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Abstract

We investigate the problem of learn-
ing a part-of-speech (POS) lexicon for a
resource-poor language, dialectal Arabic.
Developing a high-quality lexicon is often
the first step towards building a POS tag-
ger, which is in turn the front-end to many
NLP systems. We frame the lexicon ac-
quisition problem as a transductive learn-
ing problem, and perform comparisons
on three transductive algorithms: Trans-
ductive SVMs, Spectral Graph Transduc-
ers, and a novel Transductive Clustering
method. We demonstrate that lexicon
learning is an important task in resource-
poor domains and leads to significant im-
provements in tagging accuracy for dialec-
tal Arabic.

1 Introduction

Due to the rising importance of globalization and
multilingualism, there is a need to build natu-
ral language processing (NLP) systems for an in-
creasingly wider range of languages, including
those languages that have traditionally not been
the focus of NLP research. The development of
NLP technologies for a new language is a chal-
lenging task since one needs to deal not only with
language-specific phenomena but also with a po-
tential lack of available resources (e.g. lexicons,
text, annotations). In this study we investigate the
problem of learning a part-of-speech (POS) lexi-
con for a resource-poor language, dialectal Arabic.

Developing a high-quality POS lexicon is the
first step towards training a POS tagger, which in
turn is typically the front end for other NLP appli-
cations such as parsing and language modeling. In
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the case of resource-poor languages (and dialec-
tal Arabic in particular), this step is much more
critical than is typically assumed: a lexicon with
too few constraints on the possible POS tags for
a given word can have disastrous effects on tag-
ging accuracy. Whereas such constraints can be
obtained from large hand-labeled corpora or high-
quality annotation tools in the case of resource-
rich languages, no such resources are available for
dialectal Arabic. Instead, constraints on possible
POS tags must be inferred from a small amount
of tagged words, or imperfect analysis tools. This
can be seen as the problem of learning complex,
structured outputs (multi-class labels, with a dif-
ferent number of classes for different words and
dependencies among the individual labels) from
partially labeled data.

Our focus is on investigating several machine
learning techniques for this problem. In partic-
ular, we argue that lexicon learning in resource-
poor languages can be best viewed as transduc-
tive learning. The main contribution of this work
are: (1) a comprehensive evaluation of three trans-
ductive algorithms (Transductive SVM, Spectral
Graph Transducer, and a new technique called
Transductive Clustering) as well as an inductive
SVM on this task; and (2) a demonstration that
lexicon learning is a worthwhile investment and
leads to significant improvements in the tagging
accuracy for dialectal Arabic.

The outline of the paper is as follows: Section 2
describes the problem in more detail and discusses
the situation in dialectal Arabic. The transductive
framework and algorithms for lexicon learning are
elaborated in Section 3. Sections 4 and 5 describe
the data and system. Experimental results are pre-
sented in Section 6. We discuss some related work
in Section 7 before concluding in Section 8.
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2 The Importance of Lexicons in
Resource-poor POS Tagging

2.1 Unsupervised Tagging

The lack of annotated training data in resource-
poor languages necessitates the use of unsuper-
vised taggers. One commonly-used unsuper-
vised tagger is the Hidden Markov model (HMM),
which models the joint distribution of a word se-
quence wo: s and tag sequence to.ps as:

M
P(toars wonr) = [ [ p(wilts)p(tiltio1, ti—s)
i=0
(1)

This is a trigram HMM. Unsupervised learn-
ing is performed by running the Expectation-

Maximization (EM) algorithm on raw text. In this
procedure, the tag sequences are unknown, and the
probability tables p(wj;|t;) and p(t;|t;—1,t;—2) are
iteratively updated to maximize the likelihood of
the observed word sequences.

Although previous research in unsupervised
tagging have achieved high accuracies rivaling su-
pervised methods (Kupiec, 1992; Brill, 1995),
much of the success is due to the use of artifi-
cially constrained lexicons. Specifically, the lex-
icon is a wordlist where each word is annotated
with the set of all its possible tags. (We will call
the set of possible tags of a given word the POS-
set of that word; an example: POS-set of the En-
glish word bank may be {NN, VB}.) Banko and
Moore (2004) showed that unsupervised tagger ac-
curacies on English degrade from 96% to 77% if
the lexicon is not constrained such that only high
frequency tags exist in the POS-set for each word.

Why is the lexicon so critical in unsupervised
tagging? The answer is that it provides addi-
tional knowledge about word-tag distributions that
may otherwise be difficult to glean from raw text
alone. In the case of unsupervised HMM taggers,
the lexicon provides constraints on the probability
tables p(w;|t;) and p(t;|t;—1,t;—2). Specifically,
the lexical probability table is initialized such that
p(w;|t;) = 0if and only if tag ¢; is not included in
the POS-set of word w;. The transition probability
table is initialized such that p(t;|t;—1,t;—2) = 0 if
and only if the tag sequence (t;,t;—1,t;—2) never
occurs in the tag lattice induced by the lexicon on
the raw text. The effect of these zero-probability
initialization is that they will always stay zero
throughout the EM procedure (modulo the effects
of smoothing). This therefore acts as hard con-
straints and biases the EM algorithm to avoid cer-

tain solutions when maximizing likelihood. If the
lexicon is accurate, then the EM algorithm can
learn very good predictive distributions from raw
text only; conversely, if the lexicon is poor, EM
will be faced with more confusability during train-
ing and may not produce a good tagger. In general,
the addition of rare tags, even if they are correct,
creates a harder learning problem for EM.

Thus, a critical aspect of resource-poor POS
tagging is the acquisition of a high-quality lexi-
con. This task is challenging because the lexicon
learning algorithm must not be resource-intensive.
In practice, one may be able to find analysis tools
or incomplete annotations such that only a partial
lexicon is available. The focus is therefore on ef-
fective machine learning algorithms for inferring
a full high-quality lexicon from a partial, possibly
noisy initial lexicon. We shall now discuss this sit-
uation in the context of dialectal Arabic.

2.2 Dialectal Arabic

The Arabic language consist of a collection of
spoken dialects and a standard written language
(Modern Standard Arabic, or MSA). The dialects
of Arabic are of considerable importance since
they are used extensively in almost all everyday
conversations. NLP technology for dialectal Ara-
bic is still in its infancy, however, due to the lack
of data and resources. Apart from small amounts
of written dialectal material in e.g. plays, novels,
chat rooms, etc., data can only be obtained by
recording and manually transcribing actual con-
versations. Annotated corpora are scarce because
annotation requires another stage of manual ef-
fort beyond transcription work. In addition, ba-
sic resources such as lexicons, morphological an-
alyzers, tokenizers, etc. have been developed for
MSA, but are virtually non-existent for dialectal
Arabic.

In this study, we address lexicon learning for
Levantine Colloquial Arabic. We assume that only
two resources are available during training: (1)
raw text transcriptions of Levantine speech and (2)
a morphological analyzer developed for MSA.

The lexicon learning task begins with a par-
tial lexicon generated by applying the MSA ana-
lyzer to the Levantine wordlist. Since MSA dif-
fers from Levantine considerably in terms of syn-
tax, morphology, and lexical choice, not all Lev-
antine words receive an analysis. In our data,
23% of the words are un-analyzable. Thus, the
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goal of lexicon learning is to infer the POS-sets
of the un-analyzable words, given the partially-
annotated lexicon and raw text.

Details on the Levantine data and overall system
are provided in Sections 4 and 5. We discuss the
learning algorithms in the next section.

3 Learning Frameworks and Algorithms

Let us formally define the lexicon learning prob-
lem. We have a wordlist of size m + u. A portion
of these words (m) are annotated with POS-set la-
bels, which may be acquired by manual annotation
or an automatic analysis tool. The set of labeled
words { X, } is the training set, also referred to as
the partial lexicon. The task is to predict the POS-
sets of the remaining u unlabeled words { X, }, the
test set. The goal of lexicon learning is to label
{X,} with low error. The final result is a full lex-
icon that contains POS-sets for all m + u words.

3.1 Transductive Learning with Structured
Outputs

We argue that the above problem formulation
lends itself to a transductive learning framework.
Standard inductive learning uses a training set of
fully labeled samples in order to learn a classi-
fication function. After completion of the train-
ing phase, the learned model is then used to clas-
sify samples from a new, previously unseen test
set. Semi-supervised inductive learning exploits
unlabeled data in addition to labeled data to better
learn a classification function. Transductive learn-
ing, first described by Vapnik (Vapnik, 1998) also
describes a setting where both labeled and unla-
beled data are used jointly to decide on a label as-
signment to the unlabeled data points. However,
the goal here is not to learn a general classifica-
tion function that can be applied to new test sets
multiple times but to achieve a high-quality one-
time labeling of a particular data set. Transduc-
tive learning and inductive semi-supervised learn-
ing are sometimes confused in the literature. Both
approaches use unlabeled data in learning — the
key difference is that a transductive classifier only
optimizes the performance on the given unlabeled
data while an inductive semi-supervised classifier
is trained to perform well on any new unlabeled
data.

Lexicon learning fits in the transductive learn-
ing framework as follows: The test set {X,},
i.e. the unlabeled words, is static and known dur-

SINGLE-LABEL FRAMWORK

K independent classifiers + 1 overall classifier

NN vs.~NN | 0.9

< % N 2nd Stage

sample 8

p VB vs. ~VB | 0. 8%/ Classifier {NN,JJ}
JJ vs. ~JJ 0.1

COMPOUND-LABEL FRAMEWORK
1 multi—class classifier
(one—vs—rest implementation using N binary classifiers)

NN-VB vs. ~\NN-VB 0.6
NN-JJ vs. ~NN-JJ 0.8\
VB-JJ vs. ~VB-1J | -0.
VB vs. ~VB —0.

..., etc.

sample

Figure 1: Learning with Structured Outputs using
single or compound labels

ing learning time; we are not interested in inferring
POS-sets for any words outside the word list.

An additional characterization of the lexicon
learning problem is that it is a problem of learn-
ing with complex, structured outputs. The label
for each word is its POS-set, which may contain
one to K POS tags (where K is the size of the
tagset, K=20 in our case). This differs from tra-
ditional classification tasks where the output is a
single scalar variable.

Structured output problems like lexicon learn-
ing can be characterized by the granularity of the
basic unit of labels. We define two cases: single-
label and compound-label. In the single-label
framework (see Figure 1), each individual POS tag
is the target of classification and we have K binary
classifiers each hypothesizing whether a word has
aPOStagk (k=1,..., K). A second-stage clas-
sifier takes the results of the K individual classi-
fiers and outputs a POS-set. This classifier can
simply take all POS tags hypothesized positive by
the individual binary classifiers to form the POS-
set, or use a more sophisticated scheme for deter-
mining the number of POS tags (Elisseeff and We-
ston, 2002).

The alternative compound-label framework
treats each POS-set as an atomic label for clas-
sification. A POS-set such as {“NN”, “VB”} is
“compounded” into one label “NN-VB”, which re-
sults in a different label than, say, “NN” or “NN-
JJ”. Suppose there exist N distinct POS-sets in the
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training data; then we have /N atomic units for la-
beling. Thus a (N-ary) multi-class classifier is em-
ployed to directly predict the POS-set of a word. If
only binary classifiers are available (i.e. in the case
of Support Vector Machines), one can use one-vs-
rest, pairwise, or error correcting code schemes to
implement the multi-class classification.

The single-label framework is potentially ill-
suited for capturing the dependencies between
POS tags. Dependencies between POS tags arise
since some tags, such as “NN” and “NNP” can of-
ten be tagged to the same word and therefore co-
occur in the POS-set label. The compound-label
framework implicitly captures tag co-occurrence,
but potentially suffers from training data fragmen-
tation as well as the inability to hypothesize POS-
sets that do not already exist in the training data.
In our initial experiments, the compound-label
framework gave better classification results; thus
we implemented all of our algorithms in the multi-
class framework (using the one-vs-rest scheme
and choosing the argmax as the final decision).

3.2 Transductive Clustering

How does a transductive algorithm effectively uti-
lize unlabeled samples in the learning process?
One popular approach is the application of the so-
called cluster assumption, which intuitively states
that samples close to each other (i.e. samples that
form a cluster) should have similar labels.
Transductive clustering (TC) is a simple algo-
rithm that directly implements the cluster assump-
tion. The algorithm clusters labeled and unlabeled
samples jointly, then uses the labels of labeled
samples to infer the labels of unlabeled words in
the same cluster. This idea is relatively straight-
forward, yet what is needed is a principled way
of deciding the correct number of clusters and the
precise way of label transduction (e.g. based on
majority vote vs. probability thresholds). Typ-
ically, such parameters are decided heuristically
(e.g. (Duh and Kirchhoff, 2005a)) or by tuning on
a labeled development set; for resource-poor lan-
guages, however, no such set may be available.
As suggested by (EI-Yaniv and Gerzon, 2005),
the TC algorithm can utilize a theoretical error
bound as a principled way of determining the pa-
rameters. Let Rj,(X,,) be the empirical risk of a
given hypothesis (i.e. classifier) on the training set;
let Rj,(X,,) be the test risk. (Derbeko et al., 2004)
derive an error bound which states that, with prob-

ability 1—4, the risk on the test samples is bounded
by: .
Ry, (Xu) < Ry (Xm)

e () (RE2E)

i.e. the test risk is bounded by the empirical risk on
the labeled data, Rj,(X,y), plus a term that varies
with the prior p(h) of the hypothesis or classifier.
This is a PAC-Bayesian bound (McAllester, 1999).
The prior p(h) indicates ones prior belief on the
hypothesis h over the set of all possible hypothe-
ses. If the prior is low or the empirical risk is high,
then the bound is large, implying that test risk may
be large. A good hypothesis (i.e. classifier) will
ideally have a small value for the bound, thus pre-
dicting a small expected test risk.

The PAC-Bayesian bound is important because
it provides a theoretical guarantee on the quality
of a hypothesis. Moreover, the bound in Eq. 2 is
particularly useful because it is easily computable
on any hypothesis h, assuming that one is given
the value of p(h). Given two hypothesized label-
ings of the test set, h; and ho, the one with the
lower PAC-Bayesian bound will achieve a lower
expected test risk. Therefore, one can use the
bound as a principled way of choosing the pa-
rameters in the Transductive Clustering algorithm:
First, a large number of different clusterings is cre-
ated; then the one that achieves the lowest PAC-
Bayesian bound is chosen. The pseudo-code is
given in Figure 2.

(El-Yaniv and Gerzon, 2005) has applied the
Transductive Clustering algorithm successfully to
binary classification problems and demonstrated
improvements over the current state-of-the-art
Spectral Graph Transducers (Section 3.4). We use
the algorithm as described in (Duh and Kirchhoff,
2005b), which adapts the algorithm to structured
output problems. In particular, the modification
involves a different estimate of the priors p(h),
which was assumed to be uniform in (El-Yaniv and
Gerzon, 2005). Since there are many possible h,
adopting a uniform prior will lead to small values
of p(h) and thus a loose bound for all h. Proba-
bility mass should only be spent on POS-sets that
are possible, and as such, we calculate p(h) based
on frequencies of compound-labels in the training
data (i.e. an empirical prior).

3.3 Transductive SVM

Transductive SVM (TSVM) (Joachims, 1999) is
an algorithm that implicitly implements the cluster
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Forr=2:C

Calculate the bound for h, as defined in Eq. 2.

[ B N A S

(C is set arbitrarily to a large number)
Apply a clustering algorithm to generate 7 clusters on X, 4.
Generate label hypothesis h, (by labeling each cluster with the most frequent label among its labeled samples)

Choose the hypothesis h, with the lowest bound; output the corresponding classification of X,.

Figure 2: Pseudo-code for transductive clustering.

assumption. In standard inductive SVM (ISVM),
the learning algorithm seeks to maximize the mar-
gin subject to misclassification constraints on the
training samples. In TSVM, this optimization is
generalized to include additional constraints on
the unlabeled samples. The resulting optimiza-
tion algorithm seeks to maximize the margin on
both labeled and unlabeled samples and creates a
hyperplane that avoids high-density regions (e.g.
clusters).

3.4 Spectral Graph Transducer

Spectral Graph Transducer (SGT) (Joachims,
2003) achieves transduction via an extension of
the normalized mincut clustering criterion. First,
a data graph is constructed where the vertices are
labeled or unlabeled samples and the edge weights
represent similarities between samples. The min-
cut criteria seeks to partition the graph such that
the sum of cut edges is minimized. SGT extends
this idea to transductive learning by incorporating
constraints that require samples of the same label
to be in the same cluster. The resulting partitions
decide the label of unlabeled samples.

4 Data

4.1 Corpus

The dialect addressed in this work is Levantine
Colloquial Arabic (LCA), primarily spoken in Jor-
dan, Lebanon, Palestine, and Syria. Our devel-
opment/test data comes from the Levantine Ara-
bic CTS Treebank provided by LDC. The train-
ing data comes from the Levantine CTS Audio
Transcripts. Both are from the Fisher collection
of conversational telephone speech between Lev-
antine speakers previously unknown to each other.
The LCA data was transcribed in standard MSA
script and transliterated into ASCII characters us-
ing the Buckwalter transliteration scheme'. No di-
acritics are used in either the training or develop-
ment/test data. Speech effects such as disfluencies
and noises were removed prior to our experiments.

"http://www.ldc.upenn.edu/myl/morph/buckwalter.html

The training set consists of 476k tokens and
16.6k types. It is not annotated with POS tags —
this is the raw text we use to train the unsuper-
vised HMM tagger. The test set consists of 15k
tokens and 2.4k types, and is manually annotated
with POS tags. The development set is also POS-
annotated, and contains 16k tokens and 2.4k types.
We used the reduced tagset known as the Bies
tagset (Maamouri et al., 2004), which focuses on
major part-of-speech and excludes detailed mor-
phological information.

Using the compound-label framework, we
observe 220 and 67 distinct compound-labels
(i.e. POS-sets) in the training and test sets, respec-
tively. As mentioned in Section 3.1, a classifier
in the compound-label framework can never hy-
pothesize POS-sets that do not exist in the training
data: 43% of the test vocabulary (and 8.5% by to-
ken frequency) fall under this category.

4.2 Morphological Analyzer

We employ the LDC-distributed Buckwalter ana-
lyzer for morphological analyses of Arabic words.
For a given word, the analyzer outputs all possi-
ble morphological analyses, including stems, POS
tags, and diacritizations. The information regard-
ing possible POS tags for a given word is crucial
for constraining the unsupervised learning process
in HMM taggers.

The Buckwalter analyzer is based on an internal
stem lexicon combined with rules for affixation. It
was originally developed for the MSA, so only a
certain percentage of Levantine words can be cor-
rectly analyzed. Table 1 shows the percentages
of words in the LCA training text that received N
possible POS tags from the Buckwalter analyzer.
Roughly 23% of types and 28% of tokens received
no tags (N=0) and are considered un-analyzable.

5 System

Our overall system looks as follows (see Figure
3): In Step 1, the MSA (Buckwalter) analyzer
is applied to the word list derived from the raw
training text. The result is a partial POS lexicon,
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Buckwalter
Analyzer (1)

word2 JJ-NN
word3 JJ

word4 ?
word5 ?

Partial POS Lexicon

wordl NN-vB| EM

word2 JJ-NN | Training (3)
word3 JJ
word4 NN-VB
word5 JJ

Full POS Lexicon HMM Tagger

Figure 3: Overall System: (1) Apply Buckwalter Analyzer to dialectal Arabic raw text, obtaining a
partial POS lexicon. (2) Use Transductive Learning to infer missing POS-sets. (3) Unsupervised training
of HMM Tagger using both raw text and inferred lexicon.

‘ N ‘ Type ‘ Token ‘

0 | 233 | 282
1 1525 | 404
2 177 | 199
3152 10.5
4 110 23
5 10.1 0.6

Table 1: Percentage of word types/tokens with N
possible tags, as determined by the Buckwalter an-
alyzer. Words with O tags are un-analyzable.

which lists the set of possible POS tags for those
words for which the analyzer provided some out-
put. All possibilities suggested by the analyzer are
included.

The focus of Step 2 is to infer the POS-sets of
the remaining, unannotated words using one of the
automatic learning procedures described in Sec-
tion 3. Finally, Step 3 involves training an HMM
tagger using the learned lexicon. This is the stan-
dard unsupervised learning component of the sys-
tem. We use a trigram HMM, although modifica-
tions such as the addition of affixes and variables
modeling speech effects may improve tagging ac-
curacy. Our concern here is the evaluation of the
lexicon learning component in Step 2.

An important problem in this system setup is
the possibility of error propagation. In Step 1, the
MSA analyzer may give incorrect POS-sets to ana-
lyzable words. It may not posit the correct tag (low
recall), or it may give too many tags (low preci-
sion). Both have a negative effect on lexicon learn-
ing and EM training. For lexicon learning, Step
1 errors represent corrupt training data; For EM
training, Step 1 error may cause the HMM tagger
to never hypothesize the correct tag (low recall) or
have too much confusibility during training (low

precision). We attempted to measure the extent of
this error by calculating the tag precision/recall on
words that occur in the test set: Among the 12k
words analyzed by the analyzer, 1483 words oc-
cur in the test data. We used the annotations in
the test data and collected all the “oracle” POS-
sets for each of these 1483 words.> The aver-
age precision of the analyzer-generated POS-sets
against the oracle is 56.46%. The average recall
is 81.25%. Note that precision is low—this implies
that the partial lexicon is not very constrained. The
recall of 81.25% means that 18.75% of the words
may never receive the correct tag in tagging. In
the experiments, we will investigate to what ex-
tent this kind of error affects lexicon learning and
EM training.

6 Experiments

6.1 Lexicon learning experiments

We seek to answer the following three questions
in our experiments:

e How useful is the lexicon learning step in an
end-to-end POS tagging system? Do the ma-
chine learning algorithms produce lexicons
that result in higher tagging accuracies, when
compared to a baseline lexicon that simply
hypothesizes all POS tags for un-analyzable
words? The answer is a definitive yes.

e What machine learning algorithms perform
the best on this task? Do transductive learn-
ing outperform inductive learning? The em-
pirical answer is that TSVM performs best,
SGT performs worst, and TC and ISVM are
in the middle.

2Since the test set is small, these “oracle” POS-sets may

be missing some tags. Thus the true precision may be higher
(and recall may be lower) than measured.
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Orthographic features:
w; matches /"pre/, pre = {set of data-derived prefixes}
w; matches /suf$/, suf = {set of data-derived suffixes}

Contextual features:

wi—1 = voc, voc = {set of words in lexicon}
ti—1=tag, tag = {set of POS tags}

ti+1 = tag, tag = {set of POS tags}

w;—1 is an un-analyzable word

w;+1 is an un-analyzable word

Table 2: Binary features used for predicting POS-
sets of un-analyzable words.

e What is the relative impact of errors from the
MSA analyzer on lexicon learning and EM
training? The answer is that Step 1 errors af-
fect EM training more, and lexicon learning
is comparably robust to these errors.

In our problem, we have 12k labeled samples
and 3970 unlabeled samples. We define the feature
of each sample as listed in Table 2. The contextual
features are generated by co-occurrence statistics
gleaned from the training data. For instance, for
a word foo, we collect all bigrams consisting of
foo from the raw text; all features [w;_1 = voc]
that correspond to the bigrams (voc, foo) are set
to 1. The idea is that words with similar ortho-
graphic and/or contextual features should receive
similar POS-sets.

All results, unless otherwise noted, are tagging
accuracies on the test set given by training a HMM
tagger on a specific lexicon. Table 3 gives tagging
accuracies of the four machine learning methods
(TSVM, TC, ISVM, SGT) as well as two base-
line approaches for generating a lexicon: (all tags)
gives all 20 possible tags to the un-analyzable
words, whereas (open class) gives only the sub-
set of open-class POS tags.> The results are given
in descending order of overall tagging accuracy.*
With the exception of TSVM (63.54%) vs. TC
(62.89%), all differences are statistically signifi-
cant. As seen in the table, applying a machine
learning step for lexicon learning is a worthwhile
effort since it always leads to better tagging accu-
racies than the baseline methods.

3Not all un-analyzable words are open-class. Close-class
words may be un-analyzable due to dialectal spelling varia-
tions.

“Note that the unknown word accuracies do not follow
the same trend and are generally quite low. This might be
due to the fact that POS tags of unknown words are usually
best predicted by the HMM’s transition probabilities, which
may not be as robust due to the noisy lexicon.

‘ Method ‘ Accuracy ‘ UnkAcc ‘
TSVM 63.54 26.19
TC 62.89 26.71
ISVM 61.53 27.68
SGT 59.68 25.82
open class | 57.39 27.08
all tags 55.64 25.00

Table 3: Tagging Accuracies for lexicons derived
by machine learning (TSVM, TC, ISVM, SGT)
and baseline methods. Accuracy=Overall accu-
racy; UnkAcc=Accuracy of unknown words.

The poor performance of SGT is somewhat sur-
prising since it is contrary to results presented in
other papers. We attributed this to the difficulty in
constructing the data graph. For instance, we con-
structed k-nearest-neighbor graphs based on the
cosine distance between feature vectors, but it is
difficult to decide the best distance metric or num-
ber of neighbors. Finally, we note that besides the
performance of SGT, transductive learning meth-
ods (TSVM, TC) outperform the inductive ISVM.

We also compute precision/recall statistics of
the final lexicon on the test set words (similar to
Section 5) and measure the average size of the
POS-sets (||[POSset||). As seen in Table 4, POS-
set sizes of machine-learned lexicon is a factor of
2 or 3 smaller than that of the baseline lexicons.
On the other hand, recall is better for the baseline
lexicons. These observations, combined with the
fact that machine-learned lexicons gave better tag-
ging accuracy, suggests that we have a constrained
lexicon effect here: i.e. for EM training, it is better
to constrain the lexicon with small POS-sets than
to achieve high recall.

Method Precision ‘ Recall ‘ ||POSset]|| ‘
TSVM 58.15 88.85 | 1.89
TC 59.19 87.88 | 1.80
ISVM 58.09 88.44 | 1.87
SGT 53.98 82.60 | 1.87
open class | 54.03 96.77 | 3.39
all tags 53.31 98.53 | 5.17

Table 4: Statistics of the Lexicons in Table 3.

Next, we examined the effects of error propa-
gation from the MSA analyzer in Step 1. We at-
tempted to correct these errors by using POS-sets
of words derived from the development data. In
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particular, of the 1562 partial lexicon words that
also occur in the development set, we found 1044
words without entirely matching POS-sets. These
POS-sets are replaced with the oracle POS-sets de-
rived from the development data, and the result is
treated as the (corrected) partial lexicon of Step 1.
In this procedure, the average POS-set size of the
partial lexicon decreased from 2.13 to 1.10, recall
increased from 82.44% to 100%, and precision in-
creased from 57.15% to 64.31%. We apply lexi-
con learning to this corrected partial lexicon and
evaluate tagging results, shown in Table 5. The
fact that all numbers in Table 5 represent signifi-
cant improvements over Table 3 implies that error
propagation is not a trivial problem, and automatic
error correction methods may be desired.

‘ Method ‘ Accuracy ‘ UnkAcc ‘
TSVM 66.54 27.38
ISVM 65.08 26.86
TC 64.05 28.20
SGT 63.78 27.23
all tags 62.96 2791
open class | 61.26 27.83

Table 5: Tag accuracies by correcting mistakes in
the partial lexicon prior to lexicon learning. In-
terestingly, we note ISVM outperforms TC here,
which differs from Table 3.

Finally, we determine whether error propaga-
tion impacts lexicon learning (Step 2) or EM train-
ing (Step 3) more. Table 6 shows the results of
TSVM for four scenarios: correcting analyzer er-
rors in the the lexicon: (A) prior to lexicon learn-
ing, (B) prior to EM training, (C) both, or (D)
none. As seen in Table 6, correcting the lexicon
at Step 3 (EM training) gives the most improve-
ments, indicating that analyzer errors affects EM
training more than lexicon learning. This implies
that lexicon learning is relatively robust to train-
ing data corruption, and that one can mainly focus
on improved estimation techniques for EM train-
ing (Wang and Schuurmans, 2005) if the goal is to
alleviate the impact of analyzer errors. The same
evaluation on the other machine learning methods
(TC, ISVM, SGT) show similar results.

6.2 Comparison experiments: Expert lexicon
and supervised learning

Our approach to building a resource-poor POS
tagger involves (a) lexicon learning, and (b) un-

‘ Scenario ‘ Step2 ‘ Step3 ‘ TSVM ‘

(B) N Y 66.70
(C) Y Y 66.54
(A) Y N 64.93
(D) N N 63.54

Table 6: Effect of correcting the lexicon in differ-
ent steps. Y=yes, lexicon corrected; N=no, POS-
set remains the same as analyzer’s output.

supervised training. In this section we examine
cases where (a) an expert lexicon is available, so
that lexicon learning is not required, and (b) sen-
tences are annotated with POS information, so that
supervised training is possible. The goal of these
experiments is to determine when alternative ap-
proaches involving additional human annotations
become worthwhile in this task.

(a) Expert lexicon: First, we build an expert
lexicon by collecting all tags per word in the de-
velopment set (i.e. “oracle” POS-sets). Then, the
tagger is trained using EM by treating the develop-
ment set as raw text (i.e. ignoring the POS anno-
tations). This achieves an accuracy of 74.45% on
the test set. Note that this accuracy is significantly
higher than the ones in Table 3, which represent
unsupervised training on more raw text (the train-
ing set), but with non-expert lexicons derived from
the MSA analyzer and a machine learner. This re-
sult further demonstrates the importance of obtain-
ing an accurate lexicon in unsupervised training. If
one were to build this expert lexicon by hand, one
would need an annotator to label the POS-sets of
2450 distinct lexicon items.

(b) Supervised training: We build a super-
vised tagger by training on the POS annotations of
the development set, which achieves 82.93% accu-
racy. This improved accuracy comes at the cost of
annotating 2.2k sentences (16k tokens) with com-
plete POS information.

Finally, we present the same results with re-
duced data, taking first 50, 100, 200, etc. sen-
tences in the development set for lexicon or POS
annotation. The learning curve is shown in Table
7. One may be tempted to draw conclusions re-
garding supervised vs. unsupervised approaches
by directly comparing this table with the results
in Section 6.1; we avoid doing so since taggers in
Sections 6.1 and 6.2 are trained on different data
sets (training vs. development set) and the accu-
racy differences are compounded by issues such
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Supervised Unsupervised, Expert

#Sentence | Acc #Vocab | Acc

50 47.82 || 123 47.13
100 55.32 || 188 54.65
200 61.17 || 299 57.37
400 69.17 || 497 64.36
800 76.92 || 953 70.36
1600 81.73 || 1754 72.99
2200 82.93 || 2450 74.45

Table 7: (1) Supervised training accuracies with
varying numbers of sentences. (2) Accuracies of
unsupervised training using a expert lexicon of
different vocabulary sizes.

as ngram coverage, data-set selection, and the way
annotations are done.

7 Related Work

There is an increasing amount of work in NLP
tools for Arabic. In supervised POS tagging, (Diab
et al., 2004) achieves high accuracy on MSA with
the direct application of SVM classifiers. (Habash
and Rambow, 2005) argue that the rich morphol-
ogy of Arabic necessitates the use of a morpho-
logical analyzer in combination with POS tag-
ging. This can be considered similar in spirit to
the learning of lexicons for unsupervised tagging.
The work done at a recent JHU Workshop
(Rambow and others, 2005) is very relevant in that
it investigates a method for improving LCA tag-
ging that is orthogonal to our approach. They do
not use the raw LCA text as we have done. Instead,
they train a MSA supervised tagger and adapt it to
LCA by a combination of methods, such using a
MSA-LCA translation lexicon and redistributing
the probabibility mass of MSA words to LCA.

8 Conclusion

In this study, we investigated several machine
learning algorithms on the task of lexicon learn-
ing and demonstrated its impact on dialectal Ara-
bic tagging. We achieve a POS tagging accuracy
of 63.54% using a transductively-learned lexicon
(TSVM), outperforming the baseline (57.39%).
This result brings us one step closer to the accu-
racies of unsupervised training with expert lexi-
con (74.45%) and supervised training (82.93%),
both of which require significant annotation effort.
Future work includes a more detailed analysis of

transductive learning in this domain and possible
solutions to alleviating error propagation.
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