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Abstract

In this paper we present a family of ker-

nel functions, named Syntagmatic Ker-

nels, which can be used to model syn-

tagmatic relations. Syntagmatic relations

hold among words that are typically collo-

cated in a sequential order, and thus they

can be acquired by analyzing word se-

quences. In particular, Syntagmatic Ker-

nels are defined by applying a Word Se-

quence Kernel to the local contexts of the

words to be analyzed. In addition, this

approach allows us to define a semi su-

pervised learning schema where external

lexical knowledge is plugged into the su-

pervised learning process. Lexical knowl-

edge is acquired from both unlabeled data

and hand-made lexical resources, such as

WordNet. We evaluated the syntagmatic

kernel on two standard Word Sense Dis-

ambiguation tasks (i.e. English and Ital-

ian lexical-sample tasks of Senseval-3),

where the syntagmatic information plays

a crucial role. We compared the Syntag-

matic Kernel with the standard approach,

showing promising improvements in per-

formance.

1 Introduction

In computational linguistics, it is usual to deal with

sequences: words are sequences of letters and syn-

tagmatic relations are established by sequences of

words. Sequences are analyzed to measure morpho-

logical similarity, to detect multiwords, to represent

syntagmatic relations, and so on. Hence modeling

syntagmatic relations is crucial for a wide variety

of NLP tasks, such as Named Entity Recognition

(Gliozzo et al., 2005a) and Word Sense Disambigua-

tion (WSD) (Strapparava et al., 2004).

In general, the strategy adopted to model syntag-

matic relations is to provide bigrams and trigrams of

collocated words as features to describe local con-

texts (Yarowsky, 1994), and each word is regarded

as a different instance to classify. For instance, oc-

currences of a given class of named entities (such

as names of persons) can be discriminated in texts

by recognizing word patterns in their local contexts.

For example the token Rossi, whenever is preceded

by the token Prof., often represents the name of a

person. Another task that can benefit from modeling

this kind of relations is WSD. To solve ambiguity it

is necessary to analyze syntagmatic relations in the

local context of the word to be disambiguated. In

this paper we propose a kernel function that can be

used to model such relations, the Syntagmatic Ker-

nel, and we apply it to two (English and Italian)

lexical-sample WSD tasks of the Senseval-3 com-

petition (Mihalcea and Edmonds, 2004).

In a lexical-sample WSD task, training data are

provided as a set of texts, in which for each text

a given target word is manually annotated with a

sense from a predetermined set of possibilities. To

model syntagmatic relations, the typical supervised

learning framework adopts as features bigrams and

trigrams in a local context. The main drawback of

this approach is that non contiguous or shifted col-
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locations cannot be identified, decreasing the gener-

alization power of the learning algorithm. For ex-

ample, suppose that the verb to score has to be dis-

ambiguated into the sentence “Ronaldo scored the

goal”, and that the sense tagged example “the foot-

ball player scores#1 the first goal” is provided for

training. A traditional feature mapping would ex-

tract the bigram w+1 w+2:the goal to represent the

former, and the bigram w+1 w+2:the first to index

the latter. Evidently such features will not match,

leading the algorithm to a misclassification.

In the present paper we propose the Syntagmatic

Kernel as an attempt to solve this problem. The

Syntagmatic Kernel is based on a Gap-Weighted

Subsequences Kernel (Shawe-Taylor and Cristian-

ini, 2004). In the spirit of Kernel Methods, this

kernel is able to compare sequences directly in the

input space, avoiding any explicit feature mapping.

To perform this operation, it counts how many times

a (non-contiguous) subsequence of symbols u of

length n occurs in the input string s, and penalizes

non-contiguous occurrences according to the num-

ber of the contained gaps. To define our Syntag-

matic Kernel, we adapted the generic definition of

the Sequence Kernels to the problem of recognizing

collocations in local word contexts.

In the above definition of Syntagmatic Kernel,

only exact word-matches contribute to the similar-

ity. One shortcoming of this approach is that (near-

)synonyms will never be considered similar, lead-

ing to a very low generalization power of the learn-

ing algorithm, that requires a huge amount of data

to converge to an accurate prediction. To solve this

problem we provided external lexical knowledge to

the supervised learning algorithm, in order to define

a “soft-matching” schema for the kernel function.

For example, if we consider as equivalent the terms

Ronaldo and football player, the proposition “The

football player scored the first goal” is equivalent to

the sentence “Ronaldo scored the first goal”, pro-

viding a strong evidence to disambiguate the latter

occurrence of the verb.

We propose two alternative soft-matching criteria

exploiting two different knowledge sources: (i) hand

made resources and (ii) unsupervised term similar-

ity measures. The first approach performs a soft-

matching among all those synonyms words in Word-

Net, while the second exploits domain relations, ac-

quired from unlabeled data, for the same purpose.

Our experiments, performed on two standard

WSD benchmarks, show the superiority of the Syn-

tagmatic Kernel with respect to a classical flat vector

representation of bigrams and trigrams.

The paper is structured as follows. Section 2 in-

troduces the Sequence Kernels. In Section 3 the

Syntagmatic Kernel is defined. Section 4 explains

how soft-matching can be exploited by the Collo-

cation Kernel, describing two alternative criteria:

WordNet Synonymy and Domain Proximity. Sec-

tion 5 gives a brief sketch of the complete WSD

system, composed by the combination of different

kernels, dealing with syntagmatic and paradigmatic

aspects. Section 6 evaluates the Syntagmatic Kernel,

and finally Section 7 concludes the paper.

2 Sequence Kernels

The basic idea behind kernel methods is to embed

the data into a suitable feature space F via a map-

ping function φ : X → F , and then use a linear al-

gorithm for discovering nonlinear patterns. Instead

of using the explicit mapping φ, we can use a kernel

function K : X × X → R, that corresponds to the

inner product in a feature space which is, in general,

different from the input space.

Kernel methods allow us to build a modular sys-

tem, as the kernel function acts as an interface be-

tween the data and the learning algorithm. Thus

the kernel function becomes the only domain spe-

cific module of the system, while the learning algo-

rithm is a general purpose component. Potentially

any kernel function can work with any kernel-based

algorithm. In our system we use Support Vector Ma-

chines (Cristianini and Shawe-Taylor, 2000).

Sequence Kernels (or String Kernels) are a fam-

ily of kernel functions developed to compute the

inner product among images of strings in high-

dimensional feature space using dynamic program-

ming techniques (Shawe-Taylor and Cristianini,

2004). The Gap-Weighted Subsequences Kernel is

the most general Sequence Kernel. Roughly speak-

ing, it compares two strings by means of the num-

ber of contiguous and non-contiguous substrings of

a given length they have in common. Non contigu-

ous occurrences are penalized according to the num-

ber of gaps they contain.
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Formally, let Σ be an alphabet of |Σ| symbols,

and s = s1s2 . . . s|s| a finite sequence over Σ (i.e.

si ∈ Σ, 1 6 i 6 |s|). Let i = [i1, i2, . . . , in], with

1 6 i1 < i2 < . . . < in 6 |s|, be a subset of the

indices in s: we will denote as s[i] ∈ Σn the sub-

sequence si1si2 . . . sin . Note that s[i] does not nec-

essarily form a contiguous subsequence of s. For

example, if s is the sequence “Ronaldo scored the

goal” and i = [2, 4], then s[i] is “scored goal”. The

length spanned by s[i] in s is l(i) = in − i1 + 1.

The feature space associated with the Gap-Weighted

Subsequences Kernel of length n is indexed by I =
Σn, with the embedding given by

φ
n
u(s) =

X

i:u=s[i]

λ
l(i)

, u ∈ Σn
, (1)

where λ ∈]0, 1] is the decay factor used to penalize

non-contiguous subsequences1 . The associate ker-

nel is defined as

Kn(s, t) = 〈φn(s), φn(t)〉 =
X

u∈Σn

φ
n
u(s)φn

u(t). (2)

An explicit computation of Equation 2 is unfea-

sible even for small values of n. To evaluate more

efficiently Kn, we use the recursive formulation pro-

posed in (Lodhi et al., 2002; Saunders et al., 2002;

Cancedda et al., 2003) based on a dynamic program-

ming implementation. It is reported in the following

equations:

K
′
0(s, t) = 1, ∀s, t, (3)

K
′
i(s, t) = 0, if min(|s|, |t|) < i, (4)

K
′′
i (s, t) = 0, if min(|s|, |t|) < i, (5)

K
′′
i (sx, ty) =

(

λK′′
i (sx, t), if x 6= y;

λK′′
i (sx, t) + λ2K′

i−1(s, t), otherwise.

(6)

K
′
i(sx, t) = λK

′
i(s, t) + K

′′
i (sx, t), (7)

Kn(s, t) = 0, if min(|s|, |t|) < n, (8)

Kn(sx, t) = Kn(s, t) +
X

j:tj=x

λ
2
K

′
n−1(s, t[1 : j − 1]),

(9)

K ′
n and K ′′

n are auxiliary functions with a sim-

ilar definition as Kn used to facilitate the compu-

tation. Based on all definitions above, Kn can be

1Notice that by choosing λ = 1 sparse subsequences are
not penalized. On the other hand, the kernel does not take into
account sparse subsequences with λ → 0.

computed in O(n|s||t|). Using the above recursive

definition, it turns out that computing all kernel val-

ues for subsequences of lengths up to n is not signif-

icantly more costly than computing the kernel for n

only.

In the rest of the paper we will use the normalised

version of the kernel (Equation 10) to keep the val-

ues comparable for different values of n and to be

independent from the length of the sequences.

K̂(s, t) =
K(s, t)

p

K(s, s)K(t, t)
. (10)

3 The Syntagmatic Kernel

As stated in Section 1, syntagmatic relations hold

among words arranged in a particular temporal or-

der, hence they can be modeled by Sequence Ker-

nels. The Syntagmatic Kernel is defined as a linear

combination of Gap-Weighted Subsequences Ker-

nels that operate at word and PoS tag level. In partic-

ular, following the approach proposed by Cancedda

et al. (2003), it is possible to adapt sequence kernels

to operate at word level by instancing the alphabet Σ
with the vocabulary V = {w1, w2, . . . , wk}. More-

over, we restricted the generic definition of the Gap-

Weighted Subsequences Kernel to recognize collo-

cations in the local context of a specified word. The

resulting kernel, called n-gram Collocation Kernel

(Kn
Coll), operates on sequences of lemmata around a

specified word l0 (i.e. l−3, l−2, l−1, l0, l+1, l+2, l+3).

This formulation allows us to estimate the number of

common (sparse) subsequences of lemmata (i.e. col-

locations) between two examples, in order to capture

syntagmatic similarity.

Analogously, we defined the PoS Kernel (Kn
PoS)

to operate on sequences of PoS tags p−3, p−2, p−1,

p0, p+1, p+2, p+3, where p0 is the PoS tag of l0.

The Collocation Kernel and the PoS Kernel are

defined by Equations 11 and 12, respectively.

KColl(s, t) =

n
∑

l=1

K l
Coll(s, t) (11)

and

KPoS(s, t) =
n

∑

l=1

K l
P oS(s, t). (12)

Both kernels depend on the parameter n, the length

of the non-contiguous subsequences, and λ, the de-
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cay factor. For example, K2
Coll allows us to repre-

sent all (sparse) bi-grams in the local context of a

word.

Finally, the Syntagmatic Kernel is defined as

KSynt(s, t) = KColl(s, t) + KPoS(s, t). (13)

We will show that in WSD, the Syntagmatic Ker-

nel is more effective than standard bigrams and tri-

grams of lemmata and PoS tags typically used as

features.

4 Soft-Matching Criteria

In the definition of the Syntagmatic Kernel only ex-

act word matches contribute to the similarity. To

overcome this problem, we further extended the def-

inition of the Gap-Weigthed Subsequences Kernel

given in Section 2 to allow soft-matching between

words. In order to develop soft-matching criteria,

we follow the idea that two words can be substi-

tuted preserving the meaning of the whole sentence

if they are paradigmatically related (e.g. synomyns,

hyponyms or domain related words). If the meaning

of the proposition as a whole is preserved, the mean-

ing of the lexical constituents of the sentence will

necessarily remain unchanged too, providing a vi-

able criterion to define a soft-matching schema. This

can be implemented by “plugging” external paradig-

matic information into the Collocation kernel.

Following the approach proposed by (Shawe-

Taylor and Cristianini, 2004), the soft-matching

Gap-Weighted Subsequences Kernel is now calcu-

lated recursively using Equations 3 to 5, 7 and 8,

replacing Equation 6 by the equation:

K
′′
i (sx, ty) = λK

′′
i (sx, t) + λ

2
axyK

′
i−1(s, t),∀x, y, (14)

and modifying Equation 9 to:

Kn(sx, t) = Kn(s, t) +

|t|
X

j

λ
2
axtj

K
′
n−1(s, t[1 : j − 1]).

(15)

where axy are entries in a similarity matrix A be-

tween symbols (words). In order to ensure that the

resulting kernel is valid, A must be positive semi-

definite.

In the following subsections, we describe two al-

ternative soft-matching criteria based on WordNet

Synonymy and Domain Proximity. In both cases, to

show that the similarity matrices are a positive semi-

definite we use the following result:

Proposition 1 A matrix A is positive semi-definite

if and only if A = B
T
B for some real matrix B.

The proof is given in (Shawe-Taylor and Cristianini,

2004).

4.1 WordNet Synonymy

The first solution we have experimented exploits a

lexical resource representing paradigmatic relations

among terms, i.e. WordNet. In particular, we used

WordNet-1.7.1 for English and the Italian part of

MultiWordNet2.

In order to find a similarity matrix between terms,

we defined a vector space where terms are repre-

sented by the WordNet synsets in which such terms

appear. Hence, we can view a term as vector in

which each dimension is associated with one synset.

The term-by-synset matrix S is then the matrix

whose rows are indexed by the synsets. The en-

try xij of S is 1 if the synset sj contains the term

wi, and 0 otherwise. The term-by-synset matrix S

gives rise to the similarity matrix A = SS
T be-

tween terms. Since A can be rewritten as A =
(ST )T S

T = B
T
B, it follows directly by Proposi-

tion 1 that it is positive semi-definite.

It is straightforward to extend the soft-matching

criterion to include hyponym relation, but we

achieved worse results. In the evaluation section we

will not report such results.

4.2 Domain Proximity

The approach described above requires a large scale

lexical resource. Unfortunately, for many languages,

such a resource is not available. Another possibility

for implementing soft-matching is introducing the

notion of Semantic Domains.

Semantic Domains are groups of strongly

paradigmatically related words, and can be acquired

automatically from corpora in a totally unsuper-

vised way (Gliozzo, 2005). Our proposal is to ex-

ploit a Domain Proximity relation to define a soft-

matching criterion on the basis of an unsupervised

similarity metric defined in a Domain Space. The

Domain Space can be determined once a Domain

2
http://multiwordnet.itc.it
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Model (DM) is available. This solution is evidently

cheaper, because large collections of unlabeled texts

can be easily found for every language.

A DM is represented by a k × k′ rectangular ma-

trix D, containing the domain relevance for each

term with respect to each domain, as illustrated in

Table 1. DMs can be acquired from texts by exploit-

MEDICINE COMPUTER SCIENCE

HIV 1 0

AIDS 1 0

virus 0.5 0.5

laptop 0 1

Table 1: Example of Domain Model.

ing a lexical coherence assumption (Gliozzo, 2005).

To this aim, Term Clustering algorithms can be used:

a different domain is defined for each cluster, and

the degree of association between terms and clusters,

estimated by the unsupervised learning algorithm,

provides a domain relevance function. As a clus-

tering technique we exploit Latent Semantic Analy-

sis (LSA), following the methodology described in

(Gliozzo et al., 2005b). This operation is done off-

line, and can be efficiently performed on large cor-

pora.

LSA is performed by means of SVD of the term-

by-document matrix T representing the corpus. The

SVD algorithm can be exploited to acquire a domain

matrix D from a large corpus in a totally unsuper-

vised way. SVD decomposes the term-by-document

matrix T into three matrices T = VΣkU
T where

Σk is the diagonal k × k matrix containing the k

singular values of T. D = VΣk′ where k′ � k.

Once a DM has been defined by the matrix D, the

Domain Space is a k′ dimensional space, in which

both texts and terms are represented by means of

Domain Vectors (DVs), i.e. vectors representing the

domain relevances among the linguistic object and

each domain. The DV ~w′
i for the term wi ∈ V is the

ith row of D, where V = {w1, w2, . . . , wk} is the

vocabulary of the corpus.

The term-by-domain matrix D gives rise to the

term-by-term similarity matrix A = DD
T among

terms. It follows from Proposition 1 that A is posi-

tive semi-definite.

5 Kernel Combination for WSD

To improve the performance of a WSD system, it

is possible to combine different kernels. Indeed,

we followed this approach in the participation to

Senseval-3 competition, reaching the state-of-the-

art in many lexical-sample tasks (Strapparava et al.,

2004). While this paper is focused on Syntagmatic

Kernels, in this section we would like to spend some

words on another important component for a com-

plete WSD system: the Domain Kernel, used to

model domain relations.

Syntagmatic information alone is not sufficient to

define a full kernel for WSD. In fact, in (Magnini

et al., 2002), it has been claimed that knowing the

domain of the text in which the word is located is a

crucial information for WSD. For example the (do-

main) polysemy among the COMPUTER SCIENCE

and the MEDICINE senses of the word virus can

be solved by simply considering the domain of the

context in which it is located.

This fundamental aspect of lexical polysemy can

be modeled by defining a kernel function to esti-

mate the domain similarity among the contexts of

the words to be disambiguated, namely the Domain

Kernel. The Domain Kernel measures the similarity

among the topics (domains) of two texts, so to cap-

ture domain aspects of sense distinction. It is a vari-

ation of the Latent Semantic Kernel (Shawe-Taylor

and Cristianini, 2004), in which a DM is exploited

to define an explicit mapping D : R
k → R

k′
from

the Vector Space Model (Salton and McGill, 1983)

into the Domain Space (see Section 4), defined by

the following mapping:

D(~tj) = ~tj(I
IDF

D) = ~t′j (16)

where I
IDF is a k × k diagonal matrix such that

iIDF
i,i = IDF (wi), ~tj is represented as a row vector,

and IDF (wi) is the Inverse Document Frequency of

wi. The Domain Kernel is then defined by:

KD(ti, tj) =
〈D(ti),D(tj)〉

√

〈D(tj),D(tj)〉〈D(ti),D(ti)〉
(17)

The final system for WSD results from a com-

bination of kernels that deal with syntagmatic and

paradigmatic aspects (i.e. PoS, collocations, bag of

words, domains), according to the following kernel
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combination schema:

KC(xi, xj) =
n

∑

l=1

Kl(xi, xj)
√

Kl(xj , xj)Kl(xi, xi)
(18)

6 Evaluation

In this section we evaluate the Syntagmatic Kernel,

showing that it improves over the standard feature

extraction technique based on bigrams and trigrams

of words and PoS tags.

6.1 Experimental settings

We conducted the experiments on two lexical sam-

ple tasks (English and Italian) of the Senseval-3

competition (Mihalcea and Edmonds, 2004). In

lexical-sample WSD, after selecting some target

words, training data is provided as a set of texts.

For each text a given target word is manually anno-

tated with a sense from a predetermined set of pos-

sibilities. Table 2 describes the tasks by reporting

the number of words to be disambiguated, the mean

polysemy, and the dimension of training, test and

unlabeled corpora. Note that the organizers of the

English task did not provide any unlabeled material.

So for English we used a domain model built from

the training partition of the task (obviously skipping

the sense annotation), while for Italian we acquired

the DM from the unlabeled corpus made available

by the organizers.

#w pol # train # test # unlab

English 57 6.47 7860 3944 7860
Italian 45 6.30 5145 2439 74788

Table 2: Dataset descriptions.

6.2 Performance of the Syntagmatic Kernel

Table 3 shows the performance of the Syntagmatic

Kernel on both data sets. As baseline, we report

the result of a standard approach consisting on ex-

plicit bigrams and trigrams of words and PoS tags

around the words to be disambiguated (Yarowsky,

1994). The results show that the Syntagmatic Ker-

nel outperforms the baseline in any configuration

(hard/soft-matching). The soft-matching criteria

further improve the classification performance. It

is interesting to note that the Domain Proximity

methodology obtained better results than WordNet

Standard approach

English Italian

Bigrams and trigrams 67.3 51.0

Syntagmatic Kernel

Hard matching 67.7 51.9

Soft matching (WordNet) 67.3 51.3
Soft matching (Domain proximity) 68.5 54.0

Table 3: Performance (F1) of the Syntagmatic Ker-

nel.

Synonymy. The different results observed between

Italian and English using the Domain Proximity

soft-matching criterion are probably due to the small

size of the unlabeled English corpus.

In these experiments, the parameters n and λ are

optimized by cross-validation. For Kn
Coll, we ob-

tained the best results with n = 2 and λ = 0.5. For

Kn
PoS , n = 3 and λ → 0. The domain cardinality k′

was set to 50.

Finally, the global performance (F1) of the full

WSD system (see Section 5) on English and Italian

lexical sample tasks is 73.3 for English and 61.3 for

Italian. To our knowledge, these figures represent

the current state-of-the-art on these tasks.

7 Conclusion and Future Work

In this paper we presented the Syntagmatic Kernels,

i.e. a set of kernel functions that can be used to

model syntagmatic relations for a wide variety of

Natural Language Processing tasks. In addition, we

proposed two soft-matching criteria for the sequence

analysis, which can be easily modeled by relax-

ing the constraints in a Gap-Weighted Subsequences

Kernel applied to local contexts of the word to be

analyzed. Experiments, performed on two lexical

sample Word Sense Disambiguation benchmarks,

show that our approach further improves the stan-

dard techniques usually adopted to deal with syntag-

matic relations. In addition, the Domain Proximity

soft-matching criterion allows us to define a semi-

supervised learning schema, improving the overall

results.

For the future, we plan to exploit the Syntagmatic

Kernel for a wide variety of Natural Language Pro-

cessing tasks, such as Entity Recognition and Re-

lation Extraction. In addition we are applying the

soft matching criteria here defined to Tree Kernels,
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in order to take into account lexical variability in

parse trees. Finally, we are going to further improve

the soft-matching criteria here proposed by explor-

ing the use of entailment criteria for substitutability.
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