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Abstract a maximum entropy model (MaxEnt) and a (lin-
ear) support vector machine (SVM). These are
all models that have proved popular within the
NLP community, but it is usually only the first
of these three that has been applied to the task
of ranking in sentence generation. The latter two
models that we present here go beyond the sur-
face information used by the-gram model, and
are trained on aymmetric treebaniwith features
defined over the full HPSG analyses of compet-
ing realizations. Furthermore, such discriminative
models are suitable for ‘on-line’ use within our
generator—adopting the techniquesefective un-
packingfrom a packed forest (Carroll & Oepen,
2005)—which means our hybrid realizer obviates
the need for exhaustive enumeration of candidate
outputs. The present results extend our earlier
1 Introduction work (Velldal, Oepen, & Flickinger, 2004)—and

This paper describes the application of several difthe related work of Nakanishi, Miyao, & Tsu-
ferent statistical models for the task ofaliza- Jii (2005)—to an enlarged data set, more feature
tion rankingin tactical generation, i.e. the problem YPes, and additional learners.

of choosing among multiple paraphrases that are The rest of this paper is structured as follows.

generated for a given meaning representation. Theection 2 first gives a general summary of the var-

specific realization component we use is the open'®US statistical models we will be considering, as

source chart generator of the Linguistic KnowI-We” as the measures used for evalua_ting them. We
edge Builder (k8 Carroll, Copestake, Flickinger, then go on to define the task we are aiming to solve
& Poznanski, 1999; Carroll & Oepen, 2005). in terms of treebank data and feature types in Sec-
Given a meaning representation in the form oftion 3. By looking at different variants of the Max-
Minimal Recursion Semantics (MRS: CopestakeEnt model we review some results for the relative

Flickinger, Malouf, Riehemann, & Sag, 1995), contribution of individual features and the impact

the generator outputs English realizations in ac®f frequency cutoffs for feature selection. Keeping

cordance with the HPSG LinGO English Resourcd €€ parameters constant then, Section 4 provides

Grammar ERG; Flickinger, 2002). an array of emplr_lcal results on the relative perfor-
As an example of generator output, a sub-sef’@nce of the various approaches.

o_f alternate reallzgtlons tha_t are produced for &  Models

single input MRS is shown in Figure 1. For the

two data sets considered in this paper, the avetn this section we briefly review the different types

age number of realizations produced by the genef statistical models that we use for ranking the

erator is 85.7 and 102.2 (the maximum number®utput of the generator. We start by describing

are 4176 and 3408, respectively). Thus, there ithe language model, and then go on to review the

immediate demand for a principled way of choos-framework for discriminative MaxEnt models and

ing a single output among the generated candiSVM rankers. In the following we will use and

dates. For this task we train and test three differ+ to denote semantic inputs and generated realiza-

ent statistical models: asrgram language model, tions respectively.

In this paper we describe and evaluate
several statistical models for the task of
realization ranking i.e. the problem of
discriminating between competing surface
realizations generated for a given input se-
mantics. Three models (and several vari-
ants) are trained and tested: argram
language model, a discriminative maxi-
mum entropy model using structural in-
formation (and incorporating the language
model as a separate feature), and finally an
SVM ranker trained on the same feature
set. The resulting hybrid tactical generator
is part of a larger, semantic transfer MT
system.
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Remember that dogs must be on a leash. 2.2 Maximum Entropy Models
Remember dogs must be on a leash.

On a leash, remember that dogs must be. Maximum entropy modeling provides a very flex-
On a leash, remember dogs must be. ible framework that has been widely used for a
A leash, remember that dogs must be on. . R . .

A leash, remember dogs must be on. range of tasks in NLP, including parse seI(_actlon
Dogs, remember must be on a leash. (e.g. Johnson, Geman, Canon, Chi, & Riezler,

1999; Malouf & Noord, 2004) and reranking for
Table 1: A small example set of generator out-j,5chine translation (e.g. Och et al., 2004). A
puts using theERG. Where the input semantics is odel is specified by a set of real-valufsgiture
no specified for aspects of information structuresnciionsthat describe properties of the data, and
(e.g. requesting foregrounding of a specific entity) 4, associated set efarned weightshat determine
paraphrases include all grammatically legitimatene contribution of each feature.
topicalizations. Other choices involve, for exam- | ot s first introduce some notation before we
ple, the optionality of complementizers and rela—go on. Lety(s;) = {r1,...,rm} be the set of re-
tive pronouns, permutation of (intersective) modi-5jizations licensed by the grammar for a semantic
fiers, and lexical and orthographic alternations. representation;. Now, let our (positive) training
data be given aX, = {z1,....zny} Where each
x; is a pair(s;, ;) for whichr; € Y(s;) andr;
is annotated in the treebank as being a correct re-
The use ofn-gram language models is the mostjjization ofs;. Note that we might have several
common approach to statistical selection in gengifferent members ob(s;) that pair up withs;
eration (Langkilde & Knight, 1998; and White jn x In our set-up, this is the case where multi-
(2004); inter alios). In order to better assert theple HPSG derivations for the same input semantics
relative performance of the discriminative mOd'project identical surface strings.
els and the structural features we present below, Gjven a set ofi features (as further described
we also apply a trigram model to the rankingiy section 3.2), each pair of semantic inpuand
problem. Using the freely available CMU SLM pypothesized realization is mapped to a feature
Toolkit (Clarkson & Rosenfeld, 1997), we trained vector d(s,r) € R¢. The goal is then to find a
a trigram model on an unannotated version ofector of weightss € R? that optimize the like-
the British National Corpus (BNC), containing |inhgod of the training data. A conditional MaxEnt

roughly 100 million words (using Witten-Bell dis- model of the probability of a realization given
counting and back-off). Given such a moggl  the semantics, is defined as

the score of a realizatiom; with surface form
wh = (wi1, ..., w;) is then computed as eFu(sr)
(3) pw(""|3) =
Zw(s)

2.1 Language Models

k

(1) Fls,ri) = Zp”(wi’jm’j*”’ e Wigo1) where the function,, is simply the sum of the
7= products of all feature values and feature weights,

Given the scoring function?’, the best realiza- given by

tion is selected according to the following decision

function: d
4) Fy(s,r)= Zwifbi(s,r) =w-®(s,r)
2 7 = argmax F(s,r') i=1
r'eY(s)
The normalization tern¥,, is defined as
Although in this case scoring is not conditioned

on the input semantics at all, we still include it to (5) Zw(s) = Z el (s:r)
make the function formulation more general as we ' EV(s)
will be reusing it later.

Note that, as the realizations in our symmet-When we want to find the best realization for a
ric treebank also include punctuation marks, thesgiven input semantics according to a moggl| it
are also treated as separate tokens by the languagesufficient to compute the score function as in
model (in addition to pseudo-tokens marking senEquation (4) and then use the decision function
tence boundaries). previously given in Equation (2) above. When it
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comes to estimatirigthe parameterss, the pro- lowing Joachims (2002), the goal is to minimize
cedure seeks to maximize the (log of) a penalized

likelihood function as in (7) V(w, &) = %w Cw 4 CZ Eijk

d 2 . . .
(6) 1 = arg max log L(w) — 27;2_12701 subject to the following constraints,
w ag

(8) Vijks.t. (s, mi) € Xp A (sk,r]-) e X, :
whereL(w) is the ‘conditionalized’ likelihood of w - B(sg, i) > w- (sg, 7)) +1— & jn
the training dataX), (\gvohnson etal., 1999), com- (9) v;j : &iik >0
puted asL(w) = [[,_; pw(ri|si;). The second
term of the likelihood function in Equation (6) is Joachims (2002) shows that the preference con-
a penalty term that is commonly used for reducingstraints in Equation (8) can be rewritten as
the tendency of log-linear models to over-fit, es-
pecially when training on sparse data using man)clo) w - (Psp, 7i) = sk, 7)) > 1 = &ijn
features (Chen & Rosentfeld, 1999; Johnson et aISo that the optimization problem is equivalent to

.1999.; Malouf & Noord, 2004)'_ More_ specifically training a classifier on the pairwise difference vec-
it defines a zero-mean Gaussian prior on the feat'ors P

ture weights which effectively leads to less €X-glack variableg; ;  are commonly used in SVMs

treme \{alues. After ’emplrlcally tumng the prior to make it possible to approximate a solution by
on our ‘Jotunheimen’ treebank (training and test-

. o allowing some error in cases where a separating
ing by 10-fold cross-validation), we ended up US-pvoerplane can not be found. The trade-off be-
ing o2 = 0.003 for the MaxEnt models applied in

; tween maximizing the margin size and minimizing
this paper. the training error is governed by the constént
Using the SVM9"* package by Joachims (1999),
we empirically specified’ = 0.005 for the model
In this section we briefly formulate the optimiza- described in this paper. Note that, for the ex-
tion problem in terms of support vector machines periments reported here, we will only be mak-
Our starting point is the SVM approach introduceding binary distinctions of preferred/non-preferred
in Joachims (2002) for learning ranking functionsrealizations, although the approach presented in
for information retrieval. In our case the aim is to (Joachims, 2002) is formulated for the more gen-
learn a ranking function from a set of preferenceeral case of learning ordinal ranking functions.
relations on sentences generated for a given input Finally, given a linear SVM, we score and se-
semantics. lect realizations in the same way as we did with

In contrast to the MaxEnt approach, the SVMthe MaxEnt model, according to Equations (4) and
approach has a geometric rather than probabilisti€2). Note, however, that it is also possible to use
view on the problem. Similarly to the the MaxEnt non-linear kernel functions with this set-up, since
set-up, the SVM learner will try to learn a linear the ranking function can be represented as a linear
scoring function as defined in Equation (4) above combination of the feature vectors as in
However, instead of maximizing the probability
of the preferred or positive realizations, we try to(11) w-®(s,mi) = Z ik ®(s5,7k) B (s,7i)
maximize their value fo#, directly.

Recall our definition of the set of positive train- o
ing examples in Section 2.2. Let us here analoThe models presented in this paper are evaluated
gously defineX,, = {z1,..., 70} to be the neg- with respect to two simple metrics: exact match
ative counterpart, so that for a given pair=  accuracy qnd word accuracy. The exa_lct match
(si.mj) € X,, we have that; € Y(s;) butr; is measure S|mply counts.the number of tlmgs that
not annotated as a preferred realizatiomzoﬂtol— the model assigns the highest score to a string that

exactly matches a corresponding ‘gold’ or refer-
we use the TADM open-source package (Malouf, 2002)ence sentence (i.e. a sentence that is marked as
for training the models, using itsmited-memory variable preferred in the treebank). This score is discounted
metricas the optimization method and experimentally deter- . . .
propriately in the case of ties between preferred

mine the optimal convergence threshold and variance of th@P X
prior. and non-preferred candidates.

(sk,7ri) — ®(sg,7j). The (non-negative)

2.3 SVM Rankers

2.4 Evaluation Measures
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if several realizations are given the top rank by Jotunheimen

the model. We also include the exact match accu-  Bin Items Words Trees Gold Chance

racy for the five best candidates according to the 100 < n 396 21.7 367.4 20.7 0.083

models (see the-best columns of Table 6). 50<n<100 246 185 73.7 115  0.160
The simple measure of exact match accuracy of- 1g i 2 2 ?8 igé ig:f 2;1:3 g_'g gﬂg

fers a very intuitive and transparent view on model 1<n<5 291 112 33 16 0.486

performance. However, it is also in some respects 1ot 2190 15.1 857 82 0.287

too harsh as an evaluation measure in our setting

since there will often be more than just one of Rondane

the candidate realizations that provides a reason- Bin ltems Words Trees Gold Chance

able rendering of the input semantics. We there- 100 < n 107 21.8 4984 17.8 0.060

fore also includewa as similarity-based evalua- 50 < n <100 63 191 729 120 0.162
tion metric. This measure is based on thev- 1g i 22 ?8 ﬁg ﬁ:g 2?:3 g:? 8_‘5%1
ensthein distancbetween a candidate string and 1<n<5 101 93 321 15 0.476
a reference, also known asglit distance Thisis  otal 634 151 1022 6.8 0.263
given by the minimum number of deletions, sub-
stitutions and insertions of words that are requiredrable 2: Some core metrics for the symmetric tree-
to transform one string into another. If we l&ts  banks ‘Jotunheimen’ (top) and‘Rondane’ (bot-
and: represent the number of necessary deletiongpm). The former data set was used for devel-
substitutions and insertions respectively, and let opment and cross-validation testing, the latter for
be the length of the reference, them is defined cross-genre held-out testing. The data items are
as aggregated relative to their number of realizations.
The columns are, from left to right, the subdivi-
sion of the data according to the number of real-
izations, total number of items scored (excluding
The scores produced by similarity measures sucliems with only one realization and ones where
aswA are often difficult to interpret, but at least all realizations are marked as preferred), aver-
they provide an alternative view on the relativeage string length, average number of realizations,
performance of the different models that we wantand average number of references. The rightmost
to compare. We could also have used severatolumn shows a random choice baseline, i.e. the
other similarity measures here, such as the&®  probability of selecting the preferred realization
score which is a well-established evaluation metridy chance.

within MT, but in our experience the various string

similarity measures usually agree on the relative

d+s+1

(12) WA =1 ]

ranking of the different models. yses for each surface form, and (c) sets of alter-
nate realizations of each semantic form. Using
3 Data Sets and Features the semantics of the preferred analyses in an ex-

. . . isting treebank as input to the generator, we can
The following sections summarize the data sets g P g '

and the feature types used in the experiments produce all equivalent paraphrases of the original
" string. Furthermore, assuming that the original
3.1 Symmetric Treebanks surface form is an optimal verbalization of the cor-
Conditional parse selection models are standardlreSponoIIng sema_nUc;, we can aUtomaﬂCa”y label
he preferred realization(s) by matching thields

trained on a treebank consisting of strings paire . e ,
: . . . 2= "~ of the generated trees against the original strings
with their optimal analyses. For our discriminative . ; ) )
o . . . . in the ‘source’ treebank. The result is what we
realization ranking experiments we require train- . .
. ) . . call ageneration treebankwhich taken together
ing corpora that provide the inverse relation. By

. . with the original parse-oriented pairings constitute
assuming that the preferences captured in a stan- :

. L a full symmetrical treebank.
dard treebank can constitutebalirectional rela-

tion, Velldal et al. (2004) propose a notion of sym- we ha_lve successfully applied .thls technique to

. . e tourism segments of the LInGO Redwoods
metric treebanks as the combination of (a) a set o 2 . : 5
. . treebank, which in turn is built atop theraG.

pairings of surface forms and associated seman-

tics; combined with (b) the sets of alternative anal- 2See htt p: / / wwv. del ph-i n. net/ er g/’ for fur-
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Table 2 summarizes the two resulting data sets, Sample Features

which are both comprised of instructional texts
on tourist activities, the application domain of the
background MT system.

(0 subjh hspec third_sg_fin_verb)

(1 A subjh hspec third_sg_fin_verb)

(0 hspec det_the_le sing_noun)

(1 subjh hspec det_the_le sing_noun)

(2 A subjh hspec det_the_le sing_noun)
(0 subjh third_sg_fin_verb)

(0 subjh hspce)

(1 subjh hspec det_the_le)

(1 subjh hspec sing_noun)

(1 n_intr_le dog)

(2 det_the_le n_intr_le dog)

(3 < det_the_le n_intr_le dog)

(1 n.intr_le)
(
(

3.2 Feature Templates

For the purpose of parse selection, Toutanova,
Manning, Shieber, Flickinger, & Oepen (2002)
and Toutanova & Manning (2002) train a dis-
criminative log-linear model on the Redwoods
parse treebank, using features defined degiva-
tion treeswith non-terminals representing then-
struction typesand lexical typesof the HPSG
grammar (see Figure 1). The basic feature setable 3: Examples of structural features extracted
of our MaxEnt realization ranker is defined in the from the derivation tree in Figure 1. The first col-
same way (corresponding to theFG-s model of  ymn identifies the feature template corresponding
Toutanova & Manning, 2002), each feature capturtp each example; in the examples, the first integer
ing a sub-tree from the derivation limited to depthyalue is a parameter to feature templates, i.e. the
one. Table 3 shows example features in our Maxgepth of grandparenting (types 1 and 2hegram

Ent and SVM models, where the feature templat%ize (types 3 and 4) The Specia| Symtm|and<]

#1 corresponds to local derivation sub-trees. T@enote the root of the tree and left periphery of the
reduce the effects of data sparseness, feature typgeld, respectively.

#2 in Table 3 provides a back-off to derivation
sub-trees, where the sequence of daughters is re-

duced, in turn, to just one of the daughters. Congyiented features, vizu-grams of lexical types
versely, to facilitate sampling of larger contexts it or without lexicalization. Feature type #3 in
than just sub-trees of depth one, feature templatgaple 3 definesi-grams of variable size, where
#1 allows optlonal grgndparentmg, |.nclud|ng the(in a loose analogy to part of speech tagging) se-
upward chain of dominating nodes in some feagyences of lexical types capture syntactic cate-
tures. In our experiments, we found that grandpargary assignments. Feature templates #3 and #4
enting of up to three dominating nodes gave theyniy differ with regard to lexicalization, as the for-
best balance of enlarged context vs. data sparsgser includes the surface token associated with the

ness. rightmost element of each-gram. Unless other-
subjh wise noted, we used a maximumgram size of
three in the experiments reported here, again due
to its empirically determined best overall perfor-
mance.
detthele sing-noun v_unerg_le The number of instantiated features produced
| by the feature templates easily grows quite large.
the n-intrle barks For the ‘Jotunheimen’ data the total number of dis-
d(|)g tinct feature instantiations is 312,650. For the ex-
periments in this paper we implemented a simple
Figure 1: Sample HPSG derivation tree for thefrequency based cutoff by removing features that
sentencethe dog barks Phrasal nodes are la- are observed aslevantless than: times. We here
beled with identifiers of grammar rUIeS, and (pre'fouow the approach of Malouf & Noord (2004)
terminal) lexical nodes with class names for typesyhererelevanceof a feature is simply defined as
of lexical entries. taking on a different value for any two competing
N _ . candidates for the same input. A feature is only
In addition to these dominance-oriented feasjnciyded in training if it is relevant for more than
tures taken from the derivation trees of each re;. jtems in the training data. Table 4 shows the ef-
alization, our models also include more surfacetect on the accuracy of the MaxEnt model when
ther information and download pointers. varying the cutoff. We see that a model can be

2 det_the_le n_intr_le)
3 < det_the_le n_intr_le)

ARDMNWWWNNNNRPRPERPERRE

hspec third_sg_fin_verb
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Cutoff ~ Features ~ Accuracy tion of normality of differences made in thidest.

— 312,650 71.18 However, none of the two tests found that the dif-

1 264,455 71.18 ferences between the MaxEnt model and the SVM

2 112,051 70.03 - :

3 66069 70.28 model were significant fon = 0.05 (using two-

4 46,139 69.30 sided tests).

13 i%,(z)gg g;gg _ Note that, due to memory constr_aints, we only
20 7,563 63.05 included a random sample of maximum 50 non-
138 Zngg gz-%g preferred realizations per item in the training data
200 261 50.11 used for the SVM ranker. Even so, the SVM
500 34 34.70 trained on the full ‘Jotunheimen’ data had a to-

tal of 66,621 example vectors in its training data,
Table 4: The effects of frequency-based feature sevhich spawned a total of 639,301 preference con-
lection with respect to model size and accuracy. straints with respect to the optimization problem
of Equations 8 and 10. We did not try to maxi-
model configuration match WA mize performance on the development data by re-
basic model of (Velldal etal., 2004)  63.09 0.904 peatedly training with different random samples,

basic plus partial daughter sequence ~ 64.64  0.910 pyt this might be one way to improve the results.
basic plus grandparenting 67.54 0.923

basic plus lexical type trigrams 68.61 0.921 Although we were only able to present results
basic plus all of the above 70.28  0.927  using linear kernels for the SVM ranker in this pa-
basic plus language model 67.96 0.912

0o2g Per, preliminary experiments usingpalynomial
kernel seem to give promising results. Due to
Table 5° Performance summaries of bestimemory constraints and long convergence times,
performing realization rankers using various fea-we were only able to train such a model on half
ture configurations, when compared to the set-ugf the ‘Jotunheimen’ data. However, when testing
of Velldal et al. (2004). These scores where com©On the remaining half, it achieved an exact match
puted using a relevance cutoff of 3 and optimizingaccuracy of71.03%. This is comparable to the
the variance of the prior for individual configura- performance achieved by the linear SVM through
tions. full 10-fold training and testing. Moreover, there
is reason to believe that these results will improve

: . . ... .__0once we manage to train on the full data set.
compacted quite aggressively without sacrificing

much in performance. For all models presented ' Order to assess the effect of increasing the
below we use a cutoff of = 3. size of the training set, Figure 3 presents learning

curves for two MaxEnt configurations, viz. the ba-
4 Results sic configurational model and the one including all

features but the language model. Each data point
In this section we present contrastive results for

the models defined in Section 2 above, evaluated
against the exact match accuracy and word accu- 90
racy as described in Section 2.4. 80}

As can be seen in Table 6, both the MaxEnt 1o}
and SVM learner does a much better job than o}
the n-gram model at identifying the correct refer- s}
ence strings. The two discriminative models per- 1|
form very similarly, however, although the Max-
Ent model often seems to do slightly better.

When working with a cross-validation set-up
the difference between the learners can conve-
niently be tested using an approach such as the Y % @ 2 %
cross-validated paired-test described by Diet-
terich (1998). We also tried this approach usingFigure 2: Exact match accuracy scores for the dif-
the Wilcoxon Matched-Pairs Signed-Ranks test agerent models. Data items are binned with respect
a non-parametric alternative without the assumpto the number of distinct realizations.

basic plus all of the above 72.28

Baseline mmmmm
BNC LM === |
SVM mmm
MaxEnt s

30
20
10

7,
<
i)
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Jotunheimen Rondane

Model accuracy n-best WA accuracy n-best WA

BNC LM 53.24 78.81 0.882 5419 77.19 0.891
SVM 7111 84.69 0.922 63.64 83.12 0.906
MaxEnt 72.28 84.59 0.927 64.28 83.60 0.903

Table 6: Performance of the different learners. The resulthe ‘Jotunheimen’ treebank for the discrim-
inative models are averages from 10-fold cross-validati®model trained on the entire ‘Jotunheimen’
data was used when testing on ‘Rondane’. Note that the migaiaccuracy of the SVM learner on the
‘Jotunheimen’ training set is 91.69%, while it's 92.99% foe MaxEnt model.

75 SVM degrades quite a bit. Of course, some drop

i T
Basic ——

Al in performance is to be expected as the estimation
70l ] parameters had been tuned to this development set.
Furthermore, as can be seen from Table 2, the

65| ] baseline is also slightly lower for the ‘Rondane’

test set as the average number of realizations is
higher. Also, while basically from the same do-
main, the two text collections differ noticeably
in style: ‘Jotunheimen’ is based on edited, high-
quality guide books; ‘Rondane’ has been gathered
o from a variety of web sites. Note, however, that
10 20 30 40 50 60 70 8 90 100 the performance of the BN@-gram model seems
training data (%) to be more stable across the different data sets.

accuracy (%)

50

Figure 3: Learning curves for two MaxEnt model In any case we see that, for our realization rank-
configurations (trained without cutoffs).  Al- ing task, the use of discriminative models in com-
though there appears to be a saturation effect ibhination with structural features extracted from
model performance with increasing amounts oftreebanks, clearly outperforms the surface ori-
‘Jotunheimen’ training data, for the richer config- ented, generative-gram model. This is in spite of
uration (using all features but the language modeljhe relatively modest size of the treebanked train-
further enlarging the training data still seems at-ing data available to the discriminative models. On
tractive. the ‘Rondane’ test set the reduction in error rate
for the combined MaxEnt model relative to the
gram LM, is22.03%. The error reduction for the
corresponds to average exact match performancgVM over the LM on ‘Rondane’ i20.63%.
for 10-fold cross-validation on ‘Jotunheimen’, but  apgther factor that is likely to be important for

restricting the amount of training data presented t¢ne gifferences in performance is the fact that the
the learner to between 10 and 100 per cent of thgeehank data is better tuned to the domain of ap-
total. At 60 per cent training data, the two mOd'pIication or the test data. The-gram language
els already perform &0.6% and68.4% accuracy, model, on the other hand, was only trained on
and the learning curves are starting to flatten outy,q general-domain BNC data. Note, however,
Somewhat remarkably, the richer model includingin 5t when testing on ‘Rondane’, we also tried to
partial daughter back-off, grandparenting, and leX¢ompine this general-domain model with an ad-
ical type trigrams already outperforms the baselingjsional in-domain model trained only on the text
model by a clear margin with just a small fraction {15t formed the basis of the ‘Jotunheimen’ tree-
of the training data, so the MaxEnt learner appeéarfank, a total of 5024 sentences. The optimal
to make effective use of the greatly enlarged feayeights for linearly combining these two models
ture space. were calculated using the interpolation tool in the
When testing against the ‘Rondane’ held-CMU toolkit (using the expectation maximization
out set and comparing to performance on thgEM) algorithm, minimizing the perplexity on a
‘Jotunheimen’ cross-validation set, we see that théaeld out data set of 330 sentences). However,
performance of both the MaxEnt model and thewhen applied to the ‘Rondane’ test set, this in-
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model error ties correct native models with access to structural informa-

BNC LM 253 68 313 tion substantially outperform the traditional lan-
MaxEnt (sans LM) 222 63 349 guage model approach. Using comparatively
MaxEnt (combined) 225 3 404

small amounts of annotated training data, we were

Table 7: Exact match error counts for three mod-2Ple to boost ranking performance from around
els, viz. the BNC LM only, the MaxEnt model by 54% to more than72%, albeit for a limited, rea-

itself (using all feature types except the LM prob-SOnably coherent domain and genre. The incre-
ability), and the combined MaxEnt model. The mental addition of feature templates into the Max-

intermediate column correspondstiesor partial ~ ENt model suggests a trend of diminishing return,
errors, i.e. the number of items for which multiple MOSt likely due to increasing overlap in the portion
candidates were ranked at the top, of which som8f the problem space captured across templates,
were actually preferred and some not. Primarilya”d possibly reflecting limitations in the amount

this latter error type is reduced by including the©f training data. The comparison of the Max-
LM feature in the MaxEnt universe. Ent and SVM rankers suggest comparable perfor-

mance on our task, not showing statistically signif-

_ . icant differences. Nevertheless, in terms of scala-

terp.olated mgdel fa!led to improve on the result_sbi”ty when using large data sets, it seems clear
achieved by just using the larger general-domaifpat the MaxEnt framework is a more practical and

model alone. This is probably due to the smallymanageable alternative, both in terms of training
amount of domain specific data that we presentlyjme and memory requirements.

have available for training. As further work we would like to try to train an
Another observation about owr-gram experi- .
g P SVM that takes full advantage of the ranking po-

menFs that IS quth a menno_n 's that we found.thattential of the set-up described in (Joachims, 2002).
ranking realizations according to non-normalized . . . ) .
Instead of just making binary (right/wrong) dis-

log probabilities directly resulted in much bet- .~ " o .
; . tinctions, we could grade the realizations in the
ter accuracy than using a length normalized scor? - h .
raining data according to theiva scores toward

such as the geometric mean. o .
. . the references and try to learn a similar ranking.
Finally, Table 7 breaks down per-item exact -
o . , So far we have only been able to do preliminary
match errors for three distinct ranking configura- . . )
experiments with this set-up on a small sub-set of

tions, viz. the BNC LM only, the structural Max- :
: the data. When evaluated with the accuracy mea-
Ent model only, and the combined MaxEnt model, . ;
S - . 'sures used in this paper the results were not as
which includes the LM probability as an addi- . L .
good as those obtained when training with only

tional feature; all numbers are for application totwo ranks. however this miaht verv well look dif-
the held-out ‘Rondane’ test set. Further contrast; ’ g y

ing the first two of these, the BNC LM yields 129 ferent if we evaluate the full rankings (e.g. number

unique errors, in the sense that the structural Max(—Jf swapped pairs) instead of just focusing on the

- : top ranked candidates. Note that it is also possible
Ent makes the correct predictions on these item - .
. . b use such graded training data with the MaxEnt
contrasted to 98 unique errors in the structura

MaxEnt model. When compared to the only 124mode_:ls,_ by_Iettlng the probab_llltl_es .Of the empiri-
cal distribution be based on similarity scores such

errors made equally by both rankers, we conclude . )
) : aswa instead of frequencies.

that the different approaches have partially com-

plementary strengths and weaknesses. This ob-

servation is confirmed in the relatively substan-acknowledgments

tial improvement in ranking performance of the

combined model on the ‘Rondane’ test: The ex—Th K ted h . t of the N

act match accuracies of thegram model, the ba- € work reported here 1S part of the Norwe-

sic MaxEnt model and the combined model areg'rzng"rzi?m E)roéi%eigugrzglllsézguz; Szgs\évesee
54.19%, 59.43% and64.28%, respectively. '
’ ’ ’ P y ‘htt p: // www. emrmt ee. net ' for background.
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