
Transductive Pattern Learning for Information Extraction

Brian McLernon Nicholas Kushmerick

School of Computer Science and Informatics
University College Dublin, Ireland
{brian.mclernon,nick}@ucd.ie

Abstract

The requirement for large labelled training

corpora is widely recognized as a key bot-

tleneck in the use of learning algorithms for

information extraction. We present TPLEX,

a semi-supervised learning algorithm for in-

formation extraction that can acquire extrac-

tion patterns from a small amount of labelled

text in conjunction with a large amount of un-

labelled text. Compared to previous work,

TPLEX has two novel features. First, the al-

gorithm does not require redundancy in the

fragments to be extracted, but only redundancy

of the extraction patterns themselves. Second,

most bootstrapping methods identify the high-

est quality fragments in the unlabelled data and

then assume that they are as reliable as man-

ually labelled data in subsequent iterations.

In contrast, TPLEX’s scoring mechanism pre-

vents errors from snowballing by recording

the reliability of fragments extracted from un-

labelled data. Our experiments with several

benchmarks demonstrate that TPLEX is usu-

ally competitive with various fully-supervised

algorithms when very little labelled training

data is available.

1 Introduction

Information extraction is a form of shallow text anal-

ysis that involves identifying domain-specific frag-

ments within natural language text. Most recent re-

search has focused on learning algorithms that auto-

matically acquire extraction patterns from manually

labelled training data (e.g., (Riloff, 1993; Califf and

Mooney, 1999; Soderland, 1999; Freitag and Kushm-

erick, 2000; Ciravegna, 2001; Finn and Kushmerick,

2004)). This training data takes the form of the original

text, annotated with the fragments to be extracted.

Due to the expense and tedious nature of this la-

belling process, it is widely recognized that a key bot-

tleneck in deploying such algorithms is the need to cre-

ate a sufficiently large training corpus for each new do-

main. In response to this challenge, many researchers

have investigated semi-supervised learning algorithms

that learn from a (relatively small) set of labelled texts

in conjunction with a (relatively large) set of unlabelled

texts (e.g., (Riloff, 1996; Brin, 1998; Yangarber et al.,

2002)).

In this paper, we present TPLEX, a semi-supervised

algorithm for learning information extraction patterns.

The key idea is to exploit the following recursive defini-

tions: good patterns extract good fragments, and good

fragments are extracted by good patterns. To opera-

tionalize this recursive definition, we initialize the pat-

tern and fragment scores with labelled data, and then

iterate until the scores have converged.

Most prior semi-supervised approaches to informa-

tion extraction assume that fragments are essentially

named entities, so that there will be many occurrences

of any given fragment. For example, for the task of

discovering diseases (“influenza”, “Ebola”, etc), prior

algorithms assume that each disease will be mentioned

many times, and that every occurrence of such a dis-

ease in unlabelled text should be extracted. However,

it may not be the case that fragments to be extracted

occur more than once in the corpus, or that every oc-

currence of a labelled fragment should be extracted.

For example, in the well-known CMU Seminars cor-

pus, any given person usually gives just one seminar,

and a fragment such as “3pm” sometimes indicates the

start time, other occurrences indicate the end time, and

some occurrence should not be extracted at all. Rather

than relying on redundancy of the fragments, TPLEX

exploits redundancy of the learned extraction patterns.

TPLEX is a transductive algorithm (Vapnik, 1998), in

that the goal is to perform extraction from a given un-

labelled corpus, given a labelled corpus. This is in con-

trast to the typical machine learning framework, where

the goal is a set of extraction patterns (which can of

course then be applied to new unlabelled text). As a

side-effect, TPLEX does generate a set of extraction

patterns which may be a useful in their own right, de-

pending on the application.

We have compared TPLEX with various competitors

on a variety of real-world extraction tasks. We have ob-

served that TPLEX’s performance matches or exceeds

these in several benchmark tasks. The remainder of this

paper is organized as follows. After describing related

work in more detail (Sec. 2), we describe the TPLEX

algorithm (Sec. 3). We then discuss a series of exper-

iments to compare TPLEX with various supervised al-

25

gorithms (Sec. 4). We conclude with a summary of ob-

servations made during the evaluation, and a discussion

of future work (Sec. 5).

2 Related work

A review of machine learning for information extrac-

tion is beyond the scope of this paper; see e.g. (Cardie,

1997; Kushmerick and Thomas, 2003).

A number of researchers have previously developed

bootstrapping or semi-supervised approaches to infor-

mation extraction, named entity recognition, and re-

lated tasks (Riloff, 1996; Brin, 1998; Riloff and Jones,

1999; Agichtein et al., 2001; Yangarber et al., 2002;

Stevenson and Greenwood, 2005; Etzioni et al., 2005).

Several approaches for learning from both labeled

and unlabeled data have been proposed (Yarowsky,

1995; Blum and Mitchell, 1998; Collins and Singer,

1999) where the unlabeled data is utilised to boost the

performance of the algorithm. In (Collins and Singer,

1999) Collins and Singer show that unlabeled data can

be used to reduce the level of supervision required for

named entity classification. However, their approach

is reliant on the presence of redundancy in the named

entities to be identified.

TPLEX is most closely related to the NOMEN algo-

rithm (Yangarber et al., 2002). NOMEN has a very sim-

ple iterative structure: at each step, a very small num-

ber of high-quality new fragments are extracted, which

are treated in the next step as equivalent to seeds from

the labeled documents. NOMEN has a number of pa-

rameters which must be carefully tuned to ensure that

it does not over-generalise. Erroneous additions to the

set of trusted fragments can lead to a snowballing of

errors.

Also, NOMEN uses a binary scoring mechanism,

which works well in dense corpora with substantial re-

dundancy. However, many information extraction tasks

feature sparse corpora with little or no redundancy. We

have extended NOMEN by allowing it to make finer-

grained (as opposed to binary) scoring decisions at each

iteration. Instead of definitively assigning a position to

a given field, we calculate the likelihood that it belongs

to the field over multiple iterations.

3 The TPLEX algorithm

The goal of the algorithm is to identify the members

of the target fields within unlabelled texts by generaliz-

ing from seed examples in labelled training texts. We

achieve this by generalizing boundary detecting pat-

terns and scoring them with a recursive scoring func-

tion.

As shown in Fig. 1, TPLEX bootstraps the learning

process from a seed set of labelled examples. The ex-

amples are used to populate initial pattern sets for each

target field, with patterns that match the start and end

positions of the seed fragments. Each pattern is then

generalised to produce more patterns, which are in turn

����� ��� 	
�
 �������� � 	

 � �
	

����� ��� 	
�
 �������� � 	

 � �
	

Figure 1: An overview of TPLEX. A key idea of the al-

gorithm is the following recursive scoring method: pat-

tern scores are a function of the scores of the positions

they extract, and position scores are a function of the

scores of the patterns that extract them.

applied to the corpus in order to identify more base pat-

terns. This process iterates until no more patterns can

be learned.

TPLEX employs a recursive scoring metric in which

good patterns reinforce good positions, and good posi-

tions reinforce good patterns. Specifically, we calculate

confidence scores for positions and patterns. Our scor-

ing mechanism calculates the score of a pattern as a

function of the scores of the positions that it matches,

and the score of a position as a function of the scores

of the patterns that extract it.

TPLEX is a multi-field extraction algorithm in that it

extracts multiple fields simultaneously. By doing this,

information learned for one field can be used to con-

strain patterns learned for others. Specifically, our scor-

ing mechanism ensures that if a pattern scores highly

for one field, its score for all other fields is reduced.

In the remainder of this section, we describe the al-

gorithm by formalizing the space of learned patterns,

and then describing TPLEX’s scoring mechanism.

3.1 Boundary detection patterns

TPLEX extracts fragments of text by identifying prob-

able fragment start and end positions, which are then

assembled into complete fragments. TPLEX’s patterns

are therefore boundary detectors which identify one

end of a fragment or the other. TPLEX learns patterns

to identify the start and end of target occurrences inde-

pendently of each other. This strategy has previously

been employed successfully (Freitag and Kushmerick,

2000; Ciravegna, 2001; Yangarber et al., 2002; Finn

and Kushmerick, 2004).

TPLEX’s boundary detectors are similar to those

learned by BWI (Freitag and Kushmerick, 2000). A

boundary detector has two parts, a left pattern and a

right pattern. Each of these patterns is a sequence of

tokens, where each is either a literal or a generalized

token. For example, the boundary detector

26

[will be <punc>][<caps> <fname>]

would correctly find the start of a name in an utterance

such as “will be: Dr Robert Boyle” and “will be, San-

dra Frederick”, but it will fail to identify the start of the

name in “will be Dr. Robert Boyle”. The boundary de-

tectors that find the beginnings of fragments are called

the pre-patterns, and the detectors that find the ends of

fragments are called the post-patterns.

3.2 Pattern generation

As input, TPLEX requires a set of tagged seed docu-

ments for training, and an untagged corpus for learn-

ing. The seed documents are used to initialize the

pre-pattern and post-pattern sets for each of the target

fields. Within the seed documents each occurrence of

a fragment belonging to any of the target categories is

surrounded by a set of special tags that denote the field

to which it belongs.

The algorithm parses the seed documents and iden-

tifies the tagged fragments in each document. It then

generates patterns for the start and end positions of

each fragment based on the surrounding tokens.

Each pattern varies in length from 2 to n tokens. For

a given pattern length `, the patterns can then over-

lap the position by zero to ` tokens. For example,

a pre-pattern of length four with an overlap of one

will match the three tokens immediately preceeding the

start position of a fragment, and the one token immedi-

ately following that position. In this way, we generate
∑n

i=2(i + 1) patterns from each seed position. In our

experiments, we set the maximum pattern length to be

n = 4.

TPLEX then grows these initial sets for each field by

generalizing the initial patterns generated for each seed

position. We employ eight different generalization to-

kens when generalizing the literal tokens of the initial

patterns. The wildcard token <*> matches every lit-

eral. The second type of generalization is <punc>,

which matches punctuation such as commas and peri-

ods. Similarly, the token <caps>matches literals with

an initial capital letter, <num> matches a sequence of

digits, <alpha num> matches a literal consisting of

letters followed by digits, and <num alpha> matches

a literal consisting of digits followed by letters. The fi-

nal two generalisations are <fname> and <lname>,

which match literals that appear in a list of first and last

names (respectively) taken from US Census data.

All patterns are then applied to the entire corpus, in-

cluding the seed documents. When a pattern matches a

new position, the tokens at that position are converted

into a maximally-specialized pattern, which is added to

the pattern set. Patterns are repeatedly generalized un-

til only one literal token remains. This whole process

iterates until no new patterns are discovered. We do

not generalize the new maximally-specialized patterns

discovered in the unlabelled data. This ensures that all

patterns are closely related to the seed data. (We exper-

imented with generalizing patterns from the unlabelled

data, but this rapidly leads to overgeneralization.)

The locations in the corpus where the patterns match

are regarded as potential target positions. Pre-patterns

indicate potential start positions for target fragments

while post-patterns indicate end positions. When all of

the patterns have been matched against the corpus, each

field will have a corresponding set of potential start and

end positions.

3.3 Notation & problem statement

Positions are denoted by r, and patterns are denoted

by p. Formally, a pattern is equivalent to the set of

positions that it extracts.The notation p → r indicates

that pattern p matches position r. Fields are denoted by

f , and F is the set of all fields.

The labelled training data consists of a set of po-

sitions R = {. . . , r, . . .}, and a labelling function

T : R → F ∪ {X} for each such position. T (r) = f
indicates that position r is labelled with field f in the

training data. T (r) = X means that r is not labelled

in the training data (i.e. r is a negative example for all

fields).

The unlabelled test data consists of an additional set

of positions U .

Given this notation, the learning task can be stated

concisely as follows: extend the domain of T to U ,

i.e. generalize from T (r) for r ∈ R, to T (r) for r ∈ U .

3.4 Pattern and position scoring

When the patterns and positions for the fields have been

identified we must score them. Below we will de-

scribe in detail the recursive manner in which we define

scoref (r) in terms of scoref (p), and vice versa. Given

that definition, we want to find fixed-point values for

scoref (p) and scoref (r). To achieve this, we initialize

the scores, and then iterate through the scoring process

(i.e. calculate scores at step t+1 from scores at step t).
This process repeats until convergence.

Initialization. As the scores of the patterns and posi-

tions of a field are recursively dependant, we must as-

sign initial scores to one or the other. Initially the only

elements that we can classify with certainty are the seed

fragments. We initialise the scoring function by assign-

ing scores to the positions for each of the fields. In this

way it is then possible to score the patterns based on

these initial scores.

From the labelled training data, we derive the prior

probability π(f) that a randomly selected position be-

longs to field f ∈ F :

π(f) = |{r ∈ R |T (r) = f}|/|R|.

Note that 1 −
∑

f π(f) is simply the prior probabil-

ity that a randomly selected position should not be ex-

tracted at all; typically this value is close to 1.

Given the priors π(f), we score each potential posi-

27

tion r in field f :

score0
f (r) =







π(f) if r ∈ U,
1 if r ∈ R ∧ T (r) = f, and

0 if r ∈ R ∧ T (r) 6= f.

The first case handles positions in the unlabelled docu-

ments; at this point we don’t know anything about them

and so fall back to the prior probabilities. The second

and third cases handle positions in the seed documents,

for which we have complete information.

Iteration. After initializing the scores of the posi-

tions, we begin the iterative process of scoring the

patterns and the positions. To compute the score of

a pattern p for field f we compute a positive score,

posf (p); a negative score, negf (p); and an unknown

score, unk(p). posf (p) can be thought of as a measure

of the benefit of p to f , while negf (p) measures the

harm of p to f , and unk(p) measures the uncertainty

about the field with which p is associated.

These quantities are defined as follows: posf (p) is

the average score for field f of positions extracted by

p. We first compute:

posf (p) =
1

Zp

∑

p→r

scoret
f (r),

where Zp =
∑

f

∑

p→r scoret
f (r) is a normalizing

constant to ensure that
∑

f posf (p) = 1.

For each field f and pattern p, negf (p) is the extent

to which p extracts positions whose field is not f :

negf (p) = 1 − posf (p).

Finally, unk(p) measures the degree to which p ex-

tract positions whose field is unknown:

unk(p) =
1

|{p → r}|

∑

p→r

unk(r),

where unk(r) measures the degree to which position r
is unknown. To be completely ignorant of a position’s

field is to fall back on the prior field probabilities π(f).
Therefore, we calculate unk(r) by computing the sum

of squared differences between scoret
f (r) and π(f):

unk(r) = 1 −
1

Z
SSD(r),

SSD(r) =
∑

f

(

scoret
f (r) − π(f)

)2
,

Z = max
r

SSD(r).

The normalization constant Z ensures that unk(r) = 0
for the position r whose scores are the most different

from the priors—ie, r is the “least unknown” position.

For each field f and pattern p, scoret
f (p) is defined

in terms of posf (p), negf (p) and unk(p) as follows:

scoret+1
f (p) =

posf (p)

posf (p)+negf (p)+unk(p)
· posf (p)

=
posf (p)2

1+unk(p)

This definition penalizes patterns that are either in-

accurate or have low coverage.

Finally, we complete the iterative step by calculating

a revised score for each position:

scoret+1
f (r) =

{

scoret
f (r) if r ∈ R

∑

p→r
scoret

f (p)−min

max−min if r ∈ U,

where min = minf,p→r

∑

p→r scoret
f (p) and max =

maxf,p→r

∑

p→r scoret
f (p), are used to normalize the

scores to ensure that the scores of unlabelled positions

never exceed the scores of labelled positions. The first

case in the function for scoret+1
f (r) handles positive

and negative seeds (i.e. positions in labelled texts), the

second case is for unlabelled positions.

We iterate this procedure until the scores of the pat-

terns and positions converge. Specifically, we stop

when

∑

f

(
∑

p
|scoret

f (p)−scoret−1

f
(p)|2 +

∑

r
|scoret

f (r)−scoret−1

f
(r)|2

)

< θ.

In our experiments, we fixed θ = 1.

3.5 Position filtering & fragment identification

Due to the nature of the pattern generation strategy,

many more candidate positions will be identified than

there are targets in the corpus. Before we can proceed

with matching start and end positions to form frag-

ments, we filter the positions to remove the weaker can-

didates.

We rank all of positions for each field according to

their score. We then select positions with a score above

a threshold β as potential positions. In this way we

reduce the number of candidate positions from tens of

thousands to a few hundred.

The next step in the process is to identify complete

fragments within the corpus by matching pre-positions

with post-positions. To do this we compute the length

probabilities for the fragments of field f based on the

lengths of the seed fragments of f . Suppose that posi-

tion r1 has been identified as a possible start for field f ,

and position r2 has been identified as a possible field f
end, and let Pf (`) be the fraction of field f seed frag-

ments with length `. Then the fragment e = (r1, r2) is

assigned a score

scoref (e) = scoref (r1) · scoref (r2) ·Pf (r2 − r1 +1).

Despite these measures, overlapping fragments still

occur. Since the correct fragments can not overlap, we

know that if two extracted fragments overlap, at least

one must be wrong. We resolve overlapping fragments

by calculating the set of non-overlapping fragments

that maximises the total score while also accounting

for the expected rate of occurrence of fragments from

each field in a given document.

In more detail, let E be the set of all fragments ex-

tracted from some particular document D. We are in-

terested in the score of some subset G ⊆ E of D’s

28

fragments. Let score(G) be the chance that G is the

correct set of fragments for D. Assuming that the cor-

rectness of the fragments can be determined indepen-

dently given that the correct number of fragments have

been identified for each field, then score(G) can be de-

fined zero if ∃ (r1, r1), (s2, r2) ∈ G such that (s1, r1)
overlaps (s2, r2), and score(G) =

∏

f score(Gf) oth-

erwise, where Gf ⊆ G is the fragments in G for

field f . The score of Gf = {e1, e2, . . .} is defined as

score(Gf) = Pr(|Gf |)·
∏

j score(ej), where Pr(|Gf |)
is the fraction of training documents that have |Gf | in-

stances of field f .

It is infeasible to enumerate all subsets G ⊆ E, so

we perform a heuristic search. The states in the search

space are pairs of the form (G, P), where G is a list

of good fragments (i.e. fragments that have been ac-

cepted), and P is a list of pending fragments (i.e. frag-

ments that haven’t yet been accepted or rejected).

The search starts in the state ({}, E), and states of

the form (G, {}) are terminal states. The children of

state (G, P) are all ways to move a single fragment

from P to G. When forming a child’s pending set, the

moved fragment along with all fragments that it over-

laps are removed (meaning that the moved fragment is

selected and all fragments with which it overlaps are

rejected). More precisely, the children of state (G, P)
are:

{

(G′, P ′)

∣

∣

∣

∣

e∈P ∧ G′=G∪{e} ∧

P ′={e′∈P | e′ doesn′t overlap e}

}

.

The search proceeds as follows. We maintain a set

S of the best K non-terminal states that are to be ex-

panded, and the best terminal state B encountered so

far. Initially, S contains just the initial state. Then, the

children of each state in S are generated. If there are

no such children, the search halts and B is returned as

the best set of fragments. Otherwise, B is updated if

appropriate, and S is set to the best K of the new chil-

dren. Note that K = ∞ corresponds to an exhaustive

search. In our experiments, we used K = 5.

4 Experiments

To evaluate the performance of our algorithm we con-

ducted experiments with four widely used corpora: the

CMU seminar set, the Austin jobs set, the Reuters

acquisition set [www.isi.edu/info-agents/RISE], and the

MUC-7 named entity corpus [www.ldc.upenn.edu].

We randomly partitioned each of the datasets into

two evenly sized subsets. We then used these as la-

beled and unlabeled sets. In each experiment the al-

gorithm was presented with a document set comprised

of the test set and a randomly selected percentage of

the documents from the training set. For example, if

an experiment involved providing the algorithm with a

5% seed set, then 5% of the documents in the training

set (2.5% of the documents in the entire dataset) would

be selected at random and used in conjunction with the

documents in the test set.

For each training set size, we ran five iterations with

a randomly selected subset of the documents used for

training. Since we are mainly motivated by scenarios

with very little training data, we varied the size of the

training set from 1–10% (1–16% for MUC-7NE) of the

available documents. Precision, recall and F1 were cal-

culated using the BWI (Freitag and Kushmerick, 2000)

scorer. We used all occurrences mode, which records

a match in the case where we extract all of the valid

fragments in a given document, but we get no credit for

partially correct extractions.

We compared TPLEX to BWI (Freitag and

Kushmerick, 2000), LP2 (Ciravegna, 2001), ELIE

(Finn and Kushmerick, 2004), and an approach

based on conditional random fields (Lafferty et al.,

2001). The data for BWI was obtained using

the TIES implementation [tcc.itc.it/research/textec/tools-

resources/ties.html]. The data for the LP2 learning curve

was obtained from (Ciravegna, 2003). The results for

ELIE were generated by the current implementation

[http://smi.ucd.ie/aidan/Software.html]. For the CRF re-

sults, we used MALLET’s SimpleTagger (McCallum,

2002), with each token encoded with a set of binary

features (one for each observed literal, as well as the

eight token generalizations).

Our results in Fig. 2 indicate that in Acquisitions

dataset, our algorithm substantially outperforms the

competitors at all points on the learning curve. For the

other datasets, the results are mixed. For SA and Jobs,

TPLEX is the second best algorithm at the low end of

the learning curve, and steadily loses ground as more

labelled data is available. TPLEX is the least accurate

algorithm for the MUC data. In Sec. 5, we discuss a

variety of modifications to the TPLEX algorithm that

we anticipate may improve its performance.

Finally, the graph in Fig. 3 compares TPLEX for the

SA dataset, in two configurations: with a combination

of labelled and unlabelled documents as usual, and with

only labelled documents. In both instances the algo-

rithm was given the same seed and testing documents.

In the first case the algorithm learned patterns using

both the labeled and unlabeled documents. However,

in the second case, only the labeled documents were

used to generate the patterns. These data confirm that

TPLEX is indeed able to improve performance from un-

labelled data.

5 Discussion

We have described TPLEX, a semi-supervised algo-

rithm for learning information extraction patterns. The

key idea is to exploit the following recursive definition:

good patterns are those that extract good fragments,

and good fragments are those that are extracted by good

patterns. This definition allows TPLEX to perform well

with very little training data in domains where other ap-

proaches that assume fragment redundancy would fail.

29

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10

F1

Percentage of data used for training

Tplex

3

3

3

3 3

3

3

Elie

+

+

+

+

+

+

+
BWI

2

2
2 2

2

2

2

CRF

×

×

×

×

×
LP2

4

4

4

4 4

4

4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 2 4 6 8 10

F1

Percentage of data used for training

Tplex

3

3

3 3

3

3

3

Elie
+

+
+ +

+

+

+
BWI2 2

2 2
2

2

2

CRF

×

×
×

×

×

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10

F1

Percentage of data used for training

Tplex
3

3

3

3 3

3

3

Elie

+

+

+
+

+

+

+
BWI

2

2

2 2

2

2

2

CRF

×

×

×

×

×

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12 14 16

F1

Percentage of data used for training

Tplex
3

3

3
3 3 3

3

Elie

+

+

+
+

+

+
BWI

2

2

2

2
2

2

2

CRF

×

×

× ×

×

Figure 2: F1 averaged across all fields, for the Seminar

(top), Acquisitions (second), Jobs (third) and MUC-NE

(bottom) corpora.

Conclusions. From our experiments we have ob-

served that our algorithm is particularly competitive

in scenarios where very little labelled training data is

available. We contend that this is a result of our algo-

rithm’s ability to use the unlabelled test data to validate

the patterns learned from the training data.

We have also observed that the number of fields that

are being extracted in the given domain affects the per-

formance of our algorithm. TPLEX extracts all fields

simultaneously and uses the scores from each of the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10

F1

Percentage of data used for training

Trained with unlabeled data

3

3

3
3

3 3

3

Trained with only labeled data

+
+

+
+

+
+

+

Figure 3: F1 averaged across all fields, for the Semi-

nar dataset trained on only labeled data and trained on

labeled and unlabeled data

patterns that extract a given position to determine the

most likely field for that position. With more fields

in the problem domain there is potentially more infor-

mation on each of the candidate positions to constrain

these decisions.

Future work. We are currently extending TPLEX in

several directions. First, position filtering is currently

performed as a distinct post-processing step. It would

be more elegant (and perhaps more effective) to incor-

porate the filtering heuristics directly into the position

scoring mechanism. Second, so far we have focused

on a BWI-like pattern language, but we speculate that

richer patterns permitting (for example) optional or re-

ordered tokens may well deliver substantial increases

in accuracy.

We are also exploring ideas for semi-supervised

learning from the machine learning community.

Specifically, probabilistic finite-state methods such

hidden Markov models and conditional random fields

have been shown to be competitive with more tradi-

tional pattern-based approaches to information extrac-

tion (Fuchun and McCallum, 2004), and these methods

can exploit the Expectation Maximization algorithm to

learn from a mixture of labelled and unlabelled data

(Lafferty et al., 2004). It remains to be seen whether

this approach would be effective for information ex-

traction.

Another possibility is to explore semi-supervised ex-

tensions to boosting (d’Alché Buc et al., 2002). Boost-

ing is a highly effective ensemble learning technique,

and BWI uses boosting to tune the weights of the

learned patterns, so if we generalize boosting to han-

dle unlabelled data, then the learned weights may well

be more effective than those calculated by TPLEX.

Acknowledgements. This research was supported by

grants SFI/01/F.1/C015 from Science Foundation Ire-

land, and N00014-03-1-0274 from the US Office of

Naval Research.

30

References

E. Agichtein, L. Gravano, J. Pavel, V. Sokolova, and
A. Voskoboynik. 2001. Snowball: A prototype sys-
tem for extracting relations from large text collec-
tions. In Proc. Int. Conf. Management of Data.

A. Blum and T. Mitchell. 1998. Combining la-
beled and unlabeled data with co-training. In Proc.
11th Annual Conference on Computational Learning
Theory, pages 92–100.

S. Brin. 1998. Extracting patterns and relations from
the World Wide Web. In WebDB Workshop at the
Int. Conf. Extending Database Technology.

M. E. Califf and R. Mooney. 1999. Relational learning
of pattern-match rules for information extraction. In
Proc. American Nat. Conf. Artificial Intelligence.

C. Cardie. 1997. Empirical methods in information
extraction. AI Magazine, 18(4).

F. Ciravegna. 2001. Adaptive information extraction
from text by rule induction and generalisation. In
Proc. Int. J. Conf. Artificial Intelligence.

F. Ciravegna. 2003. LP2: Rule induction for infor-
mation extraction using linguistic constraints. Tech-
nical report, Department of Computer Science, Uni-
versity of Sheffield.

M. Collins and Y. Singer. 1999. Unsupervised mod-
els for named entity classification. In Proc. joint
SIGDAT Conference on Empirical Methods in Nat-
ural Language Processing and Very Large Corpora,
pages 100–110.

F. d’Alché Buc, Y. Grandvalet, and C. Ambroise. 2002.
Semi-supervised MarginBoost. In Proc. Neural In-
formation Processing Systems.

O. Etzioni, M. Cafarella, D. Downey, A. Popescu,
T. Shaked, S. Soderland, D. Weld, and A. Yates.
2005. Unsupervised named-entity extraction from
the Web: An experimental study. Artificial Intelli-
gence. In press.

A. Finn and N. Kushmerick. 2004. Multi-level bound-
ary classification for information extraction. In
Proc. European Conf. Machine Learning.

D. Freitag and N . Kushmerick. 2000. Boosted wrap-
per induction. In Proc. American Nat. Conf. Artifi-
cial Intelligence.

P. Fuchun and A. McCallum. 2004. Accurate infor-
mation extraction from research papers using con-
ditional random fields. In Proc. Human Language
Technology Conf.

N. Kushmerick and B. Thomas. 2003. Adaptive in-
formation extraction: Core technologies for infor-
mation agents. Lecture Notes in Computer Science,
2586.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proc. Int.
Conf. Machine Learning.

J. Lafferty, X. Zhu, and Y. Liu. 2004. Kernel con-
ditional random fields: Representation, clique se-
lection, and semi-supervised learning. In Proc. Int.
Conf. Machine Learning.

A. McCallum. 2002. Mallet: A machine learning for
language toolkit. http://mallet.cs.umass.edu.

E. Riloff and R. Jones. 1999. Learning dictionaries for
information extraction by multi-level bootstrapping.
In Proc. American Nat. Conf. Artificial Intelligence.

E. Riloff. 1993. Automatically constructing a dictio-
nary for information extraction tasks. In Proc. Amer-
ican Nat. Conf. Artificial Intelligence.

E. Riloff. 1996. Automatically generating extraction
patterns from untagged text. In Proc. American Nat.
Conf. Artificial Intelligence.

S. Soderland. 1999. Learning information extraction
rules for semi-structured and free text. Machine
Learning, 34(1-3):233–272.

M. Stevenson and M. Greenwood. 2005. Automatic
learning of information extraction patterns. In Proc.
19th Int. J. Conf. on Artificial Intelligence.

V. Vapnik. 1998. Statistical learning theory. Wiley.

R. Yangarber, W. Lin, and R. Grishman. 2002. Unsu-
pervised learning of generalised names. In Proc. Int.
Conf. Computational Linguistics.

D. Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In Meet-
ing of the Association for Computational Linguistics,
pages 189–196.

31

