
Representing and Accessing Multi-Level Annotations in MMAX2

Christoph M üller
EML Research gGmbH

Villa Bosch
Schloß-Wolfsbrunnenweg 33
69118 Heidelberg, Germany
christoph.mueller@eml-research.de

1 Introduction

MMAX2 1 is a versatile, XML-based annotation
tool which has already been used in a variety of an-
notation projects. It is also the tool of choice in the
ongoing project DIANA-Summ, which deals with
anaphora resolution and its application to spoken
dialog summarization. The project uses the ICSI
Meeting Corpus (Janin et al., 2003), a corpus of
multi-party dialogs which contains a considerable
amount of simultaneous speech. It features a semi-
automatically generated segmentation in which
the corpus developers tried to track the flow of the
dialog by inserting segment starts approximately
whenever a person started talking. As a result, the
corpus has some interesting structural properties,
most notably overlap, that are challenging for an
XML-based representation format. The following
brief overview of MMAX2 focuses on this aspect,
using examples from the ICSI Meeting Corpus.

2 The MMAX2 Data Model

Like most current annotation tools, MMAX2
makes use ofstand-offannotation. The base data
is represented as a sequence of<word> elements
with exactly one PCDATA child each. Normally,
these PCDATA children represent orthographical
words, but larger or smaller units (e.g. characters)
are also possible, depending on the required gran-
ularity of the representation.2

<?xml version="1.0" encoding="US-ASCII"?>
<!DOCTYPE words SYSTEM "words.dtd">

<words>
...
<word id="word_3710">That</word>
<word id="word_3711">’s</word>
<word id="word_3712">just</word>
<word id="word_3713">a</word>
<word id="word_3714" meta="true">Pause</word>
<word id="word_3715">specification</word>
<word id="word_3716">for</word>
<word id="word_3717">the</word>
<word id="word_3718">X_M_L</word>
<word id="word_3719">Yep</word>
<word id="word_3720">.</word>

1http://mmax.eml-research.de
2Themeta attribute in the example serves to distinguish

meta information from actual spoken words.

<word id="word_3721">format</word>
<word id="word_3722">.</word>
...

</words>

The order of the elements in the base data file is
determined by the order of the segments that they
belong to.

Annotations are represented in the form of
<markable> elements which reference one or
more base data elements by means of aspan at-
tribute. Each markable is associated with exactly
onemarkable levelwhich has a unique, descrip-
tive name and which groups markables that be-
long to the same category orannotation dimen-
sion. Each markable level is stored in a sepa-
rate XML file which bears the level name as an
XML name space. The ID of a markable must be
unique for the level that it belongs to. Markables
can carry arbitrarily many features in the common
attribute=value format. It is by means of
these features that the actual annotation informa-
tion is represented. For each markable level, ad-
missible attributes and possible values are defined
in an annotation schemeXML file (not shown).
These annotation schemes are much more power-
ful for expressing attribute-related constraints than
e.g. DTDs. The following first example shows the
result of the segmentation of the sample base data.
Theparticipant attribute contains the identi-
fier of the speaker that is associated with the re-
spective segment.

<?xml version="1.0" encoding="US-ASCII"?>
<!DOCTYPE markables SYSTEM "markables.dtd">

<markables xmlns="www.eml.org/NameSpaces/segment">
...
<markable id="markable_468"

span="word_3710..word_3714"
participant="me012"/>

<markable id="markable_469"
span="word_3715..word_3718"
participant="me012"/>

<markable id="markable_470"
span="word_3719..word_3720"
participant="mn015"/>

<markable id="markable_471"
span="word_3721..word_3722"
participant="me012"/>

...
</markables>

73

The next example contains markables representing
the nominal and verbal chunks in the sample base
data.
<?xml version="1.0" encoding="US-ASCII"?>
<!DOCTYPE markables SYSTEM "markables.dtd">

<markables xmlns="www.eml.org/NameSpaces/chunks">
...
<markable id="markable_7834"

span="word_3710"
type="demonstrative"/>

<markable id="markable_7835"
span="word_3711"
type="copula"/>

<markable id="markable_7836"
span="word_3713..word_3715"
type="nn"/>

<markable id="markable_7837"
span="word_3711..word_3715"
type="predication"
subject="markable_7834"/>

<markable id="markable_7838"
span="word_3717..word_3718,word_3721"
type="nn"/>

...
</markables>

The following basic facts about markables in
MMAX2 are worth noting:

1. Every markable is defined with reference to
the base data. Markables on the same or different
levels are independent and ignorant of each other,
and only relatedindirectly, i.e. by means of base
data elements that they have in common.3 Struc-
tural relations like embedding ([[’s] just [a speci-
fication]]) can only be determined with recourse
to the base data elements that each markable
spans. Thislazy representation makes it simple
and straightforward to add markables and entire
markable levels to existing annotations. It is also a
natural way to represent non-hierarchical relations
like overlap between markables. For example, a
segment break runs through the nominal chunk
represented by markablemarkable 7836 ([a
specification]) in the example above. If the seg-
ment markables were defined in terms of the mark-
ables contained in them, this would be a prob-
lem because the nominal chunk crosses a segment
boundary. The downside of this lazy representa-
tion is that more processing is required for e.g.
querying, when the structural relations between
markables have to be determined.

2. Markables can bediscontinuous. A markable
normally spans a sequence of base data elements.
Eachconnectedsubsequence of these is called a
markablefragment. A discontinuous markable is
one that contains more than one fragment, like

3Note that this merely means that markables are not
defined in terms of other markables, while they can in-
deedreferenceeach other: In the above example, markable
markable 7837 ([’s just a specification]) uses an associa-
tive relation (in this case namedsubject) to represent a ref-
erence to markablemarkable 7834 ([That]) on the same
level. References to markables on other levels can be repre-
sented by prefixing the markable ID with the level name.

markablemarkable 7838 ([the XML format])
above. Actually, this markable exemplifies what
could be calleddiscontinuous overlapbecause it
does not only cross a segment boundary, but it also
has to omit elements from an intervening segment
by another speaker.

3 Accessing Data From Within MMAX2

3.1 Visualization

When a MMAX2 document is currently loaded,
the main display contains the base data text plus
annotation-related information. This information
can comprise

• line breaks (e.g. one after each segment),

• markable feature’s values (e.g. the
participant value at the beginning
of each segment),

• literal text (e.g. a tab character after the
participant value),

• markable customizations, and

• markable handles.

The so-calledmarkable customizationsare in
charge of displaying text in different colors, fonts,
font styles, or font sizes depending on a mark-
able’s features. The order in which they are ap-
plied to the text is determined by the order of
the currently available markable levels. Mark-
able customizations are processed bottom-up, so
markable levels should be ordered in such a way
that levels containingsmallerelements (e.g. POS
tags) should be on top of those levels contain-
ing larger elements (chunks, segments etc.). This
way, smaller elements will not be hidden by larger
ones.

When it comes to visualizing several, poten-
tially embedded or overlapping markables, the so-
calledmarkable handlesare of particular impor-
tance. In their most simple form, markable han-
dles are pairs of short strings (most often pairs
of brackets) that are displayed directly before and
after each fragment of a markable. When two
or more markables from different levels start at
the same base data element, thenesting orderof
the markables (and their handles) is determined
on the basis of the order of the currently avail-
able markable levels. The color of markable han-
dles can also be customized depending on a mark-
able’s features. Figure 1 gives an idea of what the

74

Figure 1: Highlighted markable handles on a discontinuous (left) and an overlapping (right) markable.

MMAX2 main window can look like. Both han-
dles and text background forchunk markables
with type=predication are rendered in light
gray. Other handles are rendered in a darker color.
Markable handles are sensitive to mouse events:
resting the mouse pointer over a markable handle
will highlight all handles of the pertaining mark-
able. Reasonable use of markable customizations
and handles allows for convenient visualization of
even rather complex annotations.

3.2 Querying

MMAX2 includes a query console which can be
used to formulate simple queries using a special
multi-level query language calledMMAXQL. A
query in MMAXQL consists of a sequence of
query tokenswhich describe elements (i.e. either
base data elements or markables) to be matched,
and relation operatorswhich specify which rela-
tion should hold between the elements matched
by two adjacent query tokens. A single markable
query token has the form

string/conditions
wherestring is an optional regular expression
andconditions specifies which features(s) the
markable should match. The most simple condi-
tion is just the name of a markable level, which
will match all markables on that level. If a regular
expression is also supplied, the query will return
only the matching markables. The query

[Aa]n? \s.+/chunks
will return all markables from thechunks level
that begin with the indefinite article4. Markables
with particular features can be queried by specify-
ing the desired attribute-value combinations. The

4The space character in the regular expression must be
masked as\s because otherwise it will be interpreted as a
query token separator.

following query e.g. will return all markables from
thechunks level with atype value of eithernn
or demonstrative :

/chunks.type= {nn,demonstrative }
If a particular value is defined forexactlyone at-
tribute onexactlyone markable level only, both
the level and the attribute name can be left out in
a query, rendering queries very concise (cf. the ac-
cess to themeta level below).

Relation operators can be used to connect
two query tokens to form a complex query.
The set of supported sequential and hierarchi-
cal relation operators5 includesmeets (default),
starts , starts with , in , dom, equals ,
ends , ends with , overlaps right , and
overlaps left . Whether two markables stand
in a certain relation is determined with respect
to the base data elements that they span. In the
current early implementation, for all markables
(including discontinuous ones), only the first and
last base data element is considered. The re-
sult of a query can directly be used as the input
to another query. The following example gives
an idea of what a more complex query can look
like. The query combines thesegment level, the
meta level (which contains markables represent-
ing e.g. pauses, emphases, or sounds like breath-
ing or mike noise), and the base data level to re-
trieve those instances ofyou knowfrom the ICSI
Meeting corpus that occur in segments spoken by
female speakers6 which also contain a pause or an
emphasis (represented on themeta level):
’[Yy]ou know’ in (/participant={f. * } dom /{pause,emphasis})

The next query shows how overlap can be han-

5Associative relations are not discussed here, (Müller,
2005).

6The first letter of theparticipant value encodes the
speaker’s gender.

75

dled. It retrieves allchunk markables along with
their pertaining segments by getting two partial
lists and merging them using the operatoror .
(/chunks in /segment) or (/chunks overlaps_right /segment)

4 Accessing Data by Means of XSL

MMAX2 has a built-in XSL style sheet proces-
sor7 that can be used from the console to read
a MMAX2 document and process it with a user-
defined XSL style sheet. The XSL processor pro-
vides some special extensions for handling stand-
off annotation as it is realized in MMAX2. In the
currentbetaimplementation, only some basic ex-
tensions exist. The style sheet processor can be
called from the console like this:
org.eml.MMAX2.Process -in INFILE.mmax -style STYLEFILE.xsl

The root element of each MMAX2 document is
the words element, i.e. the root of the base data
file, which will be matched by the supplied XSL
style sheet’s default template. The actual process-
ing starts in the XSL template for theword ele-
ments, i.e. the root element’s children. A minimal
template looks like this:
<xsl:template match="word">

<xsl:text> </xsl:text>
<xsl:apply-templates

select="mmax:getStartedMarkables(@id)"
mode="opening"/>

<xsl:value-of select="text()"/>
<xsl:apply-templates

select="mmax:getEndedMarkables(@id)"
mode="closing"/>

</xsl:template>

The above template inserts a white space before
the current word and then calls an extension func-
tion that returns a NodeList containing all mark-
ables starting at the word. The template then
inserts the word’s text and calls another exten-
sion function that returns a NodeList of markables
ending at the word. The markables returned by
the two extension function calls are themselves
matched by XSL templates. A minimal template
pair for matching starting and ending markables
from the chunks level and enclosing them in
bold brackets (using HTML) looks like this:
<xsl:template match="chunks:markable" mode="opening">

[
</xsl:template>
<xsl:template match="chunks:markable" mode="closing">

]
</xsl:template>

Note how the markable level name (here:
chunks) is used as a markable name space
to control which markables the above templates
should match. The following templates wrap a
pair of <p> tags around each markable from

7Based on Apache’s Xalan

the segment level and adds the value of the
participant attribute to the beginning of each.
<xsl:template match="segment:markable" mode="opening">

<xsl:text disable-output-escaping="yes"><p></xsl:text>

<xsl:value-of select="@participant"/>

</xsl:template>
<xsl:template match="segment:markable" mode="closing">

<xsl:text disable-output-escaping="yes"></p></xsl:text>
</xsl:template>

Creating HTML in this way can be useful for
converting a MMAX2 document with multiple
levels of annotation to alean version for distrib-
ution and (online) viewing.

5 Conclusion

MMAX2 is a practically usable tool for multi-
level annotation. Its main field of application is
the manual creation of annotated corpora, which
is supported by flexible and powerful means of vi-
sualizing both simple and complex (incl. overlap-
ping) annotations. MMAX2 also features a sim-
ple query language and a way of accessing anno-
tated corpora by means of XSL style sheets. While
these two data access methods are somewhat lim-
ited in scope, they are still useful in practice. If
a query or processing task is beyond the scope of
what MMAX2 can do, its simple and open XML
data format allows for easy conversion into other
XML-based formats, incl. those of other annota-
tion and query tools.

Acknowledgements

This work has partly been funded by the Klaus
Tschira Foundation (KTF), Heidelberg, Germany,
and by the Deutsche Forschungsgemeinschaft
(DFG) in the context of the project DIANA-Summ
(STR 545/2-1).

References

Janin, A., D. Baron, J. Edwards, D. Ellis, D. Gelbart,
N. Morgan, B. Peskin, T. Pfau, E. Shriberg, A. Stol-
cke & C. Wooters (2003). The ICSI Meeting Cor-
pus. InProceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal Processing,
Hong Kong, pp. 364–367.

Müller, C. (2005). A flexible stand-off data model with
query language for multi-level annotation. InPro-
ceedings of the Interactive Posters/Demonstrations
session at the 43rd Annual Meeting of the Associa-
tion for Computational Linguistics,Ann Arbor, Mi.,
25-30 June 2005, pp. pp. 109–112.

76

