
Constraint Satisfaction Inference:
Non-probabilistic Global Inference for Sequence Labelling

Sander Canisius and Antal van den Bosch

ILK / Language and Information Science

Tilburg University

Tilburg, The Netherlands

{S.V.M.Canisius,Antal.vdnBosch@uvt.nl}@uvt.nl

Walter Daelemans

CNTS, Department of Linguistics

University of Antwerp

Antwerp, Belgium

Walter.Daelemans@ua.ac.be

Abstract

We present a new method for performing

sequence labelling based on the idea of us-

ing a machine-learning classifier to gen-

erate several possible output sequences,

and then applying an inference proce-

dure to select the best sequence among

those. Most sequence labelling methods

following a similar approach require the

base classifier to make probabilistic pre-

dictions. In contrast, our method can

be used with virtually any type of clas-

sifier. This is illustrated by implement-

ing a sequence classifier on top of a (non-

probabilistic) memory-based learner. In

a series of experiments, this method is

shown to outperform two other methods;

one naive baseline approach, and another

more sophisticated method.

1 Introduction

In machine learning for natural language process-

ing, many diverse tasks somehow involve pro-

cessing of sequentially-structured data. For ex-

ample, syntactic chunking, grapheme-to-phoneme

conversion, and named-entity recognition are all

usually reformulated as sequence labelling tasks:

a task-specific global unit, such as a sentence or a

word, is divided into atomic sub-parts, e.g. word

or letters, each of which is separately assigned a

label. The concatenation of those labels forms the

eventual output for the global unit.

More formally, we can define a sequence la-

belling task as a tuple (x,y, `). The goal is to map

an input vector x = 〈x1, x2, . . . , xn〉 of tokens to

an output sequence y = 〈y1, y2, . . . , yn〉 of labels.

The possible labels for each token are specified by

a finite set `, that is, yi ∈ `,∀i.

In most real-world sequence labelling tasks, the

values of the output labels are sequentially cor-

related. For machine learning approaches to se-

quence labelling this implies that classifying each

token separately without considering the labels as-

signed to other tokens in the sequence may lead

to sub-optimal performance. Ideally, the complex

mapping of the entire input sequence to its corre-

sponding output sequence is considered one clas-

sification case; the classifier then has access to all

information stored in the sequence. In practise,

however, both input and output sequences are far

too sparse for such classifications to be performed

reliably.

A popular approach to circumvent the issues

raised above is what we will refer to as the clas-

sification and inference approach, covering tech-

niques such as hidden markov models and condi-

tional random fields (Lafferty et al., 2001). Rather

than having a token-level classifier make local de-

cisions independently of the rest of the sequence,

the approach introduces an inference procedure,

operating on the level of the sequence, using class

likelihoods estimated by the classifier to optimise

the likelihood of the entire output sequence.

A crucial property of most of the classification

and inference techniques in use today is that the

classifier used at the token level must be able to

estimate the likelihood for each potential class la-

bel. This is in contrast with the more common

view of a classifier having to predict just one class

label for an instance which is deemed most opti-

mal. Maximum-entropy models, which are used in

many classification and inference techniques, have

this property; they model the conditional class dis-

tribution. In general, this is the case for all prob-

abilistic classification methods. However, many

general-purpose machine learning techniques are

9



not probabilistic. In order to design inference pro-

cedures for those techniques, other principles than

probabilistic ones have to be used.

In this paper, we propose a non-probabilistic in-

ference procedure that improves performance of a

memory-based learner on a wide range of natural-

language sequence processing tasks. We start

from a technique introduced recently by Van den

Bosch and Daelemans (2005), and reinterpret it as

an instance of the classification and inference ap-

proach. Moreover, the token-level inference pro-

cedure proposed in the original work is replaced

by a new procedure based on principles of con-

straint satisfaction that does take into account the

entire sequential context.

The remainder of this paper is structured as fol-

lows. Section 2 introduces the theoretical back-

ground and starting point of the work presented in

this paper: the trigram method, and memory-based

learning. Next, the new constraint-satisfaction-

based inference procedure for class trigrams is

presented in Section 3. Experimental comparisons

of a non-sequence-aware baseline classifier, the

original trigram method, and the new classification

and inference approach on a number of sequence

labelling tasks are presented in Section 4 and dis-

cussed in Section 5. Finally, our work is compared

and contrasted with some related approaches in

Section 6, and conclusions are drawn in Section 7.

2 Theoretical background

2.1 Class Trigrams

A central weakness of approaches considering

each token of a sequence as a separate classifica-

tion case is their inability to coordinate labels as-

signed to neighbouring tokens. Due to this, invalid

label sequences, or ones that are highly unlikely

may result. Van den Bosch and Daelemans (2005)

propose to resolve parts of this issue by predict-

ing trigrams of labels as a single atomic class la-

bel, thereby labelling three tokens at once, rather

than classifying each token separately. Predict-

ing sequences of three labels at once makes sure

that at least these short subsequences are known to

be syntactically valid sequences according to the

training data.

Applying this general idea, Van den Bosch and

Daelemans (2005) label each token with a com-

plex class label composed of the labels for the pre-

ceding token, the token itself, and the one follow-

ing it in the sequence. If such class trigrams are

assigned to all tokens in a sequence, the actual la-

bel for each of those is effectively predicted three

times, since every token but the first and last is

covered by three class trigrams. Exploiting this

redundancy, a token’s possibly conflicting predic-

tions are resolved by voting over them. If two out

of three trigrams suggest the same label, this label

is selected; in case of three different candidate la-

bels, a classifier-specific confidence metric is used

to break the tie.

Voting over class trigrams is but one possible

approach to taking advantage of the redundancy

obtained with predicting overlapping trigrams. A

disadvantage of voting is that it discards one of

the main benefits of the class trigram method: pre-

dicted class trigrams are guaranteed to be syntac-

tically correct according to the training data. The

voting technique splits up the predicted trigrams,

and only refers to their unigram components when

deciding on the output label for a token; no attempt

is made to keep the trigram sequence intact in the

final output sequence. The alternative to voting

presented later in this paper does try to retain pre-

dicted trigrams as part of the output sequence.

2.2 Memory-based learning

The name memory-based learning refers to a class

of methods based on the k-nearest neighbour rule.

At training time, all example instances are stored

in memory without attempting to induce an ab-

stract representation of the concept to be learned.

Generalisation is postponed until a test instance is

classified. For a given test instance, the class pre-

dicted is the one observed most frequently among

a number of most-similar instances in the instance

base. By only generalising when confronted with

the instance to be classified, a memory-based

learner behaves as a local model, specifically

suited for that part of the instance space that the

test instance belongs to. In contrast, learners that

abstract at training time can only generalise glob-

ally. This distinguishing property makes memory-

based learners especially suited for tasks where

different parts of the instance space are structured

according to different rules, as is often the case in

natural-language processing.

For the experiments performed in this study we

used the memory-based classifier as implemented

by TiMBL (Daelemans et al., 2004). In TiMBL,

similarity is defined by two parameters: a feature-

level similarity metric, which assigns a real-valued

10



score to pairs of values for a given feature, and a

set of feature weights, that express the importance

of the various features for determining the simi-

larity of two instances. Further details on both of

these parameters can be found in the TiMBL man-

ual. To facilitate the explanation of our inference

procedure in Section 3, we will formally define

some notions related to memory-based classifica-

tion.

The function Ns,w,k(x) maps a given instance

x to the set of its nearest neighbours; here, the

parameters s, w, and k are the similarity metric,

the feature weights, and the number k of nearest

neighbours, respectively. They will be considered

given in the following, so we will refer to this

specific instantiation simply as N(x). The func-

tion wd(c,N(x)) returns the weight assigned to

class c in the given neighbourhood according to

the distance metric d; again we will use the nota-

tion w(c,N(x)) to refer to a specific instantiation

of this function. Using these two functions, we can

formulate the nearest neighbour rule as follows.

arg max
c

w(c,N(x))

The class c maximising the above expression is

returned as the predicted class for the instance x.

3 Constraint Satisfaction Inference

A strength of the class trigram method is the guar-

antee that any trigram that is predicted by the base

classifier represents a syntactically valid subse-

quence of length three. This does not necessar-

ily mean the trigram is a correct label assignment

within the context of the current classification, but

it does reflect the fact that the trigram has been

observed in the training data, and, moreover, is

deemed most likely according to the base classi-

fier’s model. For this reason, it makes sense to try

to retain predicted trigrams in the output label se-

quence as much as possible.

The inference method proposed in this section

seeks to attain this goal by formulating the class

trigram disambiguation task as a weighted con-

straint satisfaction problem (W-CSP). Constraint

satisfaction is a well-studied research area with ap-

plications in numerous fields both inside and out-

side of computer science. Weighted constraint sat-

isfaction extends the traditional constraint satis-

faction framework with soft constraints; such con-

straints are not required to be satisfied for a so-

lution to be valid, but constraints a given solution

does satisfy, are rewarded according to weights as-

signed to them.

Formally, a W-CSP is a tuple (X,D,C,W ).
Here, X = {x1, x2, . . . , xn} is a finite set of vari-

ables. D(x) is a function that maps each variable

to its domain, that is, the set of values that variable

can take on. C is the set of constraints. While

a variable’s domain dictates the values a single

variable is allowed to take on, a constraint spec-

ifies which simultaneous value combinations over

a number of variables are allowed. For a tradi-

tional (non-weighted) constraint satisfaction prob-

lem, a valid solution would be an assignment of

values to the variables that (1) are a member of the

corresponding variable’s domain, and (2) satisfy

all constraints in the set C . Weighted constraint

satisfaction, however, relaxes this requirement to

satisfy all constraints. Instead, constraints are as-

signed weights that may be interpreted as reflect-

ing the importance of satisfying that constraint.

Let a constraint c ∈ C be defined as a func-

tion that maps each variable assignment to 1 if the

constraint is satisfied, or to 0 if it is not. In addi-

tion, let W : C → IR+ denote a function that maps

each constraint to a positive real value, reflecting

the weight of that constraint. Then, the optimal so-

lution to a W-CSP is given by the following equa-

tion.

x
∗ = arg max

x

∑

c

W (c)c(x)

That is, the assignment of values to its variables

that maximises the sum of weights of the con-

straints that have been satisfied.

Translating the terminology introduced earlier

in this paper to the constraint satisfaction domain,

each token of a sequence maps to a variable, the

domain of which corresponds to the three candi-

date labels for this token suggested by the trigrams

covering the token. This provides us with a defini-

tion of the function D, mapping variables to their

domain. In the following, yi,j denotes the candi-

date label for token xj predicted by the trigram

assigned to token xi.

D(xi) = {yi−1,i, yi,i, yi+1,i}

Constraints are extracted from the predicted tri-

grams. Given the goal of retaining predicted tri-

grams in the output label sequence as much as pos-

sible, the most important constraints are simply

11



the trigrams themselves. A predicted trigram de-

scribes a subsequence of length three of the entire

output sequence; by turning such a trigram into a

constraint, we express the wish to have this trigram

end up in the final output sequence.

(xi−1, xi, xi+1) = (yi,i−1, yi,i, yi,i+1),∀i

No base classifier is flawless though, and there-

fore not all predicted trigrams can be expected to

be correct. Nevertheless, even an incorrect trigram

may carry some useful information regarding the

output sequence: one trigram also covers two bi-

grams, and three unigrams. An incorrect trigram

may still contain smaller subsequences, of length

one or two, that are correct. Therefore, all of these

are also mapped to constraints.

(xi−1, xi) = (yi,i−1, yi,i), ∀i

(xi, xi+1) = (yi,i, yi,i+1), ∀i

xi−1 = yi,i−1, ∀i

xi = yi,i, ∀i

xi+1 = yi,i+1, ∀i

With such an amount of overlapping con-

straints, the satisfaction problem obtained eas-

ily becomes over-constrained, that is, no vari-

able assignment exists that can satisfy all con-

straints without breaking another. Only one in-

correctly predicted class trigram already leads to

two conflicting candidate labels for one of the to-

kens at least. Yet, without conflicting candidate

labels no inference would be needed to start with.

The choice for the weighted constraint satisfaction

method always allows a solution to be found, even

in the presence of conflicting constraints. Rather

than requiring all constraints to be satisfied, each

constraint is assigned a certain weight; the optimal

solution to the problem is an assignment of values

to the variables that optimises the sum of weights

of the constraints that are satisfied.

Constraints can directly be traced back to a pre-

diction made by the base classifier. If two con-

straints are in conflict, the one which the classi-

fier was most certain of should preferably be sat-

isfied. In the W-CSP framework, this preference

can be expressed by weighting constraints accord-

ing to the classifier confidence for the originating

trigram. For the memory-based learner, we define

the classifier confidence for a predicted class ci

as the weight assigned to that class in the neigh-

bourhood of the test instance, divided by the total

weight of all classes.

w(ci,N(x))∑
c w(c,N(x))

Let x denote a test instance, and c∗ its pre-

dicted class. Constraints derived from this class

are weighted according to the following rules.

• for a trigram constraint, the weight is simply

the base classifier’s confidence value for the

class c∗

• for a bigram constraint, the weight is the sum

of the confidences for all trigram classes in

the nearest-neighbour set of x that assign the

same label bigram to the tokens spanned by

the constraint

• for a unigram constraint, the weight is the

sum of the confidences for all trigram classes

in the nearest-neighbour set of x that assign

the same label to the token spanned by the

constraint

4 Experiments

To thoroughly evaluate our new inference proce-

dure, and to show that it performs well over a

wide range of natural-language sequence labelling

tasks, we composed a benchmark set consisting of

six different tasks, covering four areas in natural

language processing: syntax (syntactic chunking),

morphology (morphological analysis), phonology

(grapheme-to-phoneme conversion), and informa-

tion extraction (general, medical, and biomedical

named-entity recognition). Below, the six data sets

used for these tasks are introduced briefly.

CHUNK is the task of splitting sentences into

non-overlapping syntactic phrases or constituents.

The data set, extracted from the WSJ Penn Tree-

bank, and first used in the CoNLL-2000 shared

task (Tjong Kim Sang and Buchholz, 2000), con-

tains 211,727 training examples and 47,377 test

instances.

NER, named-entity recognition, involves iden-

tifying and labelling named entities in text. We

employ the English NER shared task data set

used in the CoNLL-2003 conference (Tjong Kim

Sang and De Meulder, 2003). This data set dis-

criminates four name types: persons, organisa-

tions, locations, and a rest category of “miscellany

names”. The data set is a collection of newswire

12



articles from the Reuters Corpus, RCV11. The

given training set contains 203,621 examples; as

test set we use the “testb” evaluation set which

contains 46,435 examples.

MED is a data set extracted from a semantic an-

notation of (parts of) two Dutch-language medi-

cal encyclopedias. On the chunk-level of this an-

notation, there are labels for various medical con-

cepts, such as disease names, body parts, and treat-

ments, forming a set of twelve concept types in to-

tal. Chunk sizes range from one to a few tokens.

The data have been split into training and test sets,

resulting in 428,502 training examples and 47,430

test examples.

The GENIA corpus (Tateisi et al., 2002) is a col-

lection of annotated abstracts taken from the Na-

tional Library of Medicine’s MEDLINE database.

Apart from part-of-speech tagging information,

the corpus annotates a subset of the substances

and the biological locations involved in reactions

of proteins. Using a 90%–10% split for producing

training and test sets, there are 458,593 training

examples and 50,916 test examples.

PHONEME refers to grapheme-to-phoneme con-

version for English. The sequences to be la-

belled are words composed of letters (rather than

sentences composed of words). We based our-

selves on the English part of the CELEX-2 lexi-

cal data base (Baayen et al., 1993), from which

we extracted 65,467 word-pronunciation pairs.

This pair list has been aligned using expectation-

maximisation to obtain sensible one-to-one map-

pings between letters and phonemes (Daelemans

and Van den Bosch, 1996). The classes to pre-

dict are 58 different phonemes, including some

diphones such as [ks] needed to keep the letter-

phoneme alignment one-to-one. The resulting

data set has been split into a training set of 515,891

examples, and a test set of 57,279 examples.

MORPHO refers to morphological analysis of

Dutch words. We collected the morphologi-

cal analysis of 336,698 Dutch words from the

CELEX-2 lexical data base (Baayen et al., 1993),

and represented the task such that it captures the

three most relevant elements of a morphological

analysis: (1) the segmentation of the word into

morphemes (stems, derivational morphemes, and

inflections), (2) the part-of-speech tagging infor-

mation contained by each morpheme; and (3) all

1Reuters Corpus, Volume 1, English language, 1996-08-
20 to 1997-08-19.

Task Baseline Voting CSInf Oracle

CHUNK 91.9 92.7 93.1 95.8
NER 77.2 80.2 81.8 86.5
MED 64.7 67.5 68.9 74.9
GENIA 55.8 60.1 61.8 70.6
PHONEME 79.0 83.4 84.5 98.8
MORPHO 41.3 46.1 51.9 62.2

Table 1: Performances of the baseline method, and

the trigram method combined both with majority

voting, and with constraint satisfaction inference.

The last column shows the performance of the (hy-

pothetical) oracle inference procedure.

spelling changes due to compounding, derivation,

or inflection that would enable the reconstruction

of the appropriate root forms of the involved mor-

phemes.

For CHUNK, and the three information extrac-

tion tasks, instances represent a seven-token win-

dow of words and their (predicted) part-of-speech

tags. Each token is labelled with a class using the

IOB type of segmentation coding as introduced by

Ramshaw and Marcus (1995), marking whether

the middle word is inside (I), outside (O), or at the

beginning (B) of a chunk, or named entity. Per-

formance is measured by the F-score on correctly

identified and labelled chunks, or named entities.

Instances for PHONEME, and MORPHO consist

of a seven-letter window of letters only. The labels

assigned to an instance are task-specific and have

been introduced above, together with the tasks

themselves. Generalisation performance is mea-

sured on the word accuracy level: if the entire

phonological transcription of the word is predicted

correctly, or if all three aspects of the morpholog-

ical analysis are predicted correctly, the word is

counted correct.

4.1 Results

For the experiments, memory-based learners were

trained and automatically optimised with wrapped

progressive sampling (Van den Bosch, 2004) to

predict class trigrams for each of the six tasks in-

troduced above. Table 1 lists the performances of

constraint satisfaction inference, and majority vot-

ing applied to the output of the base classifiers, and

compares them with the performance of a naive

baseline method that treats each token as a sepa-

rate classification case without coordinating deci-

sions over multiple tokens.

Without exception, constraint satisfaction infer-

13



ence outperforms majority voting by a consider-

able margin. This shows that, given the same

sequence of predicted trigrams, the global con-

straint satisfaction inference manages better to re-

cover sequential correlation, than majority voting.

On the other hand, the error reduction attained by

majority voting with respect to the baseline is in

all cases more impressive than the one obtained

by constraint satisfaction inference with respect to

majority voting. However, it should be empha-

sised that, while both methods trace back their ori-

gins to the work of Van den Bosch and Daelemans

(2005), constraint satisfaction inference is not ap-

plied after, but instead of majority voting. This

means, that the error reduction attained by major-

ity voting is also attained, independently by con-

straint satisfaction inference, but in addition con-

straint satisfaction inference manages to improve

performance on top of that.

5 Discussion

The experiments reported upon in the previous

section showed that by globally evaluating the

quality of possible output sequences, the con-

straint satisfaction inference procedure manages to

attain better results than the original majority vot-

ing approach. In this section, we attempt to fur-

ther analyse the behaviour of the inference pro-

cedure. First, we will discuss the effect that the

performance of the trigram-predicting base classi-

fier has on the maximum performance attainable

by any inference procedure. Next, we will con-

sider specifically the effect of base classifier accu-

racy on the performance of constraint satisfaction

inference.

5.1 Base classifier accuracy and inference

procedure upper-bounds

After trigrams have been predicted, for each token,

at most three different candidate labels remain. As

a result, if the correct label is not among them, the

best inference procedure cannot correct that. This

suggests that there is an upper-bound on the per-

formance attainable by inference procedures oper-

ating on less than perfect class trigram predictions.

To illustrate what performance is still possible af-

ter a base classifier has predicted the trigrams for

a sequence, we devised an oracle inference proce-

dure.

An oracle has perfect knowledge about the true

label of a token; therefore it is able to select this la-

bel if it is among the three candidate labels. If the

correct label is absent among the candidate labels,

no inference procedure can possibly predict the

correct label for the corresponding token, so the

oracle procedure just selects randomly among the

candidate labels, which will be incorrect anyway.

Table 1 compares the performance of majority vot-

ing, constraint satisfaction inference, and the ora-

cle after an optimised base classifier has predicted

class trigrams.

5.2 Base classifier accuracy and constraint

satisfaction inference performance

There is a subtle balance between the quality of

the trigram-predicting base classifier, and the gain

that any inference procedure for trigram classes

can reach. If the base classifier’s predictions are

perfect, all three candidate labels will agree for all

tokens in the sequence; consequently the inference

procedure can only choose from one potential out-

put sequence. On the other extreme, if all three

candidate labels disagree for all tokens in the se-

quence, the inference procedure’s task is to select

the best sequence among 3n possible sequences,

where n denotes the length of the sequence; it is

likely that such a huge amount of candidate label

sequences cannot be dealt with appropriately.

Table 2 collects the base classifier accuracies,

and the average number of potential output se-

quences per sentence resulting from its predic-

tions. For all tasks, the number of potential se-

quences is manageable; far from the theoretical

maximum 3n, even for GENIA, that, compared

with the other tasks, has a relatively large num-

ber of potential output sequences. The factors that

have an effect on the number of sequences are

rather complex. One important factor is the accu-

racy of the trigram predictions made by the base

classifier. To illustrate this, Figure 1 shows the

number of potential output sequences as a function

of the base classifier accuracy for the PHONEME

task. There is an almost linear decrease of the

number of possible sequences as the classifier ac-

curacy improves. This shows that it is important

to optimise the performance of the base classifier,

since it decreases the number of potential output

sequences to consider for the inference procedure.

Other factors affecting the number of potential

output sequences are the length of the sequence,

and the number of labels defined for the task. Un-

like classifier accuracy, however, these two factors

14



 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 65  70  75  80  85  90  95

#
 s

e
q
u
e
n
c
e
s

base classifier accuracy

Figure 1: Average number of potential output se-

quences as a function of base classifier accuracy

on the PHONEME task.

Task Base acc. Avg. # seq.

CHUNK 88.8 38.4
NER 91.6 9.0
MED 77.1 9.3
GENIA 71.8 1719.3
PHONEME 91.7 1.8
MORPHO 80.9 2.8

Table 2: The average number of potential output

sequences that result from class trigram predic-

tions made by a memory-based base classifier.

are inherent properties of the task, and cannot be

optimised.

While we have shown that improved base clas-

sifier accuracy has a positive effect on the num-

ber of possible output sequences; we have not yet

established a positive relation between the num-

ber of possible output sequences and the perfor-

mance of constraint satisfaction inference. Fig-

ure 2 illustrates, again for the PHONEME task, that

there is indeed a positive, even linear relation be-

tween the accuracy of the base classifier, and the

performance attained by inference. This relation

exists for all inference procedures: majority vot-

ing, as well as constraint satisfaction inference,

and the oracle procedure. It is interesting to see

how the curves for those three procedure compare

with each other.

The oracle always outperforms the other two

procedures by a wide margin. However, its in-

crease is less steep. Constraint satisfaction in-

ference consistently outperforms majority voting,

though the difference between the two decreases

as the base classifier’s predictions improve. This

is to be expected, since more accurate predictions

means more majorities will appear among candi-

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 65  70  75  80  85  90  95

s
e
q
u
e
n
c
e
 a

c
c
u
ra

c
y

base classifier accuracy

oracle
constraint satisfaction inference

majority voting

Figure 2: Performance of majority voting, con-

straint satisfaction inference, and the oracle infer-

ence procedure as a function of base classifier ac-

curacy on the PHONEME task.

date labels, and the predictive quality of such ma-

jorities improves as well. In the limit –with a per-

fect base classifier– all three curves will meet.

6 Related work

Many learning techniques specifically designed

for sequentially-structured data exist. Given our

goal of developing a method usable with non-

probabilistic classifiers, we will not discuss the

obvious differences with the many probabilistic

methods. In this section, we will contrast our work

with two other approaches that also apply prin-

ciples of constraint satisfaction to sequentially-

structured data.

Constraint Satisfaction with Classifiers (Pun-

yakanok and Roth, 2001) performs the somewhat

more specific task of identifying phrases in a se-

quence. Like our method, the task of coordinating

local classifier decisions is formulated as a con-

straint satisfaction problem. The variables encode

whether or not a certain contiguous span of tokens

forms a phrase. Hard constraints enforce that no

two phrases in a solution overlap.

Similarly to our method, classifier confidence

estimates are used to rank solutions in order of

preference. Unlike in our method, however, both

the domains of the variables and the constraints

are prespecified; the classifier is used only to esti-

mate the cost of potential variable assignments. In

our approach, the classifier predicts the domains

of the variables, the constraints, and the weights

of those.

Roth and Yih (2005) replace the Viterbi algo-

15



rithm for inference in conditional random fields

with an integer linear programming formulation.

This allows arbitrary global constraints to be in-

corporated in the inference procedure. Essentially,

the method adds constraint satisfaction function-

ality on top of the inference procedure. In our

method, constraint satisfaction is the inference

procedure. Nevertheless, arbitrary global con-

straints (both hard and soft) can easily be incor-

porated in our framework as well.

7 Conclusion

The classification and inference approach is a pop-

ular and effective framework for performing se-

quence labelling in tasks where there is strong

interaction between output labels. Most existing

inference procedures expect a base classifier that

makes probabilistic predictions, that is, rather than

predicting a single class label, a conditional proba-

bility distribution over the possible classes is com-

puted. The inference procedure presented in this

paper is different in the sense that it can be used

with any classifier that is able to estimate a confi-

dence score for its (non-probabilistic) predictions.

Constraint satisfaction inference builds upon

the class trigram method introduced by Van den

Bosch and Daelemans (2005), but reinterprets it

as a strategy for generating multiple potential out-

put sequences, from which it selects the sequence

that has been found to be most optimal according

to a weighted constraint satisfaction formulation

of the inference process. In a series of experi-

ments involving six sequence labelling task cover-

ing several different areas in natural language pro-

cessing, constraint satisfaction inference has been

shown to improve substantially upon the perfor-

mance achieved by a simpler inference procedure

based on majority voting, proposed in the original

work on the class trigram method.

The work presented in this paper shows there is

potential for alternative interpretations of the clas-

sification and inference framework that do not rely

on probabilistic base classifiers. Future work may

well be able to further improve the performance

of constraint satisfaction inference, for example,

by using more optimised constraint weighting

schemes. In addition, alternative ways of formu-

lating constraint satisfaction problems from classi-

fier predictions may be explored; not only for se-

quence labelling, but also for other domains that

could benefit from global inference.

References

R. H. Baayen, R. Piepenbrock, and H. van Rijn. 1993.
The CELEX lexical data base on CD-ROM. Lin-
guistic Data Consortium, Philadelphia, PA.

W. Daelemans and A. Van den Bosch. 1996.
Language-independent data-oriented grapheme-to-
phoneme conversion. In J. P. H. Van Santen,
R. W. Sproat, J. P. Olive, and J. Hirschberg, edi-
tors, Progress in Speech Processing, pages 77–89.
Springer-Verlag, Berlin.

W. Daelemans, J. Zavrel, K. Van der Sloot, and A. Van
den Bosch. 2004. TiMBL: Tilburg memory based
learner, version 5.1.0, reference guide. Technical
Report ILK 04-02, ILK Research Group, Tilburg
University.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fi elds: Probabilistic models for seg-
menting and labeling sequence data. In Proceed-
ings of the 18th International Conference on Ma-
chine Learning, Williamstown, MA.

V. Punyakanok and D. Roth. 2001. The use of classi-
fi ers in sequential inference. In NIPS-13; The 2000
Conference on Advances in Neural Information Pro-
cessing Systems, pages 995–1001. The MIT Press.

L.A. Ramshaw and M.P. Marcus. 1995. Text chunk-
ing using transformation-based learning. In Pro-
ceedings of the 3rd ACL/SIGDAT Workshop on Very
Large Corpora, Cambridge, Massachusetts, USA,
pages 82–94.

D. Roth and W. Yih. 2005. Integer linear programming
inference for conditional random fi elds. In Proc. of
the International Conference on Machine Learning
(ICML), pages 737–744.

Yuka Tateisi, Hideki Mima, Ohta Tomoko, and Junichi
Tsujii. 2002. Genia corpus: an annotated research
abstract corpus in molecular biology domain. In Hu-
man Language Technology Conference (HLT 2002),
pages 73–77.

E. Tjong Kim Sang and S. Buchholz. 2000. Introduc-
tion to the CoNLL-2000 shared task: Chunking. In
Proceedings of CoNLL-2000 and LLL-2000, pages
127–132.

E. Tjong Kim Sang and F. De Meulder. 2003. In-
troduction to the conll-2003 shared task: Language-
independent named entity recognition. In W. Daele-
mans and M. Osborne, editors, Proceedings of
CoNLL-2003, pages 142–147. Edmonton, Canada.

A. Van den Bosch and W. Daelemans. 2005. Improv-
ing sequence segmentation learning by predicting
trigrams. In I. Dagan and D. Gildea, editors, Pro-
ceedings of the Ninth Conference on Computational
Natural Language Learning.

A. Van den Bosch. 2004. Wrapped progressive
sampling search for optimizing learning algorithm
parameters. In R. Verbrugge, N. Taatgen, and
L. Schomaker, editors, Proceedings of the 16th
Belgian-Dutch Conference on Artificial Intelligence,
pages 219–226, Groningen, The Netherlands.

16


