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Abstract

Frequency dictionaries play an important
role both in psycholinguistic experiment
design and in language technology. The
paper describes a new, freely available,
web-based frequency dictionary of Hun-
garian that is being used for both purposes,
and the language-independent techniques
used for creating it.

0 Introduction

In theoretical linguistics introspective grammati-
cality judgments are often seen as having method-
ological primacy over conclusions based on what
is empirically found in corpora. No doubt the
main reason for this is that linguistics often studies
phenomena that are not well exemplified in data.
For example, in the entire corpus of written En-
glish there seems to be only one attested example,
not coming from semantics papers, of Bach-Peters
sentences, yet the grammaticality (and the pre-
ferred reading) of these constructions seems be-
yond reproach. But from the point of view of the
theoretician who claims that quantifier meanings
can be computed by repeat substitution, even this
one example is one too many, since no such theory
can account for the clearly relevant (though barely
attested) facts.

In this paper we argue that ordinary corpus
size has grown to the point that in some areas
of theoretical linguistics, in particular for is-
sues of inflectional morphology, the dichotomy
between introspective judgments and empirical
observations need no longer be maintained: in
this area at least, it is now nearly possible to
make the leap from zero observed frequency to
zero theoretical probability i.e. ungrammaticality.

In many other areas, most notably syntax, this
is still untrue, and here we argue that facts of
derivational morphology are not yet entirely
within the reach of empirical methods. Both
for inflectional and derivational morphology
we base our conclusions on recent work with
a gigaword web-based corpus of Hungarian
(Halácsy et al 2004) which goes some way
towards fulfilling the goals of the WaCky project
(http://wacky.sslmit.unibo.it, see
also Lüdeling et al 2005) inasmuch as the infras-
tructure used in creating it is applicable to other
medium-density languages as well. Section 1
describes the creation of the WFDH Web-based
Frequency Dictionary of Hungarian from the raw
corpus. The critical disambiguation step required
for lemmatization is discussed in Section 2,
and the theoretical implications are presented in
Section 3. The rest of this Introduction is devoted
to some terminological clarification and the
presentation of the elementary probabilistic model
used for psycholinguistic experiment design.

0.1 The range of data

Here we will distinguish three kinds of corpora:
small-, medium-, and large-range, based on the in-
ternal coherence of the component parts. A small-
range corpus is one that is stylistically homoge-
neous, generally the work of a single author. The
largest corpora that we could consider small-range
are thus the oeuvres of the most prolific writers,
rarely above 1m, and never above 10m words. A
medium-range corpus is one that remains within
the confines of a few text types, even if the au-
thorship of individual documents can be discerned
e.g. by detailed study of word usage. The LDC
gigaword corpora, composed almost entirely of
news (journalistic prose), are from this perspec-
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tive medium range. Finally, a large-range corpus
is one that displays a variety of text types, gen-
res, and styles that approximates that of overall
language usage – the Brown corpus at 1m words
has considerably larger range than e.g. the Reuters
corpus at 100m words.

The fact that psycholinguistic experiments need
to control for word frequency has been known at
least since Thorndike (1941) and frequency ef-
fects also play a key role in grammaticization (By-
bee, 2003). Since the principal source of variabil-
ity in word (n-gram) frequencies is the choice of
topic, we can subsume overall considerations of
genre under the selection of topics, especially as
the former typically dictates the latter – for ex-
ample, we rarely see literary prose or poetry deal-
ing with undersea sedimentation rates. We assume
a fixed inventory of topics T1, T2, . . . , Tk, with
k on the order 104, similar in granularity to the
Northern Light topic hierarchy (Kornai et al 2003)
and reserve T0 to topicless texts or “General Lan-
guage”. Assuming that these topics appear in the
language with frequency q1, q2, . . . , qk, summing
to 1 − q0 ≤ 1, the “average” topic is expected to
have frequency about 1/k (and clearly, q0 is on the
same order, as it is very hard to find entirely topi-
cless texts).

As is well known, the salience of different
nouns and noun phrases appearing in the same
structural position is greatly impacted not just by
frequency (generally, less frequent words are more
memorable) but also by stylistic value. For ex-
ample, taboo words are more salient than neutral
words of the same overall frequency. But style is
also closely associated with topic, and if we match
frequency profiles across topics we are therefore
controlling for genre and style as well. Present-
ing psycholinguistical experiments is beyond the
scope of this paper: here we put the emphasis on
creating the computational resource, the frequency
dictionary, that allows for detail matching of fre-
quency profiles.

Defining the range r of a corpus C simply
as

∑
j qj where the sum is taken over all topics

touched by documents in C, single-author cor-
pora typically have r < 0.1 even for encyclope-
dic writers, and web corpora have r > 0.9. Note
that r just measures the range, it does not mea-
sure how representative a corpus is for some lan-
guage community. Here we discuss results con-
cerning all three ranges. For small range, we use

the Hungarian translation of Orwell’s 1984 – 98k
words including punctuation tokens, (Dimitrova et
al., 1998). For mid-range, we consider four topi-
cally segregated subcorpora of the Hungarian side
of our Hungarian-English parallel corpus – 34m
words, (Varga et al., 2005). For large-range we
use our webcorpus – 700m words, (Halácsy et al.,
2004).

1 Collecting and presenting the data

Hungarian lags behind “high density” languages
like English and German but is hugely ahead of
minority languages that have no significant ma-
chine readable material. Varga et al (2005) es-
timated there to be about 500 languages that fit
in the same “medium density” category, together
accounting for over 55% of the world’s speakers.
Halacsy et al (2004) described how a set of open
source tools can be exploited to rapidly clean the
results of web crawls to yield high quality mono-
lingual corpora: the main steps are summarized
below.

Raw data, preprocessing The raw dataset
comes from crawling the top-level domain, e.g.
.hu, .cz, .hr, .pl etc. Pages that con-
tain no usable text are filtered out, and all text is
converted to a uniform character encoding. Iden-
tical texts are dropped by checksum compari-
son of page bodies (a method that can handle
near-identical pages, usually automatically gener-
ated, which differ only in their headers, datelines,
menus, etc.)

Stratification A spellchecker is used to stratify
pages by recognition error rates. For each page we
measure the proportion of unrecognized (either in-
correctly spelled or out of the vocabulary of the
spellchecker) words. To filter out non-Hungarian
(non-Czech, non-Croatian, non-Polish, etc.) docu-
ments, the threshold is set at 40%. If we lower the
threshold to 8%, we also filter out flat native texts
that employ Latin (7-bit) characters to denote their
accented (8 bit) variants (these are still quite com-
mon due to the ubiquity of US keyboards). Finally,
below the 4% threshold, webpages typically con-
tain fewer typos than average printed documents,
making the results comparable to older frequency
counts based on traditional (printed) materials.

Lemmatization To turn a given stratum of the
corpus into a frequency dictionary, one needs to
collect the wordforms into lemmas based on the
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same stem: we follow the usual lexicographic
practice of treating inflected, but not derived,
forms of a stem as belonging to the same lemma.
Inflectional stems are computed by a morphologi-
cal analyzer (MA), the choice between alternative
morphological analyses is resolved using the out-
put of a POS tagger (see Section 2 below). When
there are several analyses that match the output of
the tagger, we choose one with the least number of
identified morphemes. For now, words outside the
vocabulary of the MA are not lemmatized at all –
this decision will be revisited once the planned ex-
tension of the MA to a morphological guesser is
complete.

Topic classification Kornai et al (2003) pre-
sented a fully automated system for the classifica-
tion of webpages according to topic. Combining
this method with the methods described above en-
ables the automatic creation of topic-specific fre-
quency dictionaries and further, the creation of a
per-topic frequency distribution for each lemma.
This enables much finer control of word selection
in psycholinguistic experiments than was hitherto
possible.

1.1 How to present the data?

For Hungarian, the highest quality (4% thresh-
old) stratum of the corpus contains 1.22m unique
pages for a total of 699m tokens, already exceed-
ing the 500m predicted in (Kilgarriff and Grefen-
stette, 2003). Since the web has grown consid-
erably since the crawl (which took place in 2003),
their estimate was clearly on the conservative side.
Of the 699m tokens some 4.95m were outside the
vocabulary of the MA (7% OOV in this mode,
but less than 3% if numerals are excluded and the
analysis of compounds is turned on). The remain-
ing 649.7m tokens fall in 195k lemmas with an
average 54 form types per lemma. If all stems are
considered, the ratio is considerably lower, 33.6,
but the average entropy of the inflectional distri-
butions goes down only from 1.70 to 1.58 bits.

As far as the summary frequency list (which is
less than a megabyte compressed) is concerned,
this can be published trivially. Clearly, the avail-
ability of large-range gigaword corpora is in the
best interest of all workers in language technology,
and equally clearly, only open (freely download-
able) materials allow for replicability of experi-
ments. While it is possible to exploit search engine
queries for various NLP tasks (Lapata and Keller,

2004), for applications which use corpora as unsu-
pervised training material downloadable base data
is essential.

Therefore, a compiled webcorpus should con-
tain actual texts. We believe all “cover your be-
hind” efforts such as publishing only URLs to be
fundamentally misguided. First, URLs age very
rapidly: in any given year more than 10% be-
come stale (Cho and Garcia-Molina, 2000), which
makes any experiment conducted on such a ba-
sis effectively irreproducible. Second, by present-
ing a quality-filtered and characterset-normalized
corpus the collectors actually perform a service to
those who are less interested in such mundane is-
sues. If everybody has to start their work from the
ground up, many projects will exhaust their fund-
ing resources and allotted time before anything in-
teresting could be done with the data. In contrast,
the Free and Open Source Software (FOSS) model
actively encourages researchers to reuse data.

In this regard, it is worth mentioning that dur-
ing the crawls we always respected robots.txt
and in the two years since the publication of the gi-
gaword Hungarian web corpus, there has not been
a single request by copyright holders to remove
material. We do not advocate piracy: to the con-
trary, it is our intended policy to comply with re-
moval requests from copyright holders, analogous
to Google cache removal requests. Finally, even
with copyright material, there are easy methods
for preserving interesting linguistic data (say un-
igram and bigram models) without violating the
interests of businesses involved in selling the run-
ning texts. 1

2 The disambiguation of morphological
analyses

In any morphologically complex language, the
MA component will often return more than one
possible analysis. In order to create a lemma-
tized frequency dictionary it is necessary to de-
cide which MA alternative is the correct one, and
in the vast majority of cases the context provides
sufficient information for this. This morphologi-
cal disambiguation task is closely related to, but
not identical with, part of speech (POS) tagging,
a term we reserve here for finding the major parts

1This year, we are publishing smaller pilot corpora for
Czech (10m words), Croatian (4m words), and Polish (12m
words), and we feel confident in predicting that these will
face as little actual opposition from copyright holders as the
Hungarian Webcorpus has.
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of speech (N, V, A, etc). A full tag contains both
POS information and morphological annotation:
in highly inflecting languages the latter can lead
to tagsets of high cardinality (Tufiş et al., 2000).
Hungarian is particularly challenging in this re-
gard, both because the number of ambiguous to-
kens is high (reaching 50% in the Szeged Cor-
pus according to (Csendes et al., 2004) who use
a different MA), and because the ratio of tokens
that are not seen during training (unseen) can be
as much as four times higher than in comparable
size English corpora. But if larger training corpora
are available, significant disambiguation is possi-
ble: with a 1 m word training corpus (Csendes et
al., 2004) the TnT (Brants, 2000) architecture can
achieve 97.42% overall precision.

The ratio of ambiguous tokens is usually cal-
culated based on alternatives offered by a mor-
phological lexicon (either built during the training
process or furnished by an external application;
see below). If the lexicon offers alternative anal-
yses, the token is taken as ambiguous irrespective
of the probability of the alternatives. If an exter-
nal resource is used in the form of a morphological
analyzer (MA), this will almost always overgener-
ate, yielding false ambiguity. But even if the MA
is tight, a considerable proportion of ambiguous
tokens will come from legitimate but rare analyses
of frequent types (Church, 1988). For example the
word nem, can mean both ’not’ and ’gender’, so
both ADV and NOUN are valid analyses, but the ad-
verbial reading is about five orders of magnitude
more frequent than the noun reading, (12596 vs. 4
tokens in the 1 m word manually annotated Szeged
Korpusz (Csendes et al., 2004)).

Thus the difficulty of the task is better mea-
sured by the average information required for dis-
ambiguating a token. If word w is assigned
the label Ti with probability P (Ti|w) (estimated
as C(Ti, w)/C(w) from a labeled corpus) then
the label entropy for a word can be calculated
as H(w) = −

∑
i P (Ti|w) log P (Ti|w), and the

difficulty of the labeling task as a whole is the
weighted average of these entropies with respect
to the frequencies of words w:

∑
w P (w)H(w).

As we shall see in Section 3, according to this
measure the disambiguation task is not as difficult
as generally assumed.

A more persistent problem is that the ratio of
unseen items has very significant influence on the
performance of the disambiguation system. The

problem is more significant with smaller corpora:
in general, if the training corpus has N tokens and
the test corpus is a constant fraction of this, say
N/10, we expect the proportion of new words to
be cN q−1, where q is the reciprocal of the Zipf
constant (Kornai, 1999). But if the test/train ra-
tio is not kept constant because the training corpus
is limited (manual tagging is expensive), the num-
ber of tokens that are not seen during training can
grow very large. Using the 1.2 m words of Szeged
Corpus for training, in the 699 m word webcor-
pus over 4% of the non-numeric tokens will be un-
seen. Given that TnT performs rather dismally on
unseen items (Oravecz and Dienes, 2002) it was
clear from the outset that for lemmatizing the we-
bcorpus we needed something more elaborate.

The standard solution to constrain the prob-
abilistic tagging model for some of the unseen
items is the application of MA (Hakkani-Tür et al.,
2000; Hajič et al., 2001; Smith et al., 2005). Here
a distinction must be made between those items
that are not found in the training corpus (these we
have called unseen tokens) and those that are not
known to the MA – we call these out of vocabulary
(OOV). As we shall see shortly, the key to the best
tagging architecture we found was to follow dif-
ferent strategies in the lemmatization and morpho-
logical disambiguation of OOV and known (in-
vocabulary) tokens.

The first step in tagging is the annotation of
inflectional features, with lemmatization being
postponed to later processing as in (Erjavec and
Džeroski, 2004). This differs from the method of
(Hakkani-Tür et al., 2000), where all syntactically
relevant features (including the stem or lemma) of
word forms are determined in one pass. In our ex-
perience, the choice of stem depends so heavily
on the type of linguistic information that later pro-
cessing will need that it cannot be resolved in full
generality at the morphosyntactic level.

Our first model (MA-ME) is based on disam-
biguating the MA output in the maximum entropy
(ME) framework (Ratnaparkhi, 1996). In addi-
tion to the MA output, we use ME features coding
the surface form of the preceding/following word,
capitalization information, and different charac-
ter length suffix strings of the current word. The
MA used is the open-source hunmorph ana-
lyzer (Trón et al., 2005) with the morphdb.hu
Hungarian morphological resource, the ME is the
OpenNLP package (Baldridge et al., 2001). The
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MA-ME model achieves 97.72% correct POS tag-
ging and morphological analysis on the test corpus
(not used in training).

Maximum entropy or other discriminative
Markov models (McCallum et al., 2000) suffer
from the label bias problem (Lafferty et al., 2001),
while generative models (most notably HMMs)
need strict independence assumptions to make the
task of sequential data labeling tractable. Con-
sequently, long distance dependencies and non-
independent features cannot be handled. To cope
with these problems we designed a hybrid archi-
tecture, in which a trigram HMM is combined with
the MA in such a way that for tokens known to the
MA only the set of possible analyses are allowed
as states in the HMM whereas for OOVs all states
are possible. Lexical probabilities P (wi|ti) for
seen words are estimated from the training corpus,
while for unseen tokens they are provided by the
the above MA-ME model. This yields a trigram
HMM where emission probabilities are estimated
by a weighted MA, hence the model is called
WMA-T3. This improves the score to 97.93%.

Finally, it is possible to define another archi-
tecture, somewhat similar to Maximum Entropy
Markov Models, (McCallum et al., 2000), using
the above components. Here states are also the
set of analyses the MA allows for known tokens
and all analyses for OOVs, while emission prob-
abilities are estimated by the MA-ME model. In
the first pass TnT is run with default settings over
the data sequence, and in the second pass the ME
receives as features the TnT label of the preced-
ing/following token as well as the one to be ana-
lyzed. This combined system (TnT-MA-ME) in-
corporates the benefits of all the submodules and
reaches an accuracy of 98.17% on the Szeged Cor-
pus. The results are summarized in Table 1.

model accuracy
TnT 97.42
MA+ME 97.72
WMA+T3 97.93
TnT+MA+ME 98.17

Table 1: accuracy of morphological
disambiguation

We do not consider these results to be final:
clearly, further enhancements are possible e.g. by
a Viterbi search on alternative sentence taggings
using the T3 trigram tag model or by handling
OOVs on a par with known unseen words using

the guesser function of our MA. But, as we dis-
cuss in more detail in Halacsy et al 2005, we are
already ahead of the results published elsewhere,
especially as these tend to rely on idealized MA
systems that have their morphological resources
extended so as to have no OOV on the test set.

3 Conclusions

Once the disambiguation of morphological anal-
yses is under control, lemmatization itself is a
mechanical task which we perform in a database
framework. This has the advantage that it sup-
ports a rich set of query primitives, so that we
can easily find e.g. nouns with back vowels that
show stem vowel elision and have approximately
the same frequency as the stem orvos ‘doctor’.
Such a database has obvious applications both in
psycholinguistic experiments (which was one of
the design goals) and in settling questions of the-
oretical morphology. But there are always nag-
ging doubts about the closed world assumption be-
hind databases, famously exposed in linguistics by
Chomsky’s example colorless green ideas sleep
furiously: how do we distinguish this from *green
sleep colorless furiously ideas if the observed fre-
quency is zero for both?

Clearly, a naive empirical model that assigns
zero probability to each unseen word form makes
the wrong predictions. Better estimates can be
achieved if unseen words which are known to be
possible morphologically complex forms of seen
lemmas are assigned positive probability. This can
be done if the probability of a complex form is in
some way predictable from the probabilities of its
component parts. A simple variant of this model
is the positional independence hypothesis which
takes the probabilities of morphemes in separate
positional classes to be independent of each other.
Here we follow Antal (1961) and Kornai (1992) in
establishing three positional classes in the inflec-
tional paradigm of Hungarian nouns.

# Position 1 parameters
FAM 0.0001038986
PLUR 0.1372398793
PLUR_POSS 0.0210927964
PLUR_POSS<1> 0.0011609442
PLUR_POSS<1><PLUR> 0.0028751247
PLUR_POSS<2> 0.0004958278
PLUR_POSS<2><PLUR> 0.0000740203
PLUR_POSS<PLUR> 0.0023850120
POSS 0.1461635946
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POSS<1> 0.0073305415
POSS<1><PLUR> 0.0073652648
POSS<1>_FAM 0.0000092294
POSS<2> 0.0027628071
POSS<2><PLUR> 0.0003006440
POSS<2>_FAM 0.0000030591
POSS<PLUR> 0.0069613929
POSS_FAM 0.0000000001
ZERO1 0.6636759634
# Position 2 parameters
ANP 0.0007780001
ANP<PLUR> 0.0000248301
ZERO2 0.9991971698
# Position 3 parameters
CAS<ABL> 0.0078638013
CAS<ACC> 0.1346412632
CAS<ADE> 0.0045132704
CAS<ALL> 0.0138677701
CAS<CAU> 0.0037332025
CAS<DAT> 0.0301123636
CAS<DEL> 0.0128222999
CAS<ELA> 0.0118596792
CAS<ESS> 0.0010230505
CAS<FOR> 0.0031204983
CAS<ILL> 0.0154186683
CAS<INE> 0.0582887516
CAS<INS> 0.0406197868
CAS<SBL> 0.0386519707
CAS<SUE> 0.0357416253
CAS<TEM> 0.0013095685
CAS<TER> 0.0034032438
CAS<TRA> 0.0017860054
ZERO3 0.5812231804

Table 3: marginal probabilities in noun inflection

The innermost class is used for number and pos-
sessive, with a total of 18 choices including the
zero morpheme (no possessor and singular). The
second positional class is for anaphoric posses-
sives with a total of three choices including the
zero morpheme, and the third (outermost) class
is for case endings with a total of 19 choices
including the zero morpheme (nominative) for a
total of 1026 paradigmatic forms. The parame-
ters were obtained by downhill simplex minimiza-
tion of absolute errors. The average absolute er-
ror is of the values computed by the independece
hypothesis from the observed values is 0.000099
(mean squared error is 9.18 · 10−7), including the
209 paradigmatic slots for which no forms were
found in the webcorpus at all (but the indepen-
dence model will assign positive probability to any

of them as the product of the component probabil-
ities). When checking the independence hypoth-
esis with Φ statistics in the webcorpus for every
nominal inflectional morpheme pair the members
of which are from different dimensions, the Φ co-
efficient remained less than 0.1 for each pair but
3. For these 3 the coefficient is under 0.2 (which
means that the shared variance of these pairs is be-
tween 1% and 2%) so we have no reason to discard
the independence hypothesis. If we run the same
test on the 150 million words Hungarian National
Corpus, which was analyzed and tagged by differ-
ent tools, we also get the same result (Nagy, 2005).

It is very easy to construct low probability com-
binations using this model. Taking a less frequent
possessive ending such as the 2nd singular poses-
sor familiar plural -odék, the anaphoric plural -éi,
and a rarer case ending such as the formalis -ként
we obtain combinations such as barátodékéiként
“as the objects owned by your friends’ company”.
The model predicts we need a corpus with about
4.2 · 1012 noun tokens to see this suffix combina-
tion (not necessarily with the stem barát “friend”)
or about ten trillion tokens. While the current cor-
pus falls short by four orders of magnitude, this
is about the contribution of the anaphoric plural
(which we expect to see only once in about 40k
noun tokens) so for any two of the three position
classes combined the prediction that valid inflec-
tional combinations will actually be attested is al-
ready testable.

Using the fitted distribution of the position
classes, the entropy of the nominal paradigm is
computed simply as the sum of the class entropies,
1.554 + 0.0096 + 2.325 or 3.888 bits. Since the
nominal paradigm is considerably more complex
than the verbal paradigm (which has a total of
52 forms) or the infinitival paradigm (7 forms),
this value can serve as an upper bound on the in-
flectional entropy of Hungarian. In Table 3 we
present the actual values, computed on a variety
of frequency dictionaries. The smallest of these
is based on a single text, the Hungarian transla-
tion of Orwell’s 1984. The mid-range corpora
used in this comparison are segregated in broad
topics: law (EU laws and regulations), literature,
movie subtitles, and software manuals: all were
collected from the web as part of building a bilin-
gual English-Hungarian corpus. Finally, the large-
range is the full webcorpus at the best (4% reject)
quality stratum.
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1984 law literature subtitles software webcorpus
token 98292 2310742 7971157 2667420 839339 69926550
type 20343 110040 431615 188131 81729 2083023
OOV token 3141 266368 335660 181292 140551 4951743
OOV type 1132 39467 87574 50078 45799 994890
lemma 10644 60602 165259 85491 58939 1189471
lemma excl. OOV 9513 21136 77686 35414 13141 194589
lemma entropy 1.14282 1.04118 1.54922 1.41374 1.14516 1.57708
lemma entropy excl. OOV 1.18071 1.17687 1.61753 1.51718 1.37559 1.69743

Table 3: inflectional entropy of Hungarian computed on a variety of frequency dictionaries

Our overall conclusion is that for many pur-
poses a web-based corpus has significant advan-
tages over more traditional corpora. First, it is
cheap to collect. Second, it is sufficiently hetero-
geneous to ensure that language models based on
it generalize better on new texts of arbitrary topics
than models built on (balanced) manual corpora.
As we have shown, automatically tagged and lem-
matized webcorpora can be used to obtain large
coverage stem and wordform frequency dictionar-
ies. While there is a significant portion of OOV
entries (about 3% for our current MA), in the de-
sign of psycholinguistic experiments it is gener-
ally sufficient to consider stems already known to
the MA, and the variety of these (over three times
the stem lexicon of the standard Hungarian fre-
quency dictionary) enables many controlled exper-
iments hitherto impossible.
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