
Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (EMNLP 2006), pages 526–533,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Sentence Ordering with Manifold-based Classification in  

Multi-Document Summarization 

 
Paul D Ji  

Centre for Linguistics and Philology 
University of Oxford 

paul_dji@yahoo.co.uk 

Stephen Pulman  
Centre for Linguistics and Philology 

University of Oxford 

sgp@clg.ox.ac.uk 

 

             Abstract 
 

In this paper, we propose a sentence 

ordering algorithm using a semi-supervised 

sentence classification and historical 

ordering strategy. The classification is based 

on the manifold structure underlying 

sentences, addressing the problem of limited 

labeled data. The historical ordering helps to 

ensure topic continuity and avoid topic bias. 

Experiments demonstrate that the method is 

effective.  

 

1. Introduction 
 
Sentence ordering has been a concern in text 

planning and concept-to-text generation (Reiter et 

al., 2000). Recently, it has also drawn attention in 

multi-document summarization (Barzilay et al., 

2002; Lapata, 2003; Bollegala et al., 2005). Since 

summary sentences generally come from 

different sources in multi-document 

summarization, an optimal ordering is crucial to 

make summaries coherent and readable.  

  In general, the strategies for sentence ordering 

in multi-document summarization fall in two 

categories. One is chronological ordering 

(Barzilay et al., 2002; Bollegala et al., 2005), 

which is based on time-related features of the 

documents. However, such temporal features may 

be not available in all cases. Furthermore, 

temporal inference in texts is still a problem, in 

spite of some progress in automatic 

disambiguation of temporal information (Filatova 

et al., 2001).  

Another strategy is majority ordering (MO) 

(McKeown et al., 2001; Barzilay et al., 2002), in 

which each summary sentence is mapped to a 

theme, i.e., a set of similar sentences in the 

documents, and the order of these sentences 

determines that for summary sentences. To do 

that, a directed theme graph is built, in which if a 

theme A occurs behind another theme B in a 

document, B is linked to A no matter how far 

away they are located. However, this may lead to 

wrong theme correlations, since B’s occurrence 

may rely on a third theme C and have nothing to 

do with A. In addition, when outputting theme 

orders, MO uses a kind of heuristic that chooses a 

theme based on its in-out edge difference in the 

directed theme graph. This may cause topic 

disruption, since the next choice may have no 

link with previous choices.  

Lapata (2003) proposed a probabilistic 

ordering (PO) method for text structuring, which 

can be adapted to majority ordering if the training 

texts are those documents to be summarized. The 

primary evidence for the ordering are informative 

features of sentences, including words and their 

grammatical dependence relations, which needs 

reliable parsing of the text. Unlike in MO, 

selection of the next sentence here is based on the 

most recent one. However, this may lead to topic 

bias: i.e. too many sentences on the same topic.  

  In this paper, we propose a historical ordering 

(HO) strategy, in which the selection of the next 

sentence is based on the whole history of 

selection, not just the most recent choice. This 
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strategy helps to ensure continuity of topics but to 

avoid topic bias at the same time. 

 To do that, we need to map summary sentences 

to those in documents. We formalize this as a 

kind of classification problem, with summary 

sentences as class labels. Since there are very few 

(only one) labeled examples for each class, we 

adopt a kind of semi-supervised classification 

method, which makes use of the manifold 

structure underlying the sentences to do the 

classification. A common assumption behind this 

learning paradigm is that the manifold structure 

among the data, revealed by higher density, 

provides a global comparison between data points 

(Szummer et al., 2001; Zhu et al., 2003; Zhou et 

al., 2003). Under such an assumption, even one 

labeled example is enough for classification, if 

only the structure is determined.  

  The remainder of the paper is organized as 

follows. In section 2, we give an overview of the 

proposed method. In section 3~5, we talk about 

the method including sentence networks, 

classification and ordering. In section 6, we 

present experiments and evaluations. Finally in 

section 7, we give some conclusions and future 

work.  

 
2. Overview 
 
Fig. 1 gives the overall structure of the proposed 

method, which includes three modules: 

construction of sentence networks, sentence 

classification and sentence ordering. 

     
  Fig. 1. Algorithm Overview 

 
The first step is to build a sentence neighborhood 

network with weights on edges, which can serve 

as the basis for a Markov random walk (Tishby et 

al., 2000). The neighborhood is based on 

similarity between sentences, and weights on 

edges can be seen as transition probabilities for 

the random walk. From this network, we can 

derive new representations for sentences.   

   The second step is to make a classification of 

sentences, with each summary sentence as a class 

label. Since only one labeled example exists for 

each class, we use a semi-supervised method 

based on a Markov random walk to reveal the 

manifold structure for the classification.  

   The third step is to order summary sentences 

according to the original positions of their 

partners in the same class. During this process, 

the next selection of a sentence is based on the 

whole history of selection, i.e., the association of 

the sentence with all those already selected.  

 

3. Sentence Network Construction 
 

Suppose S is the set of all sentences in the 

documents and a summary (a summary sentence 

may be not a document sentence), let S={ s1, 

s2, …, sN} with a distance metric d(si,sj), the 

distance between two sentences si and sj, which is 

based on the Jensen-Shannon divergence (Lin, 

1991). We construct a graph with sentences as 

points by sorting the distances among the points 

in an ascending order and repeatedly connecting 

two points according to the order until a 

connected graph is obtained. Then, we assign a 

weight wi,j, as in (1), to each edge based on the 

distance.  

)/),(exp()1 , δjiji ssdw −=  

The weights are symmetric, wi,i=1 and wi,j=0 for 

all non-neighbors (δ is set as 0.6 in this work). 2) 

is the one-step transition probability p(si, sj) from 

si to sj based on weights of neighbors. 
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Sentence classification 
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Let M be the N×N matrix and Mi,j= p(si, sj), then 

Mt is the tth Markov random walk matrix, whose i, 

j-th entry is the probability pt(si, sj) of the 

transition from si to sj after t steps. In this way, 

each sentence sj is associated with a vector of 

conditional probabilities pt(si, sj), i=1, …, N, 

which form a new manifold-based representation 

for sj. With such representations, sentences are 

close whenever they have a similar distribution 

over the starting points. Notice that the 

representations depend on the step parameter t 

(Tishby et al., 2000). With smaller values of t, 

unlabeled points may be not connected with 

labeled ones; with bigger values of t, the points 

may be indistinguishable. So, an appropriate t 

should be estimated.  

 
4. Sentence Classification 
 
Suppose s1, s2, …, sL are summary sentences and 

their labels are c1, c2, …, cL respectively. In our 

case, each summary sentence is assigned with a 

unique class label ci, 1≤i≤L. This also means that 

for each class ci, there is only one labeled 

example, i.e., the summary sentence, si. 

  Let S={( s1, c1), (s2, c2), …, (sL, cL), sL+1,…, sN},  

then the task of sentence classification is to infer 

the labels for unlabeled sentences, sL+1,…, sN. 

Through the classification, we can get similar 

sentences for each summary sentence. To do that, 

we assume that each sentence has a distribution 

p(ck|si), 1≤k≤L, 1≤i≤N, and these probabilities are 

to be estimated from the data.  

  Seeing a sentence as a sample from the t step 

Markov random walk in the sentence graph, we 

have the following interpretation of p(ck|si). 

∑=
j

tjkik ijpscpscp ),()|()|()3  

This means that the probability of si belonging 

to ck is dependent on the probabilities of those 

sentences belonging to ck which will transit to si 

after t steps and their transition probabilities.  

   With the conditional log-likelihood of labeled 

sentences 4) as the estimation criterion, we can 

use the EM algorithm to estimate p(ck|si), in 

which the E-step and M-step are 5) and 6) 

respectively. 
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The final class ci for si is given in 7).  

)|(maxarg)7 ikci scpc
k

=  

p(ci|si) is called the membership probability of si. 

After classification, each sentence is assigned a 

label according to 7). 

   One key problem in this setting is to estimate 

the parameter t. A possible strategy for that is by 

cross validation, but it needs a large amount of 

labeled data. Here, following Szummer et al., 

2001, we use marginal difference of probabilities 

of sentences falling in different classes as the 

estimation criterion, which is given in 8). 
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To maximize 8), we can get an appropriate value 

for the parameter t, which means that a better t 

should make sentences belong to some classes 

more prominently. Notice that the classes 

represented by summary sentences may be 

incomplete for all the sentences occurring in the 

documents, so some sentences will belong to the 

classes without obviously different probabilities. 

To avoid such sentences in the estimation of t, we 

only choose the top (40%) sentences in a class 

based on their membership probabilities. 

 
5. Sentence Ordering 
 

After sentence classification, we get a class of 

similar sentences for each summary sentence, 

which is also a member of the class. With these 

sentence classes, we create a directed class graph 

based on the order of their member sentences in 

documents. In the graph, each sentence class is a 
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node, and there exists a directed edge ei,j from 

one node ci to another cj if and only if there is si 

in ci immediately appearing before sj in cj in the 

documents (the sentences not in classes are 

neglected). The weight of ei,j, Fi,j, captures the 

frequency of such occurrence. We add one 

additional node denoting an initial class c0, and it 

links to each class with a directed edge e0,j, the 

weight F0,j of which is the frequency of the 

member sentences of the class appearing at the 

beginning of the documents.  

Suppose the input is the class graph G=<C, E>, 

where C = {c1, c2, …, cL} is the set of the classes, 

E={ei,j|1≤i, j≤L} is the set of the directed edges, 

and o is the ordering of the classes. Fig. 2 gives 

the ordering algorithm.  
-------------------------------------------------- 

i) i
Cc

k Fc
i

,0max
∈

←  

ii) o← o ck 

iii) For all ci in C, ikii FFF ,,0,0 +←  

iv) Remove ck from C and ek,j and ei,k from E; 

v) Repeat i)-iv) while C≠{  c0} 

vi) Return the order o. 

-------------------------------------------------------- 

Fig. 2 Ordering algorithm 

 
In the algorithm, there are two main steps. Step i) 

selects the class whose member sentences occur 

most frequently immediately after those in c0. 

Step iii) updates the weights of the edges e0,i. In 

fact, it can be seen as merge of the original c0 and 

ck, and in this sense the updated c0 represents the 

history of selections. 

   In contrast to the MO algorithm, the ordering 

algorithm here (HO) uses immediate back-front 

co-occurrence, while the MO algorithm uses 

relative back-front locations. On the other hand, 

the selection of a class is dependent on previous 

selections in HO, while in MO, the selection of a 

class is mainly dependent on its in-out edge 

difference.  

  In contrast to the PO algorithm, the selection of 

a class in HO is dependent on all previous 

selections, while in PO, the selection is only 

related to the most recent one. 

  As an example, Fig. 3 gives an initial class 

graph. The output orderings by PO and HO are 

[c1, c3, c4, c2] and [c1, c3, c2, c4] respectively. The 

difference lies in whether to select c4 or c2 after 

selection of c3. PO selects c4 since it only 

considers the most recent selection, while HO 

selects c2 because it considers all previous 

selections including c1. 

        c0 

          9 
        c1 
     5        6 
  c2                  c3  
 
         1       2 

1           c4 
   

   Fig. 3 Initial graph for PO and HO 

 

As another example, Fig. 4 gives the order of the 

classes in individual documents. 
 
 

1) c2   c3   c1 
2) c2   c3   c1 
3) c3   c2   c1 
4) c3   c2   c1 
5) c3   c2 
6) c2   c3 
7) c1    c2   c3  c2   c3   c2   c3   c2  

 
 

  Fig. 4. Class orders in documents 

 
From 1)-6), we can see some regularity among 

the order of the classes: c2 and c3 are 

interchangeable, while c1 always appears behind 

c2 or c3. From 7), we can see that c2 and c3 still 

co-occur, while c1 happens to occur at the 

beginning of the document. Thus, the appropriate 

ordering should be [c2, c3, c1] or [c3, c2, c1]. Fig. 5 

is the graph built by MO. 

        c2 

  4     6  6     2 

        c3 
       3  2 

        c1  

 Fig. 5 Graph by MO 
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According to MO, the first node to be selected 

will be c1, since the difference of its in-out edges 

(+3) is bigger than that (-2, -1) of other two nodes. 

Then the in-out edge differences for c2 or c3 are 

both 0 after removing edges associated with c1, 

and either c2 or c3 will be selected. Thus, the 

output ordering should be [c1, c2, c3] or [c1, c3, c2]. 

        c2 

  1      6   6     2 

        c3           3            

        0  2    3 

        c1      1      c0 

   Fig. 6 Graph by HO 

 

Fig. 6 is the class graph built by HO. According 

to HO, the first node to be selected will be c2 or c3, 

since e0,1=e0,2=3>e0,1=1. Suppose c2 is firstly 

selected, then e0,3
⇐ e0,3+e2,3=3+6=9, while e0,1

⇐  

e0,1+e2,1=1+2=3, so c3 will be selected then. 

Finally the output ordering will be [c2, c3, c1]. 

Similarly, if c3 is firstly selected, the output 

ordering will be [c3, c2, c1]. 

 

6 Experiments and Evaluation  
 
6.1 Data 
 
We used the DUC04 document dataset. The 

dataset contains 50 document clusters and each 

cluster includes 20 content-related documents. 

For each cluster, 4 manual summaries are 

provided.  

 
6.2 Evaluation Measure 
 
The proposed method in this paper consists of 

two main steps: sentence classification and 

sentence ordering. For classification, we used 

pointwise entropy (Dash et al., 2000) to measure 

the quality of the classification result due to lack 

of enough labeled data. For a n×m matrix M, 

whose row vectors are normalized as 1, its 

pointwise entropy is defined in 9).  

))1log()1(log()()9 ,,
1 1

,, jiji
ni mj

jiji MMMMME −−+−= ∑∑
≤≤ ≤≤

 

Intuitively, if Mi,j is close to 0 or 1, E(M) tends 

towards 0, which corresponds to clearer 

distinctions between classes; otherwise E(M) 

tends towards 1, which means there are no clear 

boundaries between classes. For comparison 

between different matrices, E(M) needs to be 

averaged over n×m.  

  For sentence ordering, we used Kendall’s τ 
coefficient (Lapata, 2003), as defined in 10),  

   
2/)1(

)(2
1)10

−
−=

NN

N Iτ  

where, NI is number of inversions of consecutive 

sentences needed to transform output of the 

algorithm to manual summaries. The measure 

ranges from -1 for inverse ranks to +1 for 

identical ranks, and can also be seen as a kind of 

edit similarity between two ranks: smaller values 

for lower similarity, and bigger values for higher 

similarity.  

 
6.3 Evaluation of Classification 
 
For sentence classification, we need to estimate 

the parameter t. We randomly chose 5 document 

clusters and one manual summary from the four. 

Fig. 7 shows the change of the average margin 

over all the top 40% sentences in a cluster with t 

varying from 3 to 25. 
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      Fig. 7. Average margin and t 

Fig. 7 indicates that the average margin changes 

with t for each cluster and the values of t 

maximizing the margin are different for different 

clusters. For the 5 clusters, the estimated t is 16, 8, 

14, 12 and 21 respectively. So we need to 

530



estimate the best t for each cluster.  

  After estimation of t, EM was used to estimate 

the membership probabilities. Table 1 gives the 

average pointwise entropy for top 10% to top 

100% sentences in each cluster, where sentences 

were ordered by their membership probabilities. 

The values were averaged over 20 runs, and for 

each run, 10 document clusters and one summary 

were randomly selected, and the entropy was 

averaged over the summaries. 

 

Sentences E_Semi E_SVM Significance 

10% 0.23 0.22 ~ 

20% 0.26 0.27 ~ 

30% 0.32 0.43 * 

40% 0.35 0.49 ** 

50% 0.42 0.51 * 

60% 0.46 0.55 * 

70% 0.48 0.57 * 

80% 0.59 0.62 ~ 

90% 0.65 0.69 ~ 

100% 0.70 0.73 ~ 

Table 1. Entropy of classification result 

 

In Table 1, the column E_Semi shows entropies 

of the semi-supervised classification. It indicates 

that the entropy increases as more sentences are 

considered. This is not surprising since the 

sentences are ordered by their membership 

probabilities in a cluster, which can be seen as a 

kind of measure for closeness between sentences 

and cluster centroids, and the boundaries between 

clusters become dim with more sentences 

considered.  

  To compare the performance between this 

semi-supervised classification and a standard 

supervised method like Support Vector Machines 

(SVM), Table 1 also lists the average entropy of a 

SVM (E_SVM) over the runs. Similarly, we 

found that the entropy also increases as sentences 

increase. Table 2 also gives the significance sign 

over the runs, where *, ** and ~ represent 

p-values <=0.01, (0.01, 0.05] and >0.05, and 

indicate that the entropy of the semi-supervised 

classification is lower, significantly lower, or 

almost the same as that of SVM respectively.  

  Table 1 demonstrates that when the top 10% or 

20% sentences are considered, the performance 

between the two algorithms shows no difference. 

The reason may be that these top sentences are 

closer to cluster centroids in both cases, and the 

cluster boundaries in both algorithms are clear in 

terms of these sentences.  

For the top 30% sentences, the entropy for 

semi-supervised classification is lower than that 

for a SVM, and for the top 40%, the difference 

becomes significantly lower. The reason may go 

to the substantial assumptions behind the two 

algorithms. SVM, based on local comparison, is 

successful only when more labeled data is 

available. With only one sentence labeled as in 

our case, the semi-supervised method, based on 

global distribution, makes use of a large amount 

of unlabeled data to reveal the underlying 

manifold structure. Thus, the performance is 

much better than that of a SVM when more 

sentences are considered.  

For the top 50% to 70% sentences, E_Semi is 

still lower, but not by much. The reason may be 

that some noisy documents are starting to be 

included. For the top 80% to 100% sentences, the 

performance shows no difference again. The 

reason may be that the lower ranking sentences 

may belong to other classes than those 

represented by summary sentences, and with 

these sentences included, the cluster boundaries 

become unclear in both cases. 

 
6.4 Evaluation of Ordering 
 
We used the same classification results to test the 

performance of our ordering algorithm HO as 

well as MO and PO. Table 2 lists the Kendall’s τ 
coefficient values for the three algorithms (τ_1). 

The value was averaged over 20 runs, and for 

each run, 10 summaries were randomly selected 

and the τ score was averaged over summaries. 

Since a summary sentence tends to generalize 
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some sentences in the documents, we also tried to 

combine two or three consecutive sentences into 

one, and tested their ordering performance (τ_2 

and τ_3) respectively. 

 τ HO MO PO τ_1  0.42 0.31 0.33 τ_2 0.33 0.26 0.29 τ_3 0.27 0.21 0.25 

Table 2. τ scores for HO, MO and PO 

 

Table 2 indicates that the combination of 

sentences harms the performance. To see why, we 

checked the classification results, and found that 

the pointwise entropies for two and three 

sentence combinations (for the top 40% sentence 

in each cluster) increase 12.4% and 18.2% 

respectively. This means that the cluster structure 

becomes less clear with two or three sentence 

combinations, which would lead to less similar 

sentences being clustered with summary 

sentences. This result also suggests that if the 

summary sentence subsumes multiple sentences 

in the documents, they tend to be not consecutive.  

   Fig. 8 shows change of τ scores with different 

number of sentences used for ordering, where x 

axis denotes top (1-x)*100% sentences in each 

cluster. The score was averaged over 20 runs, and 

for each run, 10 summaries were randomly 

selected and evaluated. 

0
0.1
0.2
0.3
0.4
0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

least probability

τ
Fig. 8. τ scores and number of sentences 

 

Fig. 8 indicates that with fewer sentences (x 

>=0.7) used for ordering, the performance 

decreases. The reason may be that with fewer and 

fewer sentences used, the result is deficient 

training data for the ordering. On the other hand, 

with more sentences used (x <0.6), the 

performance also decreases. The reason may be 

that as more sentences are used, the noisy 

sentences could dominate the ordering. That’s 

why we considered only the top 40% sentences in 

each cluster as training data for sentence 

reordering here. 

As an example, the following is a summary for 

a cluster of documents about Central American 

storms, in which the ordering is given manually.  

 
1) A category 5 storm, Hurricane Mitch roared across the northwest 

Caribbean with 180 mph winds across a 350-mile front that 

devastated the mainland and islands of Central America. 

2) Although the force of the storm diminished, at least 8,000 people 

died from wind, waves and flood damage. 

3) The greatest losses were in Honduras where some 6,076 people 

perished. 

4) Around 2,000 people were killed in Nicaragua, 239 in El Salvador, 

194 in Guatemala, seven in Costa Rica and six in Mexico. 

5) At least 569,000 people were homeless across Central America. 

6) Aid was sent from many sources (European Union, the UN, US 

and Mexico). 

7) Relief efforts are hampered by extensive damage. 

 

Compared with the manual ordering, our 

algorithm HO outputs the ordering [1, 3, 4, 2, 5, 6, 

7]. In contrast, PO and MO created the orderings 

[1, 3, 4, 5, 6, 7, 2] and [1, 3, 2, 6, 4, 5, 7] 

respectively. In HO’s output, sentence 2 was put 

in the wrong position. To check why this was so, 

we found that sentences in cluster 2 and cluster 3 

(clusters containing sentence 2 or sentence 3) 

were very similar, and the size of cluster 3 was 

bigger than that of cluster 2. Also we found that 

sentences in cluster 4 mostly followed those in 

cluster 3. This may explain why the ordering [1, 3, 

4] occurred. Due to the link between cluster 2 and 

cluster 1 or 3, sentence 2 followed sentence 4 in 

the ordering. In PO, sentence 2 was put at the end 

of the ordering, since it only considered the most 

recent selection when determining next, so cluster 

1 would not be considered when determining the 
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4th position. This suggests that consideration of 

selection history does in fact help to group those 

related sentences more closely, although sentence 

2 was ranked lower than expected in the example.  

In MO, we found sentence 2 was put 

immediately behind sentence 3. The reason was 

that, after sentence 1 and 3 were selected, the 

in-edges of the node representing cluster 2 

became 0 in the cluster directed graph, and its 

in-out edge difference became the biggest among 

all nodes in the graph, so it was chosen. For 

similar reasons, sentence 6 was put behind 

sentence 2. This suggests that it may be difficult 

to consider the selection history in MO, since its 

selection is mainly based on the current status of 

clusters.      
6. Conclusion and Future Work 
 
In this paper, we propose a sentence ordering 

method for multi-document summarization based 

on semi-supervised classification and historical 

ordering. For sentence classification, the 

semi-supervised classification groups sentences 

based on their global distribution, rather than on 

local comparisons. Thus, even with a small 

amount of labeled data (just 1 labeled example in 

our case) we nevertheless ensure good 

performance for sentence classification. 

  For sentence ordering, we propose a kind of 

history-based ordering strategy, which determines 

the next selection based on the whole selection 

history, rather than the most recent single 

selection in probabilistic ordering, which could 

result in topic bias, or in-out difference in MO, 

which could result in topic disruption.     

  In this work, we mainly use sentence-level 

information, including sentence similarity and 

sentence order, etc. In future, we may explore the 

role of term-level or word-level features, e.g., 

proper nouns, in the ordering of summary 

sentences. To make summaries more coherent and 

readable, we may also need to discover how to 

detect and control topic movement automatic 

summaries. One specific task is how to generate 

co-reference among sentences in summaries. In 

addition, we will also try other semi-supervised 

classification methods, and other evaluation 

metrics, etc. 
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