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Abstract

As text data becomes plentiful, unsuper-

vised methods for Word Sense Disam-

biguation (WSD) become more viable. A 

problem encountered in applying WSD 

methods is finding the exact number of 

senses an ambiguity has in a training cor-

pus collected in an automated manner. 

That number is not known a priori; rather 

it needs to be determined based on the 

data itself. We address that problem us-

ing cluster stopping methods. Such tech-

niques have not previously applied to 

WSD. We implement the methods of 

Calinski and Harabasz (1975) and Harti-

gan (1975) and our adaptation of the Gap 

statistic (Tibshirani, Walter and Hastie, 

2001). For evaluation, we use the WSD 

Test Set from the National Library of 

Medicine, whose sense inventory is the 

Unified Medical Language System. The 

best accuracy for selecting the correct 

number of clusters is 0.60 with the C&H 

method. Our error analysis shows that the 

cluster stopping methods make finer-

grained sense distinctions by creating ad-

ditional clusters. The highest F-scores 

(82.89), indicative of the quality of clus-

ter membership assignment, are compa-

rable to the baseline majority sense 

(82.63) and point to a path towards accu-

racy improvement via additional cluster 

pruning. The importance and significance 

of the current work is in applying cluster 

stopping rules to WSD. 

1 Introduction 

The dominant approach in word sense disam-

biguation (WSD) is based on supervised learning 

from manually sense-tagged text. While this is 

effective, it is quite difficult to get a sufficient 

number of manually sense-tagged examples to 

train a system. Mihalcea (2003) estimates that 

80-person years of annotation would be needed 

to create training corpora for 20,000 ambiguous 

English words, given 500 instances per word. 

For that reason, we are developing unsupervised 

knowledge-lean methods that avoid the bottle-

necks created by sense-tagged text. Unsupervised 

clustering methods utilize only raw corpora as 

their source of information, and there are grow-

ing amounts of general and specialized domain 

corpora available, e.g. biomedical domain cor-

pora.

Improvements in WSD methods would be of 

immediate value in indexing and retrievals of 

biomedical text given the explosion of biomedi-

cal literature as well as the rapid deployment of 

electronic medical records. Semantic/conceptual 

indexing and retrieval in that domain is often 

done in regard to the Unified Medical Language 

System (UMLS) developed at the National Li-

brary of Medicine (NLM) at the United States 

National Institutes of Health (NIH)1. It is impor-

tant to understand that the UMLS is significantly 

different than a dictionary, which is often the 

source of the sense inventory. Rather, the UMLS 

integrates more than 100 medical domain con-

trolled vocabularies such as SNOMED-CT2 and 

the International Classification of Diseases 

(ICD)3. UMLS has three main components. The 

first component, the Metathesaurus, includes all 

terms from the controlled vocabularies and is 

organized by concept, which is a cluster of terms 

representing the same meaning. Each concept is 

assigned a concept unique identifier (CUI), 

which is inherited by each term in the cluster. 

UMLS-based semantic indexing is based on CUI 

assignments. The second component, the Seman-

tic Network, groups the concepts into 134 types 

of categories and indicates the relationships be-

tween them. The Semantic Network is a coarse 

ontology of the concepts. The third component, 

the SPECIALIST lexicon, contains syntactic in-

formation for the Metathesaurus terms. 

1 http://www.nlm.nih.gov/pubs/factsheets/umls.html
2 http://www.snomed.org/ 
3

http://www.who.int/classifications/help/icdfaq/en/
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MeSH, an ontology within UMLS, is heavily 

used for indexing biomedical scientific publica-

tions, e.g. Medline4. Hospitals, medical practices 

and biomedical research increasingly rely on the 

UMLS, or a subset ontology within it, to index 

and retrieve relevant information. It is estimated 

that approximately 7400 UMLS terms map to 

multiple concepts which creates ambiguity 

(Weeber, Mork and Aronson., 2001). Term am-

biguity has been pointed out to be one of the ma-

jor challenges for UMLS-based semantic index-

ing and retrieval (Weeber et al., 2001). For ex-

ample, “cold” has the following six UMLS 

meanings, each with its own UMLS CUI: cold 

temperature, common cold, cold sensation, cold 

therapy, chronic obstructive lung disease 

(COLD), and Cold brand of chlorpheniramine-

phenylpropanolamine.  

The problem we are addressing in this paper is 

discovering the number of senses an ambiguous 

word has in a given corpus, which is a compo-

nent within a completely unsupervised WSD sys-

tem. For example, if a corpus of 1000 instances 

containing the word “cold” has been compiled 

from patients medical records, how many “cold“ 

senses are in that corpus? This is a challenge any 

NLP system implementing WSD faces. To ad-

dress this problem, we apply cluster stopping 

rules in an automated way. 

The paper is organized as follows. Section 2 

overviews the related work on cluster stopping 

rules. Section 3 outlines our methods, tools, fea-

tures selection, test set and evaluation metrics. 

Section 4 presents the results and discusses them. 

Section 5 is the conclusions. 

2 Background and Related Work 

Our work is based on cluster analysis. Cluster 

analysis is often performed to discover the 

groups that the data naturally fall into. The num-

ber of groups is not known a priori; rather, it 

needs to be determined based on the data itself. 

Such methods or “cluster stopping rules” usually 

rely on within-cluster dissimilarity/error (W(k))

metrics which in general exhibit a decline when 

the number of clusters increases. Splitting a natu-

ral group into subgroups reduces the criterion 

less than when well-separated clusters are dis-

covered. In those cases, the W(k) will not have a 

sharp decline as the instances are close. This 

phenomenon has been described in statistical 

literature as the “elbow” effect as illustrated in 

4 http://www.nlm.nih.gov/pubs/factsheets/medline.html

Figure 1. Methods for locating the “elbow have 

been the goal of many research studies (Hartigan, 

1975; Calinski and Harabasz, 1975; Milligan and 

Cooper, 1987; Tibshirani, Walter and Hastie, 

2001 among many). 

Milligan and Cooper (1985) offer the most 

comprehensive comparative study of the per-

formance of 30 stopping rules. They carry out 

their study on “mildly truncated data from multi-

variate normal distributions, and one would not 

expect their ranking of the set of stopping rules 

to be reproduced exactly if a different cluster-

generating strategy were adopted.” (Gordon, 

1999, p. 61). The five rules which were the top 

performance in the Milligan and Cooper study  

are Calinski and Harabasz (1974) a.k.a. C&H, 

Goodman and Kruskal (1954), C index (Hubert 

and Schultz, 1976), Duda and Hart (1973) and 

Beale (1969). Tibshirani et al. (2001) introduce 

the Gap statistic and compare its performance to 

the methods of Calinski and Harabasz (1974), 

Krzanowski and Lai (1985), Hartigan (1975), 

and the Silhouette method (Kaufman and 

Rousseeuw, 1990). On the simulated and DNA 

microarray data Tibshirani and colleagues used 

for their experiments, the Gap statistic yields the 

best result. 

In general, stopping rules fall into two catego-

ries – global and local (Gordon, 1999; Tibshirani 

et al., 2001). Global rules take into account a 

combination of within-cluster and between-

cluster similarity measures over the entire data. 

Global rules choose such k where that combined 

metric is optimal. Global rules, however, in most 

cases do not work for k=1, that is they do not 

make predictions of when the data should not be 

partitioned at all. Global rules look at the entire 

data over k number of clusters. Local rules, on 

the other hand, are based only on a given k solu-

tion or individual pairs of clusters and test 

whether they should be grouped together. They 

need a threshold value or a significance level, 

which depends on the specific data and in most 

cases have to be empirically determined. 

3 Methodology

3.1 Overview

In this study, we explore three cluster stopping 

methods as applied to unsupervised WSD – Har-

tigan (1975), Calinski and Harabasz (1974), and 

the Gap statistic (Tibshirani et al., 2001). The 

data to be clustered is instances of context sur-

rounding each ambiguity. Each instance is con-

verted into a feature vector where the features are 
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ngrams (unigrams or bigrams) and each cell is 

the frequency of occurrence of a unigram or bi-

gram or the log-likelihood of a bigram occurring

in that particular instance after applying a feature

selection method. The clustering algorithm for 

this set of experiments is agglomerative cluster-

ing (see Section 3.5 for a more detailed descrip-

tion).

Our goal is to group contexts into separate

clusters based on the underlying sense of the am-

biguous word. Thus, the observations are con-

texts and the features are the identified lexical 

features (i.e. significant word(s)) that represent

the contexts. Our observed data matrix generally

shows the following characteristics –

1) it is discrete

2) it is high dimensional/multivariate

3) it can be real valued or integer, or binary

4) it is sparse; while the number of features

can be in few hundreds, contexts have a length 

limit (ignoring the commonly occurring “closed

class words” like “the”, “an”, “on” etc.) 

5) it represents a distribution of contexts that

is generally skewed.

Following is our motivation for choosing the 

three cluster stopping rules. Hartigan (1975) and

Calinski and Harabasz (1974) have been consis-

tently used as baselines in a number of studies, 

e.g. Tibshirani et al. (2001). The Hartigan

method is computationally simple and efficient

and unlike C&H, it is defined for k=1. The C&H 

method was ranked the top among 30 stopping

rules in the comprehensive study conducted by

Milligan and Cooper (1975). The Gap statistic 

(Tibshirani et al., 2001) is a fairly recent method

that has gained popularity by showing excellent

results when applied to the bio domain, e.g. clus-

tering DNA mircoarray data. None of the meth-

ods, however, have been applied or adapted to

WSD.

3.2 Calinski and Harabasz (1975) Method

The C&H method is reported to perform the best 

among 30 stopping rules (Milligan and Cooper, 

1985). C&H is a global method. The Variance

Ratio Criteria C&H uses is 

kn
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where BGSS (between group sum of squares) is

the sum of the dispersions between the k cluster

centroids and the general centroid; WGSS

(within-group sum of squares) is the sum of each

cluster’s dispersion of its cluster members

(measured by the sum of squared distances be-

tween each member and the cluster centroid) 

weighed by the number of cluster members; k is 

the number of clusters and n is the number of 

instances. The distance used is the Euclidean dis-

tance. As Calinski and Harabasz point out, VRC

“is analogous to the F-statistic in univariate 

analysis” (Calinski and Harabasz, 1975, p. 10).

C&H seeks to maximize VRC.

3.3 Hartigan (1975) Method 

Hartigan (1975) proposes a cluster stopping rule: 

)1(1
)1(

)(
)( kn
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kH

where n is the total number of instances to be 

clustered, k is the number of clusters and

WGSS(k) is the total sum of squared distances of

cluster members from their cluster centroid in all 

clusters when clustered in k clusters. 

H(k) is used to decide when k+1 clusters are

needed rather than k clusters. Its distribution ap-

proximates the F distribution. A large value of 

H(k) would indicate that the addition of a cluster 

is warranted. Hartigan suggests that as a crude 

rule of thumb, values exceeding 10 justify in-

creasing the number of clusters from k to k+1 

(Hartigan, 1975, p. 91). Thus, a solution is the 

smallest k 1 such that H(k)  10. The method

can return 1 cluster as the optimal solution. Har-

tigan (1975) is a local method.

3.4 Gap Statistic Method 

In general, the “gap” method compares the dif-

ference/gap between the within-cluster disper-

sion measure for the observed distribution and

that for an appropriate null distribution of the

data. Tibshirani and colleagues (Tibshirani et al., 

2001) start with the assumption of a single clus-

ter null model which is to be rejected in favor of 

a k-component model (k>1) if the observed data 

supports it. Tibshirani and colleagues use a uni-

form distribution as the null distribution of the

data to standardize the comparison between all

the W(k) over the various values of k where W(k)

is the pooled within cluster sum of squares 

around the cluster means (distance is squared 

Euclidean distance).  The uniform distribution is

the least favorable distribution and the most

likely to produce spurious clusters. However,
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Tibshirani and colleagues also point out that the 

choice of an appropriate null distribution de-

pends on the data. Tibshirani and colleagues

compare the curve of log(W(k)) to the log(W*(k))

curve obtained from the reference uniformly dis-

tributed over the data. The estimated optimal

number of clusters is the k value where the gap 

between the two curves is the largest. Figure 1 is

an example of log(W(k)) to the log(W*(k)) curves

used in the computation of the Gap statistic. 

The two main advantages of the Gap statistic 

over various previously proposed “stopping

rules” are its ability to work with data created by

almost any type of clustering and its ability to 

accurately estimate the optimal number of clus-

ters even for data that naturally falls into just one 

cluster. The Gap statistic is an application of pa-

rametric bootstrap methods to the clustering

problem. Unlike non-parametric methods, para-

metric techniques represent the observed data 

distribution. The basic strategy is to create multi-

ple random data sets over the observed distribu-

tion for which there are no clusters, apply the 

chosen clustering method to them, and tabulate 

the apparent decrease in within-cluster variation 

that ensues.  This gives a measure of optimism

with which to compare the clustering of the ob-

served data. 

The complete methodology can be broadly

classified into two important components namely

the reference distribution and the algorithm

which uses the reference distribution. We de-

scribe each of the two components below.

Figure 1: The functions log(W(k)) (observed) 

and log(W*(k)) (reference) used for computing 

the Gap statistic 

Reference Distribution Generation for an 

NLP Task

Here, we describe how we extend the generation

of the reference distribution over the observed

data to retain the characteristics mentioned at end

of section 3.1. We will use the observed data

shown in Table 1 as a running example. To simu-

late the structure of the observed data, the fol-

lowing features are to be emulated:

(a) Context length is the number of features 

that can occur in a context. Contexts can be sen-

tences, paragraphs, entire documents or just any

specified window size. In general, the number of

available features will be at least in the hundreds,

however, only a few might occur in a given con-

text, especially if the context is limited to the 

sentence the target ambiguity occurs in. Addi-

tionally, context length is influenced by the fea-

ture selection method – if only very frequent 

lexical units are retained as features, then only 

those units will represent the context. Thus, a

context length could be very small compared to

the size of the feature set. In the example from

Table 1, context length is captured by the row 

marginals, e.g. the context length for Context1 is 

3, which means that overall there are only three

features for that context. 

(b) Sparsity is a consequence of relatively

small context length. Currently, our assumption

is that contexts are derived from small discourse 

units (sentences or abstracts at the most). For 

bigger discourse units, e.g. several paragraphs or

entire documents, our proposed generation of the 

reference distribution should be modified to re-

flect feature occurrences over those units. In the 

example from Table 1, for instance in Context1, 

there are 3 features that are present – Feature1,

Feature4 and Feature5 – the rest are absent.

Sparsity can be viewed as the number of ab-

sent/zero-valued features for each row. 

(c) Feature distribution is the frequency of oc-

currence of each feature across all contexts. It is 

captured by the column marginals of the ob-

served data matrix. For example, in Table 1 Fea-

ture1 occurs twice over the entire data; similarly

Feature2 occurs twice and so on. Feature distri-

bution can be viewed as the number of occur-

rences of each feature in the entire corpus. 

Now we describe how we do the reference

generation to stay faithful to the characteristics

described above. We use the uniform and the 

proportional methods. The uniform method gen-

erates data that realizes (a) and (b) characteristics

of the data and is the used originally in Tibshi-

rani et al. (2001). The proportional method cap-

tures (a), (b), and (c) and is our adaptation of the 

Gap method.

The data is constructed as follows. To retain

the context lengths of the observed data in the
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Feature1 Feature2 Feature3 Feature4 Feature5 …FeatureP Total number of

non-zero value cells

Context1 1 0 0 1 1 ……… 3

Context2 0 1 1 0 1 ……… 3

Context3 1 0 0 0 1 ……… 2

Context4 0 1 1 1 1 ……… 4

…ContextN ……… ……… ……… ……… ……… ……… ………

2 2 2 2 4 ……… 12

Table 1: Observed data (sample)

reference data, the row marginals of the refer-

ence data are fixed to be equal to those of the 

observed data. In Table 1, the row marginals for 

the reference data will be {3, 3, 2, 4}. Carrying

the observed marginals to the reference data ap-

plies to both the uniform and proportional meth-

ods. Note that currently we fix only the row mar-

ginals. Due to the current assumption of binary

feature frequency, the generated reference data is 

binary too and this is true for both methods.

The main difference between the uniform

and proportional methods lies in whether the fea-

ture distribution is maintained in the simulation.

The uniform method does not weigh the features; 

rather, all features are given equal probability of 

occurring in the generated data. A uniform ran-

dom number r over the range [1, featureSetSize]

is drawn. The cell corresponding to the rth col-

umn (i.e. feature) in the current row under con-

sideration (i.e. context) is assigned “1”. For ex-

ample, in our running example let’s say we are 

generating reference data for the 3rd row from

Table 1. We first generate a random number over 

the range [1, p]. Let’s assume that the generated

number is 4. Then, the cell [3, 4] is assigned

value “1”. This procedure is repeated twice since

the row marginal for this row of the reference

data is 2. The proportional method factors in the

distribution of the column marginals of the ob-

served data while generating the random data. 

Unlike the uniform method, it takes into account 

the weight of each feature. In other words, the 

features by their frequency assign themselves a

range. For example, the features in the Table 1

will be assigned the following ranges: Feature1 -

[1, 2]; Feature2 - [3, 4]; Feature3 – [5, 6]; Fea-

ture4 – [7, 8]; Feature5 – [9, 12]. A random

number is generated over the range [1, total

number of feature occurrences]. For the data in

Table 1, a random number is generated over the 

range [1, 12]. The feature corresponding to the 

range in which the random number falls is as-

signed “1”. For example, if we are generating the 

reference for Context3 and the generated random

number over the range [1, 12] is 5, then a look-

up determines that 5 falls in the range for Fea-

ture3. Hence, the cell in Context3 corresponding

to Feature3 is assigned “1”. Similar to the uni-

form method we would repeat this procedure 

twice to achieve the row marginal total of 2. 

Currently we proceed with the binary refer-

ence data created by the procedure described

above. Note that this binary reference matrix can 

be converted to a strength-of-association matrix

by multiplying it with a diagonal matrix that con-

tains the strength-of-association scores, e.g. log 

likelihood ratio, Mutual Information, Pointwise

mutual information, Chi-squared to name a few. 

Algorithm

The complete algorithm of the Gap Statistics 

which the reference distribution is a part of is: 

1.Cluster the observed data, varying the total 

number of clusters from k = 1, 2, …., K, giving

within dispersion measures W(k), k = 1, 2, 

….K.

2.Generate B reference datasets using the uni-

form or the proportional methods as described

above, and cluster each one giving within dis-

persion measures W*(kb), b = 1, 2, … B, k = 

1, 2,… K. Compute the estimated Gap statistic:

))(log())(*log()/1()( kWkbWBkGap
b

3. Let 
B

kbWBl ))(*log()/1( , compute the stan-

dard deviation
2/12]))(*(log()/1[()( lkbWBksd

B

 and define

Bksdks /11)()( . Finally choose the number of

clusters via 

)1()1()(_ˆ kskGapkGapuchThatsmallestKsk

The final step is the criterion for selecting the 

optimal k value. It says to choose the smallest k

value for which the gap is greater than the gap

for the earlier k value by the significance test of

“one standard error”. The “one standard error”

calculations are modified to account for the

simulation error. Tibshirani and colleagues also

advise to use a multiplier to the s(k) for better 

rejection of the null hypothesis.
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3.5 Tools, Feature Selection and Method

Parameters

rus strings (Weeber et al., 2001). Each ambiguity

has 100 manually sense-tagged instances. All

instances were randomly chosen from Medline 

abstracts. Each ambiguity instance is provided

with the sentence it occurred in and the Medline 

abstract text it was derived from. The senses for

every ambiguity are the UMLS senses plus a

“none of the above” category which captures all 

instances not fitting the available UMLS senses. 

For feature representation, selection, context rep-

resentation and clustering, we used Sense-

Clusters0.69 (http://senseclusters.sourceforge.net). It 

offers a variety of lexical features (ngrams, col-

locations, etc.) and feature selection methods 

(frequency, log likelihood, etc.). The contexts 

can then be represented with those features in

vector space using first or second order vectors 

which are then clustered. A detailed description

can be found in Purandare and Pedersen (2004)

and http://www.d.umn.edu/~tpederse/senseclusters.html.

SenseClusters links to CLUTO for the clustering

part (http://www-users.cs.umn.edu/~karypis/

cluto/download.html). CLUTO implements in a

fast and efficient way the main clustering algo-

rithms – agglomerative, partitional and repeated

bisections.

For the current study, we modified the NLM

WSD by excluding instances sense-tagged with 

the “none of the above” category. This is moti-

vated by the fact that that category is a catch-all

category for all senses that do not fit the current

UMLS inventory. First, we excluded words 

whose majority category was “none of the 

above”. Secondly, from the instances of the re-

maining words, we removed those marked with 

“none of the above”. That subset of the original 

NLM WSD set we refer to as the “modified

NLM WSD set” (Table 2).
We chose the following methods for feature

representation and selection. Method1 uses bi-

grams as features, average link clustering in 

similarity space and the abstract as the context to 

derive the features from. The method is de-

scribed in Purandare and Pedersen (2004). It is 

based on first order context vectors, which repre-

sent features that occur in that context. A similar-

ity matrix is clustered using the average link ag-

glomerative method. Purandare and Pedersen

(2004) report that this method generally per-

formed better where there was a reasonably large

amount of data available (i.e., several thousand 

contexts). The application of that method to the 

biomedical domain is described in a technical

report (Savova, Pedersen, Kulkarni and Puran-

dare, 2005). Method2 uses unigrams which occur 

at least 5 times in the corpus. The context is the 

abstract. The choice of those features is moti-

vated by Joshi, Pedersen and Maclin (2005)

study which achieves best results with unigram

features.

3.7 Evaluation

Our evaluation of the performance of the cluster

stopping rules is two-fold. Accuracy is a direct

evaluation measuring the correctly recognized

number of senses:

words with correctly predicted number of senses

    all words 

Accuracy evaluates how well the methods dis-

cover the exact number of senses in the test cor-

pus. The F-score of the WSD is an indirect

evaluation for the quality of the cluster assign-

ment:

callecision

callecision)(
scoreF

RePr2

RePr12
_

Precision is the number of correctly clustered

instances divided by the number of clustered in-

stances; Recall is the number of correctly clus-

tered instances divided by all instances. There

may be some number of contexts that the cluster-

ing algorithm declines to process, which leads to 

the difference in precision and recall. 

For the Hartigan cluster stopping method, the

threshold is set to 10 which is the recommenda-

tion in the original algorithm. For the Gap cluster 

stopping method, we experiment with B=100, 

and the uniform and proportional reference gen-

eration methods. 
Our baseline is a simple clustering algorithm that

assigns all instances of a target word to a single

cluster.
3.6 Test Set

Our test set is the NLM WSD5 set which com-

prises 5000 disambiguated instances for 50 

highly frequent ambiguous UMLS Metathesau-
4 Results and Discussion

Table 3 presents the results for the three methods
5http://wsd.nlm.nih.gov/Restricted/Reviewed_Results/index.

shtml
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Word, instances, senses after removal 

of “none of the above” sense 

Word, instances, senses after removal 

of “none of the above” sense 

Word, instances, senses after re-

moval of “none of the above” sense 

Adjustment, 93, 3 Frequency, 94, 1 Radiation, 98, 2 

Blood pressure, 100, 3 Growth, 100, 2 Repair, 68, 2 

Cold, 95, 4 Immunosuppression, 100, 2 Scale, 65, 1 

Condition, 92, 2 Implantation, 98, 2 Secretion, 100, 1 

Culture, 100, 2 Inhibition, 99, 2 Sex, 100, 3 

Degree, 65, 2 Japanese, 79, 2 Single, 100, 2 

Depression, 85, 1 Ganglion, 100, 2 Strains, 93, 2 

Determination, 79, 1 Glucose, 100, 2 Surgery, 100, 2 

Discharge, 75, 2 Man, 92, 4 Transient, 100, 2 

Energy, 100, 2 Mole, 84, 2 Transport, 94, 2 

Evaluation, 100, 2 Mosaic, 97, 2 Ultrasound, 100, 2 

Extraction, 87, 2 Nutrition, 89, 4 Variation, 100, 2 

Fat, 73, 2 Pathology, 99, 2 White, 90, 2 

Fluid, 100, 1 Pressure, 96, 1 

Table 2: Modified NLM WSD set 

In terms of accuracy (Table 3, column 3), the 

C&H method has the best results (p<0.01 with t-

test). Note that the modified NLM WSD set con-

tains seven words with one sense – depression, 

pressure, determination, fluid, frequency, scale, 

secretion – for which the C&H method is at a 

disadvantage as it cannot return one cluster solu-

tion.

In terms of predicted number of senses (Table 

3, column 5), the Hartigan method tends to un-

derestimate the number of senses (overcluster), 

thus making coarser sense distinctions. The 

adapted Gap and C&H methods tend to overes-

timate them (undercluster), thus making finer 

grained sense distinctions. 

In terms of cluster member assignment as 

demonstrated by the F-scores (Table 3, column 

4), our adapted Gap method and the Hartigan 

method perform better than the C&H method 

(p<0.05 with t-test). The Hartigan method F-

scores  along with Gap uniform with Method 1 

feature selection are not significantly different 

from the baseline (p>0.05 with t-test); the rest 

are significantly lower than the majority sense 

baseline (p<0.05 with t-test). 

The high F-scores point to a path for improv-

ing accuracy results. Singleton clusters could be 

pruned as they could be insignificant to sense 

discrimination. As it was pointed out, the best 

performing algorithms (C&H and Gap propor-

tional) tend to create too many clusters (Table 3, 

column 5). Another way of dealing with single-

ton or smaller clusters is to present them for hu-

man review as they might represent new sense 

distinctions not included in the sense inventory. 

One explanation for the performance of the 

stopping rules (overclustering in particular) 

might be that some senses are very similar, e.g. 

“cold temperature” and “cold sensation” for the 

“cold” ambiguity in instances like “Her feet are 

cold.” Another explanation is that the stopping 

rules rely on the clustering algorithm used. In our 

current study, the experiments were run with 

only agglomerative clustering as implemented in 

CLUTO. The distance measure that we used is 

Euclidean distance, which is only one of many 

choices. Yet another explanation is in the feature 

sets we experimented with. They performed very 

similarly on both the accuracy and F-scores. Fu-

ture work we plan to do is aimed at experiment-

ing with different features, clustering algorithms, 

distance measures as well as applying Singular 

Value Decomposition (SVD) to the reference 

distribution matrix for our adapted Gap method. 

We are actively pursuing reference generation 

with fixed column and row marginals. The work 

of Pedersen, Kayaalp and Bruce (1996) uses this 

technique to find significant lexical relationships. 

They use the CoCo (Badsberg, 1995) package 

which implements the Patefield (1981) algorithm 

for I x J tables. Another venue is in the combina-

tion of several stopping rules which will take 

advantage of each rule’s strengths. Yet another 

component that needs to be addressed towards 

the path of completely automated WSD is cluster 

labeling.

5 Conclusions

In this work, we explored the problem of discov-

ering the number of the senses in a given target 

ambiguity corpus by studying three cluster stop-

ping rules. We implemented the original algo-

rithms of Calinski and Harabasz (1975) and Har-

tigan (1975) and adapted the reference genera-

tion of the Gap algorithm (Tibshirani et al., 

2001) to our task. The best accuracy for selecting 

the correct number of clusters is 0.60 with the
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Feature 

Selection 

Stopping Rule Accuracy F-score                                  

(baseline majority sense = 82.63) 

Average number of senses (true 

average number of senses = 2.19) 

Method1 C&H 0.49 80.71 2.90 (overestimates) 

Hartigan 0.10 82.15 1.27 (underestimates) 

Gap (uniform) 0.02 82.00 1.49 (underestimates)     

Gap (proportional) 0.24 81.31 2.51 (overestimates) 

Method2 C&H 0.60 80.27 3.36 (overestimates) 

Hartigan 0.02 82.89 1.10 (underestimates) 

Gap (uniform) 0.05 81.63 2.44 (overestimates) 

Gap (proportional) 0.12 81.15 2.59 (overestimates) 

Table 3: Results – accuracy, F-score and predicted average number of sense 

C&H method. Our error analysis shows that the 

cluster stopping methods make finer-grained 

sense distinctions by creating additional single-

ton clusters. The F-scores, indicative of the qual-

ity of cluster membership assignment, are in the 

80’s and point to a path towards accuracy im-

provement via additional cluster pruning. 
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