
Maximum Entropy Tagging with Binary and Real-Valued Features

Vanessa Sandrini Marcello Federico Mauro Cettolo

ITC-irst - Centro per la Ricerca Scientifica e Tecnologica

38050 Povo (Trento) - ITALY

{surname}@itc.it

Abstract

Recent literature on text-tagging reported

successful results by applying Maximum

Entropy (ME) models. In general, ME

taggers rely on carefully selected binary

features, which try to capture discrimi-

nant information from the training data.

This paper introduces a standard setting

of binary features, inspired by the litera-

ture on named-entity recognition and text

chunking, and derives corresponding real-

valued features based on smoothed log-

probabilities. The resulting ME models

have orders of magnitude fewer parame-

ters. Effective use of training data to esti-

mate features and parameters is achieved

by integrating a leaving-one-out method

into the standard ME training algorithm.

Experimental results on two tagging tasks

show statistically significant performance

gains after augmenting standard binary-

feature models with real-valued features.

1 Introduction

The Maximum Entropy (ME) statistical frame-

work (Darroch and Ratcliff, 1972; Berger et al.,

1996) has been successfully deployed in several

NLP tasks. In recent evaluation campaigns, e.g.

DARPA IE and CoNLL 2000-2003, ME models

reached state-of-the-art performance on a range of

text-tagging tasks.

With few exceptions, best ME taggers rely on

carefully designed sets of features. Features cor-

respond to binary functions, which model events,

observed in the (annotated) training data and sup-

posed to be meaningful or discriminative for the

task at hand. Hence, ME models result in a log-

linear combination of a large set of features, whose

weights can be estimated by the well known Gen-

eralized Iterative Scaling (GIS) algorithm by Dar-

roch and Ratcliff (1972).

Despite ME theory and its related training algo-

rithm (Darroch and Ratcliff, 1972) do not set re-

strictions on the range of feature functions1 , pop-

ular NLP text books (Manning and Schutze, 1999)

and research papers (Berger et al., 1996) seem

to limit them to binary features. In fact, only

recently, log-probability features have been de-

ployed in ME models for statistical machine trans-

lation (Och and Ney, 2002).

This paper focuses on ME models for two text-

tagging tasks: Named Entity Recognition (NER)

and Text Chuncking (TC). By taking inspiration

from the literature (Bender et al., 2003; Borth-

wick, 1999; Koeling, 2000), a set of standard bi-

nary features is introduced. Hence, for each fea-

ture type, a corresponding real-valued feature is

developed in terms of smoothed probability distri-

butions estimated on the training data. A direct

comparison of ME models based on binary, real-

valued, and mixed features is presented. Besides,

performance on the tagging tasks, complexity and

training time by each model are reported. ME es-

timation with real-valued features is accomplished

by combining GIS with the leave-one-out method

(Manning and Schutze, 1999).

Experiments were conducted on two publicly

available benchmarks for which performance lev-

els of many systems are published on theWeb. Re-

sults show that better ME models for NER and TC

can be developed by integrating binary and real-

valued features.

1Darroch and Ratcliff (1972) show how any set of real-
valued feature functions can be properly handled.

1

2 ME Models for Text Tagging

Given a sequence of words wT
1 = w1, . . . , wT and

a set of tags C, the goal of text-tagging is to find
a sequence of tags cT

1 = c1, . . . , cT which maxi-

mizes the posterior probability, i.e.:

ĉT
1 = arg max

cT

1

p(cT
1 | wT

1). (1)

By assuming a discriminative model, Eq. (1) can

be rewritten as follows:

ĉT
1 = arg max

cT

1

T∏

t=1

p(ct | ct−1
1 , wT

1), (2)

where p(ct|c
t−1
1 , wT

1) is the target conditional
probability of tag ct given the context (c

t−1
1 , wT

1),
i.e. the entire sequence of words and the full se-

quence of previous tags. Typically, independence

assumptions are introduced in order to reduce the

context size. While this introduces some approxi-

mations in the probability distribution, it consid-

erably reduces data sparseness in the sampling

space. For this reason, the context is limited here

to the two previous tags (ct−1
t−2) and to four words

around the current word (wt+2
t−2). Moreover, limit-

ing the context to the two previous tags permits to

apply dynamic programming (Bender et al., 2003)

to efficiently solve the maximization (2).

Let y = ct denote the class to be guessed (y ∈ Y)
at time t and x = ct−1

t−2, w
t+2
t−2 its context (x ∈ X).

The generic ME model results:

pλ(y | x) =
exp(

∑n
i=1 λifi(x, y))∑

y′ exp(
∑n

i=1 λifi(x, y′))
. (3)

The n feature functions fi(x, y) represent any kind
of information about the event (x, y) which can be
useful for the classification task. Typically, binary

features are employed which model the verifica-

tion of simple events within the target class and

the context.

InMikheev (1998), binary features for text tagging

are classified into two broad classes: atomic and

complex. Atomic features tell information about

the current tag and one single item (word or tag) of

the context. Complex features result as a combina-

tion of two or more atomic features. In this way, if

the grouped events are not independent, complex

features should capture higher correlations or de-

pendencies, possibly useful to discriminate.

In the following, a standard set of binary fea-

tures is presented, which is generally employed

for text-tagging tasks. The reader familiar with the

topic can directly check this set in Table 1.

3 Standard Binary Features

Binary features are indicator functions of specified

events of the sample space X × Y . Hence, they
take value 1 if the event occurs or 0 otherwise. For

the sake of notation, the feature name denotes the

type of event, while the index specifies its param-

eters. For example:

Orthperson,Cap,−1(x, y)

corresponds to an Orthographic feature which is

active if and only if the class at time t is person

and the word at time t−1 in the context starts with
capitalized letter.

3.1 Atomic Features

Lexical features These features model co-

occurrences of classes and single words of the con-

text. Lexical features are defined on a window

of ±2 positions around the current word. Lexical
features are denoted by the name Lex and indexed

with the triple c, w, d which fixes the current class,

i.e. ct = c, the identity and offset of the word in

the context, i.e. wt+d = w. Formally, the feature

is computed by:

Lex c,w,d(x, y) =̂ δ(ct = c) · δ(wt+d = w).

For example, the lexical feature for word

Verona, at position t with tag loc (location) is:

Lexloc,Verona,0(x, y) = δ(ct = loc) ·

·δ(wt = Verona).

Lexical features might introduce data sparseness

in the model, given that in real texts an impor-

tant fraction of words occur only once. In other

words, many words in the test set will have no

corresponding features-parameter pairs estimated

on the training data. To cope with this problem,

all words observed only once in the training data

were mapped into the special symbol oov.

Syntactic features They model co-occurrences

of the current class with part-of-speech or chunk

tags of a specific position in the context. Syntactic

features are denoted by the name Syn and indexed

with a 4-tuple (c, Pos, p, d) or (c, Chnk, p, d),

2

Name Index Definition

Lex c, w, d δ(ct = c) · δ(wt+d = w), d ∈ Z

Syn c, T, p, d δ(ct = c) · δ(T(wt+d) = p) , T ∈ {Pos, Chnk}, d ∈ Z

Orth c, F, d δ(ct = c) · F(wt+d) , F ∈ {IsCap, IsCAP}, d ∈ Z

Dict c, L, d δ(ct = c) · InList(L,wt+d), d ∈ Z

Tran c, c′, d δ(ct = c) · δ(ct−d = c′) d ∈ N+

Lex+ c, s, k, ws+k−1
s

∏s+k−1
d=s Lexc,wd,d(x, y), k ∈ N+, s ∈ Z

Syn+ c, T, s, k, ps+k−1
s

∏s+k−1
d=s Sync,T,pd,d(x, y), k ∈ N+, s ∈ Z

Orth+ c, F, k, b+k
−k δ(ct = c) ·

∏k
d=−k δ(Orthc,F,d(x, y) = bd) , bd ∈ {0, 1}, k ∈ N+

Dict+ c, L, k, b+k
−k δ(ct = c) ·

∏k
d=−k δ(Dictc,L,d(x, y) = bd) , bd ∈ {0, 1}, k ∈ N+

Tran+ c, k, ck
1

∏k
d=1′ Tranc,cd,d(x, y) k ∈ N+

Table 1: Standard set of binary features for text tagging.

which fixes the class ct, the considered syntactic

information, and the tag and offset within the con-

text. Formally, these features are computed by:

Sync,Pos,p,d(x, y)=̂δ(ct = c) · δ(Pos(wt+d) = p)

Sync,Chnk,p,d(x, y)=̂δ(ct = c)·δ(Chnk(wt+d) = p).

Orthographic features These features model

co-occurrences of the current class with surface

characteristics of words of the context, e.g. check

if a specific word in the context starts with cap-

italized letter (IsCap) or is fully capitalized

(IsCAP). In this framework, only capitalization

information is considered. Analogously to syntac-

tic features, orthographic features are defined as

follows:

Orthc,IsCap,d(x, y)=̂δ(ct = c) · IsCap(wt+d)

Orthc,IsCAP,d(x, y)=̂δ(ct = c) · IsCAP(wt+d).

Dictionary features These features check if

specific positions in the context contain words oc-

curring in some prepared list. This type of feature

results relevant for tasks such as NER, in which

gazetteers of proper names can be used to improve

coverage of the training data. Atomic dictionary

features are defined as follows:

Dictc,L,d(x, y)=̂δ(ct = c) · InList(L,wt+d)

where L is a specific pre-compiled list, and

InList is a function which returns 1 if the spec-

ified word matches one of the multi-word entries

of list L, and 0 otherwise.

Transition features Transition features model

Markov dependencies between the current tag and

a previous tag. They are defined as follows:

Tranc,c′,d(x, y)=̂δ(ct = c) · δ(ct−d = c′).

3.2 Complex Features

More complex events are defined by combining

two or more atomic features in one of two ways.

Product features take the intersection of the cor-

responding atomic events. V ector features con-

sider all possible outcomes of the component fea-

tures.

For instance, the product of 3 atomic Lexical

features, with class c, offsets−2,−1, 0, and words
v−2, v−1, v0, is:

Lex+c,−2,3,v−2,v−1,v0
(x, y)=̂

0∏

d=−2

Lexc,vd,d(x, y).

Vector features obtained from three Dictionary

features with the same class c, list L, and offsets,

respectively, -1,0,+1, are indexed over all possible

binary outcomes b−1, b0, b1 of the single atomic

features, i.e.:

Dict+c,L,1,b−1,b0,b+1
(x, y)=̂δ(ct = c)×

1∏

d=−1

δ(Dictc,L,d(x, y) = bd).

Complex features used in the experiments are de-

scribed in Table 1.

The use of complex features significantly in-

creases the model complexity. Assuming that

there are 10, 000 words occurring more than once
in the training corpus, the above lexical feature po-

tentially adds O(|C|1012) parameters!

As complex binary features might result pro-

hibitive from a computational point of view, real-

valued features should be considered as an alter-

native.

3

Feature Index Probability Distribution

Lex d p(ct | wt+d)
Syn T, d p(ct | T(wt+d))
Orth F, d p(ct | F(wt+d))
Dict List, d p(ct | IsIn(List, wt+d))
Tran d p(ct | ct−d)

Lex+ s, k p(ct | wt+s, .., wt+s+k−1

Syn+ T, s, k p(ct | T(wt+s, . . . , wt+s+k−1))
Orth+ k, F p(ct | F(wt−k), . . . , F(wt+k))
Dict+ k,L p(ct | InList(L, wt−k), . . . , InList(L, wt+k))
Tran+ k p(ct | ct−k, . . . , ct+k))

Table 2: Corresponding standard set of real-values features.

4 Real-valued Features

A binary feature can be seen as a probability mea-

sure with support set made of a single event. Ac-

cording to this point of view, we might easily ex-

tend binary features to probability measures de-

fined over larger event spaces. In fact, it results

convenient to introduce features which are log-

arithms of conditional probabilities. It can be

shown that in this way linear constraints of the

MEmodel can be interpreted in terms of Kullback-

Leibler distances between the target model and the

conditional distributions (Klakow, 1998).

Let p1(y|x), p2(y|x), . . . , pn(y|x) be n different

conditional probability distributions estimated on

the training corpus. In our framework, each con-

ditional probability pi is associated to a feature fi

which is defined over a subspace [X]i × Y of the
sample space X × Y . Hence, pi(y|x) should be
read as a shorthand of p(y | [x]i).
The corresponding real-valued feature is:

fi(x, y) = log pi(y | x). (4)

In this way, the ME in Eq. (3) can be rewritten as:

pλ(y|x) =

∏n
i pi(y|x)λi

∑
y
′

∏
i pi(y

′ |x)λi

. (5)

According to the formalism adopted in Eq. (4),

real-valued features assume the following form:

fi(ct, c
t−1
t−2, w

t+2
t−2) = log pi(ct | ct−1

t−2, w
t+2
t−2). (6)

For each so far presented type of binary feature,

a corresponding real-valued type can be easily de-

fined. The complete list is shown in Table 2. In

general, the context subspace was defined on the

basis of the offset parameters of each binary fea-

ture. For instance, all lexical features selecting

two words at distances -1 and 0 from the current

position t are modeled by the conditional distri-

bution p(ct | wt−1, wt). While distributions of
lexical, syntactic and transition features are con-

ditioned on words or tags, dictionary and ortho-

graphic features are conditioned on binary vari-

ables.

An additional real-valued feature that was em-

ployed is the so called prior feature, i.e. the prob-

ability of a tag to occur:

Prior(x, y) = log p(ct)

A major effect of using real-valued features is

the drastic reduction of model parameters. For

example, each complex lexical features discussed

before introduce just one parameter. Hence, the

small number of parameters eliminates the need

of smoothing the ME estimates.

Real-valued features present some drawbacks.

Their level of granularity, or discrimination, might

result much lower than their binary variants. For

many features, it might result difficult to compute

reliable probability values due to data sparseness.

For the last issue, smoothing techniques devel-

oped for statistical language models can be applied

(Manning and Schutze, 1999).

5 Mixed Feature Models

This work, beyond investigating the use of real-

valued features, addresses the behavior of models

combining binary and real-valued features. The

reason is twofold: on one hand, real-valued fea-

tures allow to capture complex information with

fewer parameters; on the other hand, binary fea-

tures permit to keep a good level of granularity

over salient characteristics. Hence, finding a com-

promise between binary and real-valued features

4

might help to develop ME models which better

trade-off complexity vs. granularity of informa-

tion.

6 Parameter Estimation

From the duality of ME and maximum likeli-

hood (Berger et al., 1996), optimal parameters

λ∗ for model (3) can be found by maximizing

the log-likelihood function over a training sample

{(xt, yt) : t = 1, . . . ,N}, i.e.:

λ∗ = arg max
λ

N∑

t=1

log pλ(yt|xt). (7)

Now, whereas binary features take only two values

and do not need any estimation phase, conditional

probability features have to be estimated on some

data sample. The question arises about how to ef-

ficiently use the available training data in order to

estimate the parameters and the feature distribu-

tions of the model, by avoiding over-fitting.

Two alternative techniques, borrowed from sta-

tistical language modeling, have been consid-

ered: the Held-out and the Leave-one-out methods

(Manning and Schutze, 1999).

Held-out method. The training sample S is split
into two parts used, respectively, to estimate the

feature distributions and the ME parameters.

Leave-one-out. ME parameters and feature dis-

tributions are estimated over the same sample S.
The idea is that for each addend in eq. (7), the cor-

responding sample point (xt, yt) is removed from
the training data used to estimate the feature distri-

butions of the model. In this way, it can be shown

that occurrences of novel observations are simu-

lated during the estimation of the ME parameters

(Federico and Bertoldi, 2004).

In our experiments, language modeling smooth-

ing techniques (Manning and Schutze, 1999) were

applied to estimate feature distributions pi(y|x).
In particular, smoothing was based on the dis-

counting method in Ney et al. (1994) combined to

interpolation with distributions using less context.

Given the small number of smoothing parameters

involved, leave-one-out probabilities were approx-

imated by just modifying count statistics on the

fly (Federico and Bertoldi, 2004). The rationale is

that smoothing parameters do not change signifi-

cantly after removing just one sample point.

For parameter estimation, the GIS algorithm

by Darroch and Ratcliff (1972) was applied. It

is known that the GIS algorithm requires feature

functions fi(x, y) to be non-negative. Hence, fea-
tures were re-scaled as follows:

fi(x, y) = log pi(y|x) + log
1 + ε

min pi

, (8)

where ε is a small positive constant and the de-

nominator is a constant term defined by:

min pi = min
(x,y)∈S

pi(y|x). (9)

The factor (1 + ε) was introduced to ensure that
real-valued features are always positive. This con-

dition is important to let features reflect the same

behavior of the conditional distributions, which

assign a positive probability to each event.

It is easy to verify that this scaling operation

does not affect the original model but only impacts

on the GIS calculations. Finally, a slack feature

was introduced by the algorithm to satisfy the con-

straint that all features sum up to a constant value

(Darroch and Ratcliff, 1972).

7 Experiments

This section presents results of MEmodels applied

to two text-tagging tasks, Named Entity Recogni-

tion (NER) and Text Chunking (TC).

After a short introduction to the experimen-

tal framework, the detailed feature setting is pre-

sented. Then, experimental results are presented

for the following contrastive conditions: binary

versus real-valued features, training via held-out

versus leave-one-out, atomic versus complex fea-

tures.

7.1 Experimental Set-up

Named Entity Recognition English NER ex-

periments were carried out on the CoNLL-2003

shared task2. This benchmark is based on texts

from the Reuters Corpus which were manually

annotated with parts-of-speech, chunk tags, and

named entity categories. Four types of categories

are defined: person, organization, location and

miscellaneous, to include e.g. nations, artifacts,

etc. A filler class is used for the remaining words.

After including tags denoting the start of multi-

word entities, a total of 9 tags results. Data are

partitioned into training (200K words), develop-

ment (50K words), and test (46K words) samples.

2Data and results in http://cnts.uia.ac.be/conll2003/ner.

5

Text Chunking English TC experiments were

conducted on the CoNLL-2000 shared task3.

Texts originate from the Wall Street Journal and

are annotated with part-of-speech tags and chunks.

The chunk set consists of 11 syntactic classes. The

set of tags which also includes start-markers con-

sists of 23 classes. Data is split into training (210K

words) and test (47K words) samples.

Evaluation Tagging performance of both tasks

is expressed in terms of F-score, namely the har-

monic mean of precision and recall. Differences in

performance have been statistically assessed with

respect to precision and recall, separately, by ap-

plying a standard test on proportions, with signif-

icance levels α = 0.05 and α = 0.1. Henceforth,
claimed differences in precision or recall will have

their corresponding significance level shown in

parenthesis.

7.2 Settings and Baseline Models

Feature selection and setting for ME models is an

art. In these experiments we tried to use the same

set of features with minor modifications across

both tasks. In particular, used features and their

settings are shown in Table 3.

Training of models with GIS and estimation

of feature distributions used in-house developed

toolkits. Performance of binary feature models

was improved by smoothing features with Gaus-

sian priors (Chen and Rosenfeld, 1999) with mean

zero and standard deviation σ = 4. In general,
tuning of models was carried out on a development

set.

Most of the comparative experiments were per-

formed on the NER task. Three baseline models

using atomic features Lex, Syn, and Tran were

investigated first: model BaseBin, with all binary

features; model BaseReal, with all real-valued fea-

tures plus the prior feature; model BaseMix, with

real-valued Lex and binary Tran and Syn. Mod-

els BaseReal and BaseMix were trained with the

held-out method. In particular, feature distribu-

tions were estimated on the training data while ME

parameters on the development set.

7.3 Binary vs. Real-valued Features

The first experiment compares performance of the

baseline models on the NER task. Experimental

results are summarized in Table 4. Models Base-

Bin, BaseReal, and BaseMix achieved F-scores of

3Data and results in http://cnts.uia.ac.be/conll2000/chunking.

Model ID Num P% R% F-score

BaseBin 580K 78.82 75.62 77.22

BaseReal 10 79.74 74.15 76.84

BaseMix 753 78.90 75.85 77.34

Table 4: Performance of baseline models on the

NER task. Number of parameters, precision, re-

call, and F-score are reported for each model.

Model Methods P% R% F-score

BaseMix Held-Out 78.90 75.85 77.34

BaseMix L-O-O 80.64 76.40 78.46

Table 5: Performance of mixed feature models

with two different training methods.

77.22, 76.84, and 77.34. Statistically meaning-

ful differences were in terms of recall, between

BaseBin and BaseReal (α = 0.1), and between
BaseMix and BaseReal (α = 0.05).

Despite models BaseMix and BaseBin perform

comparably, the former has many fewer parame-

ters, i.e. 753 against 580,000. In fact, BaseMix re-

quires storing and estimating feature distributions,

which is however performed at a marginal compu-

tational cost and off-line with respect to GIS train-

ing.

7.4 Training with Mixed Features

An experiment was conducted with the BaseMix

model to compare the held-out and leave-one-out

training methods. Results in terms of F-score are

reported in Table 5. By applying the leave-one-

out method F-score grows from 77.34 to 78.46,

with a meaningful improvement in recall (α =
0.05). With respect to models BaseBin and Base-
Real, leave-one-out estimation significantly im-

proved precision (α = 0.05).

In terms of training time, ME models with real-

valued features took significantly more GIS iter-

ations to converge. Figures of cost per iteration

and number of iterations are reported in Table 6.

(Computation times are measured on a single CPU

Pentium-4 2.8GHz.) Memory size of the training

process is instead proportional to the number n of

parameters.

7.5 Complex Features

A final set of experiments aims at comparing the

baseline MEmodels augmented with complex fea-

tures, again either binary only (model FinBin),

6

Feature Index NE Task Chunking Task

Lex c, w, d N(w) > 1,−2 ≤ d ≤ +2 −2 ≤ d ≤ +2
Syn c, T, p, d T ∈ {Pos, Chnk}, d = 0 T = Pos,−2 ≤ d ≤ +2
Tran c, c′, d d = −2,−1 d = −2,−1

Lex+ c, s, k, ws+k−1
s s = −1, 0, k = 1 s = −1, 0 k = 1

Syn+ c, T, s, k, ps+k−1
s not used s = −1, 0 k = 1

Orth+ c, k, F, b+k
−k

F = {Cap, CAP}, k = 2 F = Cap, k = 1

Dict+ c, k, L, b+k
−k k = 3L = {LOC, PER, ORG, MISC} not used

Tran+ c, k, ck
1 k = 2 k = 2

Table 3: Setting used for binary and real-valued features in the reported experiments.

Model Single Iteration Iterations Total

BaseBin 54 sec 750 ≈ 11 h
BaseReal 9.6 sec 35,000 ≈ 93 h
BaseMix 42 sec 4,000 ≈ 46 h

Table 6: Computational cost of parameter estima-

tion by different baseline models.

real-valued only (FinReal), or mixed (FinMix).

Results are provided both for NER and TC.

This time, compared models use different fea-

ture settings. In fact, while previous experiments

aimed at comparing the same features, in either

real or binary form, these experiments explore al-

ternatives to a full-fledged binary model. In par-

ticular, real-valued features are employed whose

binary versions would introduce a prohibitively

large number of parameters. Parameter estima-

tion of models including real-valued features al-

ways applies the leave-one-out method.

For the NER task, model FinBin adds Orth+

and Dict+; FinReal adds Lex+, Orth+ and

Dict+; and, FinMix adds real-valued Lex+ and

binary-valued Orth+ and Dict+.

In the TC task, feature configurations are as fol-

lows: FinBin uses Lex, Syn, Tran, and Orth+;

FinReal uses Lex, Syn, Tran, Prior, Orth+,

Lex+, Syn+, Tran+; and, finally, FinMix uses

binary Syn, Tran, Orth+ and real-valued Lex,

Lex+, Syn+.

Performance of the models on the two tasks are

reported in Table 7 and Table 8, respectively.

In the NER task, all final models outperform the

baseline model. Improvements in precision and

recall are all significant (α = 0.05). Model Fin-
Mix improves precision with respect to model Fin-

Bin (α = 0.05) and requires two order of magni-
tude fewer parameters.

Model Num P% R% F-score

FinBin 673K 81.92 80.36 81.13

FinReal 19 83.58 74.03 78.07

FinMix 3K 84.34 80.38 82.31

Table 7: Results with complex features on the

NER task.

Model Num P% R% F-score

FinBin 2M 91.04 91.48 91.26

FinReal 19 88.73 90.58 89.65

FinMix 6K 91.93 92.24 92.08

Table 8: Results with complex features on the TC

task.

In the TC task, the same trend is observed.

Again, best performance is achieved by the model

combining binary and real-valued features. In par-

ticular, all observable differences in terms of pre-

cision and recall are significant (α = 0.05).

8 Discussion

In summary, this paper addressed improvements to

ME models for text tagging applications. In par-

ticular, we showed how standard binary features

from the literature can be mapped into correspond-

ing log-probability distributions. ME training with

the so-obtained real-valued features can be accom-

plished by combining the GIS algorithm with the

leave-one-out or held-out methods.

With respect to the best performing systems at

the CoNLL shared tasks, our models exploit a rel-

atively smaller set of features and perform signifi-

cantly worse. Nevertheless, performance achieved

by our system are comparable with those reported

by other ME-based systems taking part in the eval-

uations.

Extensive experiments on named-entity recog-

7

nition and text chunking have provided support to

the following claims:

• The introduction of real-valued features dras-
tically reduces the number of parameters of

the ME model with a small loss in perfor-

mance.

• The leave-one-out method is significantly
more effective than the held-out method for

training ME models including real-valued

features.

• The combination of binary and real-valued
features can lead to better MEmodels. In par-

ticular, state-of-the-art ME models with bi-

nary features are significantly improved by

adding complex real-valued features which

model long-span lexical dependencies.

Finally, the GIS training algorithm does not

seem to be the optimal choice for ME models in-

cluding real-valued features. Future work will in-

vestigate variants of and alternatives to the GIS

algorithm. Preliminary experiments on the Base-

Real model showed that training with the Simplex

algorithm (Press et al., 1988) converges to simi-

lar parameter settings 50 times faster than the GIS

algorithm.

9 Acknowledgments

This work was partially financed by the Euro-

pean Commission under the project FAME (IST-

2000-29323), and by the Autonomous Province of

Trento under the the FU-PAT project WebFaq.

References

O. Bender, F. J. Och, and H. Ney. 2003. Maximum
entropy models for named entity recognition. In
Walter Daelemans and Miles Osborne, editors, Pro-
ceedings of CoNLL-2003, pages 148–151. Edmon-
ton, Canada.

A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra.
1996. A Maximum Entropy Approach to Natural
Language Processing. Computational Linguistics,
22(1):39–72.

A. Borthwick. 1999. A Maximum Entropy approach
to Named Entity Recognition. Ph.D. thesis, Com-
puter Science Department - New York University,
New York, USA.

S. Chen and R. Rosenfeld. 1999. A Gaussian prior
for smoothing maximum entropy models. Techni-
cal Report CMUCS-99-108, Carnegie Mellon Uni-
versity.

J.N. Darroch and D. Ratcliff. 1972. Generalized Itera-
tive Scaling for Log-Liner models. Annals of Math-
ematical Statistics, 43:1470–1480.

M. Federico and N. Bertoldi. 2004. Broadcast news
lm adaptation over time. Computer Speech and Lan-
guage, 18(4):417–435, October.

D. Klakow. 1998. Log-linear interpolation of language
models. In Proceedings of the International Confer-
ence of Spoken Language P rocessing (ICSLP), Sid-
ney, Australia.

R. Koeling. 2000. Chunking with maximum entropy
models. In Proceedings of CoNLL-2000, pages
139–141, Lisbon, Portugal.

C. D. Manning and H. Schutze. 1999. Foundations
of Statistical Natural Language Processing. MIT
Press.

A. Mikheev. 1998. Feature lattices for maximum en-
tropy modelling. In COLING-ACL, pages 848–854.

H. Ney, U. Essen, and R. Kneser. 1994. On structur-
ing probabilistic dependences in stochastic language
modeling. Computer Speech and Language, 8(1):1–
38.

F.J. Och and H. Ney. 2002. Discriminative training and
maximum entropy models for statistical machin e
translation. In ACL02: Proceedings of the 40th An-
nual Meeting of the Association for Computational
Linguistics, pages 295–302, PA, Philadelphia.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling. 1988. Numerical Recipes in C. Cam-
bridge University Press, New York, NY.

8

