
Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (EMNLP 2006), pages 473–481,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Boosting Unsupervised Relation Extraction by Using NER

Ronen Feldman
Computer Science Department

Bar-Ilan University
Ramat-Gan, ISRAEL

feldman@cs.biu.ac.il

Benjamin Rosenfeld
Computer Science Department

Bar-Ilan University
Ramat-Gan, ISRAEL

grurgrur@gmail.com

Abstract

Web extraction systems attempt to use
the immense amount of unlabeled text
in the Web in order to create large lists
of entities and relations. Unlike
traditional IE methods, the Web
extraction systems do not label every
mention of the target entity or relation,
instead focusing on extracting as many
different instances as possible while
keeping the precision of the resulting
list reasonably high. URES is a Web
relation extraction system that learns
powerful extraction patterns from
unlabeled text, using short descriptions
of the target relations and their
attributes. The performance of URES is
further enhanced by classifying its
output instances using the properties of
the extracted patterns. The features we
use for classification and the trained
classification model are independent
from the target relation, which we
demonstrate in a series of experiments.
In this paper we show how the
introduction of a simple rule based
NER can boost the performance of
URES on a variety of relations. We
also compare the performance of
URES to the performance of the state-
of-the-art KnowItAll system, and to the
performance of its pattern learning
component, which uses a simpler and
less powerful pattern language than
URES.

1 Introduction

Information Extraction (IE) (Riloff 1993;
Cowie and Lehnert 1996; Grishman 1996;
Grishman 1997; Kushmerick, Weld et al. 1997;
Freitag 1998; Freitag and McCallum 1999;
Soderland 1999) is the task of extracting
factual assertions from text.

Most IE systems rely on knowledge
engineering or on machine learning to generate
extraction patterns – the mechanism that
extracts entities and relation instances from
text. In the machine learning approach, a
domain expert labels instances of the target
relations in a set of documents. The system
then learns extraction patterns, which can be
applied to new documents automatically.

Both approaches require substantial human
effort, particularly when applied to the broad
range of documents, entities, and relations on
the Web. In order to minimize the manual
effort necessary to build Web IE systems, we
have designed and implemented URES
(Unsupervised Relation Extraction System).
URES takes as input the names of the target
relations and the types of their arguments. It
then uses a large set of unlabeled documents
downloaded from the Web in order to learn the
extraction patterns.

URES is most closely related to the
KnowItAll system developed at University of
Washington by Oren Etzioni and colleagues
(Etzioni, Cafarella et al. 2005), since both are
unsupervised and both leverage relation-
independent extraction patterns to
automatically generate seeds, which are then
fed into a pattern-learning component.
KnowItAll is based on the observation that the
Web corpus is highly redundant. Thus, its
selective, high-precision extraction patterns
readily ignore most sentences, and focus on
sentences that indicate the presence of relation
instances with very high probability.

 In contrast, URES is based on the
observation that, for many relations, the Web
corpus has limited redundancy, particularly
when one is concerned with less prominent
instances of these relations (e.g., the
acquisition of Austria Tabak). Thus, URES
utilizes a more expressive extraction pattern
language, which enables it to extract
information from a broader set of sentences.
URES relies on a sophisticated mechanism to

473

assess its confidence in each extraction,
enabling it to sort extracted instances, thereby
improving its recall without sacrificing
precision.

Our main contributions are as follows:

• We introduce the first domain-

independent system to extract relation
instances from the Web with both high
precision and high recall.

• We show how to minimize the human
effort necessary to deploy URES for
an arbitrary set of relations, including
automatically generating and labeling
positive and negative examples of the
relation.

• We show how we can integrate a
simple NER component into the
classification scheme of URES in
order to boost recall between 5-15%
for similar precision levels.

• We report on an experimental
comparison between URES, URES-
NER and the state-of-the-art
KnowItAll system, and show that
URES can double or even triple the
recall achieved by KnowItAll for
relatively rare relation instances.

The rest of the paper is organized as
follows: Section 2 describes previous work.
Section 3 outlines the general design principles
of URES, its architecture, and then describes
each URES component in detail. Section 4
presents our experimental evaluation. Section
5 contains conclusions and directions for future
work.

2 Related Work

The IE systems most similar to URES are
based on bootstrap learning: Mutual
Bootstrapping (Riloff and Jones 1999), the
DIPRE system (Brin 1998), and the Snowball
system (Agichtein and Gravano 2000).
(Ravichandran and Hovy 2002) also use
bootstrapping, and learn simple surface
patterns for extracting binary relations from the
Web.

Unlike those unsupervised IE systems,
URES patterns allow gaps that can be matched
by any sequences of tokens. This makes URES
patterns much more general, and allows to
recognize instances in sentences inaccessible

to the simple surface patterns of systems such
as (Brin 1998; Riloff and Jones 1999;
Ravichandran and Hovy 2002). The greater
power of URES requires different and more
complex methods for learning, scoring, and
filtering of patterns.

Another direction for unsupervised relation
learning was taken in (Hasegawa, Sekine et al.
2004; Chen, Ji et al. 2005). These systems use
a NER system to identify pairs of entities and
then cluster them based on the types of the
entities and the words appearing between the
entities. Only pairs that appear at least 30 times
were considered. The main benefit of this
approach is that all relations between two
entity types can be discovered simultaneously
and there is no need for the user to supply the
relations definitions. Such a system could have
been used as a preliminary step to URES,
however its relatively low precision makes it
unfeasible. Unlike URES, the evaluations
performed in these papers ignored errors that
were introduced by the underlying NER
component. The precision reported by these
systems (77% breakeven for the COM-COM
domain) is inferior to that of URES.

We compared our results directly to two
other unsupervised extraction systems, the
Snowball (Agichtein and Gravano 2000) and
KnowItAll. Snowball is an unsupervised
system for learning relations from document
collections. The system takes as input a set of
seed examples for each relation, and uses a
clustering technique to learn patterns from the
seed examples. It does rely on a full fledged
Named Entity Recognition system. Snowball
achieved fairly low precision figures (30-50%)
on relations such as Merger and Acquisition on
the same dataset we used in our experiments.

KnowItAll is a system developed at
University of Washington by Oren Etzioni and
colleagues (Etzioni, Cafarella et al. 2005). We
shall now briefly describe it and its pattern
learning component.

Brief description of KnowItAll
KnowItAll uses a set of generic extraction
patterns, and automatically instantiates rules by
combining those patterns with user supplied
relation labels. For example, KnowItAll has
patterns for a generic “of” relation:

NP1 <relation> NP2
NP1 's <relation> , NP2
NP2 , <relation> of NP1

474

where NP1 and NP2 are simple noun phrases
that extract values of attribute1 and attribute2
of a relation, and <relation> is a user-supplied
string associated with the relation. The rules
may also constrain NP1 and NP2 to be proper
nouns.

The rules have alternating context strings
(exact string match) and extraction slots
(typically an NP or head of an NP). Each rule
has an associated query used to automatically
find candidate sentences from a Web search
engine.

KnowItAll also includes mechanisms to
control the amount of search, to merge
redundant extractions, and to assign a
probability to each extraction based on
frequency of extraction or on Web statistics
(Downey, Etzioni et al. 2004).

KnowItAll-PL. While those generic rules
lead to high precision extraction, they tend to
have low recall, due to the wide variety of
contexts describing a relation. KnowItAll
includes a simple pattern learning scheme
(KnowItAll-PL) that builds on the generic
extraction mechanism (KnowItAll-baseline).
Like URES, this is a self-supervised method
that bootstraps from seeds that are
automatically extracted by the baseline system.

KnowItAll-PL creates a set of positive
training sentences by downloading sentences
that contain both argument values of a seed
tuple and also the relation label. Negative
training is created by downloading sentences
with only one of the seed argument values, and
considering a nearby NP as the other argument
value. This does not guarantee that the
negative example will actually be false, but
works well in practice.

Rule induction tabulates the occurrence of
context tokens surrounding the argument
values of the positive training sentences. Each
candidate extraction pattern has a left context
of zero to k tokens immediately to the left of
the first argument, a middle context of all
tokens between the two arguments, and a right
context of zero to k tokens immediately to the
right of the second argument. A pattern can be
generalized by dropping the furthest terms
from the left or right context. KnowItAll-PL
retains the most general version of each pattern
that has training frequency over a threshold
and training precision over a threshold.

3 Description of URES

The goal of URES is extracting instances of
relations from the Web without human
supervision. Accordingly, the input of the
system is limited to (reasonably short)
definition of the target relations (composed of
the relation's schema and a few keywords that
enable gathering relevant sentences). For
example, this is the description of the
acquisition relation:

 Acquisition(ProperNP, ProperNP) ordered
 keywords={"acquired" "acquisition"}

The word ordered indicates that Acquisition

is not a symmetric relation and the order of its
arguments matters. The ProperNP tokens
indicate the types of the attributes. In the
regular mode, there are only two possible
attribute types – ProperNP and CommonNP,
meaning proper and common noun phrases,
respectively. When using the NER Filter
component described in the section 4.1 we
allow further subtypes of ProperNP, and the
predicate definition becomes:
 acquisition(Company, Company) …

The keywords are used for gathering
sentences from the Web and for instantiating
the generic patterns for seeds generation.
Additional keywords (such as “acquire”,
“purchased”, “hostile takeover”, etc), which
can be used for gathering more sentences, are
added automatically by using WordNet [18].

URES consists of several largely
independent components; their layout is shown
on the Figure 1. The Sentence Gatherer
generates (e.g., downloads from the Web) a
large set of sentences that may contain target
instances. The Seeds Generator, which is
essentially equal to the KnowItAll-baseline
system, uses a small set of generic patterns
instantiated with the predicate keywords to
extract a small set of high-confidence instances
of the target relations. The Pattern Learner uses
the seeds to learn likely patterns of relation
occurrences. Then, the Instance Extractor uses
the patterns to extracts the instances from the
sentences. Those instances can be filtered by a
NER Filter, which is an optional part of the
system. Finally, the Classifier assigns the
confidence score to each extraction.

475

Sentence
Gatherer

Input:
Target Relations

Definitions

Web
Sentences

keywords

Pattern
Learner

Instance
Extractor

Output:
Extractions

Seeds
Generator

seeds

patterns

NER Filter
(optional)

instances
Classifier

Figure 1. The architecture of URES

3.1 Pattern Learner

The task of the Pattern Learner is to learn the
patterns of occurrence of relation instances.
This is an inherently supervised task, because
at least some occurrences must be known in
order to be able to find patterns among them.
Consequently, the input to the Pattern Learner
includes a small set (10 instances in our
experiments) of known instances for each
target relation. Our system assumes that the
seeds are a part of the target relation definition.
However, the set of seeds need not be created
manually. Instead, the seeds can be taken
automatically from the top-scoring results of a
high-precision low-recall unsupervised
extraction system, such as KnowItAll. The
seeds for our experiments were produced in
exactly this way: we used two generic patterns
instantiated with the relation name and
keywords. Those patterns have a relatively
high precision (although low recall), and the
top-confidence results, which are the ones
extracted many times from different sentences,
have close to 100% probability of being
correct.

The Pattern Learner proceeds as follows:
first, the gathered sentences that contain the
seed instances are used to generate the positive
and negative sets. From those sets the patterns
are learned. Finally, the patterns are post-

processed and filtered. We shall now describe
those steps in detail.

PREPARING THE POSITIVE AND NEGATIVE
SETS
The positive set of a predicate (the terms
predicate and relation are interchangeable in
our work) consists of sentences that contain a
known instance of the predicate, with the
instance attributes changed to “<AttrN>”,
where N is the attribute index. For example,
assuming there is a seed instance
Acquisition(Oracle, PeopleSoft), the sentence
The Antitrust Division of the U.S. Department of
Justice evaluated the likely competitive effects of
Oracle's proposed acquisition of PeopleSoft.

will be changed to
The Antitrust Division… …of <Attr1>'s proposed
acquisition of <Attr2>.

The positive set of a predicate P is generated
straightforwardly, using substring search. The
negative set of a predicate consists of
sentences with known false instances of the
predicate similarly marked (with <AttrN>
substituted for attributes). The negative set is
used by the pattern learner during the scoring
and filtering step, to filter out the patterns that
are overly general. We generate the negative
set from the sentences in the positive set by

476

changing the assignment of one or both
attributes to other suitable entities in the
sentence. In the shallow parser based mode of
operation, any suitable noun phrase can be
assigned to an attribute.

GENERATING THE PATTERNS
The patterns for the predicate P are
generalizations of pairs of sentences from the
positive set of P. The function Generalize(s1,
s2) is applied to each pair of sentences s1 and
s2 from the positive set of the predicate. The
function generates a pattern that is the best
(according to the objective function defined
below) generalization of its two arguments.

The following pseudocode shows the
process of generating the patterns for the
predicate P:

For each pair s1, s2 from PositiveSet(P)

 Let Pattern = Generalize(s1, s2).

 Add Pattern to PatternsSet(P).

The patterns are sequences of tokens, skips
(denoted *), limited skips (denoted *?) and
slots. The tokens can match only themselves,
the skips match zero or more arbitrary tokens,
and slots match instance attributes. The
limited skips match zero or more arbitrary
tokens, which must not belong to entities of the
types equal to the types of the predicate
attributes. In the shallow parser based mode,
there are only two different entity types –
ProperNP and CommonNP, standing for
proper and common noun phrases.

The Generalize(s1, s2) function takes two
sentences and generates the least (most
specific) common generalization of both. The
function does a dynamical programming
search for the best match between the two
patterns (Optimal String Alignment algorithm),
with the cost of the match defined as the sum
of costs of matches for all elements. The exact
costs of matching elements are not important
as long as their relative order is maintained.
We use the following numbers: two identical
elements match at cost 0, a token matches a
skip or an empty space at cost 10, a skip
matches an empty space at cost 2, and different
kinds of skip match at cost 3. All other
combinations have infinite cost. After the best
match is found, it is converted into a pattern by
copying matched identical elements and
adding skips where non-identical elements are

matched. For example, assume the sentences
are
 Toward this end, <Attr1> in July acquired
<Attr2>

 Earlier this year, <Attr1> acquired <Attr2> from
X

After the dynamic programming-based
search, the following match will be found:

Toward (cost 10)
Earlier (cost 10)

this this (cost 0)
end (cost 10)

year (cost 10)
, , (cost 0)
<Attr1 > <Attr1 > (cost 0)
in July (cost 20)
acquired acquired (cost 0)
<Attr2 > <Attr2 > (cost 0)

from (cost 10)
X (cost 10)

at total cost = 80. Assuming that “X”

belongs to the same type as at least one of the
attributes while the other tokens are not
entities, the match will be converted to the
pattern
 *? this *? , <Attr1> *? acquired <Attr2>
*

3.2 Classifying the Extractions

The goal of the final classification stage is to
filter the list of all extracted instances, keeping
the correct extractions and removing mistakes
that would always occur regardless of the
quality of the patterns. It is of course
impossible to know which extractions are
correct, but there exist properties of patterns
and pattern matches that increase or decrease
the confidence in the extractions that they
produce. Thus, instead of a binary classifier,
we seek a real-valued confidence function c,
mapping the set of extracted instances into the
[0, 1] segment.

Since confidence value depends on the
properties of particular sentences and patterns,
it is more properly defined over the set of
single pattern matches. Then, the overall
confidence of an instance is the maximum of
the confidence values of the matches that
produce the instance.

Assume that an instance E was extracted
from a match of a pattern P at a sentence S.

477

The following set of binary features may
influence the confidence c(E, P, S):
f1(E, P, S) = 1, if the number of sentences
 producing E is greater than one.
f2(E, P, S) = 1, if the number of sentences
 producing E is greater than two.
f3(E, P, S) = 1, if at least one slot of the pattern P is
 adjacent to a non-stop-word token.
f4(E, P, S) = 1, if both slots of the pattern P are
 adjacent to non-stop-word tokens.
f5…f9(E, P, S) = 1, if the number of nonstop
 words in P is 0 (f5), 1 or greater (f6),
 2 or greater (f7), 3 or greater (f8), and
 4 or greater (f9).
f10…f15(E, P, S) = 1, if the number of words
 between the slots of the match M
 that were matched to skips of the
 pattern P is 0 (f10), 1 or less (f11), 2
 or less (f12) , 3 or less(f13), 5 or less
 (f14), and 10 or less (f15).

Utilizing the NER

In the URES-NER version the entities of each
candidate instance are passed through a simple
rule-based NER filter, which attaches a score
(“yes”, “maybe”, or “no”) to the argument(s)
and optionally fixes the arguments boundaries.
The NER is capable of identifying entities of
type PERSON and COMPANY (and can be
extended to identify additional types).

The scores mean:
 “yes” – the argument is of the correct

entity type.
 “no” – the argument is not of the right

entity type, and hence
 the candidate instance should be

removed.
 “maybe” – the argument type is uncertain,

can be either
 correct or no.

If “no” is returned for one of the arguments,

the instance is removed. Otherwise, an
additional binary feature is added to the
instance's vector:

 f16 = 1 iff the score for both arguments is
“yes”.

For bound predicates, only the second
argument is analyzed, naturally.

As can be seen, the set of features above is
small, and is not specific to any particular
predicate. This allows us to train a model using
a small amount of labeled data for one

predicate, and then use the model for all other
predicates:

Training: The patterns for a single model
predicate are run over a relatively small set of
sentences (3,000-10,000 sentences in our
experiments), producing a set of extractions
(between 150-300 extractions in our
experiments).

The extractions are manually labeled
according to whether they are correct or not.
For each pattern match Mk = (Ek, Pk, Sk), the
value of the feature vector fk = (f1(Mk), …,
f15(Mk)) is calculated, and the label Lk = ±1
is set according to whether the extraction Ek is
correct or no.

A regression model estimating the function
L(f) is built from the training data {(fk, Lk)}.
For our classifier we used the BBR (Genkin,
Lewis et al. 2004), but other models, such as
SVM or NaiveBayes are of course also
possible.

Confidence estimation: For each pattern
match M, its score L(f(M)) is calculated by the
trained regression model. Note that we do not
threshold the value of L, instead using the raw
probability value between zero and one.

The final confidence estimates c(E) for the
extraction E is set to the maximum of L(f(M))
over all matches M that produced E.

4 Experimental Evaluation

Our experiments aim to answer three
questions:

1. Can we train URES’s classifier once, and
then use the results on all other relations?
2. What boost will we get by introducing a

simple NER into the classification scheme of
URES?

3. How does URES’s performance compare
with KnowItAll and KnowItAll-PL?

Our experiments utilized five relations:

Acquisition(BuyerCompany,AcquiredCompan
y),
Merger(Company1, Company2),
CEO_Of(Company, Person),
MayorOf(City, Person),
InventorOf(Person, Invention).

Merger is a symmetric predicate, in the
sense that the order of its attributes does not
matter. Acquisition is antisymmetric, and the
other three are tested as bound in the first

478

attribute. For the bound predicates, we are only
interested in the instances with particular
prespecified values of the first attribute. The
Invention attribute of the InventorOf predicate
is of type CommonNP. All other attributes are
of type ProperName.

The data for the experiments were collected
by the KnowItAll crawler. The data for the
Acquisition and Merger predicates consist of
about 900,000 sentences for each of the two
predicates, where each sentence contains at
least one predicate keyword. The data for the
bounded predicates consist of sentences that
contain a predicate keyword and one of a
hundred values of the first (bound) attribute.
Half of the hundred are frequent entities
(>100,000 search engine hits), and another half
are rare (<10,000 hits).

The pattern learning for each of the
predicates was performed using the whole
corpus of sentences for the predicate. For
testing the precision of each of the predicates
in each of the systems we manually evaluated
sets of 200 instances that were randomly
selected out of the full set of instances
extracted from the whole corpus.

In the first experiment, we test the
performance of the classification component

using different predicates for building the
model. In the second experiment we evaluate
the full system over the whole dataset.

4.1 Cross-Predicate Classification

Performance

In this experiment we test whether the choice
of the model predicate for training the
classifier is significant.

The pattern learning for each of the
predicates was performed using the whole
corpus of sentences for the predicate. For
testing we used a small random selection of
sentences, run the Instance Extractor over
them, and manually evaluated each extracted
instance. The results of the evaluation for
Acquisition, CEO_Of, and Merger are
summarized in Figure 2. As can be seen, using
any of the predicates as the model produces
similar results. The graphs for the other two
predicates are similar. We have used only the
first 15 features, as the NER-based feature (f16)
is predicate-dependent.

Acquisition

0.7
0.75
0.8

0.85
0.9

0.95
1

0 50 100 150

P
re

ci
si

on

CEO_Of

0 50 100 150 200 250

Extractions count

Merger

0 50 100 150 200 250

Acq.

CEO

Inventor

Mayor

Merger

Figure 2. Cross-predicate classification performance results. Each graph shows the five precision-recall curves produced by

using the five different model predicates. As can be seen, the curves on each graph are very similar.

479

CeoOf

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 50 100 150 200 250 300

Correct Extractions

Pr
ec

is
io

n

KIA KIA-PL URES U_NER

InventorOf

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 200 400 600 800 1,000 1,200

Correct Extractions

P
re

ci
si

on

KIA KIA-PL URES

Acquisition

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 2,000 4,000 6,000 8,000 10,000

Correct Extractions

Pr
ec

is
io

n

KIA KIA-PL URES U_NER

Merger

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000

Correct Extractions

Pr
ec

is
io

n

KIA KIA-PL URES U_NER

Figure 3. Comparision between URES, URES-NER, KnowItAll-baseline, and KnowItAll-PL.

4.2 Performance of the whole system

In this experiment we compare the
performance of URES with classification to the
performance of KnowItAll. To carry out the
experiments, we used extraction data kindly
provided by the KnowItAll group. They
provided us with the extractions obtained by
the KnowItAll system and by its pattern
learning component (KnowItAll-PL). Both are
sketched in Section 2.1 and are described in
detail in (Etzioni, Cafarella et al. 2005).

In this experiment we used Acquisition as
the model predicate for testing all other
predicates except itself. For testing
Acquisition we used CEO_Of as the model
predicate. The results are summarized in the
five graphs in the Figure 3.

For three relations (Acquisition, Merger, and
InventorOf) URES clearly outperforms
KnowItAll. Yet for the other two (CEO_Of
and MayorOf), the simpler method of
KnowItAll-PL or even the KnowItAll-baseline
do as well as URES. Close inspection reveals
that the key difference is the amount of
redundancy of instances of those relations in

the data. Instances of CEO_Of and MayorOf
are mentioned frequently in a wide variety of
sentences whereas instances of the other
relations are relatively infrequent.

KnowItAll extraction works well when
redundancy is high and most instances have a
good chance of appearing in simple forms that
KnowItAll is able to recognize. The additional
machinery in URES is necessary when
redundancy is low. Specifically, URES is more
effective in identifying low-frequency
instances, due to its more expressive rule
representation, and its classifier that inhibits
those rules from overgeneralizing.

In the same graphs we can see that URES-
NER outperforms URES by 5-15% in recall
for similar precision levels. We can also see
that for Person-based predicates the
improvement is much more pronounced,
because Person is a much simpler entity to
recognize. Since in the InventorOf predicate
the 2nd attribute is of type CommonNP, the
NER component adds no value and URES-
NER and URES results are identical for this
predicate.

480

5 Conclusions

We have presented the URES system for
autonomously extracting relations from the
Web. We showed how to improve the
precision of the system by classifying the
extracted instances using the properties of the
patterns and sentences that generated the
instances and how to utilize a simple NER
component. The cross-predicate tests showed
that classifier that performs well for all
relations can be built using a small amount of
labeled data for any particular relation. We
performed an experimental comparison
between URES, URES-NER and the state-of-
the-art KnowItAll system, and showed that
URES can double or even triple the recall
achieved by KnowItAll for relatively rare
relation instances, and get an additional 5-15%
boost in recall by utilizing a simple NER. In
particular we have shown that URES is more
effective in identifying low-frequency
instances, due to its more expressive rule
representation, and its classifier (augmented by
NER) that inhibits those rules from
overgeneralizing.

References
Agichtein, E. and L. Gravano (2000). Snowball:

Extracting Relations from Large Plain-Text
Collections. Proceedings of the 5th ACM
International Conference on Digital Libraries
(DL).

Brin, S. (1998). Extracting Patterns and Relations
from the World Wide Web. WebDB Workshop at
6th International Conference on Extending
Database Technology, EDBT’98, Valencia,
Spain.

Chen, J., D. Ji, et al. (2005). Unsupervised Feature
Selection for Relation Extraction IJCNLP-05, Jeju
Island, Korea.

Cowie, J. and W. Lehnert (1996). "Information
Extraction." Communications of the Association
of Computing Machinery 39(1): 80-91.

Downey, D., O. Etzioni, et al. (2004). Learning
Text Patterns for Web Information Extraction and
Assessment (Extended Version). Technical
Report UW-CSE-04-05-01.

Etzioni, O., M. Cafarella, et al. (2005).
"Unsupervised named-entity extraction from the
Web: An experimental study." Artificial
Intelligence 165(1): 91-134.

Freitag, D. (1998). Machine Learning for
Information Extraction in Informal Domains.
Computer Science Department. Pittsburgh, PA,
Carnegie Mellon University: 188.

Freitag, D. and A. K. McCallum (1999).
Information extraction with HMMs and
shrinkage. Proceedings of the AAAI-99
Workshop on Machine Learning for Information
Extraction.

Genkin, A., D. D. Lewis, et al. (2004). Large-Scale
Bayesian Logistic Regression for Text
Categorization. New Brunswick, NJ, DIMACS:
1-41.

Grishman, R. (1996). The role of syntax in
Information Extraction. Advances in Text
Processing: Tipster Program Phase II, Morgan
Kaufmann.

Grishman, R. (1997). Information Extraction:
Techniques and Challenges. SCIE: 10-27.

Hasegawa, T., S. Sekine, et al. (2004). Discovering
Relations among Named Entities from Large
Corpora. ACL 2004.

Kushmerick, N., D. S. Weld, et al. (1997). Wrapper
Induction for Information Extraction. IJCAI-97:
729-737.

Ravichandran, D. and E. Hovy (2002). Learning
Surface Text Patterns for a Question Answering
System. 40th ACL Conference.

Riloff, E. (1993). Automatically Constructing a
Dictionary for Information Extraction Tasks.
AAAI-93.

Riloff, E. and R. Jones (1999). Learning
Dictionaries for Information Extraction by Multi-
level Boot-strapping. AAAI-99.

Soderland, S. (1999). "Learning Information
Extraction Rules for Semi-Structured and Free
Text." Machine Learning 34(1-3): 233-272.

481

