
Learning Effective Surface Text Patterns
for Information Extraction

Gijs Geleijnse and Jan Korst

Philips Research Laboratories
Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
{gijs.geleijnse,jan.korst}@philips.com

Abstract

We present a novel method to identify ef-

fective surface text patterns using an inter-

net search engine. Precision is only one

of the criteria to identify the most effec-

tive patterns among the candidates found.

Another aspect is frequency of occurrence.

Also, a pattern has to relate diverse in-

stances if it expresses a non-functional re-

lation. The learned surface text patterns

are applied in an ontology population al-

gorithm, which not only learns new in-

stances of classes but also new instance-

pairs of relations. We present some £rst

experiments with these methods.

1 Introduction

Ravichandran and Hovy (2002) present a method

to automatically learn surface text patterns ex-

pressing relations between instances of classes us-

ing a search engine. Their method, based on

a training set, identi£es natural language surface

text patterns that express some relation between

two instances. For example, “was born in” proved

to be a precise pattern expressing the relation be-

tween instances Mozart (of class ‘person’) and

1756 (of class ‘year’).

We address the issue of learning surface text

patterns, since we observed two drawbacks of

Ravichandran and Hovy’s work with respect to the

application of such patterns in a general informa-

tion extraction setting.

The £rst drawback is that Ravichandran and

Hovy focus on the use of such surface text patterns

to answer so-called factoid questions (Voorhees,

2004). They use the assumption that each instance

is related by R to exactly one other instance of

some class. In a general information extraction

setting, we cannot assume that all relations are

functional.

The second drawback is that the criterion for se-

lecting patterns, precision, is not the only issue for

a pattern to be effective. We call a pattern effec-

tive, if it links many different instance-pairs in the

excerpts found with a search engine.

We use an ontology to model the information

domain we are interested in. Our goal is to pop-

ulate an ontology with the information extracted.

In an ontology, instances of one class can be re-

lated by some relation R to multiple instances of

some other class. For example, we can identify

the classes ‘movie’ and ‘actor’ and the ‘acts in’-

relation, which is a many-to-many relation. In

general, multiple actors star in a single movie and

a single actor stars in multiple movies.

In this paper we present a domain-independent

method to learn effective surface text patterns rep-

resenting relations. Since not all patterns found

are highly usable, we formulate criteria to select

the most effective ones. We show how such pat-

terns can be used to populate an ontology.

The identi£cation of effective patterns is impor-

tant, since we want to perform as few queries to

a search engine as possible to limit the use of its

services.

This paper is organized as follows. After de£n-

ing the problem (Section 2) and discussing related

work (Section 3), we present an algorithm to learn

effective surface text patterns in Section 4. We dis-

cuss the application of this method in an ontology

population algorithm in Section 5. In Section 6,

we present some of our early experiments. Sec-

tions 7 and 8 handle conclusions and future work.

1

2 Problem description

We consider two classes cq and ca and the corre-

sponding non-empty sets of instances Iq and Ia.

Elements in the sets Iq and Ia are instances of cq

and ca respectively, and are known to us before-

hand. However, the sets I do not have to be com-

plete, i.e. not all possible instances of the corre-

sponding class have to be in the set I .

Moreover, we consider some rela-

tion R between these classes and give a

non-empty training set of instance-pairs

TR = {(x, y) | x ∈ Iq ∧ y ∈ Ia}, which

are instance-pairs that are known to be R-related.

Problem: Given the classes cq and ca, the sets

of instances Iq and Ia, a relation R and a set

of R-related instance-pairs TR, learn effective

surface text patterns that express the relation R.

Say, for example, we consider the classes ‘au-

thor’ and ‘book title’ and the relation ‘has written’.

We assume that we know some related instance-

pairs , e.g. (‘Leo Tolstoy’, ‘War and Peace’) and

(‘Günter Grass’, ‘Die Blechtrommel’). We then

want to £nd natural language phrases that relate

authors to the titles of the books they wrote. Thus,

if we query a pattern in combination with the name

of an author (e.g. ‘Umberto Eco wrote’), we want

the search results of this query to contain the books

by this author.

The population of an ontology can be seen as

a generalization of a question-answering setting.

Unlike question-answering, we are interested in

£nding all possible instance-pairs, not only the

pairs with one £xed instance (e.g. all ‘author’-

‘book’ pairs instead of only the pairs containing

a £xed author). Functional relations in an ontol-

ogy correspond to factoid questions, e.g. the pop-

ulation of the classes ‘person’ and ‘country’ and

the ‘was born in’-relation. Non-functional rela-

tions can be used to identify answers to list ques-

tions, for example “name all books written by

Louis-Ferdinand Céline” or “which countries bor-

der Germany?”.

3 Related work

Brin identi£es the use of patterns in the discovery

of relations on the web (Brin, 1998). He describes

a website-dependent approach to identify hyper-

text patterns that express some relation. For each

web site, such patterns are learned and explored

to identify instances that are similarly related. In

(Agichtein and Gravano, 2000), such a system is

combined with a named-entity recognizer.

In (Craven et al., 2000) an ontology is popu-

lated by crawling a website. Based on tagged web

pages from other sites, rules are learned to extract

information from the website.

Research on named-entity recognition was ad-

dressed in the nineties at the Message Understand-

ing Conferences (Chinchor, 1998) and is contin-

ued for example in (Zhou and Su, 2002).

Automated part of speech tagging (Brill, 1992)

is a useful technique in term extraction (Frantzi

et al., 2000), a domain closely related to named-

entity recognition. Here, terms are extracted

with a prede£ned part-of-speech structure, e.g. an

adjective-noun combination. In (Nenadić et al.,

2002), methods are discussed to extract informa-

tion from natural language texts with the use of

both part of speech tags and hyponym patterns.

As referred to in the introduction, Ravichandran

and Hovy (2002) present a method to identify sur-

face text patterns using a web search engine. They

extract patterns expressing functional relations in

a factoid question answering setting. Selection of

the extracted patterns is based on the precision of

the patterns. For example, if the pattern ‘was born

in’ is identi£ed as a pattern for the pair (‘Mozart’,

‘Salzburg’), they compute precision as the num-

ber of excerpts containing ‘Mozart was born in

Salzburg’ divided by the number of excerpts with

‘Mozart was born in’.

Information extraction and ontologies creation

are two closely related £elds. For reliable informa-

tion extraction, we need background information,

e.g. an ontology. On the other hand, we need in-

formation extraction to generate broad and highly

usable ontologies. An overview on ontology learn-

ing from text can be found in (Buitelaar et al.,

2005).

Early work (Hearst, 1998), describes the extrac-

tion of text patterns expressing WordNet-relations

(such as hyponym relations) from some corpus.

This work focusses merely on the identi£cation of

such text patterns (i.e. phrases containing both in-

stances of some related pair). Patterns found by

multiple pairs are suggested to be usable patterns.

KnowItAll is a hybrid named-entity extraction

system (Etzioni et al., 2005) that £nds lists of in-

stances of some class from the web using a search

engine. It combines Hearst patterns and learned

2

patterns for instances of some class to identify and

extract named-entities. Moreover, it uses adaptive

wrapper algorithms (Crescenzi and Mecca, 2004)

to extract information from html markup such as

tables.

Cimiano and Staab descibe a method to use

a search engine to verify a hypothesis relation

(2004). For example, if we are interested in the ‘is

a’ or hyponym relation and we have a candidate in-

stance pair (‘river’, ‘Nile’) for this relation, we can

use a search engine to query phrases expressing

this relation (e.g. ‘rivers such as the Nile’). The

number of hits to such queries can then be used as

a measure to determine the validity of the hypoth-

esis.

In (Geleijnse and Korst, 2005), a method is de-

scribed to populate an ontology with the use of

queried text patterns. The algorithm presented ex-

tracts instances from search results after having

submitted a combination of an instance and a pat-

tern as a query to a search engine. The extracted

instances from the retrieved excerpts can there-

after be used to formulate new queries – and thus

identify and extract other instances.

4 The algorithm

We present an algorithm to learn surface text pat-

terns for relations. We use GoogleTM to retrieve

such patterns.

The algorithm makes use of a training set TR

of instance-pairs that are R-related. This training

set should be chosen such the instance-pairs are

typical for relation R.

We £rst discover how relation R is expressed

in natural language texts on the web (Section 4.1).

In Section 4.2 we address the problem of select-

ing effective patterns from the total set of patterns

found.

4.1 Identifying relation patterns

We £rst generate a list of surface text patterns with

the use of the following algorithm. For evaluation

purposes, we also compute the frequency of each

pattern found.

- Step 1: Formulate queries using an instance-

pair (x, y) ∈ TR. Since we are interested in

phrases within sentences rather than in key-

words or expressions in telegram style that

often appear in titles of webpages, we use

the allintext: option. This gives us only

search results with the queried expression in

the bodies of the documents rather than in the

titles. We query both allintext:" x *

y " and allintext:" y * x ". The *

is a regular expression operator accepted by

Google. It is a placeholder for zero or more

words.

- Step 2: Send the queries to Google and col-

lect the excerpts of the at most 1,000 pages it

returns for each query.

- Step 3: Extract all phrases matching the

queried expressions and replace both x and

y by the names of their classes.

- Step 4: Remove all phrases that are not

within one sentence.

- Step 5: Normalize all phrases by removing

all mark-up that is ignored by Google. Since

Google is case-insensitive and ignores punc-

tuation, double spaces and the like, we trans-

late all phrases found to a normal form: the

simplest expression that we can query that

leads to the document retrieved.

- Step 6: Update the frequencies of all normal-

ized phrases found.

- Step 7: Repeat the procedure for any un-

queried pair (x′, y′) ∈ TR.

We now have generated a list with relation pat-

terns and their frequencies within the retrieved

Google excerpts.

4.2 Selecting relation patterns

From the list of relation patterns found, we are in-

terested in the most effective ones.

We are not only interested in the most precise

ones. For example, the retrieved pattern “född 30

mars 1853 i” proved to a 100% precise pattern

expressing the relation between a person (‘Vin-

cent van Gogh’) and his place of birth (‘Zun-

dert’). Clearly, this rare phrase is unsuited to mine

instance-pairs of this relation in general. On the

other hand, high frequency of some pattern is no

guarantee for effectiveness either. The frequently

occurring pattern “was born in London” (found

when querying for Thomas Bayes * England)

is well-suited to be used to £nd London-born per-

sons, but in general the pattern is unsuited – since

too narrow – to express the relation between a per-

son and his or her country of origin.

3

Taking these observations into account, we for-

mulate three criteria for selecting effective relation

patterns.

1. The patterns should frequently occur on the

web, to increase the probability of getting any

results when querying the pattern in combi-

nation with an instance.

2. The pattern should be precise. When we

query a pattern in combination with an in-

stance in Iq, we want to have many search

results containing instances from ca.

3. If relation R is not functional, the pattern

should be wide-spread, i.e. among the search

results when querying a combination of the

pattern and an instance in Iq there must be as

many distinct R-related instances from ca as

possible.

To measure these criteria, we use the following

scoring functions for relation patterns s.

1. ffreq(s) = “number of occurrences of s in

the excerpts as found by the algorithm de-

scribed in the previous subsection”

2. fprec(s) =

∑
x∈I′q

P (s,x)

|I′q |
, where

for instances x ∈ I ′q, I ′q ⊆ Iq , we calculate

P (s, x) as follows.

P (s, x) = FI(s,x)
FO(s,x)

and

FI(s, x) = the number of Google excerpts

after querying s in combination with x

containing instances of ca.

FO(s, x) = the total number of excerpts

found (at most 1,000).

3. fspr(s) =
∑

x∈I′q
B(s, x), where

B(s, x) = the number of distinct instances

of class ca found after querying pattern s in

combination with x.

The larger we choose the testset, the subset

I ′q of Iq, the more reliable the measures for pre-

cision and spreading. However, the number of

Google queries increases with the number of pat-

terns found for each instance we add to I ′q.

We £nally calculate the score of the patterns by

multiplying the individual scores:

score(s) = ffreq(s) · fprec(s) · fspr(s)

For ef£ciency reasons, we only compute the

scores of the patterns with the highest frequencies.

The problem remains how to recognize a (pos-

sible multi-word) instance in the Google excerpts.

For an ontology alignment setting – where the sets

Ia and Iq are not to be expanded – these problems

are trivial: we determine whether t ∈ Ia is accom-

panied by the queried expression. For a setting

where the instances of ca are not all known (e.g.

it is not likely that we have a complete list of all

books written in the world), we solve this problem

in two stages. First we identify rules per class to

extract candidate instances. Thereafter we use an

additional Google query to verify if a candidate is

indeed an instance of class ca.

Identifying a candidate instance

The identi£cation of multi-word terms is an is-

sue of research on its own. However, in this setting

we can allow ourselves to use less elaborate tech-

niques to identify candidate instances. We can do

so, since we additionally perform a check on each

extracted term. So, per class we create rules to

identify candidate instances with a focus on high

recall. In our current experiments we thus use very

simple term recognition rules, based on regular ex-

pressions. For example, we identify a candidate

instance of class ‘person’ if the queried expression

is accompanied by two or three capitalized words.

Identifying an instance-class relation

We are interested in the question whether some

extracted term t is an instance of class ca. For ex-

ample, given the term ‘The Godfather’, does this

term belong to the class ‘movie’? The instance-

class relation can be viewed of as a hyponym re-

lation. We therefore verify the hypothesis of t be-

ing an instance of ca by Googling hyponym rela-

tion patterns. We use a £xed set H of common

patterns expressing the hyponym relation (Hearst,

1992; Cimiano and Staab, 2004), see Table 1. For

the class names, we use plurals.

We use these patterns in the following accep-

tance function

acceptcq
(t) := (

∑

p∈H

h(p, cq, t) ≥ n),

4

"cq including t and"

"cq for example t and"

"cq like t and"

"cq such as t and"

Table 1: Hearst patterns for instance-class relation.

where h(p, cq, t) is the number of Google hits for

query with pattern p combined with term t and the

plural form of the class name cq. The threshold

n has to be chosen beforehand. We can do so, by

calculating the sum of Google hits for queries with

known instances of the class. Based on these £g-

ures, a threshold can be chosen e.g. the minimum

of these sums.

Note that term t is both preceded and followed

by a £xed phrase in the queries. We do so, to

guarantee that t is indeed the full term we are in-

terested in. For example, if we had extracted the

term ‘Los’ instead of ‘Los Angeles’ as a Califor-

nian City, we would falsely identify ‘Los’ as a Cal-

ifornian City, when we do not let ‘Los’ follow by

the £xed expression and. The number of Google

hits for some expression x is at least the number

of Google hits when querying the same expression

followed by some expression y.

If we identify a term t as being an instance of

class ca, we can add this term to the set Ia. How-

ever, we cannot relate t to an instance in Iq, since

the pattern used to £nd t has not proven to be effec-

tive yet (e.g. the pattern could express a different

relation between one of the instance-pairs in the

training set).

We reduce the amount of Google queries by us-

ing a list of terms found that do not belong to ca.

Terms that occur multiple times in the excerpts

can then be checked only once. Moreover, we use

the OR-clause to combine the individual queries

into one. We then check if the number of hits

to this query exceeds the threshold. The amount

of Google queries in this phase thus equals the

amount of distinct terms extracted.

5 The use of surface text patterns in

information extraction

Having a method to identify relation patterns, we

now focus on utilizing these patterns in informa-

tion extraction from texts found by a search en-

gine. We use an ontology to represent the infor-

mation extracted.

Suppose we have an ontology O with classes

(c1, c2, ...) and corresponding instance sets

(I1, I2, ..). On these classes, relations R(i,j)
1

are de£ned, with i and j the index number of

the classes. The non-empty sets T(i,j) contain

the training set of instance-pairs of the relations

R(i,j).

Per instance, we maintain a list of expressions

that already have been used as a query. Initially,

these are empty.

The £rst step of the algorithm is to learn surface

text patterns for each relation in O.

The following steps of the algorithm are per-

formed until either some stop criterion is reached,

or no more new instances and instance-pairs can

be found.

- Step 1: Select a relation R(i,j), and an in-

stance v from either Ii or Ij such that there

exists at least one pattern expressing R(i,j)

we have not yet queried in combination with

v.

- Step 2: Construct queries using the patterns

with v and send these queries to Google.

- Step 3: Extract instances from the excerpts.

- Step 4: Add the newly found instances to

the corresponding instance set and add the

instance-pairs found (thus with v) to T(i,j).

- Step 5: If there exists an instance that we can

use to formulate new queries, then repeat the

procedure.

Else, learn new patterns using the extracted

instance-pairs and then repeat the procedure.

Note that instances of class cx learned using the

algorithm applied on relation R(x,y) can be used

as input for the algorithm applied to some relation

R(x,z) to populate the sets Iz and T(x,z).

6 Experiments

In this section, we discuss two experiments that we

have conducted. The £rst experiment involves the

identi£cation of effective hyponym patterns. The

second experiment is an illustration of the applica-

tion of learned surface text patterns in information

extraction.

1Assuming one relation per pair of classes. We can use
another index k in R(i,j,k) to distinct multiple relations be-
tween ci and cj .

5

6.1 Learning effective hyponym patterns

We are interested whether the effective surface text

patterns are indeed intuitive formulations of some

relation R. As a test-case, we compute the most

effective patterns for the hyponym relation using a

test set with names of all countries.

Our experiment was set up as follows. We col-

lected the complete list of countries in the world

from the CIA World Factbook2. Let Iq be this set

of countries, and let Ia be the set { ‘countries’,

‘country’ }. The set TR consists of all pairs (a,

‘countries’) and (a, ‘country’) , for a ∈ Ia. We

apply the surface text pattern learning algorithm

on this set TR.

The algorithm identi£ed almost 40,000 patterns.

We computed fspr and fprec for the 1,000 most

frequently found patterns. In table 2, we give the

25 most effective patterns found by the algorithm.

We consider the patterns in boldface true hyponym

patterns. Focussing on these patterns, we observe

two groups: ‘is a’ and Hearst-like patterns.

pattern freq prec spr
(countries) like 645 0.66 134
(countries) such as 537 0.54 126
is a small (country) 142 0.69 110
(country) code for 342 0.36 84
(country) map of 345 0.34 78
(countries) including 430 0.21 93
is the only (country) 138 0.55 102
is a (country) 339 0.22 99
(country) ¤ag of 251 0.63 46
and other (countries) 279 0.34 72
and neighboring (countries) 164 0.43 92
(country) name republic of 83 0.93 76
(country) book of 59 0.77 118
is a poor (country) 63 0.73 106
is the £rst (country) 53 0.70 112
(countries) except 146 0.37 76
(country) code for calling 157 0.95 26
is an independent (country) 62 0.55 114
and surrounding (countries) 84 0.40 107
is one of the poorest (countries) 61 0.75 78
and several other (countries) 65 0.59 90
among other (countries) 84 0.38 97
is a sovereign (country) 48 0.69 89
or any other (countries) 87 0.58 58
(countries) namely 58 0.44 109

Table 2: Learned hyponym patterns and their

scores.

The Hearst-patterns ‘like’ and ‘such as’ show to

be the most effective. This observation is useful,

when we want to minimize the amount of queries

for hyponym patterns.

Expressions of properties that hold for each

2http://www.cia.gov/cia/publications/factbook

country and only for countries, for example the ex-

istence of a country code for dialing, are not triv-

ially identi£ed manually but are useful and reliable

patterns.

The combination of ‘is a’, ‘is an’ or ‘is the’ with

an adjective is a common pattern, occurring 2,400

times in the list. In future work, we plan to identify

such adjectives in Google excerpts using a Part of

Speech tagger (Brill, 1992).

6.2 Applying learned patterns in information

extraction

The Text Retrieval Conference (TREC) question

answering track in 2004 contains list question,

for example ‘Who are Nirvana’s band members?’

(Voorhees, 2004). We illustrate the use of our on-

tology population algorithm in the context of such

list-question answering with a small case-study.

Note that we do not consider the processing of the

question itself in this research.

Inspired by one of the questions (‘What coun-

tries is Burger King located in?’), we are interested

in populating an ontology with restaurants and the

countries in which they operate. We identify the

classes ‘country’ and ‘restaurant’ and the relation

‘located in’ between the classes.

We hand the algorithm the instances of ‘coun-

try’, as well as two instances of ‘restaurant’: ‘Mc-

Donald’s’ and ‘KFC’. Moreover, we add three

instance-pairs of the relation to the algorithm. We

use these pairs and a subset I ′country of size eight

to compute a ranked list of the patterns. We ex-

tract terms consisting of one up to four capital-

ized words. In this test we set the threshold for

the number of Google results for the queries with

the extracted terms to 50. After a small test with

names of international restaurant branches, this

seemed an appropriate threshold.

The algorithm learned, besides a ranked list of

170 surface text patterns (Table 3), a list of 54 in-

stances of restaurant (Table 4). Among these in-

stances are indeed the names of large international

chains, Burger King being one of them. Less

expected are the names of geographic locations

and names of famous cuisines such as ‘Chinese’

and ‘French’. The last category of false instances

found that have not be £ltered out, are a number of

very common words (e.g. ‘It’ and ‘There’).

We populate the ontology with relations found

between Burger King and instances from country

using the 20 most effective patterns.

6

pattern prec spr freq
ca restaurants of cq 0.24 15 21
ca restaurants in cq 0.07 19 9
ca hamburger chain that occupies

villages throughout modern day cq 1.0 1 7
ca restaurant in cq 0.06 16 6
ca restaurants in the cq 0.13 16 2
ca hamburger restaurant in southern cq 1.0 1 4

Table 3: Top learned patterns for the restaurant-

country (ca - cq) relation.

Chinese Bank Outback Steakhouse
Denny’s Pizza Hut Kentucky Fried Chicken
Subway Taco Bell Continental
Holywood Wendy’s Long John Silver’s
HOTEL OR This Burger King
Japanese West Keg Steakhouse
You BP Outback
World Brazil San Francisco
Leo Victoria New York
These Lyons Starbucks
FELIX Roy California Pizza Kitchen
Marks Cities Emperor
Friendly Harvest Friday
New York Vienna Montana
Louis XV Greens Red Lobster
Good It There
That Mark Dunkin Donuts
Italia French Tim Hortons

Table 4: Learned instances for restaurant.

The algorithm returned 69 instance-pairs with

countries related to ‘Burger King’. On the Burger

King website3 a list of the 65 countries can be

found in which the hamburger chain operates. Of

these 65 countries, we identi£ed 55. This implies

that our results have a precision of 55
69 = 80% and

recall of 55
65 = 85%. Many of the falsely related

countries – mostly in eastern Europe – are loca-

tions where Burger King is said to have plans to

expand its empire.

7 Conclusions

We have presented a novel approach to identify

useful surface text patterns for information extrac-

tion using an internet search engine. We argued

that the selection of patterns has to be based on

effectiveness: a pattern has to occur frequently, it

has to be precise and has to be wide-spread if it

represents a non-functional relation.

These criteria are combined in a scoring func-

tion which we use to select the most effective pat-

terns.

3http://www.whopper.com

The method presented can be used for arbitrary

relations, thus also relations that link an instance

to multiple other instances. These patterns can be

used in information extraction. We combine pat-

terns with an instance and offer such an expression

as a query to a search engine. From the excerpts

retrieved, we extract instances and simultaneously

instance-pairs.

Learning surface text patterns is ef£cient with

respect to the number of queries if we know all

instances of the classes concerned. The £rst part

of the algorithm is linear to the size of the training

set. Furthermore, we select the n most frequent

patterns and perform |I ′q| · n queries to compute

the score of these n patterns.

However, for a setting where I ′a is incomplete,

we have to perform a check for each unique term

identi£ed as a candidate instance in the excerpts

found by the |I ′q| · n queries. The number of

queries, one for each extracted unique candidate

instance, thus fully depends on the rules that are

used to identify a candidate instance.

We apply the learned patterns in an ontology

population algorithm. We combine the learned

high quality relation patterns with an instance in

a query. In this way we can perform a range of ef-

fective queries to £nd instances of some class and

simultaneously £nd instance-pairs of the relation.

A £rst experiment, the identi£cation of hy-

ponym patterns, showed that the patterns identi-

£ed indeed intuitively re¤ect the relation consid-

ered. Moreover, we have generated a ranked list

of hyponym patterns. The experiment with the

restaurant ontology illustrated that a small train-

ing set suf£ces to learn effective patterns and pop-

ulate an ontology with good precision and recall.

The algorithm performs well with respect to re-

call of the instances found: many big international

restaurant branches were found. The identi£cation

of the instances however is open to improvement,

since the additional check does not £lter out all

falsely identi£ed candidate instances.

8 Future work

Currently we check whether an extracted term is

indeed an instance of some class by querying hy-

ponym patterns. However, if we £nd two in-

stances related by some surface text pattern, we al-

ways accept these instances as instance pair. Thus,

if we both £nd ‘Mozart was born in Germany’

and ‘Mozart was born in Austria’, both extracted

7

instance-pairs are added to our ontology. We

thus need some post-processing to remove falsely

found instance-pairs. When we know that a re-

lation is functional, we can select the most fre-

quently occurring instance-pair.

Moreover, the process of identifying an instance

in a text needs further research especially since

the method to identify instance-class relations by

querying hyponym patterns is not ¤awless.

The challenge thus lies in the area of improving

the precision of the output of the ontology pop-

ulation algorithm. With additional £ltering tech-

niques and more elaborated identi£cation tech-

niques we expect to be able to improve the pre-

cision of the output. We plan to research check

functions based on enumerations of candidate in-

stances with known instances of the class. For ex-

ample, the enumeration ‘KFC, Chinese and Mc-

Donald’s’ is not found by Google, where ‘KFC,

Burger King and McDonald’s’ gives 31 hits.

Our experiment with the extraction of hyponym

patterns, suggests a ranking of Hearst-patterns

based on the effectiveness. Knowledge on the ef-

fectiveness of each of the Hearst-patterns can be

utilized to minimize the amount of queries.

Finally we will investigate ways to compare our

methods with other systems in a TREC like setting

with the web as a corpus.

Acknowledgments

We thank our colleagues Bart Bakker and Dragan

Sekulovski and the anonymous reviewers for their

useful comments on earlier versions of this paper.

References

E. Agichtein and L. Gravano. 2000. Snowball: Ex-
tracting relations from large plain-text collections.
In Proceedings of the Fifth ACM International Con-
ference on Digital Libraries.

E. Brill. 1992. A simple rule-based part-of-speech
tagger. In Proceedings of the third Conference on
Applied Natural Language Processing (ANLP’92),
pages 152–155, Trento, Italy.

S. Brin. 1998. Extracting patterns and relations from
the world wide web. In WebDB Workshop at sixth
International Conference on Extending Database
Technology (EDBT’98).

P. Buitelaar, P. Cimiano, and B. Magnini, editors.
2005. Ontology Learning from Text: Methods, Eval-
uation and Applications, volume 123 of Frontiers in
Arti£cial Intelligence and Applications. IOS Press.

N. A. Chinchor, editor. 1998. Proceedings of the Sev-
enth Message Understanding Conference (MUC-7).
Morgan Kaufmann, Fairfax, Virginia.

P. Cimiano and S. Staab. 2004. Learning by googling.
SIGKDD Explorations Newsletter, 6(2):24–33.

M. Craven, D. DiPasquo, D. Freitag, A. McCallum,
T. Mitchell, K. Nigam, and S. Slattery. 2000. Learn-
ing to construct knowledge bases from the World
Wide Web. Arti£cial Intelligence, 118:69–113.

V. Crescenzi and G. Mecca. 2004. Automatic infor-
mation extraction from large websites. Journal of
the ACM, 51(5):731–779.

O. Etzioni, M. J. Cafarella, D., A. Popescu, T. Shaked,
S. Soderland, D. S. Weld, and A. Yates. 2005. Un-
supervised named-entity extraction from the web:
An experimental study. Arti£cial Intelligence,
165(1):91–134.

K. Frantzi, S. Ananiado, and H. Mima. 2000. Au-
tomatic recognition of multi-word terms: the c-
value/nc-value method. International Journal on
Digital Libraries, 3:115–130.

G. Geleijnse and J. Korst. 2005. Automatic ontology
population by googling. In Proceedings of the Sev-
enteenth Belgium-Netherlands Conference on Arti-
£cial Intelligence (BNAIC 2005), pages 120 – 126,
Brussels, Belgium.

M. Hearst. 1992. Automatic acquisition of hyponyms
from large text corpora. In Proceedings of the
14th conference on Computational linguistics, pages
539–545, Morristown, NJ, USA.

M. Hearst. 1998. Automated discovery of wordnet
relations. In Christiane Fellbaum, editor, WordNet:
An Electronic Lexical Database. MIT Press, Cam-
bridge, MA.

G. Nenadić, I. Spasić, and S. Ananiadou. 2002. Au-
tomatic discovery of term similarities using pattern
mining. In Proceedings of the second international
workshop on Computational Terminology (CompuT-
erm’02), Taipei, Taiwan.

D. Ravichandran and E. Hovy. 2002. Learning surface
text patterns for a question answering system. In
Proceedings of the 40th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2002),
pages 41–47, Philadelphia, PA.

E. Voorhees. 2004. Overview of the trec 2004 ques-
tion answering track. In Proceedings of the 13th
Text Retrieval Conference (TREC 2004), Gaithers-
burg, Maryland.

G. Zhou and J. Su. 2002. Named entity recognition
using an hmm-based chunk tagger. In Proceedings
of the 40th Annual Meeting of the Association for
Computational Linguistics (ACL 2002), pages 473 –
480, Philadelphia, PA.

8

