too early reduce action makes the following
words difficult to find the parents. Thus, during
training, if a word which is the child of the top of
the stack, it is then assigned to the “sleep” category
and pushed into stack, otherwise, the conventional
reduce action is applied. Besides, we do not ar-
range these transition actions with priority order,
instead, the decision is made by the classifier. The
overall parsing model can be found in Figure 1.
Table 1 lists the detail system spec of our model.

Un-‘:-'-"\arsud = Farsed
et - Tnﬂ I
Lin-Pamsed Lin-Parsed

Conslant-time| VWeoros Root Wioas Post-
Parsar Parser Processor
| Leamer 1 Leamer 2 Leamer 3

Figure 1: System architecture

Table 1: Overall parsing system summary

I. Parsing Algorithm: 1. Nivre's Algorithm (Nivre, 2003)
2. Root Parser
3. Exhaustive-based Post-processing
1. Top-down + Bottom-up
2. Deterministic + Exhaustive
3. Labeling integrated
4. Non-Projective
SVMLight (Joachims, 1998)
(1) One-versus-One
(2) Linear Kernel
1. Lexical (Unigram/Bigram)
2. Fine-grained POS and Coarse grained
BiCPOS
Another learner is used to re-recognize
heads in stacks

Non-Used

Parser Characteris-
tics:

II. Learner:

IV. Feature Set:

V. Post-Processing:

Additional/External
" Resources:

2.1 Constant-time Parser and Analysis

The Nivre’s algorithm makes use of a stack and an
input list to model the word dependency relations
via identifying the transition action of the top token
on the stack (Top) and the next token of the input
list (Next). Typically a learning algorithm can be
used to recognize these actions via encoding fea-
tures of the two terms (Top and Next). The “Left”
and “Reduce” pops the Top from stack whereas the
“Right”, “Reduce-But-Shift”, and “Shift” push to-
ken Next into the top of stack. Nivre (Nivre, 2003)
had proved that this algorithm can accomplish de-
pendency parsing at most 2n transition actions.
Although, the Nivre’s algorithm is much more
efficient than the others, it produces three problems.
1. It does not explicitly indicate which words are
the roots.
2. Some of the terms in the stack do not belong
to the root but still should be parsed.
3.1t always only compares the Top and Next
words.
The problem (2) and (3) are complement with each
other. A straightforward way resolution is to adopt
the exhaustive parsing strategy (Covington, 2001).
Unfortunately, such a brute-force way may cause
exponential training and testing spaces, which is
impractical to apply to the large-scale corpus, for
example, the Czech Treebank (1.3 million words).
To overcome this and keep the efficiency, we de-
sign a post-processor that re-cycles the residuum in
the stack and re-identify the heads of them. Since
most of the terms (90-95%) of the terms had be
processed in previous stages, the post-processor
just exhaustively parses a small part. In addition,
for problem (1), we propose a root parser based on
the parsed result of the Nivre’s algorithm. We dis-
cuss the root-parser and post-processor in the next
two subsections.

2.2 Root Parser

After the first stage, the stack may contain root and
un-parsed words. The root parser identifies the root
word in the stack. The main advantage of this
strategy could avoid sequential classification proc-
ess, which only focuses on terms in the stack.

We build a classifier, which learns to find root
word based on encoding context and children fea-
tures. However, most of the dependency relations
were constructed at the first stage. Thus, we have
more sufficient head-modifier information rather
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than only taking the contexts into account. The
used features are listed as follows.
Neighbor terms,bigrams,POS,BiCPOS (+/-2 window)
Left most child term, POS, Bigram, BiCPOS
Right most child term, POS, Bigram, BiCPOS

2.3 Post-Processing

Before post-processing, we remove the root words
from stack, which were identified by root-parser.
The remaining un-parsed words in stack were used
to construct the actual dependency graph via ex-
haustive comparing with parsed-words. It is neces-
sary to build a post-processor since there are about
10% un-parsed words in each training set. We pro-
vide the un-parsed rate of each language in Table 2
(the r.h.s. part).

By applying previous two steps (constant-time
parser and root parser) to the training data, the re-
maining un-parsed tokens were recorded. Not only
using the forward parsing direction, the backward
direction is also taken into account in this statistics.
Averagely, the un-parsed rates of the forward and
backward directions are 13% and 4% respectively.
The back ward parsing often achieves lower un-
parsed rate among all languages (except for Japa-
nese and Turkish).

To find the heads of the un-parsed words, we
copy the whole sentence into the word list again,
and re-compare the un-parsed tokens (in stack) and
all of the words in the input list. Comparing with
the same words is disallowed. The comparing
process is going on until the actual head is found.
Acquiescently, we use the nearest root words as its
head. Although such a brute force way is time-
consuming. However, it only parses a small part of
un-parsed tokens (usually, 2 or 3 words per sen-
tence).

2.4 Features and Learners

For the constant-time parser of the first stage, we
employ the features as follows.

Basic features:
Top.word, Top.pos, Top.Ichild.pos, Top.Ichild.relation,
Top.rchild.pos, Top.rchild.relation,Top.head.pos,
Top.head.relation,
Next.word, Next.pos, Next.Ichild.pos,
Next.Ichild.relation, Next,;.pos, Next,,.pos, Next..pos
Enhanced features:
Top.bigram, Top.bicpos,Next.bigram,Next.bicpos,
Next,,.word,Next,,.word,Next,s.word

In this paper, we use the support vector machines
(SVM) (Joachims, 1998) as the learner. SVM is
widely used in many natural language processing
(NLP) areas, for example, POS tagging (Wu et al.,
2006). However, the SVM is a binary classifier
which only recognizes true or false. For multiclass
problem, we use the so-called one-versus-one
(OVO) method with linear kernel to combine the
results of each pairwise subclassifier. The final
class in testing phase is mainly determined by ma-
jority voting.

For all languages, our parser uses the same set-
tings and features. For all the languages (except
Japanese and Turkish), we use backward parsing
direction to keep the un-parsed token rate low.

3 Experimental Result

3.1 Dataset and Evaluation Metrics

The testing data is provided by the (Buchholz et al.,
2006) which consists of 13 language treebanks.
The experimental results are mainly evaluated by
the unlabeled and labeled attachment scores. The
CoNLL also provided a perl-scripter to automatic
compute these rates.

3.2  System Results

Table 2 presents the overall parsing performance
of the 13 languages. As shown in Table 2, we list
two parsing results at the second and third columns
(new and old). It is worth to note that the result B
is produced by removing the enhanced features and
the post-processing step from our parser, while the
result A is the complete use of the enhanced fea-
tures and the overall three-step parsing. In this year,
we submit result B to the CoNLL shared task due
to the time limitation.

In addition, we also apply the Maltparser, which
is implemented with the Nivre’s algorithm (Nivre,
2003) to be compared. The Maltpaser also includes
the SVM and memory-based learner (MBL). Nev-
ertheless, it does not optimize the SVM where the
training and testing times are too long to be com-
pared even the linear kernel is used. Therefore we
use the default MBL and feature model 3 (M3) in
this experiment. We also perform the significant
test to evaluate the statistical difference among the
three results. If the answer is “Yes”, it means the
two systems are significant difference under at
least 95% confidence score (p < 0.05).
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Table 2: A general statistical table of labeled attachment score, test and un-parsed rate (percentage)

A B C Statistic test Un-Parsed Rate
(New result) ~ (Oldresult) (Maltparser) Avs.B Bvs.C Avs.C Forward Backward
Arabic 63.75 63.81 54.11 No Yes Yes 10.3 1.4
Chinese 81.25 74.81 73.92 Yes No Yes 4.01 2.3
Czech 71.24 59.36 59.36 Yes No Yes 16.1 5.6
Danish 79.52 78.38 77.31 No No No 12.8 25
Dutch 68.45 68.45 63.61 No Yes Yes 18.4 9.8
German 79.57 76.52 76.52 Yes No Yes 12.7 9.2
Japanese 91.43 90.11 89.07 Yes No Yes 11 4.4
Portugese 81.33 81.47 75.38 No Yes Yes 24.3 3.17
Slovene 68.41 67.83 55.04 No Yes Yes 14.9 55
Spanish 74.65 72.99 72.81 Yes No Yes 20 0.5
Swedish 79.53 71.72 76.28 Yes Yes Yes 19.1 2.8
Turkish 55.33 55.09 52.18 No Yes Yes 25 4
Bulaarian 81.23 79.73 79.73 No No No 15.7 1.2
AVG 75.05 72.32 69.64 13.22 4.02

4  Discussion

4.1

Although our method is efficient for parsing that
achieves satisfactory result, it is still away from the
state-of-the-art performance. Many problems give
rise to not only the language-specific characteris-
tics, but also the parsing strategy. We found that
our method is weak to the large-scale training size
and large dependency class datasets, for example,
German (Brants et al., 2002) and Czech. For Dutch,
we observe that the large non-projective tokens
and relations in this set. Overall, we conclude the
four main limitations of our parsing model.
1.Unbalanced and large dependency relation
classes

2.Too fine or coarse POS tag

3.Long sentences and non-projective token rates

4.Feature engineering and root accuracy
The main reason of the first problem is still caused
by the unbalanced distribution of the training data.
Usually, the right-action categories obtain much
fewer training examples. For example, in the Turk-
ish data, 50 % of the categories receive less than
0.1% of the training examples, 2/3 are the right
dependency group. For the Czech, 74.6% of the
categories receive less than 0.1% of the training
examples.

Second, the too fine grained size of POS tag set
often cause the features too specific that is difficult
to be generalized by the learner. Although we
found the grained size is not the critical factor of
our parser, it is closely related to the fourth prob-
lem, feature engineering. For example, in Chinese
(Chen et al., 2003), there are 303 fine grained POS
types which achieves better result on the labeled
attachment score is higher than the coarse grained

Analysis of Overview Aspect

(81.25 vs. 81.17). Intuitively, the feature combina-
tions deeply affect the system performance (see A
vs. C where we extend more features than the
original Nivre’s algorithm).

Problem 3 exposes the disadvantage of our
method, which is weak to identify the long dis-
tance dependency. The main reason is resulted
from the Nivre’s algorithm in step 1. This method
is quite sensitive and non error-recovered since it is
a deterministic parsing strategy. Abnormal or
wrong push or pop actions usually cause the error
propagation to the remaining words in the list. For
example, there are large parts of errors are caused
by too early reduce or missed left arc makes some
words could not find the actual heads. On the con-
trary, one can use an N-best selection to choose the
optimal dependency graph or applying MST or
exhaustive parsing schema. Usually, these ap-
proaches are quite inefficient which requires at
least O(n®).

Finally, in this paper, we only take the surface
lexical word and POS tag into account without
employing the language-specific features, such as
Lemma, Morph...etc. Actually, it is an open ques-
tion to compile and investigate the feature engi-
neering. On the other hand, we also find the
performance of the root parser in some languages
is poor. For example, for Dutch the root precision
rate is only 38.52, while the recall rate is 76.07. It
indicates most of the words in stack were wrongly
recognized as root. This is because there are sub-
stantially un-parsed rate that left many un-parsed
words remain in stack. One way to remedy the
problem can adjust the root parser to independently
identify root word by sequential word classifica-
tion at first step and then apply the Nivre’s algo-
rithm. We left the comparison of the issue as future
work.
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4.2  Analysis of Specific View

We select three languages, Arabic, Japanese, and
Turkish to be more detail analysis. Figure 2 illus-
trates the learning curve of the three languages and
Table 3 summarizes the comparisons of “fine vs.
coarse” POS types and “forward vs. backward”
parsing directions.

For the three languages, we found that most of the
errors frequently appear to the noun POS tags
which often denominate half of the training set. In
Turkish, the lower performance on the noun POS

attachment rate deeply influents the overall parsing.

For example, the error rate of Noun in Turkish is
39% which is the highest error rate. On the con-
trary, the head error rates fall in the middle rank
for the other two languages.

100
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Figure 2: Learning curve of the three datasets
Table 3: Parsing performance of different grained
POS tags and forward/backward parsing directions

P_arsm_g LA-Score PO.S LA-Score
direction grained
Ja Forward 91.35 Fine 91.35
Backward 85.75 Forward Coarse 91.25
Ar  |Forward 60.62 Backward Fine 63.55
Backward [63.55 Coarse 63.63
Tu Forward 55.47 Forward Fine 55.47
Backward [55.59 Coarse 55.59

In Turkish, we also find an interesting result
where the recall rate of the distance=2 parsing
(56.87) is lower than distance=3-6, and >7 (62.65,
57.83). In other words, for Turkish, our parser
failed to recognize the distance=2 dependency rela-
tions. For the other languages, usually the identifi-
cation rate of the longer distance parsing should be
lower than the smaller distance. Thus, a future
work to parsing Turkish, should put more emphasis
on improving not only the noun POS type, but also
the distance=2 parsing.

Besides, the root parsing accuracy is also an im-
portant factor to most languages. In Japanese, al-

though our parser achieves more than 97%
left/right arc rates. However, for the root word pre-
cision rate is quite lower (85.97). Among all de-
pendency relation classification rates, the root class
usually locates in the lowest rank for the three lan-
guages.

5 Conclusion and Future Remarks

Dependency parsing is one of the most important
issues in NLP community. This paper presents and
analyzes the impact of the efficient parsing model
that only combines with lexical and part-of-speech
information. To go language-independent, we did
not tune any parameter settings in our model and
exclude most of the language-dependent feature set,
which provided by the CoNLL (Buchholz et al.,
2006). The main focus of our work coincides with
the target goal of the CoNLL shared task, i.e., go
multilingual dependency parsing without taking
the language-specific knowledge into account. A
future work on the deterministic parsing strategy is
to convert the existing model toward N-best pars-

ing.
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Abstract

This paper presents an approach to depen-
dency parsing which can utilize any stan-
dard machine learning (classification) al-
gorithm. A decision list learner was used
in this work. The training data provided
in the form of a treebank is converted to a
format in which each instance represents
information about one word pair, and the
classification indicates the existence, di-
rection, and type of the link between the
words of the pair. Several distinct mod-
els are built to identify the links between
word pairs at different distances. These
models are applied sequentially to give the
dependency parse of a sentence, favoring
shorter links. An analysis of the errors,
attribute selection, and comparison of dif-
ferent languages is presented.

1 Introduction

This paper presents an approach to supervised learn-
ing of dependency relations in a language using stan-
dard machine learning techniques. The treebanks
(Haji¢ et al., 2004; Chen et al., 2003; Bohmova
et al., 2003; Kromann, 2003; van der Beek et al.,
2002; Brants et al., 2002; Kawata and Bartels, 2000;
Afonso et al., 2002; Dzeroski et al., 2006; Civit Tor-
ruella and Marti Antonin, 2002; Nilsson et al., 2005;
Oflazer et al., 2003; Atalay et al., 2003) provided for
the CoNLL shared task(Buchholz et al., 2006) were
converted to a set of instances each of which con-
sists of the attributes of a candidate word pair with

a classification that indicates the existence, direction
and type of the dependency link between the pair.

An initial model is built to identify dependency
relations between adjacent word pairs using a deci-
sion list learning algorithm. To identify longer dis-
tance relations, the adjacent modifiers are dropped
from the sentence and a second order model is built
based on the word pairs that come into contact. A
total of three models were built using this technique
successively and used for parsing.

All given attributes are considered as candidates
in an attribute selection process before building each
model. In addition, attributes indicating suffixes of
various lengths and character type information were
constructed and used.

To parse a given sentence, the models are applied
sequentially, each one considering candidate word
pairs and adding new links without deleting the ex-
isting links or creating conflicts (cycles or crossings)
with them. Thus, the algorithm can be considered a
bottom-up, multi-pass, deterministic parser. Given
a candidate word pair, the models may output “no
link™, or give a link with a specified direction and
type. Thus labeling is an integrated step. Word
pair candidates that may form cycles or crossings
are never considered, so the parser will only gen-
erate projective structures.

Section 2 gives the details of the learning algo-
rithm. Section 3 describes the first pass model of
links between adjacent words. Section 4 details
the approach for identifying long distance links and
presents the parsing results.
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2 The Learning Algorithm

The Greedy Prepend Algorithm (Yuret and Ture,
2006) was used to build decision lists to identify de-
pendency relations. A decision list is an ordered list
of rules where each rule consists of a pattern and a
classification (Rivest, 1987). The first rule whose
pattern matches a given instance is used for its clas-
sification. In our application the pattern specifies the
attributes of the two words to be linked such as parts
of speech and morphological features. The classi-
fication indicates the existence and the type of the
dependency link between the two words.

Table 1 gives a subset of the decision list that iden-
tifies links between adjacent words in German. The
class column indicates the type of the link, the pat-
tern contains attributes of the two candidate words X
and Y, as well as their neighbors (XL1 indicates the
left neighbor of X). For example, given the part of
speech sequence APPR-ART-NN, there would be an
NK link between APPR and ART (matches rule 3), but
there would be no link between ART and NN (rule 1
overrides rule 2).

Rule Class  Pattern

1 NONE XLlI1:postag=APPR

2 L:NK  X:postag=ART Y:postag=NN
3 R:NK  X:postag=APPR

4 NONE

Table 1: A four rule decision list for adjacent word
dependencies in German

The average training instance for the depen-
dency problem has over 40 attributes describing the
two candidate words including suffixes of different
lengths, parts of speech and information on neigh-
boring words. Most of this information may be re-
dundant or irrelevant to the problem at hand. The
number of distinct attribute values is on the order
of the number of distinct word-forms in the train-
ing set. GPA was picked for this problem because
it has proven to be fairly efficient and robust in the
presence of irrelevant or redundant attributes in pre-
vious work such as morphological disambiguation
in Turkish (Yuret and Ture, 2006) and protein sec-
ondary structure prediction (Kurt, 2005).

3 Dependency of Adjacent Words

We start by looking at adjacent words and try to pre-
dict whether they are linked, and if they are, what
type of link they have. This is a nice subproblem to
study because: (i) It is easily converted to a standard
machine learning problem, thus amenable to com-
mon machine learning techniques and analysis, (ii)
It demonstrates the differences between languages
and the impact of various attributes. The machine
learning algorithm used was GPA (See Section 2)
which builds decision lists.

Table 2 shows the percentage of adjacent tokens
that are linked in the training sets for the languages
studied!. Most languages have approximately half
of the adjacent words linked. German, with 42.15%
is at the low end whereas Arabic and Turkish with
above 60% are at the high end. The differences may
be due to linguistic factors such as the ubiquity of
function words which prefer short distance links, or
it may be an accident of data representation: for ex-
ample each token in the Turkish data represents an
inflectional group, not a whole word.

Arabic  61.02 Japanese 54.81
Chinese 56.59 Portuguese 50.81
Czech 48.73 Slovene 45.62
Danish 5593  Spanish 51.28
Dutch 55.54 Swedish 48.26
German 42.15 Turkish 62.60

Table 2: Percentage of adjacent tokens linked.

3.1 Attributes

The five attributes provided for each word in the
treebanks were the wordform, the lemma, the
coarse-grained and fine-grained parts of speech, and
a list of syntactic and/or morphological features. In
addition I generated two more attributes for each
word: suffixes of up to n characters (indicated
by suffix[n]), and character type information, i.e.
whether the word contains any punctuation charac-
ters, upper case letters, digits, etc.

Two questions to be answered empirically are: (i)
How much context to include in the description of
each instance, and (ii) Which attributes to use for
each language.

"Including non-scoring tokens
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Table 3 shows the impact of using varying
amounts of context in Spanish. I used approximately
10,000 instances for training and 10,000 instances
for testing. Only the postag feature is used for
each word in this experiment. As an example, con-
sider the word sequence wj ... w;Wiyq ... Wy, and
the two words to be linked are w; and w;4;. Con-
text=0 means only information about w; and w;y1
is included, context=1 means we also include w;_1
and w;9, etc. The table also includes the number
of rules in each decision list. The results are typical
of the experiments performed with other languages
and other attribute combinations: there is a statisti-
cally significant improvement going from context=0
to context=1. Increasing the context size further
does not have a significant effect.

Context Rules Accuracy
0 161 83.17
1 254 87.31
2 264 87.05
3 137 87.14

Table 3: Context size vs. accuracy in Spanish.

A number of experiments were run to determine
the best attribute combinations for each language.
Table 4 gives a set of results for single attributes in
Spanish. These results are based on 10,000 training
instances and all experiments use context=1. Postag
was naturally the most informative single attribute
on all languages tested, however the second best
or the best combination varied between languages.
Suffix[3] indicates all suffixes up to three characters
in length. The FEATS column was split into its con-
stituent features each of which was treated as a bi-
nary attribute.

Attributes Rules Accuracy
postag 254 87.31
cpostag 154 85.72
suffix[3] 328 77.15
lemma 394 76.78
form 621 75.06
feats 66 71.95
ctype 47 53.40

Table 4: Attributes vs. accuracy in Spanish.

There are various reasons for performing at-
tribute selection. Intuitively, including more infor-
mation should be good, so why not use all the at-
tributes? First, not every machine learning algo-
rithm is equally tolerant of redundant or irrelevant
attributes. Naive Bayes gets 81.54% and C4.5 gets
86.32% on the Spanish data with the single postag
attribute using context=1. One reason I chose GPA
was its relative tolerance to redundant or irrelevant
attributes. However, no matter how robust the algo-
rithm, the lack of sufficient training data will pose a
problem: it becomes difficult to distinguish informa-
tive attributes from non-informative ones if the data
is sparse. About half of the languages in this study
had less than 100,000 words of training data. Fi-
nally, studying the contribution of each attribute type
in each language is an interesting research topic in
its own right. The next section will present the best
attribute combinations and the resulting accuracy for
each language.

3.2 Results

Language  Attributes Accuracy
Arabic ALL 76.87
Chinese postag, cpostag ~ 84.51
Czech postag, lemma  79.25
Danish postag, form 86.96
Dutch postag, feats 85.36
German postag, form 87.97
Japanese postag, suffix[2] 95.56
Portuguese postag, lemma 90.18
Slovene ALL 85.19
Spanish postag, lemma 89.01
Swedish postag, form 83.20
Turkish ALL 85.27

Table 5: Adjacent word link accuracy.

Table 5 gives the best attribute combinations for
determining adjacent word links for each language
studied. The attribute combinations and the corre-
sponding models were determined using the training
sets, and the accuracy reported is on the test sets.
These attribute combinations were used as part of
the model in the final evaluation. I used context=1
for all the models. Because of time limitations at-
tribute combinations with more than two attributes
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could not be tested and only the first 100,000 train-
ing instances were used. Exceptions are indicated
with “ALL”, where all attributes were used in the
model — these are cases where using all the attributes
outperformed other subsets tried.

For most languages, the adjacent word link accu-
racy is in the 85-90% range. The outliers are Ara-
bic and Czech at the lower end, and Japanese at the
higher end. It is difficult to pinpoint the exact rea-
sons: Japanese has the smallest set of link types,
and Arabic has the greatest percentage of adjacent
word links. Some of the differences between the
languages come from linguistic origins, but many
are due to the idiosyncrasies of our particular data
set: number of parts of speech, types of links, qual-
ity of the treebank, amount of data are all arbitrary
factors that effect the results. One observation is that
the ranking of the languages in Table 5 according to
performance is close to the ranking of the best re-
sults in the CoNLL shared task — the task of linking
adjacent words via machine learning seems to be a
good indicator of the difficulty of the full parsing
problem.

4 Long Distance Dependencies

Roughly half of the dependency links are between
non-adjacent words in a sentence. To illustrate how
we can extend the previous section’s approach to
long distance links, consider the phrase “kick the
red ball”. The adjacent word linker can only find
the red-ball link even if it is 100% accurate. How-
ever once that link has been correctly identified, we
can drop the modifier “red” and do a second pass
with the words “kick the ball”. This will identify the
link the-ball, and dropping the modifier again leaves
us with “kick ball”. Thus, doing three passes over
this word sequence will bring all linked words into
contact and allow us to use our adjacent word linker.
Table 6 gives the percentage of the links discovered
in each pass by a perfect model in Spanish.

Pass: 1 2 3 4 5
Link%: 51.09 23.56 1045 5.99 3.65

Table 6: Spanish links discovered in multiple passes.

We need to elaborate a bit on the operation of
“dropping the modifiers” that lead from one pass to

the next. After the discovery of the red-ball link
in the above example, it is true that “red” can no
longer link with any other words to the right (it can-
not cross its own head), but it can certainly link with
the words to the left. To be safe, in the next pass
we should consider both the-red and the-ball as can-
didate links. In the actual implementation, given a
partial linkage, all “potentially adjacent” word pairs
that do not create cycles or link crossings were con-
sidered as candidate pairs for the next pass.

There are significant differences between the first
pass and the second pass. Some word pairs will
rarely be seen in contact during the first pass (e.g.
“kick ball”). Maybe more importantly, we will
have additional “syntactic” context during the sec-
ond pass, i.e. information about the modifiers dis-
covered in the first pass. All this argues for building
a separate model for the second pass, and maybe for
further passes as well.

In the actual implementation, models for three
passes were built for each language. To create the
training data for the n’th pass, all the links that can
be discovered with (n-1) passes are taken as given,
and all word pairs that are “potentially adjacent”
given this partial linkage are used as training in-
stances. To describe each training instance, I used
the attributes of the two candidate words, their sur-
face neighbors (i.e. the words they are adjacent to
in the actual sentence), and their syntactic neighbors
(i.e. the words they have linked with so far).

To parse a sentence the three passes were run se-
quentially, with the whole sequence repeated twice?.
Each pass adds new links to the existing partial link-
age, but does not remove any existing links. Table 7
gives the labeled and unlabeled attachment score for
the test set of each language using this scheme.

5 Conclusion

I used standard machine learning techniques to in-
vestigate the lower bound accuracy and the impact
of various attributes on the subproblem of identify-
ing dependency links between adjacent words. The
technique was then extended to identify long dis-
tance dependencies and used as a parser. The model
gives average results for Turkish and Japanese but

This counterintuitive procedure was used because it gave
the best results on the training set.
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Language @ LAS UAS

Arabic 5242 68.82
Chinese 72.72  78.37
Czech 51.86 66.36
Danish 71.56 78.16
Dutch 62.75 66.17
German 63.82 67.71
Japanese 84.35 87.31
Portuguese 70.35 79.46
Slovene 55.06 70.60
Spanish 69.63 73.89
Swedish 65.23 73.25
Turkish 60.31 71.54

Table 7: Labeled and unlabeled attachment scores.

generally performs below average. The lack of a
specialized parsing algorithm taking into account
sentence wide constraints and the lack of a prob-
abilistic component in the model are probably to
blame. Nevertheless, the particular decomposition
of the problem and the simplicity of the resulting
models provide some insight into the difficulties as-
sociated with individual languages.
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