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Abstract
When a machine learning-based named
entity recognition system is employed in
a new domain, its performance usually de-

Support Vector Machine (Isozaki and Kazawa,
2002), Robust Risk Minimization (RRM) Classi-
fication method (Florian et al., 2003), etc.

For Chinese NER, most of the existing ap-

grades. In this paper, we provide an em-
pirical study on the impact of training data
size and domain information on the per-
formance stability of named entity recog-
nition models. We present an informative
sample selection method for building high
quality and stable named entity recogni-
tion models across domains. Experimen-
tal results show that the performance of
the named entity recognition model is en-
hanced significantly after being trained

proaches use hand-crafted rules with word (or
character) frequency statistics. Some machine
learning algorithms also have been investigated in
Chinese NER, including HMM (Yu et al., 1998;
Jing et al.,, 2003), class-based language model
(Gao et al., 2005; Wu et al., 2005), RRM (Guo
et al., 2005; Jing et al., 2003), etc.

However, when a machine learning-based NER
system is directly employed in a new domain, its
performance usually degrades. In order to avoid
the performance degrading, the NER model is of-

ten retrained with domain-specific annotated cor-
pus. This retraining process usually needs more
efforts and costs. In order to enhance the perfor-
Named entities (NE) are phrases that contairmance stability of NER models with less efforts,
names of persons, organizations, locations, et&ome issues have to be considered in practice. For
Named entity recognition (NER) is an importantexample, how much training data is enough for
task in many natural language processing applibuilding a stable and applicable NER model? How
cations, such as information extraction and madoes the domain information and training data size
chine translation. There have been a number dmpact the NER performance?
conferences aimed at evaluating NER systems, This paper provides an empirical study on the
for example, MUC6, MUC7, CoNLL2002 and impact of training data size and domain informa-
CoNLL2003, and ACE (automatic content extrac-tion on NER performance. Some useful observa-
tion) evaluations. tions are obtained from the experimental results
Machine learning approaches are becomingn a large-scale annotated corpus. Experimental
more attractive for NER in recent years since theyresults show that it is difficult to significantly en-
are trainable and adaptable. Recent research drance the performance when the training data size
English NER has focused on the machine learnings above a certain threshold. The threshold of the
approach (Sang and Meulder, 2003). The relevarttaining data size varies with domains. The perfor-
algorithms include Maximum Entropy (Borth- mance stability of each NE type recognition also
wick, 1999; Klein et al., 2003), Hidden Markov varies with domains. Corpus statistical data show
Model (HMM) (Bikel et al., 1999; Klein et al., that NE types have different distribution across do-
2003), AdaBoost (Carreras et al., 2003), Memoryimains. Based on the empirical investigations, we
based learning (Meulder and Daelemans, 2003present an informative sample selection method

with these informative samples.

1 Introduction
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for building high quality and stable NER models. vector andb, is a constant. Parametets andb,
Experimental results show that the performance ofan be estimated from the training data. Given
the NER model is enhanced significantly acrosdraining data(z;,¢;) for i = 1,...,n, the model
domains after being trained with these informativeis estimated by solving the following optimization
samples. In spite of our focus on Chinese, we beproblem for eacl: (Zhang et al., 2002):

lieve that some of our observations can be poten-

n
tially useful to other languages including English. inf 1 Z f(wcTari + be, yé‘%
This paper is organized as follows. Section 2 wb NI
describes a Chinese NER system using mUIt"Ieve\}vhereyg — 1 whent; = ¢, andy — —1 other-

linguistic features. Section 3 discusses the impact . L . ’
L . o . wise. The functiory is defined as:
of domain information and training data size on

the NER performance. Section 4 presents an in- —2py py <1
formative sample selection method to enhance the  f(p,y) = %(py —1)2 pye[-1,1]
performance of the NER model across domains. 0 py > 1

Finally the conclusion is given in Section 5. ) - N
Given the above conditional probability model,

2 Chinese NER Based on Multilevel the best possible sequence gé can be estimated
Linguistic Features by dynamic programming in the decoding stage

In this paper, we focus on recognizing four types(Zhamg etal,, 2002).

of NEs: Persons (PER), Locations (LOC), Orga-2.2  Multilevel Linguistic Features

r_lizations (ORG_') and miscellaneous named_enti-ThiS Chinese NER system uses Chinese charac-
ties (MISC) which do not belong to the previous o (not Chinese words) as the basic token units,
three groups (e.g. products, confe_rences, eventsng then maps word-based features that are as-
_brands, e_tc.). All the NI_ERdmo_dﬁIs mr:_he follow- sociated with each word into corresponding fea-
'ng experlmen_ts are _trame W,'t acC me;e NE_ ures of those characters that are contained in the
system. In this section, we simply describe this .y~ Thjg approach can effectively incorporate

thnese NER sys.tgm.'The Robust Risk Mir_“miza'both character-based features and word-based fea-
tion (RRM) Classification method and multi-level tures. In general, we may regard this approach

Ingmstlc features are used in this system (Guo €Ls information integration from linguistic views at
al., 2005). different abstraction levels.

2.1 Robust Risk Minimization Classifier We integrate a diverse set of local linguistic fea-

We can view the NER task as a sequential classit-ures’ including word segmentation information,

o . hin wor rns, complex lexical linguis-
fication problem. Iftok; (i = 0,1, ...,n) denotes Chinese word patterns, complex lexical linguis

the sequence of tokenized text which is the inpu{IC features (e.g. part of speech and semantic fea-

r lign he char rlevel. In itional
to the system, then every tokeésk; should be as- ures), aligned at the cha agte eve additio a
. we also use external NE hints and gazetteers, in-
signed a class-labe).

. . cluding surnames, location suffixes, organization
The class label valug associated with each to- 9 9

kentok; is predicted by estimating the conditional _sufﬂxgs, titles, high-frequency _Chlnese characte_rs
- . in Chinese names and translation names, and lists
probability P(t; = c|z;) for every possible class-

‘ . of locations and organizations. In this system, lo-
label valuec, wherez; is a feature vector associ- o } .
. cal linguistic features of a token unit are derived
ated with tokertok;. . ) )
from the sentence containing this token unit. All
We assume thabP(t; = clz;) = Pt = = 00 inauistic patterns (i.e. date, time, numeral
cltok;, {t;};<:i). The feature vectat; can depend P g P L ’ '

. . Xpression) are en in - ific cl
on previously predicted class labd]s;};<;, but expression) are encoded into pattern-specific class

the dependency is typically assumed to be Iocall.abeIS aligned with the tokens.

In the RRM method, the above conditional proba-3  |mpact of Training Data Size And
bility model has the following parametric form: Domain Information on the NER

P(ti = c|wi tigy o tio1) = T(wlz; +be), Performance

whereT'(y) = min(1, max(0, y)) is the truncation It is very important to keep the performance sta-
of y into the interval [0, 1].w. is a linear weight bility of NER models across domains in practice.
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However, the performance usually becomes unsta
ble when NER models are applied in different do-
mains. We focus on the impact of the training data
size and domain information on the NER perfor- §65
mance in this section.

3.1 Data

0l 03 05 07 0% 11 13 15 17 1% 21 23 25
Trinng set (nillion Chnese charactes )

We built a large-scale high-quality Chinese NE an- _ -
notated corpus. The corpus size is 114.25M Chi- ot s T T
nese characters. All the data are news articles se-

lected from several Chinese newspapers in 20OI]—'i ure 1: Performance curves of the general and
and 2002. All the NEs in the corpus are manually 9 ' 9

: specific domain NER models
tagged. Documents in the corpus are also man-
ually classified into eight domain categories, in-
cluding politics, sports, science, economics, enterThus, we evaluate the impact of training data size
tainment, life, society and others. Cross-validatiorpn the NER performance across domains.
is employed to ensure the tagging quality. In this baseline experiment, an initial general
All the training data and test data in the exper-NER model is trained with 0.1M general data at
iments are selected from this Chinese annotatefirst. Then the NER model is incrementally re-
corpus. The general training data are randomly serained by adding 0.1M new general training data
lected from the corpus without distinguishing theireach time till the performance isn’t enhanced sig-
domain categories. All the domain-specific train-nificantly. The NER performance curve (labelled
ing data are selected from the corpus according t@iith the tag "General” ) in the whole retraining
their domain categories. One general test data Sgfocess is shown in Figure 1. Experimental results
and seven domain-specific test data sets are usedow that the performance of the general NER
in our experiments (see Table 1). The size of thenodel is significantly enhanced in the first several
general test data set is 1.34M Chinese charactergetraining cycles since more training data are used.
Seven domain-specific test sets are extracted froowever, when the general training data set size is
the general test data set according to the documefiore than 2.4M, the performance enhancement is

domain categories. very slight.

_ I . In order to analyze how the training data size

Domain NE distribution in the domain-oriented test data s¢t Test set . . .
PER | ORG | LOC | MISC | Toml | Size impacting the performance of NER models in spe-

General 11,991 9,820 12,353 1,820 35,984 1.34M . . . .pe
Polifics 7470 | 1,528 | 2540 | 480 | 7.018 | 02M cific domains, seven domain-specific NER mod-
S m: A els are built using the similar retraining process.
Entertainment | 2,458 526 738 542 4,264 0.10M H H'H H H
Sodlety B e L Each domain-specific NER model is also trained
Life 2,331 1,690 3,634 763 8,418 0.39M I iN- ifi 1
e B e with 0.1M domain-specific data at first. Then,

- each initial domain-specific NER model is incre-
Table 1: NE distribution in the general and menta”y retrained by add|ng 0.1M new domain-

domain-specific test data sets specific data each time.
In our evaluation, only NEs with correct bound-| J°F | F®0 | Sze NE distribution in the training set
aries and correct class labels are considered as the shold

™) PER | ORG | LOC | MISC | To@
correct recognition. We use the standard P (i_ General | 80.38 | 24 | 24,960 | 27,231 | 21,098 | 7,439 | 80,728

. . Politics | 83.00 | 00 | 11,388 | 6,618 | 14,350 | 1,074 | 34,330
Precision), R (i.e. Recall), and F-measure (def Econ-
. omics | 8546 | 17 | 7197 | 21113 | 15582 | 3,466 | 47,358
fined as 2PR/(P+R)) to measure the performancgspors | 90.78 [ 0.6 | 11,647 | 8105 | 7,468 | 3,070 | 30,200

Entert-

of NER models. ainment | 83.31 0.6 12,954 | 2,823 4,665 | 3,518 | 32,860

Society 76.55 0.6 7,099 3,279 6,946 1,909 19,233

Lift_e 81.06 1.7 10,502 5,675 18,980 2,420 37,577

3.2 Impact of Training Data Size on the NER [ Scence | 7002 ] 04 [ 1625 | 3010 | 2083 | 902 | 7,620
Performance across Domains Table 2: Performance of NER models, size thresh-

The amount of annotated data is always a bottleold and NE distribution in the corresponding train-
neck for supervised learning methods in practiceing data sets
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The performance curves of these domainthat news articles on different domains usually fo-
specific NER models are also shown in Figure 1cus on different specific NE types. These NE dis-
(see the curves labelled with the domain tags). Altribution features imply that each NE type has dif-
though the initial performance of each domain-ferent domain dependency feature. The perfor-
specific NER model varies with domains, the per-mance stability of domain-focused NE type recog-
formance is also significantly enhanced in the firshition becomes more important in domain-specific
several retraining cycles. When the size of theapplications. For example, since economic news
domain-specific training data set is above a certaiarticles usually focus on ORG and LOC NEs, the
threshold, the performance enhancement is verkigh-quality LOC and ORG recognition models
slight as well. will be more valuable in economic domain. In ad-

The final performance of the trained NER mod-dition, these distribution features also can be used
els, and the corresponding training data sets art® guide training and test data selection.
shown in Table 2.

.| Domain NE distribution in the specific domain
From these NER performance curves, we obtain PER | L[OC | ORG | MISC | AL Rato
. . %
the following observations. Politics | 167,989 | 180,193 | 105936 | 30,830 | 484,948 | 16.43

Econ-
omics 117,459 | 200,261 | 352,323 | 76,320 746,363 25.29

1. More tralnlng data are used, hlgher NER per Sports 129,137 73,435 98,618 33,304 334,494 11.33

: L E»ntert- 154,193 50,408 40,444 52,460 297,505 10.08
formance can be achieved. However, it is| _ainment
Life 200,222 234,150 145,138 65,733 645,243 21.86

difficult to significantly enhance the perfor- [Socety | 63793 | 53724 | 43657 | 21162 | 16233 | 6.8
Science 27,878 30,737 72,413 16,824 147,852 5.00

mance when the training data size is above @oters | 31,723 | 40,730 | 26,666 | 13,926 | 113045 | 383
Al 892,394 | 863,638 | 885,105 | 310,559 | 2,051,786 | -

Certain threShOId- Domain NE density in the Chinese annotated corpus Size
PER LOC ORG MISC ALL (M)
.. . Politics 10.70 11.48 6.75 1.96 31.21 15.70

2. The threshold of the training data size and Econ-
omics 4.18 7.13 12.55 2.72 26.58 28.08

the final achieved performance vary with do-["spots | 1643 | 034 | 1255 | 224 | 4257 | 7.8
. . Entert
mains (see Table 2). For example, in enter anment | 16.81 5.05 414 572 32.44 9.17

tainment domain, the threshold is 0.6M and-seey a5t sor T srer—ran

the final F-measure achieves 83.31%. In ecorgoonce | 4% | 478 | 117 | 200 | 2252 | o4

7.9 10.18 6.67 3.48 28.26 4.00
nomic domain, the threshold is 1.7M, and the_ A" 7.81 7.56 775 272 2589 | 114.25
corresponding F-measure is 85.46%. Table 3: NE distribution in the Chinese annotated

corpus
3.3 The Performance Stability of Each NE pu

Type Recognition across Domains In this experiment, the performance stability

Statistic data on our large-scale annotated corpusf NER models across domains is evaluated, es-
(shown in Table 3) show that the distribution of NE pecially the performance stability of each NE
types varies with domains. We define ” NE densitytype recognition. The general NER model is
" to quantitatively measure the NE distribution in trained with 2.4M general data. Seven domain-
an annotated data set. NE density is defined as "th&pecific models are trained with the corresponding
count of NE instances in one thousand Chines€lomain-specific training sets (see Table 2 in Sec-
characters”. Higher NE density usually indicatestion 3.2).

that more NEs are contained in the data set. We The performance stability of the general NER
may easily measure the distribution of each NEmodel is firstly evaluated on the general and
type across domains using NE density. In this andomain-specific test data sets (see Table 1 in Sec-
notated corpus, PER, LOC, and ORG have similation 3.1 ). The experimental results are shown in
NE density while MISC has the smallest NE den-Table 4. The performance curves of the general
sity. All the NE types also have different NE den- model are shown in Figure 2, including the total
sity in each domain. For example, the NE densityF-measure curve of the NER model (labelled with
of ORG and LOC is much higher than that of PERthe tag "All") and F-measure curves of each NE
in economic domain. PER and LOC have higheitype recognition in the specific domains (labelled
NE density than ORG in politics domain. PER with the NE tags respectively).

has the highest NE density among these NE types The performance stability of the seven domain-
in both sports and entertainment domains. Thepecific NER models are also evaluated. Each
unbalanced NE distribution across domains showdomain-specific NER model is tested on the gen-
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Domain F(%) of general NER model NER F(%) in specific domain

PER LOC ORG MISC ALL Model Gen- Eco- Poli- Spo- Enter- Life Soc- Sci-

General 86.69 | 85.55 | 73.59 56.00 | 80.38 eral nomic tics rts tainment iety ence

Economic 85.11 | 88.22 | 75.91 49.53 80.50 General | 80.38 80.50 81.90 | 86.10 79.31 79.73 | 7450 | 69.55
Politics 86.26 87.00 71.31 61.50 81.90 Econ-

Sports 91.87 | 89.03 | 81.67 67.41 86.10 omic 75.30 85.46 7432 | 72.89 68.46 76.23 | 65.75 | 68.97

Entertainment | 84.24 85.85 68.65 60.96 79.31 Politics 73.37 66.39 83.09 76.37 71.51 74.83 67.31 53.76

Life 86.62 | 83.54 | 70.30 58.49 79.73 Sports 71.23 62.56 68.99 [ 90.78 73.48 71.18 | 64.82 | 53.85
Society 84.53 76.16 68.89 41.14 74.50 Entert-

Science 87.74 86.42 65.85 2410 69.55 ainment | 70.82 61.52 72.04 75.34 83.31 71.80 69.10 52.50

Life 73.53 66.92 75.07 | 73.86 72.68 81.06 | 69.61 | 57.36

Society 70.29 62.55 72.70 70.69 72.24 74.10 76.55 53.42

Table 4. Performance of the general NER modetscience | 6726 [ 6757 [ 69.00 | 6432 | 6384 | 69.05 | 64.85 | 7002

in specific domains

Gerieral Ecoromic Polike
Specific dom ad

Sports Extertaim ent  Life Society  Science

[—8— 411 - FER —&—LOC -8 0RG 3 MI5C |

Figure 2: Performance curves of the general NER

model in specific domains

Table 5: Performance of NER models in specific
domains

Sports Cereral Ecomomk — Poliis Erdertadment Life
spec ¥ic dommin

Science

Society

[—e—i11 —3-PER —4—LOC —m—0FG —g—NISC |

Figure 4. Performance curves of sports domain

NER model in the other specific domains

eral test data and the other six different domain-
specific test data sets. The experimental results are
shown in Table 5. The performance curves of three
domain-specific NER models are shown in Figure
3, Figure 4 and Figure 5 respectively.

From these experimental results, we have the

following conclusions.

1. The performance stability of all the NER

models is limited across domains. When a
NER model is employed in a new domain, its

performance usually decreases. Moreover, its
performance is usually much lower than the

performance of the corresponding domain-

specific model.

2. The general NER model has better per-

FIK)

cEMNEERZEIRE

Econom i Gerieral Politics SGports  Exdertakmerd  Lie Society Sciemce

specific domam

[=s—#11 —@—FPER —4—L0C —@—0RF —@—MNISC

3.

o0
a0
™
1]
50
40
a0
20
10

FI%)

formance stability than the domain-specific
NER model when they are applied in new do-
mains (see Table 5). Domain-specific mod-
els usually could achieve a higher perfor-
mance in its corresponding domain after be-
ing trained with a smaller amount of domain-
specific annotated data (see Table 2 in Sec-
tion 3.2). However, the performance stability
of domain-specific NER model is poor across
different domains. Thus, it is very popular to
build a general NER model for the general
applications in practice.

The performance of PER, LOC and ORG
recognition is better than that of MISC recog-

Poliis

Gemeral Economic  Jports Frtertarmert Lie
peck i dom adn

Society  Science

[—#—#11 —B~FPER —k—L0C —W—0F: —E3=MI3C |

Figure 3: Performance curves of economic do+igure 5: Performance curves of politics domain

main NER model in the other specific domains
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nition in NER (see Figure 2- Figure 5).
The main reason for the poor performance of

MISC recognition is that there are less com- %
mon indicative features among various MISC

NEs which we do not distinguish. In addi-

tion, NE density of MISC is much less than
that of PER, LOC, and ORG. There are a
relatively small number of positive training

samples for MISC recognition.

—— Ferformance
a5 afterbemgz
o0 tramed with
a5 randoms anpls
20 ; —r—Pefonrance
75 afterbemg
il L L L L L L tramad with
mfcnmative
1 100 102 103 104 105 1.06 sanpks

Trairing set (mdllion Chinese characters)

Figure 6: Performance curves of general NER

_ . models after being trained with informative sam-
4. NE types have different domain dependenc;@eS and random samples respectively

attribute. The performance stability of each
NE type recognition varies with domains (see
Figure 2~ Figure 5). The performance of
PER and LOC recognition are more stable
across domains. Thus, few efforts are needed
to adapt the existing high-quality general
PER and LOC recognition models in domain-
specific applications. Since ORG and MISC
NEs usually contain more domain-specific
semantic information, ORG and MISC are
more domain-dependent than PER and LOC.
Thus, more domain-specific features should
be mined for ORG and MISC recognition.

4 Use Informative Training Samples to
Enhance the Performance of NER

Models across Domains

A higher performance system usually requires
more features and a larger number of training data.
This requires larger system memory and more effi-
cient training method, which may not be available.
Within the limitation of available training data and
computational resources, it is necessary for us to
either limit the number of features or select more
informative data which can be efficiently handled
by the training algorithm. Active learning method
is usually employed in text classification (McCal-
lum and Nigam et al., 1998). It is only recently
employed in NER (Shen et al., 2004).

In order to enhance the performance and over-
come the limitation of available training data and

computational resources, we present an informa- 4.

tive sample selection method using a variant of
uncertainty-sampling (Lewis and Catlett, 1994).
The main steps are described as follows.

1. Build an initial NER model
measure=76.24%) using an initial

(F-

2.

3.

Refine the training set by adding more infor-
mative samples and removing those redun-
dant samples. In this refinement phase, all of
the data are annotated by the current recogni-
tion model (e.g. the initial model built in Step
1). Each annotation has a confidence score
associated with the prediction. In general, an
annotation with lower confidence score usu-
ally indicates a wrong prediction. The con-
fidence score of the whole sample sentence
is defined as the average of the confidence
scores of all the annotations contained in the
sentence. Thus, we add those sample sen-
tences with lower confidence scores into the
training set. Meanwhile, in order to keep a
reasonable size of the training set, those old
training sample sentences with higher confi-
dence scores are removed from the current
training set. In each retraining phase, all of
the sample sentences are sorted by the con-
fidence score. The top 1000 new sample
sentences with lowest confidence scores are
added into the current training set. The top
500 old training sample sentences with high-
est confidence scores are removed from the
current training set.

Retrain a new Chinese NER model with the
newly refined training set

Repeat Step 2 and Step 3, until the perfor-
mance doesn’t improve any more.

We apply this informative sample selection
method to incrementally build the general domain

NER model.
datatraining sample set is 1.05M Chinese characters.

The size of the final informative

set. The initial data set (about 1M ChineseThis informative training sample set has higher
characters) is randomly selected from theNE density than the random training data set (see
large-scale candidate data set (about 9M ). Table 6).
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We denote this general NER model trained with 23
the informative sample set as "general informa- &
tive model”, and denote the general-domain model
which is trained with 2.4M random general train-
ing data as "general random model”. The perfor-
mance curves of the general NER models after be:
ing trained with informative samples and random
data respectively are shown in Figure 6. Experi- %
ment results (see Table 6) show that there is a sig
nificant enhancement in F-measure if using infor-
mative training samples. Compared with the ran- % ecific dopein test
dom model, the informative model can increase F-
measure by 4.21 percent points.

a0

F%)

15

T

| SpecificModel MInfomutiveModel # Randonodel |

Type Using informative sample set Using random training set

(1.05M) (2.4M) Figure 7: Performance comparison of informa-
F(%) NEs NE density | F(%) NEs NE density . .
PER | 89.87 | 18,808 | 1800 | 86.60 | 24,060 | 1038 tive model, random model, and the corresponding
[OC | 89.68 | 24,862 23.68 8555 | 21,089 1133 . o
ORG | 79.22 | 22,173 21.12 7359 | 27,231 8.78 domaln-speC|f|c models
MISC | 64.27 | 8,067 768 56.00 | 7,439 3.10
Total | 8459 | 74,000 70.48 80.38 | 80,728 3358
Table 6: Performance of informative model andmMance in politics, life, society and science do-
ple set is much less than the life domain training
set (1.7M).
Domain F(%) of general informative model
PER | LOC | ORG | MISC | ALL — - :
Economic 89.06 | 90.66 | 81.24 | 6114 | 8463 NER _ F(%) in specific domains : —
Poliics 89.36 | 80.37 | 74.76 | 6505 | 84.70 model Eco- | Poli- | Spo- | Entert- | Life | So- | Sci- F
Sports 93.65 | 90.66 | 86.00 | 7205 | 88.71 S— nomic | _tics ns_| ainment ciety | ence
- omain-
Ei'f’;e”a'”me”t gg:ig g;:gg ;g:gg gg:gi 2‘21:;2 specific 8546 | 83.09 | 90.78 | 83.31 | 81.06 | 76.55 | 70.02 | 81.47
Sociely 86.61 | 8215 | 72.99 | 5855 | 79.49 I(:;Sf"”e)
Science 9091 | 8835 | 71.69 | 2516 | 7271 mative 8463 | 8470 | 88.71 | 82.74 | 8466 | 79.49 | 72.71 | 8252
_ . Random | 8050 | 8190 | 86.10 | 79.31 | 7973 | 7450 | 6955 | 78.80
Table 7: Performance of the general informative “°% e
model in specific domains Eco- | Pol- | Spo- | Entert | [fe | So- | Scr
nomic tics rs ainment cnety ence
Infor-
. . . i 211 | 218 | 6.19 0.22 214 | 303 | -981 | 4.74
This informative model is also evaluated on the—gangom 1751155 o0si 005 43 |25 s

domain-specific test sets. Experimental results are

shown in Table 7. We view the performance of the | 2Pl€ 8: Performance comparison of informa-

domain-specific NER model as the baseline perUVe m_odel, re_lr_ldom mo_del and the gqrrespopding
formance in its corresponding domain (see Tabléiomam-speuflc model in each specific domain

8), denoted ad,sciine- The performance of in-
formative model in specific domains is very close The informative model has much better perfor-

to the correspondindasetine (S€€ Figure 7). We  ,anc6 than the random model in specific domains
define the domain-specific average F-measure &§.0 Taple 8 and Figure i formative is 82.52%
the average of all the F-measure of the NER mode) 1,ije T o is 78.80%. The informative model

in seven specific domains, denotefas The av- 4 increasd” by 3.72 percent points. The infor-
erage of all theFyuseiine I specific domains is aiive model is also more stable than the random
denoted asaserine: The average F-measure of oy in specific domains (see Table 8). Standard
the informative model and the random model ingeyiation of F-measure for the informative model
specific domains is denoted &S, formative 8N 5 4 74 while that for the random model is 4.94.

F'random Yespectively. Compared WitR'pasctine Our experience with the incremental sample se-
(F :8147%), the informative model increasEs lection prOVideS the fOIIOWing hints.

by 1.05 percent points. Howevdr, decreases by
2.67 percent points if using the random model. Es- 1. The performance of the NER model across
pecially, the performance of the informative model domains can be significantly enhanced after
is better than the corresponding baseline perfor-  being trained with informative samples. In
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order to obtain a high-quality and stable NERRadu Florian, Abe Ittycheriah, Hongyan Jing, and

model, it is only necessary to keep the infor- ;Ong ﬁhalng- _f_2003- bNartl?ed enlt“lit)y rec%glntmn
- : _ through classifier combination. roceedings

mative sampl'es. Informative sample_ s_elec CoNLL-2003 pages 168-171.

tion can alleviate the problem of obtaining a

large amount of annotated data. It is also an]iazno'(:)-SG%OH,MU U{/\f‘“gdg’ Wu, a'?dt_Cha”%'\ll\l-' HU%”E-

. . . Inese Wor egmentaton an ame n-
?ﬁe?t'\_/e method for ove.rcomlng the poten- tity Recognition: A Pragmatic ApproaciComputa-
tial limitation of computational resources. tional Linguisitg31(4):531-574.

2. In learning NER models, annotated resultdiong L. Guo, Jian M. Jiang, Gang Hu, and Tong
with lower confidence scores are more use- Zhang. 2005. Chinese Named Entity Recognition

oL . Based on Multilevel Linguistic FeatureslLecture
ful than those samples with higher confidence  notes in Artificial Intelligence248:90-99,Springer.

scores. This is consistent with other StUdieSH'd i | ki and Hideto K 2002, Efficient
on active Iearning. IdeKl 1S0zakl an 1deto Kazawa. . Iclen

support vector classifiers for named entity recogni-

. tion. In Proceedings of Coling-200pages 1-7.
5 Conclusion J 9-200p2g
Hongyan Jing, Radu Florian, Xiaogiang Luo, Tong

Efficient and robust NER model is very impor-  Zhang, and Abraham Ittycheriah. 2003. Howtoge-
tant in practice. This paper provides an empirical {achinesename (entity) : Segmentation and combi-
study on the impact of training data size and do- nation issues. IEEMNLP 2003 pages 200-207.

main information on the performance stability of Dan Klein, Joseph Smarr, Huy Nguyen, and Christo-

NER. Experimental results show that it is difficult ~Pher D. Manning. 2003. Named entity recogni-
to significantly enhance the performance when the tion with character-level models. Proceedings of
g y P CoNLL-2003 pages 180-183.

training data size is above a certain threshold. The

threshold of the training data size varies with do-2avid D- Lewis and Jason Catlett. 1994. Heteroge-
neous uncertainty sampling for supervised learning.

mains. The performance stability of each NE type | proceedings of the Eleventh International Con-
recognition also varies with domains. The large- ference on Machine Learningages 148—156.

scale corpus statistic data also show that NE YPES - drew Kamal McCallum and K Nigam. 1998. Em-

empirical investigations provide useful hints for classification. Proceedings of 15th International
enhancing the performance stability of NER mod- Conference on Machine Learningages 350-358.
els across domains with less efforts. In order to engjen De Meulder and Walter Daelemans.  2003.
hance the NER performance across domains, we Memory-based named entity recognition using
present an informative training sample selection unannotated data. IRroceedings of CoNLL-2003
method. Experimental results show that the per- P29es 208-211.

formance is significantly enhanced by using infor-Erik F. Tjong Kim Sang and Fien De Meulder. 2003.
mative training samples. Introduction to the conll-2003 shared task: Lan-

guage independent named entity recognition. In

In the future, we d_ like to focus on further Walter Daelemans and Miles Osborne, editths-
exploring more effective methods to adapt NER  ceedings of CONLL-200pages 142—147.

model to a new domain with much less eﬁorts,Dan Shen, Jie Zhang, Jian Su, Gou D. Zhou, and Chew

time and performance degrading. L.Tan, 2004. Multi-Criteria-based Active Learn-
ing for Named Entity RecognitionProceedings of
ACLO04 pages 589-596.

Yu Z. Wu, Jun Zhao, Bo Xu, and Hao Yu. 2005. Chi-
Daniel M. Bikel, Richard L. Schwartz, and Ralph M.  nese Named Entity Recognition Based on Multiple
Weischedel. 1999. An algorithm that learns what's FeaturesProceedings of EMNLPQ®pages 427-434

in anameMachine Leaming34(1-3):211-231. - 0\ V1 Shuan H. Bai, and Paul Wu, 1998, De-

Andrew Borthwick. 1999.A Maximum Entropy Ap- scription of the kent ridge digital labs system used

proach to Named Entity RecognitioPh.D. thesis, ~ for muc-7. InProceedings of the Seventh Message
New York University. Understanding Conference (MUC-7)
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