
A Framework for Incorporating Alignment Information in Parsing

Mark Hopkins
Dept. of Computational Linguistics

Saarland University
Saarbrücken, Germany

mhopkins@coli.uni-sb.de

Jonas Kuhn
Dept. of Computational Linguistics

Saarland University
Saarbrücken, Germany

jonask@coli.uni-sb.de

Abstract

The standard PCFG approach to parsing is
quite successful on certain domains, but is
relatively inflexible in the type of feature
information we can include in its prob-
abilistic model. In this work, we dis-
cuss preliminary work in developing a new
probabilistic parsing model that allows us
to easily incorporate many different types
of features, including crosslingual infor-
mation. We show how this model can
be used to build a successful parser for a
small handmade gold-standard corpus of
188 sentences (in 3 languages) from the
Europarl corpus.

1 Introduction

Much of the current research into probabilis-
tic parsing is founded on probabilistic context-
free grammars (PCFGs) (Collins, 1999; Charniak,
2000; Charniak, 2001). For instance, consider
the parse tree in Figure 1. One way to decom-
pose this parse tree is to view it as a sequence
of applications of CFG rules. For this particular
tree, we could view it as the application of rule
“NP→ NP PP,” followed by rule “NP→ DT NN,”
followed by rule “DT→ that,” and so forth. Hence
instead of analyzing P (tree), we deal with the
more modular:

P(NP → NP PP, NP → DT NN,
DT→ that, NN→money, PP→ IN NP,
IN → in, NP → DT NN, DT → the,
NN→ market)

Obviously this joint distribution is just as diffi-
cult to assess and compute with as P (tree). How-
ever there exist cubic time algorithms to find the

most likely parse if we assume that all CFG rule
applications are marginally independent of one an-
other. In other words, we need to assume that the
above expression is equivalent to the following:

P(NP → NP PP) · P(NP → DT NN) ·
P(DT → that) · P(NN → money) ·
P(PP → IN NP) · P(IN → in) ·
P(NP → DT NN) · P(DT → the) ·
P(NN→ market)

It is straightforward to assess the probability of
the factors of this expression from a corpus us-
ing relative frequency. Then using these learned
probabilities, we can find the most likely parse of
a given sentence using the aforementioned cubic
algorithms.
The problem, of course, with this simplifica-

tion is that although it is computationally attrac-
tive, it is usually too strong of an independence
assumption. To mitigate this loss of context, with-
out sacrificing algorithmic tractability, typically
researchers annotate the nodes of the parse tree
with contextual information. For instance, it has
been found to be useful to annotate nodes with
their parent labels (Johnson, 1998), as shown in
Figure 2. In this case, we would be learning prob-
abilities like: P(PP-NP→ IN-PP NP-PP).
The choice of which annotations to use is

one of the main features that distinguish parsers
based on this approach. Generally, this approach
has proven quite effective in producing English
phrase-structure grammar parsers that perform
well on the Penn Treebank.
One drawback of this approach is that it is

somewhat inflexible. Because we are adding prob-
abilistic context by changing the data itself, we
make our data increasingly sparse as we add fea-
tures. Thus we are constrained from adding too

9

NP

NP

DT

that

NN

money

PP

IN

in

NP

DT

the

NN

market

Figure 1: Example parse tree.

NP-TOP

NP-NP

DT-NP

that

NN-NP

money

PP-NP

IN-PP

in

NP-PP

DT-NP

the

NN-NP

market

Figure 2: Example parse tree with parent annota-
tions.

many features, because at some point we will not
have enough data to sustain them. Hence in this
approach, feature selection is not merely a matter
of including good features. Rather, we must strike
a delicate balance between how much context we
want to include versus how much we dare to par-
tition our data set.
This poses a problem when we have spent time

and energy to find a good set of features that work
well for a given parsing task on a given domain.
For a different parsing task or domain, our parser
may work poorly out-of-the-box, and it is no triv-
ial matter to evaluate how we might adapt our fea-
ture set for this new task. Furthermore, if we gain
access to a new source of feature information, then
it is unclear how to incorporate such information
into such a parser.
Namely, in this paper, we are interested in see-

ing how the cross-lingual information contained
by sentence alignments can help the performance
of a parser. We have a small gold-standard cor-
pus of shallow-parsed parallel sentences (in En-
glish, French, and German) from the Europarl cor-
pus. Because of the difficulty of testing new fea-
tures using PCFG-based parsers, we propose a
new probabilistic parsing framework that allows
us to flexibly add features. The closest relative

1 2 3 4 5
1 true true false false true
2 - true false false false
3 - - true false true
4 - - - true true
5 - - - - true

Figure 3: Span chart for example parse tree. Chart
entry (i, j) = true iff span (i, j) is a constituent
in the tree.

of our framework is the maximum-entropy parser
of Ratnaparkhi(Ratnaparkhi, 1997). Both frame-
works are bottom-up, but while Ratnaparkhi’s
views parse trees as the sequence of applications
of four different types of tree construction rules,
our framework strives to be somewhat simpler and
more general.

2 The Probability Model

The example parse tree in Figure 1 can also be de-
composed in the following manner. First, we can
represent the unlabeled tree with a boolean-valued
chart (which we will call the span chart) that as-
signs the value of true to a span if it is a con-
stituent in the tree, and false otherwise. The span
chart for Figure 1 is shown in Figure 3.
To represent the labels, we simply add similar

charts for each labeling scheme present in the tree.
For a parse tree, there are typically three types
of labels: words, preterminal tags, and nontermi-
nals. Thus we need three labeling charts. Labeling
charts for our example parse tree are depicted in
Figure 4. Note that for words and preterminals, it
is not really necessary to have a two-dimensional
chart, but we do so here to motivate the general
model.
The general model is as follows. Define a la-

beling scheme as a set of symbols including a
special symbol null (this will designate that a
given span is unlabeled). For instance, we might
define LNT = {null,NP,PP, IN,DT} to be
a labeling scheme for non-terminals. Let L =
{L1, L2, ...Lm} be a set of labeling schemes. De-
fine a model variable of L as a symbol of the form
Sij or Lk

ij , for positive integers i, j, k, such that
j ≥ i and k ≤ m. The domain of model vari-
able Sij is {true, false} (these variables indicate
whether a given span is a tree constituent). The do-
main of model variable Lk

ij is Lk (these variables
indicate which label from Lk is assigned to span

10

1 2 3 4 5
1 that null null null null
2 - money null null null
3 - - in null null
4 - - - the null
5 - - - - market

1 2 3 4 5
1 DT null null null null
2 - NN null null null
3 - - IN null null
4 - - - DT null
5 - - - - NN

1 2 3 4 5
1 null NP null null NP
2 - null null null null
3 - - null null PP
4 - - - null NP
5 - - - - null

Figure 4: Labeling charts for example parse tree:
the top chart is for word labels, the middle chart is
for preterminal tag labels, and the bottom chart is
for nonterminal labels. null denotes an unlabeled
span.

i, j). Define a model order of L as a total order-
ing Ω of the model variables of L such that for all
i, j, k: Ω(Sij) < Ω(Lk

ij) (i.e. we decide whether a
span is a constituent before attempting to label it).
Let Ωn denote the finite subset of Ω that includes
precisely the model variables of the form Sij or
Lk

ij , where j ≤ n.
Given a set L of labeling schemes and a model

order Ω of L, a preliminary generative story might
look like the following:

1. Choose a positive integer n.

2. In the order defined by Ωn, assign a value
to every model variable of Ωn from its do-
main, conditioned on any previous assign-
ments made.

Thus some model order Ω for our example
might instruct us to first choose whether span (4,
5) is a constituent, for which we might say “true,”
then instruct us to choose a label for that con-
stituent, for which we might say “NP,” and so
forth.
There are a couple of problems with this genera-

tive story. One problem is that it allows us to make

structural decisions that do not result in a well-
formed tree. For instance, we should not be per-
mitted to assign the value true to both variable S13

and S24. Generally, we cannot allow two model
variables Sij and Skl to both be assigned true if
they properly overlap, i.e. their spans overlap and
one is not a subspan of the other. We should also
ensure that the leaves and the root are considered
constituents. Another problem is that it allows us
to make labeling decisions that do not correspond
with our chosen structure. It should not be possi-
ble to label a span which is not a constituent.
With this in mind, we revise our generative

story.

1. Choose a positive integer n from distribution
P0.

2. In the order defined by Ωn, process model
variable x of Ωn:

(a) If x = Sij , then:
i. Automatically assign the value

false if there exists a properly
overlapping model variable Skl such
that Skl has already been assigned
the value true.

ii. Automatically assign the value true

if i = j or if i = 1 and j = n.
iii. Otherwise assign a value sij to Sij

from its domain, drawn from some
probability distribution PS condi-
tioned on all previous variable as-
signments.

(b) If x = Lk
ij , then:

i. Automatically assign the value null

to Lk
ij if Sij was assigned the value

false (note that this is well-defined
because of way we defined model
order).

ii. Otherwise assign a value lkij to Lk
ij

from its domain, drawn from some
probability distribution Pk condi-
tioned on all previous variable as-
signments.

Defining Ω<
n (x) = {y ∈ Ωn|Ω(y) < Ω(x)}

for x ∈ Ωn, we can decompose P (tree) into the
following expression:

11

P0(n) ·
∏

Sij∈Ωn

PS(sij |n,Ω<
n (Sij))

·
∏

Lk
ij∈Ωn

Pk(l
k
ij |n,Ω<

n (Lk
ij))

where PS and Pk obey the constraints given in
the generative story above (e.g. PS(Sii = true) =
1, etc.)
Obviously it is impractical to learn conditional

distributions over every conceivable history, so in-
stead we choose a small set F of feature variables,
and provide a set of functions Fn that map every
partial history of Ωn to some feature vector f ∈ F

(later we will see examples of such feature func-
tions). Then we make the assumption that:

PS(sij |n,Ω<
n (Sij) = PS(sij|f)

where f = Fn(Ω<
n (Sij)) and that

Pk(l
k
ij |n,Ω<

n (Sij) = Pk(l
k
ij |f)

where f = Fn(Ω<
n (Lk

ij)).
In this way, our learning task is simplified to

learn functions P0(n), PS(sij |f), and Pk(l
k
ij |f).

Given a corpus of labeled trees, it is straightfor-
ward to extract the training instances for these dis-
tributions and then use these instances to learn dis-
tributions using one’s preferred learning method
(e.g., maximum entropy models or decision trees).
For this paper, we are interested in parse trees

which have three labeling schemes. Let L =
{Lword, LPT , LNT }, where Lword is a labeling
scheme for words, LPT is a labeling scheme for
preterminals, and LNT is a labeling scheme for
nonterminals. We will define model order Ω such
that:

1. Ω(Sij) < Ω(Lword
ij) < Ω(LPT

ij) < Ω(LNT
ij).

2. Ω(LNT
ij) < Ω(Skl) iff j−i < l−k or (j−i =

l − k and i < k).

In this work, we are not as much interested in
learning a marginal distribution over parse trees,
but rather a conditional distribution for parse trees,
given a tagged sentence (from which n is also
known). We will assume that Pword is condition-
ally independent of all the other model variables,
given n and the Lword

ij variables. We will also as-
sume that Ppt is conditionally independent of the

other model variables, given n, the Lword
ij vari-

ables, and the L
pt
ij variables. These assumptions

allow us to express P (tree|n,Lword
ij , L

pt
ij) as the

following:

∏

Sij∈Ωn

PS(sij |fS) ·
∏

Lnt
ij ∈Ωn

Pnt(l
nt
ij |fnt)

where fS = Fn(Ω<
n (Sij)) and fnt =

Fn(Ω<
n (Lnt

ij)). Hence our learning task in this pa-
per will be to learn the probability distributions
PS(sij|fS) and Pnt(l

nt
ij |fnt), for some choice of

feature functions Fn.

3 Decoding

For the PCFG parsing model, we can find
argmaxtreeP (tree|sentence) using a cubic-time
dynamic programming-based algorithm. By
adopting a more flexible probabilistic model, we
sacrifice polynomial-time guarantees. Neverthe-
less, we can still devise search algorithms that
work efficiently in practice. For the decoding of
the probabilistic model of the previous section, we
choose a depth-first branch-and-bound approach,
specifically because of two advantages. First, this
approach is linear space. Second, it is anytime, i.e.
it finds a (typically good) solution early and im-
proves this solution as the search progresses. Thus
if one does not wish the spend the time to run the
search to completion (and ensure optimality), one
can use this algorithm easily as a heuristic.
The search space is simple to define. Given a

set L of labeling schemes and a model order Ω of
L, the search algorithm simply makes assignments
to the model variables (depth-first) in the order de-
fined by Ω.
This search space can clearly grow to be quite

large, however in practice the search speed is
improved drastically by using branch-and-bound
backtracking. Namely, at any choice point in the
search space, we first choose the least cost child to
expand. In this way, we quickly obtain a greedy
solution. After that point, we can continue to keep
track of the best solution we have found so far,
and if at any point we reach an internal node of
our search tree with partial cost greater than the
total cost of our best solution, we can discard this
node and discontinue exploration of that subtree.
This technique can result in a significant aggre-
grate savings of computation time, depending on

12

EN: [1 [2 On behalf of the European People ’s Party ,] [3 I] call [5 for a vote [6 in favour of that motion]]]

FR: [1 [2 Au nom du Parti populaire européen ,] [3 je] demande [5 l’ adoption [6 de cette résolution]]]

DE: [1 [2 Im Namen der Europäischen Volkspartei] rufe [3 ich] [4 Sie] auf , [5 [6 diesem Entschließungsantrag] zuzustimmen
]]

ES: [1 [2 En nombre del Grupo del Partido Popular Europeo ,] solicito [5 la aprobación [6 de la resolución]]]

Figure 5: Annotated sentence tuple

the nature of the cost function. For our limited
parsing domain, it appears to perform quite well,
taking fractions of a second to parse each sentence
(which are short, with a maximum of 20 words per
sentence).

4 Experiments

Our parsing domain is based on a “lean” phrase
correspondence representation for multitexts from
parallel corpora (i.e., tuples of sentences that are
translations of each other). We defined an anno-
tation scheme that focuses on translational corre-
spondence of phrasal units that have a distinct,
language-independent semantic status. It is a hy-
pothesis of our longer-term project that such a se-
mantically motivated, relatively coarse phrase cor-
respondence relation is most suitable for weakly
supervised approaches to parsing of large amounts
of parallel corpus data. Based on this lean phrase
structure format, we intend to explore an alter-
native to the annotation projection approach to
cross-linguistic bootstrapping of parsers by (Hwa
et al., 2005). They depart from a standard treebank
parser for English, “projecting” its analyses to an-
other language using word alignments over a par-
allel corpus. Our planned bootstrapping approach
will not start out with a given parser for English (or
any other language), but use a small set of manu-
ally annotated seed data following the lean phrase
correspondence scheme, and then bootstrap con-
sensus representations on large amounts of unan-
notated multitext data. At the present stage, we
only present experiments for training an initial
system on a set of seed data.
The annotation scheme underlying in the gold

standard annotation consists of (A) a bracketing
for each language and (B) a correspondence rela-
tion of the constituents across languages. Neither
the constituents nor the embedding or correspon-
dent relations were labelled.
The guiding principle for bracketing (A) is very

simple: all and only the units that clearly play
the role of a semantic argument or modifier in a

larger unit are bracketed. This means that function
words, light verbs, “bleeched” PPs like in spite
of etc. are included with the content-bearing el-
ements. This leads to a relatively flat bracketing
structure. Referring or quantified expressions that
may include adjectives and possessive NPs or PPs
are also bracketed as single constituents (e.g., [the
president of France]), unless the semantic rela-
tions reflected by the internal embedding are part
of the predication of the sentence. A few more
specific annotation rules were specified for cases
like coordination and discontinuous constituents.
The correspondence relation (B) is guided by

semantic correspondence of the bracketed units;
the mapping need not preserve the tree structure.
Neither does a constituent need to have a corre-
spondent in all (or any) of the other languages
(since the content of this constituent may be im-
plicit in other languages, or subsumed by the con-
tent of another constituent). “Semantic correspon-
dence” is not restricted to truth-conditional equiv-
alence, but is generalized to situations where two
units just serve the same rhetorical function in the
original text and the translation.
Figure 5 is an annotation example. Note that

index 4 (the audience addressed by the speaker)
is realized overtly only in German (Sie ‘you’); in
Spanish, index 3 is realized only in the verbal in-
flection (which is not annotated). A more detailed
discussion of the annotation scheme is presented
in (Kuhn and Jellinghaus, to appear).
For the current parsing experiments, only the

bracketing within each of three languages (En-
glish, French, German) is used; the cross-
linguistic phrase correspondences are ignored (al-
though we intend to include them in future ex-
periments). We automatically tagged the train-
ing and test data in English, French, and German
with Schmid’s decision-tree part-of-speech tagger
(Schmid, 1994).
The training data were taken from the sentence-

aligned Europarl corpus and consisted of 188 sen-
tences for each of the three languages, with max-

13

Feature Notation Description
p(language) the preterminal tag of word x − 1 (null if does not exist)
f(language) the preterminal tag of word x

l(language) the preterminal tag of word y

n(language) the preterminal tag of word y − 1 (null if does not exist)
lng the length of the span (i.e. y − x + 1)

Figure 6: Features for span (x, y). E = English, F = French, G = German

English Crosslingual Rec. Prec. F- No
features features score cross

p(E), f(E), l(E) none 40.3 63.6 49.4 (±3.9%) 57.1
p(F), f(F), l(F) 43.1 67.6 52.6 (±4.0%) 61.2
p(G), f(G), l(G) 45.9 66.8 54.4 (±4.0%) 69.4
p(F), f(F), l(F), 44.5 65.5 53.0 (±3.9%) 65.3
p(G), f(G), l(G)

p(E), f(E), l(E), n(E) none 57.2 68.6 62.4 (±4.0%) 65.3
p(F), f(F), l(F), n(F) 56.6 71.9 63.3 (±4.0%) 75.5
p(G), f(G), l(G), n(G) 57.9 67.7 62.5 (±3.9%) 67.3
p(F), f(F), l(F), n(F), 57.9 72.1 64.2 (±4.0%) 77.6
p(G), f(G), l(G), n(G)

p(E), f(E), l(E), n(E), lng none 64.8 71.2 67.9 (±4.0%) 79.6
p(F), f(F), l(F), n(F), lng 62.1 74.4 67.7 (±4.0%) 83.7
p(G), f(G), l(G), n(G), lng 61.4 78.8 69.0 (±4.1%) 83.7
p(F), f(F), l(F), n(F), 63.1 76.9 69.3 (±4.1%) 81.6

p(G), f(G), l(G), n(G), lng
BIKEL 57.9 60.2 59.1 (±3.8%) 57.1

Figure 7: Parsing results for various feature sets, and the Bikel baseline. The F-scores are annotated with
95% confidence intervals.

imal length of 21 words in English (French: 38;
German: 24) and an average length of 14.0 words
in English (French 16.8; German 13.6). The test
data were 50 sentences for each language, picked
arbitrarily with the same length restrictions. The
training and test data were manually aligned fol-
lowing the guidelines.1

For the word alignments used as learning fea-
tures, we used GIZA++, relying on the default pa-
rameters. We trained the alignments on the full
Europarl corpus for both directions of each lan-
guage pair.
As a baseline system we trained Bikel’s reim-

plementation (Bikel, 2004) of Collins’ parser
(Collins, 1999) on the gold standard (En-

1A subset of 39 sentences was annotated by two people
independently, leading to an F-Score in bracketing agreement
between 84 and 90 for the three languages. Since finding an
annotation scheme that works well in the bootstrapping set-
up is an issue on our research agenda, we postpone a more
detailed analysis of the annotation process until it becomes
clear that a particular scheme is indeed useful.

glish) training data, applying a simple additional
smoothing procedure for the modifier events in or-
der to counteract some obvious data sparseness is-
sues.2
Since we were attempting to learn unlabeled

trees, in this experiment we only needed to learn
the probabilistic model of Section 3 with no la-
beling schemes. Hence we need only to learn the
probability distribution:

PS(sij|fS)

In other words, we need to learn the probabil-
ity that a given span is a tree constituent, given
some set of features of the words and preterminal
tags of the sentences, as well as the previous span
decisions we have made. The main decision that

2For the nonterminal labels, we defined the left-most lex-
ical daughter in each local subtree of depth 1 to project its
part-of-speech category to the phrase level and introduced
a special nonterminal label for the rare case of nonterminal
nodes dominating no preterminal node.

14

remains, then, is which feature set to use. The fea-
tures we employ are very simple. Namely, for span
(i, j) we consider the preterminal tags of words
i − 1, i, j, and j + 1, as well as the French and
German preterminal tags of the words to which
these English words align. Finally, we also use
the length of the span as a feature. The features
considered are summarized in Figure 6.
To learn the conditional probability distributu-

tions, we choose to use maximum entropy mod-
els because of their popularity and the availabil-
ity of software packages. Specifically, we use
the MEGAM package (Daumé III, 2004) from
USC/ISI.
We did experiments for a number of different

feature sets, with and without alignment features.
The results (precision, recall, F-score, and the per-
centage of sentences with no cross-bracketing) are
summarized in Figure 7. Note that with a very
simple set of features (the previous, first, last, and
next preterminal tags of the sequence), our parser
performs on par with the Bikel baseline. Adding
the length of the sequence as a feature increases
the quality of the parser to a statistically signif-
icant difference over the baseline. The crosslin-
gual information provided (which is admittedly
naive) does not provide a statistically significant
improvement over the vanilla set of features. The
conclusion to be drawn is not that crosslingual in-
formation does not help (such a conclusion should
not be drawn from the meager set of crosslingual
features we have used here for demonstration pur-
poses). Rather, the take-away point is that such
information can be easily incorporated using this
framework.

5 Discussion

One of the primary concerns about this framework
is speed, since the decoding algorithm for our
probabilistic model is not polynomial-time like the
decoding algorithms for PCFG parsing. Neverthe-
less, in our experiments with shallow parsed 20-
word sentences, time was not a factor. Further-
more, in our ongoing research applying this prob-
abilistic framework to the task of Penn Treebank-
style parsing, this approach appears to also be vi-
able for the 40-word sentences of Sections 22 and
23 of theWSJ treebank. A strong mitigating factor
of the theoretical intractibility is the fact that we
have an anytime decoding algorithm, hence even
in cases when we cannot run the algorithm to com-

pletion (for a guaranteed optimal solution), the al-
gorithm always returns some solution, the quality
of which increases over time. Hence we can tell
the algorithm how much time it has to compute,
and it will return the best solution it can compute
in that time frame.
This work suggests that one can get a good qual-

ity parser for a new parsing domain with relatively
little effort (the features we chose are extremely
simple and certainly could be improved on). The
cross-lingual information that we used (namely,
the foreign preterminal tags of the words to which
our span was aligned by GIZA) did not give a sig-
nificant improvement to our parser. However the
goal of this work was not to make definitive state-
ments about the value of crosslingual features in
parsing, but rather to show a framework in which
such crosslingual information could be easily in-
corporated and exploited. We believe we have pro-
vided the beginnings of one in this work, and work
continues on finding more complex features that
will improve performance well beyond the base-
line.

Acknowledgement

The work reported in this paper was supported by
theDeutsche Forschungsgemeinschaft (DFG; Ger-
man Research Foundation) in the Emmy Noether
project PTOLEMAIOS on grammar learning from
parallel corpora.

References

Daniel M. Bikel. 2004. Intricacies of collins’ parsing
model. Computational Linguistics, 30(4):479–511.

Eugene Charniak. 2000. A maximum entropy-inspired
parser. In NAACL.

Eugene Charniak. 2001. Immediate-head parsing for
language models. In ACL.

Michael Collins. 1999. Head-driven statistical models
for natural language parsing. Ph.D. thesis, Univer-
sity of Pennsylvania.

Hal Daumé III. 2004. Notes on CG and LM-BFGS op-
timization of logistic regression. Paper available at
http://www.isi.edu/ hdaume/docs/daume04cg-
bfgs.ps, implementation available at
http://www.isi.edu/ hdaume/megam/, August.

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara
Cabezas, and Okan Kolak. 2005. Bootstrapping
parsers via syntactic projection across parallel texts.
Natural Language Engineering, 11(3):311–325.

15

Mark Johnson. 1998. PCFG models of linguistic tree
representation. Computational Linguistics, 24:613–
632.

Jonas Kuhn and Michael Jellinghaus. to appear. Mul-
tilingual parallel treebanking: a lean and flexible ap-
proach. In Proceedings of the Fifth International
Conference on Language Resources and Evaluation,
Genoa, Italy.

Adwait Ratnaparkhi. 1997. A linear observed time sta-
tistical parser based on maximum entropy models.
In EMNLP.

Helmut Schmid. 1994. Probabilistic part-of-speech
tagging using decision trees. In International Con-
ference on New Methods in Language Processing.

16

